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Figure 1: Our method can synthesize a virtual character performance from only an audio signal and a transcription of its word content. The
character will perform semantically appropriate facial expressions and body movements that include gestures, lip synchronization to speech,
head movements, saccadic eye movements, blinks and so forth. Our method can be used in various applications, such as previsualization
tools, conversational agents, NPCs in video games, and avatars for interactive applications.

Abstract

We demonstrate a method for generating a 3D virtual character per-
formance from the audio signal by inferring the acoustic and se-
mantic properties of the utterance. Through a prosodic analysis of
the acoustic signal, we perform an analysis for stress and pitch, re-
late it to the spoken words and identify the agitation state. Our
rule-based system performs a shallow analysis of the utterance text
to determine its semantic, pragmatic and rhetorical content. Based
on these analyses, the system generates facial expressions and be-
haviors including head movements, eye saccades, gestures, blinks
and gazes. Our technique is able to synthesize the performance
and generate novel gesture animations based on coarticulation with
other closely scheduled animations. Because our method utilizes
semantics in addition to prosody, we are able to generate virtual
character performances that are more appropriate than methods that
use only prosody. We perform a study that shows that our technique
outperforms methods that use prosody alone.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation;
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1 Introduction

The flip of a hand, a raising of an eyebrow, a gaze shift: the physi-
cal, nonverbal behaviors that accompany speech convey a wide va-
riety of information that powerfully influences face-to-face interac-
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tions. A nod can convey agreement, a gesture can emphasize a point
and facial expressions can convey emotions. A speaker’s aversion
of gaze reflects they are thinking, in essence regulating cognitive
load as they consider what to say next while also signaling they
want to hold onto the dialog turn [Argyle and Cook 1976; Bavelas
1994]. Nonverbal behaviors are so pervasive in every moment of
the dialog that their absence also signals information - that some-
thing is wrong, for example, about the physical health or mental
state of the person.

Our interest in such behaviors lies in a desire to automate the selec-
tion and generation of nonverbal behavior for convincing, life-like
virtual character performances. Specifically, in this paper we dis-
cuss the automatic generation of a character’s nonverbal behavior
from the audio of the dialog they must speak.

Whether or not through automatic means, the creation of a charac-
ter’s nonverbal behavior faces several challenges. Most fundamen-
tally is the question of what behaviors to exhibit and when to exhibit
them. The relation between nonverbal behavior and speech is com-
plex. Nonverbals can stand in different, critical relations to the ver-
bal content, providing information that embellishes, substitutes for
and even contradicts the information provided verbally (e.g., [Ek-
man and Friesen 1969; Kendon 2000]). The form of these behaviors
is often tied to physical metaphors; the rejection of an idea can be
illustrated by a sideways flip of the hand that suggests discarding an
object [Calbris 2011]. Nonverbal behaviors also serve a variety of
rhetorical functions. Shifts in topic can be cued by shifts in posture
or shifts in head pose. Comparison and contrasts between abstract
ideas can be emphasized by abstract deictic (pointing) gestures that
point at the opposing ideas as if they each had a distinct physical
locus in space [McNeill 1992]. A wide range of mental states and
character traits can be conveyed: gaze reveals thought processes,
blushing suggests shyness and facial expressions intentionally or
unintentionally convey emotions and attitudes. Finally, nonverbal
behavior helps manage conversation, for example by signaling the
desire to hold onto, get or hand over the dialog turn [Bavelas 1994].

Further the mapping between these communicative functions and
the behaviors that realize them is many-to-many. Parts of the ut-
terance can be emphasized using a hand gesture, a nod or eyebrow
raise. On the other hand, a nod can be used for affirmation, empha-
sis or to hand over the dialog turn [Kendon 2002; McClave 2000].
The context in which the behavior occurs can transform the inter-
pretation, as can even subtle changes in the dynamics of the behav-
ior: head nods signaling affirmation versus emphasis typically have



different dynamics. Moreover, behaviors can be composed with
each other, further transforming their interpretation.

