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Virtual assessment of damage detection 

techniques for operational wind turbine. 

Emilio Di Lorenzo, Simone Manzato, Bart Peeters, Herman Van der 

Auweraer. 

LMS International, RTD Test Division, Interleuvenlaan 68, 3001, Leuven, Belgium 

Abstract   Operational Modal Analysis (OMA), also known as output-only 

modal analysis, allows identifying modal parameters only by using the re-

sponse measurements of the structures in operational conditions when the in-

put forces cannot be measured. These information can then be used to im-

prove numerical models in order to monitor the operating and structural 

conditions of the system. This is a critical aspect both for condition monitor-

ing and maintenance of large wind turbines, particularly in the off-shore sec-

tor where operation and maintenance represent a high percentage of total 

costs. Although OMA is widely applied, the wind turbine case still remains an 

open issue. Numerical aeroelastic models could be used, once they have been 

validated, to introduce virtual damages to the structures in order to analyze 

the generated data. Results from such models can then be used as baseline to 

monitor the operating and structural condition of the machine. 

Introduction 

The objective of this paper is to apply advanced Operational Modal Analysis 

(OMA) techniques to predict in advance failures or damages with a monitoring 

application based on the analysis of modal parameters and their variations in oper-

ating conditions. In this way, the risk to have catastrophic failures and cost associ-

ated can be significantly reduced. OMA is a technique that allows extracting the 

modal parameters from vibration response signals. The main difference compared 

to the traditional experimental modal analysis is that it does not need the meas-

urement of the input forces so that also structures under operating conditions, or in 

other situations where it is impossible to measure the input forces, can be tested. 

The information obtained from this analysis can then be used to improve numeri-

cal models, to predict the dynamic behavior of new designs, to identify the modal 

parameters of prototypes and to monitor systems in operating conditions. 

The problem associated with the dynamic identification of wind turbines has its 

roots in 1990 when a special technique known as Natural Excitation Technique 

(NExT) was developed to estimate modal parameters of wind turbines excited in 

their operating environment [1]. In the following years, this technique has been 
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applied to other fields such as civil structures as well as automotive and aerospace 

applications. Although the first application of an Operational Modal Analysis 

methodology was related to a vertical-axis wind turbine, not many other applica-

tions to wind turbines were studied later on. The main reason is the fact that most 

of the OMA assumptions are violated by operating wind turbines.  

With this paper, an advanced OMA technique, the so-called PolyMAX Opera-

tional Modal Analysis technique is applied to different set of simulated data ob-

tained introducing virtual damages to the unit under test. The main objective is to 

predict damages by means of modal parameters variations for condition monitor-

ing and maintenance (O&M) purposes. In section 2 the PolyMAX Operational 

Modal Analysis technique is briefly presented. The NREL offshore 5-MW base-

line wind turbine is sketched out in Section 3. Section 4 describes the virtual dam-

ages introduced in the wind turbine such as ice on all the blades and unbalanced 

masses. Finally in Section 5 the mentioned OMA technique is applied to the dif-

ferent load cases. 

PolyMAX Operational Modal Analysis 

Operational modal analysis has attracted a significant amount of research interest 

in the past years. Several operational modal analysis techniques such as Frequency 

Domain Decomposition (FDD), Stochastic Subspace Identification (SSI) and Op-

erational PolyMAX have been developed and evaluated [2]. In this paper, the 

PolyMAX method is selected to perform the operational modal analysis. It has 

been developed as a polyreference version of the least-squares complex frequen-

cy-domain (LSCF) estimation method using a so-called right matrix-fraction mod-

el. This method, in case of OMA, requires output spectra as primary data. It can be 

demonstrated that, under the assumption of white noise input, output spectra can 

be modeled very similarly to FRFs [3]. 

In case of Experimental Modal Analysis [4], the modal decomposition of an 

FRF matrix [H(ω)] is: 
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where l is the number of outputs; N is the number of modes and half of the sys-

tem order, * is the complex conjugate operator, 
H
 is the complex conjugate trans-

pose of a matrix,  iv  are the mode shapes, 
T
il are the modal participation fac-

tors and i  are the poles. The system poles are recurring in complex-conjugate 

pairs and are related to the eigenfrequencies i and damping ratios i  as: 



3 

 iiiiii j   21,  (2) 

Now, the input spectra [Suu(ω)] and output spectra [Syy(ω)] of a system repre-

sented by the FRF matrix in Equation (1) are related as: 

            Huuyy HSHS    (3) 

In case of operational data, output spectra are the only available information. 