The generation of the nonverbal behaviors must additionally take
into account that they are synchronized, often tightly, with the di-
alog and changes in this synchronization can lead to significant
changes in what is conveyed to a listener. For instance, the stroke
of a hand gesture, a nod or eyebrow raise performed individually or
together are often used to emphasize the significance of a word or
phrase in the speech. To achieve that emphasis the behavior must
be closely synchronized with the utterance of the associated words
being emphasized. Alteration of the timing will change what words
are being emphasized and consequently change how the utterance
is understood.

Such challenges make the pattern and timing of the behavior ani-
mations that accompany utterances unique to the utterance and the
state of the character. Manual creation of the behaviors by hand
animation and/or motion capture are consequently time consuming
and costly, as well as requiring considerable expertise from the an-
imator or the motion capture performer.

This has led us to research and develop an automatic method to gen-
erate expressive, life-like nonverbal behaviors. We have developed
a technique that produces a character’s speaking behavior through
the use of acoustic, syntactic, semantic, pragmatic and rhetorical
analyses of the utterance. These analyses seek to infer the commu-
nicative function of the utterance, including the communicative in-
tent of the utterance as well as the underlying emotional and mental
states of the speaker. The result of these analyses are then mapped
to nonverbal behaviors, including head movements, facial expres-
sions, gaze and gestures, that are composed and co-articulated into a
final performance by an animation engine. By composing the over-
all performance for an utterance from behavioral components, we
can get a wide range of unique, expressive performances, attuned to
each utterance, while using a limited set of behavioral components.
The quality of the result stems from a combination of several con-
tributions that distinguish it from previous efforts. This includes the
range and depths of analyses of the utterance text and audio, span-
ning prosodic, syntactic and semantic inferences, that have been be
incorporated in a fully automated approach as well as an empha-
sis on a comprehensive approach that can generate the full range
of synchronized nonverbal behaviors, spanning face, gesture, head
movement, gaze and posture, needed to create a realistic perfor-
mance.

In this paper, we discuss the approach we have taken and illustrate
its effectiveness in a variety of applications: the use as an embodied
conversational agent, the use inside a previsualization tool for film
and television, the use for non-player characters (NPCs) in video
games, and the use as an avatar for interactive applications. We also
report on an evaluation study using human subjects that validate the
success of our method.

Contributions A central contribution of this work is the deep
and novel types of analysis incorporated in a comprehensive, auto-
mated approach that can generate a full range of nonverbal behav-
iors. Prosodic analysis is used to determine patterns of emphasis
and overall emotional arousal that will drive when nonverbal be-
havior will happen, the style of the behavior and overall quantity of
behavior. Syntactic and semantic analyses go on to undertake anal-
ysis, that for example detect the common use of metaphors in the
language to drive selection of metaphoric gestures (e.g., “time as
a moving object” or “abstract idea as a physical object” that allow
them to have physical properties like “a big idea” that can be con-
veyed by gesture), the use of rhetorical structures like comparisons
and contrasts that suggest abstract deictic gestures (e.g., this idea
as opposed to that idea can be conveyed gesturing left than right),

common ways of signifying affirmation, quantification and nega-
tion, to name a few of the analysis. All of these analysis can have
nonverbal correlates.

Another important achievement of this work is the close coupling of
the nonverbal behavior generation to a high quality virtual charac-
ter animation system that can address key requirements for realistic
nonverbal behavior generation such as the co-articulation of ges-
tures and the use of gestural holds to provide emphasis.

2 Related Work

Previous work has differed in terms of degree of automation, depth
of analysis or range of co-verbal and listening behavior generated.
Our method generates a 3D virtual character performance based on
an audio signal. Thus, our method shares similar goals to works that
generates head movements [Busso et al. 2007] or gestures based on
utterances or audio signals. [Levine et al. 2009] uses prosody-based
features extracted from audio to train hidden Markov Models to
generate appropriate gesture. Their later work [Levine et al. 2010]
performed real time generation of gestures including word spotting
(you, me). The major limitation of their work is that the synthe-
sized gesture may not match the particular semantic content in the
speech since the gesture generation is mainly based on prosody.
Our method performs syntactic and semantic analysis to synthesize
gestures that match the context of conversations. [Stone et al. 2004]
used mocap segments that correspond to pre-recorded phrases and
rearrange them to match the new sentences. Therefore their re-
sults are restricted to specific domain of the recorded phrases while
our method can generate gestures for arbitrary input text. Similar
works require some degree of manual annotation of the speaker’s
utterance long with manual additions to the system’s knowledge to
handle those utterances [DeCarlo et al. 2004].

ACE [Kopp et al. 2003] is a rule-based system that focuses on deic-
tic and iconic gestures. The virtual human reads the text input and
looks for specific words in order to display associated gestures in
right-time using prosody analysis. [Kipp et al. 2007b] introduced a
system that generates gestures in the style of the input motion based
on probabilistic reproduction of captured subject, and an extension
that inclusions dynamics [Neff et al. 2008]. They annotated the
training video of a specific subject using an annotation tool called
ANVIL [Kipp et al. 2007a] and learned a probabilistic model to
recreate gestures for new utterances. Therefore, their result can
only represent the emotional state for that particular speaker while
our rule-based method can adapt to different emotional states and
characters.

Alternatively, there is work on overall nonverbal behavior gener-
ation but using limited forms of analyses such as detecting indi-
vidual keywords [Bergmann and Kopp 2009; Lee and Marsella
2010] or using textual analysis to derive factors like rheme (or
focus) and theme (or topic) to determine emphasis [Cassell et al.
2001]. Extending this framework, the Nonverbal Behavior Gener-
ator (NVBG) [Lee and Marsella 2006] is a rule-based system that
uses the communicative intent embedded in the surface text as well
as information on the agent’s cognitive processing, such as its in-
ternal goals and emotional state to generate a range of nonverbal
behaviors.

Expressive facial animation driven by audio has been explored in
various works. Cassell [Cassell et al. 1994] developed an automatic
rule-based system to animate faces. [Brand 1999] reconstructed
video images with facial expressions from audio. [Deng et al. 2006]
learned models for speech and expression then blended them to syn-
thesize an expressive face. [Cao et al. 2003] extracted expressive
components with ICA then synthesized a facial performance with a
novel utterance. [Albrecht et al. 2002] extracted prosodic features



from the speech signal to generate facial expressions. [Li and Shum
2006] uses HMM models to learn mappings from audio. [Chuang
and Bregler 2005] learns speech and emotional content using a bi-
linear model from video, and generates head movements from audio
pitch. [Ju and Lee 2008] generates expressive facial motions from
motion capture data using stochastic methods. Our method is pri-
marily concerned with concurrent generation of facial expressions,
gestures and head movements, rather than in the generation high-
quality facial movements. However, the incorporation of some of
the above methods could be used in combination with our technique
to improve the facial performance.

Our animation system [Shapiro 2011] translates Behavior Markup
Language (BML) instructions into animated performances, similar
to other BML realizers [Niewiadomski et al. 2009; van Welbergen
et al. 2009; Thiebaux et al. 2008; Heloir and Kipp 2009].

3 System Overview

Figure 2: Overview of the our method. Our system accepts an
audio signal and a transcription of the audio as input and generates
an animated performance as output.

An overview of our system can be seen in Figure 2. To generate the
animated performance, the following process occurs:

1. Acoustic Processing: The sentence audio is acoustically ana-
lyzed to derive information on what words are being stressed
and the overall agitation of the speaker which is then inter-
preted as sad, neutral, agitated/excited (see 3.1).

2. Syntactic Analysis: The sentence text is then parsed to derive
the syntactic structure (see 3.2).

3. Function Derivation: The function analysis phase infers
aspects of the utterance’s communicative functions using
forward-chaining inference rules to build up a hierarchically
structured lexical, semantic and pragmatic analysis. Exam-
ples of these communicative functions include affirmation and
emphasis (see 3.3).