The deterministic knowledge of the input is replaced by the assumption that the 

input is white noise, which is characterized by a constant power spectrum and is 

independent of the frequency. The modal decomposition of the output spectrum 

matrix can be obtained now by inserting Equation (1) in Equation (3) and convert-

ing to partial fraction form: 
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where ig  are the so-called operational reference factors, which replace the 

modal participation factors in case of output-only data. Their physical interpreta-

tion is less obvious as they are a function of all modal parameters of the system 

and the constant input spectrum matrix. The main goal of OMA will then be to 

identify the right-end side of Equation (4) by using measured output data pre-

processed into output spectra. 

The PolyMAX algorithm greatly facilitates the operational modal parameter es-

timation process by producing extremely clear stabilization diagrams, making the 

pole selection a lot easier by means of estimating unstable poles (i.e. mathematical 

or noise modes) with negative damping making them relatively easy to separate 

from the stable poles (i.e. system modes).  

The PolyMAX technique has been widely employed for OMA of civil engi-

neering and mechanical structures including bridges, a football stadium [5], a sat-

ellite and many others [6]. It has also been computationally optimized to analyze 

large data sets with a broad frequency band up to high model orders. In the next 

sections, the Operational PolyMAX method is applied to a 5MW wind turbine in 

several conditions. 

NREL offshore 5MW baseline wind turbine model 

In this section the virtual wind turbine model used as test case is described. The 

NREL offshore 5-MW baseline wind turbine has been developed by the National 

Renewable Energy Laboratory (NREL) to support concept studies aimed at as-
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sessing offshore wind technology. It is a conventional three-bladed upwind varia-

ble-speed variable blade-pitch-to-feather-controlled turbine [7]. 

 

 
Figure 1: NREL 5 MW S4WT model (left) and Test.Lab geometry (right). 

 

The main objective is to analyze the global dynamic behavior of the full-scale 

turbine; for this reason, the model has been built as simple as possible. The gener-

ated model is shown in Figure 1 and it can be divided in three main components: 

 Tower: it is modeled as 5 elastic beam elements with lumped masses and 

hinged to the ground foundation. The total tower height is 90 m. 

 Rotor: in the 3-bladed rotor, each blade is identical and is modeled with 17 sec-

tions with specific mass, elastic and aerodynamic properties. 

 Drivetrain: the transmission is simplified into a 1 degree-of-freedom system 

with a gear-ratio of 97 between the Low Speed Shaft (LSS) and the High Speed 

Shaft (HSS). The generator torque is regulated by the controller model. 

The software SAMCEF for Wind Turbines (S4WT) allows the user to define 

both a structural and an aerodynamic model which are then solved together to ob-

tain the coupled aero-elastic solution [8]. Different parameters can be assigned; in 

this analysis a turbulent wind has been applied because the interest of the analysis 

lays in the turbine dynamic response in real conditions. The wind dominant com-

ponent is in the X direction (in the model, from LSS to HSS), but to have a more 

realistic response also turbulent fluctuations on the other two directions are in-

cluded. 

Table 1: Wind turbine main parameter. 

Blade Length 61.5 m 

Blade Overall Mass 17740 Kg 

Tower Height above Ground 87.6 m 

Tower Overall Mass 347460 kg 

Hub Mass 56780 kg 

Nacelle Mass 240000 kg 

Gearbox Ratio  97:1 
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Load cases 

The model of the wind turbine is analyzed in different operating conditions and 

the modal parameters are extracted from the generated acceleration signals by 

means of Operational Modal Analysis. The different models are solved in S4WT  

and accelerations are computed and exported in LMS Test.Lab for processing and 

identification[9]. 

In order to have simulated accelerations that can be considered as accelerations 

obtained from tri-axial accelerometers mounted on the blades, it is necessary to 

consider them in the local reference frame in which the X axis is the blade axis 

(oriented toward the blade tip), the Y axis is aligned with the chord-line and be-

longs to the blade section plane (oriented toward the leading edge) and the Z axis 

is normal to the chord line and belongs to the blade section planes. Using this axis 

configuration, the edge-wise modes are described by bending along the Y axis 

while flap-wise modes bend the structure along the Z axis. Axial modes along the 

blade pitch axis can be neglected since they appear at frequencies much higher 

than those the analysis will focus on in this paper. 

The locations selected to measure the accelerations are: 

 3 sensors distributed along the tower 

 1 sensor at the hub center 

 5 sensors per-blade located on the pitch axis 

After analyzing the response of the structure in reference and ideal conditions, 

different possible damages will be introduced to understand how they affect the 

measured accelerations. In this preliminary assessment, two main damages are in-

troduced: 

 Blade icing 

 Mass unbalance on a blade  

The presence of ice on the blades can create excessive turbine vibration and can 

change the natural frequencies of the blades as well as increase the fatigue loads. 