4. Behavior Mapping: Our method then goes through a behav-
ior analysis stage, in which a set of nonverbal behavior rules
map from communicative functions to classes of nonverbal
behaviors (see 3.4).

5. Animation Specification: The animation specification phase
then maps those behavior classes to specific behaviors. Char-
acter specific mappings can be designed to support individual
differences including personality, culture, gender and body
types. The final result is a schedule of behaviors (see 3.5).

6. Animation Synthesis: The animation engine processes the
schedule of behaviors and synthesizes the performance. The
animation system might drop, shorten, or coarticulate various
movements based on the given constraints (see 3.8).

The acoustic and syntactic results of Steps 1 and 2 initiate a knowl-
edge base used in subsequent steps. Starting from that initial knowl-
edge base, Steps 3 - 5 use a knowledge based inference engine that
employs pattern-based invocation of rules to build an increasingly
deeper analysis of the communicative function of the utterance and
then transforms those communicative functions into actual behav-
iors that will effectively convey these functions. Conflict resolution
occurs at several phases in the overall process. For example, if there
are two or more rules overlapping with each other causing conflict,
our method resolves the conflict by filtering out the rule with lower

priority. The priority value of rules has been set through a study of
human behaviors using video corpora.

In the following sections, we discuss these processing steps in more
detail.

3.1 Acoustic Processing

A key component for driving the behavior generation is the detec-
tion and assessment of the overall agitation level (high/mid/low)
for a given utterance. We analyze the voice quality, which refers
to the coloring or timbre of the voice [Laver 1980], on a tense to
lax dimension. We associate tense speech to high agitation, modal
speech to mid level agitation, and lax speech to low agitation. For
the recognition of the voice quality we employ fuzzy-input fuzzy-
output support vector machines (F2SVM) as in [Scherer et al. 2013;
Kane et al. 2013] and standard Mel frequency cepstral coefficients
(mfcc).

Further, to inform the virtual human’s behavior generation about
which parts of the speech and the analyzed utterances are empha-
sized, we employ a simple algorithm to detect word prominence
and stress in speech, similarly to the more complex algorithm in-
troduced in [Mishra et al. 2012]. The algorithm is based on the
fundamental frequency (f0) of the voiced parts and the audio sig-
nal’s intensity.

3.1.1 Mel frequency cepstral coefficients (mfcc)

We extract 12 coefficients capturing the overall spectral informa-
tion from the speech signal using Hanning windowed 32 ms frames
with a 10 ms shift (i.e. 100Hz sample rate)[Davis and Mermelstein
1980].

3.1.2 Energy in dB (edB):

The energy of each speech frame is calculated on 32 ms windows
with a shift of 10 ms. This speech window w(t) is filtered with a
hamming window and the energy

e(t) =

|w(t)|∑

i=1

wi(t)
2

(1)

is calculated and converted to the dB-scale

edB(t) = 10 · log10(e(t)). (2)

3.1.3 Fundamental frequency (f0)

We use the method in [Drugman and Abeer 2011] for f0 track-
ing based on residual harmonics, which is especially suitable in
noisy conditions. The residual signal r(t) is calculated from the
speech signal s(t) for each frame using inverse filtering. This pro-
cess removes strong influences of noise and vocal tract resonances.
For each r(t) the amplitude spectrum E(f) is computed, showing
peaks for the harmonics of f0, the fundamental frequency. Then,
the summation of residual harmonics (SRH) is computed as fol-
lows:

SRH(f) = E(f) +

Nharm∑

k=2

[E(k · f)− E((k −
1

2
) · f)], (3)

for f ∈ [f0,min, f0,max], with f0,min = 20 and f0,max = 500.
The frequency f for which SRH(f) is maximal is considered the
fundamental frequency of this frame. By using a simple threshold,
the unvoiced frames are discarded as in [Drugman and Abeer 2011].