It is very important to predict when the icing phenomena occur. Icing has two 

main effects [10]; on one hand it modifies the blade shape increasing the drag and 

decreasing the lift and on the other hand the presence of an additional and not uni-

formly distributed mass could cause unbalancing of the rotor. Effect of ice is not 

only related to performance issues, but also to safety ones; in fact, during the op-

erational conditions, lumps of ice can detach from the blade and cause damage to 

people or things. 

Within the software S4WT, the conditions “ice formation on all rotor blades” 
and “ice formation on all rotor blades except one” can be investigated. Calculation 

is based on the guidelines for certification of wind turbines [11], where it is sug-

gested that the mass distribution (mass/unit length) is assumed at the leading edge 

of the rotor blade and it increases linearly from zero at the rotor axis to the maxi-
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mum value µE at half the radius and then it remains constant up to the outermost 

radius. The value µE is calculated as: 

  minmaxmin ccckEE  
 (5) 

  Rk  32.0exp3.000675.0  (6) 

where E is the mass distribution on the leading edge of the rotor blade at half of 

the rotor radius, E  is the ice density, R is the rotor radius, cmax is the maximum 

chord length and cmin is the length at the blade tip, linearly extrapolated from the 

blade contour.  

The second damage condition which was simulated is the presence of an unbal-

anced mass that is added to a particular location on the wind turbine. A little cubic 

mass, which properties can be found in the Table 2, was considered for this pre-

liminary analysis. 

Table 2: Unbalanced mass properties.  

 

Below, the different operating conditions investigated in this paper are summa-

rized: 

 Reference parked conditions. 

 Parked conditions with ice on all blades. 

 Parked conditions on all blades but one. 

 Reference power production. 

 Power production with ice on all blades. 

 Power production with ice on all blades but one. 

 Power production with unbalanced mass. 

Location 

 

Mass 30 kg 

Ixx 0.325 kg*m
2 

Iyy 0.325 kg*m
2 

Izz 0.2 kg*m
2 
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Data analysis 

First of all, the wind turbine is analyzed in parked conditions. This load case rep-

resents the condition in which the blades are parked and the generator is discon-

nected; the first seconds are used to place the pitch in its parking position and the 

rotor at the angle specified as initial rotor angle. At the start time, the rotor is re-

leased, but the pitch remains fixed.  

To perform Operational Modal Analysis, the point at the tower top is chosen as 

reference for the correlations and spectra computation, which are then used to ex-

tract the modal parameters by means of PolyMAX method [12]. To simplify the 

entire procedure, the accelerations along the blade axis are neglected. The identi-

fied modes are then compared to those one obtained using both the FAST model 

and the ADAMS model; in FAST the natural frequencies are calculated by per-

forming an eigenanalysis on the first-order matrix created from a linearization 

analysis, while in ADAMS a command that linearizes the complete model and 

compute eigenparameters is used.  

Table 3: Numerical modes in parked conditions: STS: side-to-side, FA for-aft; blade modes 

are described based on their main motion orientation.  

Mode Description 
Natural frequencies [Hz] 

Test.Lab FAST ADAMS 

1 1
st
 Tower STS 0.312 0.312 0.319 

2 1
st
 Tower FA 0.329 0.324 0.316 

3 1
st  

Flap Yaw 0.666 0.666 0.630 

4 1
st
 Flap Pitch 0.675 0.668 0.669 

5 1
st
 Flap Sym 0.720 0.700 0.702 

6 1
st
 Edge Pitch 1.056 1.079 1.074 

7 1
st
 Edge Yaw 1.059 1.089 1.088 

8 2
nd 

Flap Yaw 1.853 1.934 1.651 

9 2
nd 

Flap Pitch 1.888 1.922 1.856 

10 2
nd 

Flap Sym 1.900 2.021 1.960 

 

The results are summarized in Table 3 and the agreement between them is quite 

good. By using PolyMAX all the first 10 modes can be identified and the biggest 

differences exist in the predictions of the blades second asymmetric flapwise yaw 

and pitch modes. “Yaw” and “pitch” mean that these blade asymmetric modes 
couple with the nacelle-yaw and nacelle-pitching motions, respectively.   