3.1.4 Agitation level detection

For the agitation level detection, we utilize F2SVM, which have
previously shown to robustly detect voice quality on a tense to lax
dimension [Scherer et al. 2013], where accuracies of up to about
90% are observed. The F2SVM produce soft outputs with pre-
dicted memberships mi assigned over multiple classes for each
presented sample. The F2SVM are trained using a speech corpus
recorded by CereProc for their speech synthesis product CereVoice.
The CereVoice speech synthesis system uses sub-corpora of neu-
tral (modal), tense and lax voice quality data in order to produce
subtle changes in emotion [Aylett and Pidcock 2007; Aylett et al.
2013]. These sub-corpora have been recorded over a five year pe-
riod across several languages, and covering different accents of En-
glish. We compute the median mfcc over each available utterance
(about 4000) and train the F2SVM.

In order to detect the agitation level, we compute the me-
dian mfcc value for an unseen utterance and choose the class
(i.e. high/mid/low) with maximal membership value assigned
argmaxi(mi) by the trained F2SVM as the observed agitation
level.

3.1.5 Word stress recognition

In order to identify the parts of speech that are stressed we set
thresholds θ(f0) and θ(edB) as the 90th percentile of both the ob-
served signal intensity (edB) and the fundamental frequency f0 for
each utterance individually. For each analyzed feature frame we
check if it is larger than one of the thresholds and consider this 10
ms frame as stressed. Based on the word timings for the analyzed
utterances we calculate a stressed ratio ∈ [0, 1] for each word (i.e.
the amount of stressed frames divided by the total length of the
word). This ratio is then passed to the behavior generation system
for further processing.

3.2 Syntactic Analysis

After the audio processing, sentence text is parsed to derive its syn-
tactic structure and that information is added to the knowledge base.
This serves two purposes. Most importantly, it facilitates subse-
quent analysis of the communicative function at the level of the
syntactic substructures. For example, an entire noun phrase can
be identified in subsequent steps as requiring emphasis and a be-
havior such as nodding can be synchronized to span that phrase.
Another example of this is to identify the functional relation be-
tween substructures, such as connective phrases like “as opposed
to” that can relate two clauses. Some behaviors, like small head
movements, tend to be correlated to syntactic structures [Lee and
Marsella 2010]. One of the challenges of parsing utterances is that
most parsers openly available assume complete, grammatically cor-
rect sentences which is typically not the case for natural spoken dia-
log. We have explored the use of several different parsing technolo-
gies (e.g., [Klein and Manning 2003; Lafferty et al. 1992; Charniak
2000]) designed for text but we continue to explore alternatives.
The results reported here use the parser developed by Eugene Char-
niak [Charniak 2000].

3.3 Function Derivation

The function derivation phase derives the meaning for the utter-
ance’s elements relevant to nonverbal behavior. Specifically, the
goal is targeted to identifying lexical, syntactic and rhetorical struc-
tures closely tied to nonverbal behavior as opposed to attempting to
derive the full semantic analysis of the utterance. The basic classes
of functional analyses currently performed by the system are listed

in Table 1. As noted above, the function derivation process relies
on pattern-matching rule invocation that uses forward chaining to
build up hierarchical interpretations starting from the text, the syn-
tactic structure and word stress patterns stored in the knowledge
base during steps 1 and 2.

For example the analysis of a phrase such as “a lot more important”
is built up incrementally from the basic functional classes in Ta-
ble refFcnTable. First, lexical analysis rules identify the word pat-
tern of ”a lot” as an instance of positive Quantification and “more
important” as a positive instance of the Comparison, resulting in
that knowledge being added to the knowledge base. The addition
of that knowledge would in turn allow the match of the rule that
identifies the strong positive comparative, asserting that knowledge.
Figure 3 shows this rule (simplified somewhat to facilitate exposi-
tion). Variables are denoted by dollar signs ($). The statements
in the ”foreach” part of the rule (aka the left hand side) matches
knowledge in the knowledge base while the “assert” part adds the
knowledge resulting from the unification of the variables.

semantics_strong_positive_comparative

foreach

fcn(quantifier,positive,$start1,$end1,$priority1)

fcn(comparative,positive,$end1,$end2,$priority2)

$newPri = increase_priority($priority1,$priority2)

assert

fcn(comparative,strong_positive,$start1,$end2,$newPri)

Figure 3: Strong comparative detection rule. If all the foreach
statements are true, i.e., match existing facts in the knowledge base,
the assert statements will be added to the knowledge base. Dollar
signs identify match variables. The increase priority is a function
that will increase the priority of strong positive comparative over
its components.