The natural frequencies shown in Table 3 are obtained in the standard configu-

ration; they can be compared to those one obtained in other cases such as that one 

in which the presence of ice is simulated on all the blades or that one in which the 

ice is on all the blades but one. In order to perform a better analysis, the point at 

the blade root is chosen as reference for the correlations and spectra computation 

and the blade axis accelerations are neglected. The results, in the form of frequen-
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cies and damping values, are shown in Table 4 for some of the modes. A frequen-

cy shift due to the added ice mass on the blades can be observed and, as expected, 

increasing the mass decreases the natural frequencies. Not so many considerations 

can be done regarding the damping values because a global trend cannot be seen 

moving from one condition to another one, but it should be analyzed mode by 

mode. Besides, possible effect on damping should be more visible in operating 

conditions. During ice events, ice accumulates on the rotor blades modifying the 

blade shape and reducing the aerodynamic efficiency. The amount by which the 

lift decreases and the drag increases depends on the quality, shape and position of 

the ice. By using S4WT, the blade shape modification cannot be simulated from 

an aerodynamic side and a comparison between experimental and simulated data 

is still possible from a frequency shift point of view, but not from a damping var-

iation point of view where experimental and simulation results can be quite differ-

ent [13]. 

Table 4: Numerical modes in parked conditions for the different analyzed configurations. 

Mode Standard configuration Ice on all blades Ice on all blades but one 

 Frequency/damping Frequency/damping Frequency/damping 

1
st
 Tower FA 0.329 Hz / 5.59% 0.324 Hz / 5.13% 0.324 Hz / 5.24% 

1
st
 Flap Yaw 0.666 Hz / 6.20% 0.588 Hz / 7.05% 0.585 Hz / 7.06% 

1
st
 Edge Yaw 1.059 Hz / 0.75% 0.948 Hz / 0.95% 0.948 Hz / 0.99% 

2
nd

 Flap Yaw 1.853 Hz / 3.24% 1.696 Hz / 2.05% 1.695 Hz / 2.33% 

 

For a qualitative analysis of the signals, the PSD from some sensors is comput-

ed and shown in Figure 2. One point along each one of the three blades at the 

same distance from the rotor center is taken into account. 

 

 
Figure 2: PSD of acceleration measured on one point on each blade in parked 

conditions. Standard configuration (left) compared to the one with ice on all 

blades but one (right). 

 

First of all, parked conditions are analyzed. Two different configurations are 

considered, the standard one and that one with ice formation on all the blades ex-

cept one. The curves are shown in Figure 2. Almost all peaks for the two blades 
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with ice in the plot on the right are shifted to lower frequencies, as a consequence 

of the mass increase. 

Figure 3 and Figure 4 show the PSDs in operating conditions for different con-

figurations. The fundamental harmonic frequency is 0.217 Hz because of an aver-

aged rotational speed equal to 13.02 rpm. The PSD amplitude in correspondence 

of the first harmonic increases for ice configuration in comparison with the stand-

ard configuration; the same considerations can be done regarding the mass unbal-

ance configuration, also if the blade mass is quite bigger than the unbalanced mass 

and the differences between the two curves are not so evident. The other harmon-

ics can also be identified, but the amplitudes are less high than the first one. 

 

 
Figure 3: PSDs from acceleration measured on one point on each blade in oper-

ating conditions; ice on all the blades (left) compared to ice on all the blades but 

one (right). 

 

 
Figure 4: PSDs from acceleration measured on one point on each blade in oper-

ating conditions; standard configuration (left) compared to mass unbalance con-

figuration (right) 

Conclusions 

In this paper, an advanced OMA technique has been applied to a wind turbine to 

predict in advance failures or damages with a monitoring application based on the 

analysis of modal parameters and their variations in operating conditions. The 

simulation model of a wind turbine has been built using an aero-elastic code; first 

of all, data have been generated for parked conditions and processed using the 
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OMA technique to identify a reference set of modes. Then, different load cases 

have been considered and data have been processed to analyze the difference in 

frequency and amplitude from one case to another. For example, adding ice on all 

the blades causes a frequency shift toward lower frequencies for all the natural 

frequencies; if on one blade there is no ice formation, the difference between this 

blade and the other two in terms of PSD can be identified. Then an operating case 

has been simulated and the data have been processed and analyzed for different 

conditions, with the icing and with the presence of an unbalanced mass on one of 

the three blades. In operating conditions, the presence of harmonic components in 

the signals makes the modal identification process critical because these compo-

nents have a much higher energy than the ones related to the structural response. 

In the literature different techniques to separate the components and enhance the 

identification process have been implemented. In the preliminary study, the har-

monics components have not been removed, but in a more detailed study the pre-

diction in advance of failures and damages will be analyzed after using one of the 

harmonic removal methods. 
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