There are several benefits to this pattern-based, forward chaining of
rules. First, it reduces the combinatorics. For example, consider
the later example. There are multiple forms of quantifiers and mul-
tiple ways of specifying comparatives. We do not want to explicitly
enumerate all possible combinations of quantifiers and compara-
tives that express strong comparatives but rather rely on rule-based
forward-chaining to avoid such explicit enumeration. Further be-
cause the pattern matching supports variable unification and can
match any knowledge in the knowledge base, it is straightforward
to tie together knowledge from different sources in general ways.
For example, an emphasis rule increases the priority of any com-
municative function that begins or ends with a word that the audio
processing has determined as being stressed.

Another functional class concerns identifying relations that are
based in physical metaphors. For example, words like “further”
versus “a lot” can be used in similar ways, for example in compar-
isons, but also suggest different physical gestures, marking distance
as opposed to cardinality. Specifically a gesture that sweeps away
from the speaker conveys ”further” effectively. As a final example,
consider an example from the Mental State class, dysfluency. Dys-
fluency is detected, for example, if the audio contains filled pauses
such as “um..” or “er..” or repeated words. This indicates that the
character is deep in thought, which in turn triggers a rule that re-
quests the character reduce cognitive load by gaze aversions using
saccadic eye motion..

It sometimes occurs that functions conflict with each other. For
example, the functional analysis phase may infer a comparative, as
well as that the same word should be heavily emphasized. So as part
of the function derivation phase, each function inferred is assigned
with a priority based on the class of the function and whether the
words it spans are stressed. Then these priorities are used to resolve



conflicts between overlapping functions with lower priorities being
dropped.

Currently, the Function Derivation phase employs 91 rules along
with a dictionary of 170 words and phrases employed specifically
by the lexical analysis rules. Increasing the size of this dictionary
is the simplest, most straightforward way to extend the capabilities
of the system. For example, we could replace this dictionary with
a link to dictionary systems like Wordnet[Miller 1995] to identify
synonymous words and phrases.

Table 1: Function Derivation Classes

Function Class Description Examples

Affirmation Agree or accept okay, yes

Negation Negate or reject not, no

Interrogative Direct or indirect ques-

tions

what, where, when

Contrast Phrase level contrasts aside from, other than

Process Process denote & state stop, continue, done

Quantification Set cardinality a lot, none, everything

Comparison Comparatives & su-

perlatives

better, best

Spatial relation Actual or metaphor beyond, further

Physical relation Actual or metaphor longer, larger

Mental state Cognitive & emotional

states

uncertainty

Performance factor Cognitive load & pro-

cesses

dysfluency, word search

Deixis Abstract or concrete

pointing

those people

Modal Likelihood, ability, per-

mission and obligation

have to, must, should

Emphasis Rhythmic/prosodic stressed words/phrases

Intensifier Adverbs of degree very, extremely

Valence Emotion/valence words awesome, awful

3.4 Behavior Mapping

The behavior mapping process takes each function derived by the
previous phase and maps it to a set of alternative sequences of be-
havioral types. The alternatives allow variability in the character’s
behavior from one utterance to the next, as well as specialization
by character. Allowing for temporally synchronized sequences of
behaviors to realize a communicative function permits a schedule
of multiple behaviors to realize a function. For example, a strong
positive comparative function might be realized by a synchronized
beat gesture, nodding of the head and an eyebrow lift as well as
any subset of those behaviors. There are currently 97 function-to-
behavior mapping rules, each of which can suggest multiple alter-
native behavior sequences to realize the function - providing for a
rich behavioral space. An example of this mapping between func-
tional classes and behaviors is shown in Table 2. Many behaviors
can be mapped to the same functional class. For example, a func-
tional class may be realized either by a gesture, a head nod or a
gaze aversion or combination thereof. Our system chooses one of
the mapped behaviors randomly to provide variation in the perfor-
mance. In addition, heuristics are implemented in order to prevent
inordinate amounts of hand switching while gesturing, or overly
repetitive activations of the same behavior.

The agitation state determined from the audio signal analysis affects
the rules in the behavior mapping phase. For example, characters in
the low agitation state, which can be correlated to sad or lethargic,
tend to move their heads from side to side instead of front to back.
Characters in the high agitation state, which can be correlated to
angry or highly energetic, would tend to emphasize words with a
beat, rather than the subtler eyebrow raise.

Table 2: Behavior Mapping

Function Class Example Behaviors

Affirmation big nod, tilt left nod, tilt right nod

Negation gesture negation, shake, small

shake

Interogative gesture question, brow raise

Contrast gesture contrast, tilt right, tilt left

Comparison gesture comparative, gesture com-

parative longer, gesture compara-

tive bigger

Mental state tilt half nod left, shrug

Performance factor gaze aversion upright, shortblink

Deixis gesture point left, gesture point

right, gaze left, gaze right

Emphasis gesture rhythm, small nod, beat

gesture

Intensifier brow frown, half nod

3.5 Animation Specification

Behaviors are mapped to the BML language, a high-level XML lan-
guage that describes a behavior and an execution schedule [Kopp
et al. 2006]. Behaviors that can be specified include: head move-
ments along each X, Y, or Z axes, gazing at objects in the virtual
scene or angular offsets from them, blinking, saccadic eye move-
ments, gesturing including deictics (pointing), facial expressions
and speech. Behaviors are specified with start and end times such
that they correspond to start or endings of words or of other be-
haviors. The purpose of the BML layer is to provide an abstrac-
tion to the animation system. Thus, a behavior would be specified
like “gesture to the left starting at .34 and ending at 1.2” or “nod
your head slightly starting at 3.4 and ending at 3.8”. The animation
synthesis system must then interpret these high-level instructions
to synthesize the final motion. Such details are explained in Sec-
tion 3.8. There are currently 101 default behavior-to-BML rules but
in addition there may be character specific ones added to override
those defaults.

As each function gets mapped to its corresponding behavior, ad-
ditional conflicts appear due to timing and implementation. Such
conflicts are not detectable during the function derivation phase,
and become clearer when concrete behaviors are derived from their
original abstraction. Here conflicts involve either overlapping of
behaviors or behaviors that are too close in time for the resulting
animation to be realized smoothly. Thus, to reduce conflicts, be-
haviors with higher priorities are retained while lower priority ones
are removed.

3.6 Listener Feedback

In addition to handling the behaviors of the speaker, our system im-
plements a listener feedback pipeline. Currently, a listening charac-
ter performs mirroring of head movement behaviors of the speak-
ing character with a .5 second delay. As such, our method handles
a limited form of generic feedback driven by speaker’s nonverbal
behaviors. This could easily be extended to other forms of generic
feedback such as nodding in response to the pauses in the speaker’s
utterance. It does not handle specific feedback which is feedback
driven by the characters unfolding interpretation of, and reaction to,
the speaker’s utterance. Specific feedback would require a deeper
understanding of the utterance than our method handles with its
shallow parse of the utterance. Nonetheless, we find simple lis-
tener feedback rules are a positive addition to the performance when
more than one character is present in the scene. See [Wang et al.
2013] for an approach to handling specific feedback.



3.7 Knowledge Encoding

The knowledge encoded in the system represent a multi-year ef-
fort, exploring several approaches to encoding the knowledge used
in the function derivation and behavior mapping rule sets. Initially,
an extensive literature review of the research on nonverbal behav-
ior was undertaken. This seeded the development of rules encoding
the function derivation and behavior mapping rules. Also, videos
of real human face-to-face interactions have been annotated and
analyzed to verify the rule knowledge, embellish knowledge with
dynamic information about behaviors and develop the priority sys-
tem used to resolve conflicts between behavior suggestions. This
annotation and analysis was critical because existing literature says
little about dynamics of behaviors and further conflict resolution
was needed to resolve potential conflicts both between the behav-
iors suggested by the rules as well as differences across literature
sources. One can characterize this approach as a expert knowledge
plus semi-automated analysis approach. More recently, pure data-
driven machine learning techniques have been used as a way to
validate the features used in the rules, including Hidden Markov
Models and Latent-Dynamic Conditional Random Fields to learn
the mapping between features of an utterance and nonverbal behav-
iors, using annotated human face-to-face interactions. See [Anony-
mous].

3.8 Animation Synthesis

The scheduled behaviors that are derived from the Behavior Map-
ping stage (see 3.4) are then interpreted and processed by our ani-
mation synthesis system into an animated performance for the en-
tire body of a virtual character. The animation system synthesizes
gesture motions, lip-synced mouth animations, and other auxiliary
motions such as head movements, eye darts, gazes and emotive fa-
cial expressions. These motions are processed in stages by a se-
ries of controllers which synthesize motion over sets of joints in
the character’s skeletal hierarchy. It uses a control hierarchy which
progresses from gross movements that involve the entire body, to
smaller movements that only override a small number of joints,
such as the eye joints. In the following order, our animation com-
ponent evaluates the underlying idle movement, gestures, gazing,
head movements, facial expressions, and finally eye and eyelid mo-
tion.

Gestures

Gestures animations are derived from motion data either hand-
constructed by an animator, or generated from motion capture. We
have identified approximately 29 types of gestures, both single and
double handed for each agitation state. The single handed versions
were mirrored to generate an equivalent gesture on the other hand.
Our male and female characters each have different gesture sets to
reflect different styles of movement. The amount of gesture data
required for our method is similar in number to other gesture syn-
thesis implementations (eg. [Neff et al. 2008]).

Each agitation state (low, medium or high as described in Section
3.1.4) utilizes a different gesture clip for each gesture category. For
example, a beat gesture in the high agitation state is faster and is
performed with more energy than the beat gesture from the medium
agitation state.

A typical gesture animation has seven time markers: start time ts,
ready time trd, stroke start time tss, stroke time tst, stroke end time
tse, relax time trl and end time te which are manually annotated by
a digital artist or gesture expert. The markers are organized into five
functional phases as shown in Table 3:

Each gesture behavior is specified in BML. The output from ani-

Table 3: Gesture Phases

Gesture Phase Description

ts to trd preparation of a gesture

trd to tss pre-stroke hold period

tss to tse stroke phase, tst indicates empha-

sis point of the gesture

tse to trl post-stroke hold period

trl to te retraction phase

mation specification stage contains a series of n gesture units that
synchronize with the input utterances:

Gi = (ci, tgst
i
, tgrl

i
, pr

i) (4)

Each gesture unit Giincludes a gesture category ci, timings for de-
sired stroke strike time tgst

i and desired relax time tgrl
i, and a

priority value pri that indicates the importance of this gesture. For
each Gi, we need to select a gesture animation Ai from the database
based on its category ci. The selected animation must adhere to the
constraint:

trl
i
− tst

i
≤ tgrl

i
− tgst

i
(5)

which indicates that the time span of the gesture’s stroke to post
stroke hold duration fits within the time duration indicated by the
desired stroke and relax times from Equation 4. If the animation
violates the timing constraint, the gesture Gi is discarded and does
not participate in the motion synthesis. Additionally, we compute
the velocity vi of hand movements for the stroke phase of Ai. We
then align each Ai with the desired timing in Gi by offsetting tst

i

to tgst
i and also extending the post-stroke gesture hold period by

shifting trl
i to tgrl

i. This planning step schedules all gesture ani-
mations on the timeline.

There could be timing conflicts between some adjacent gesture ani-
mations. Our approach chooses not to timewarp the gestures but to
handle conflicts between overlapping or adjacent gestures using the
following heuristics to prune or concatenate gestures:

• If tss
k+1 < tgrl

k, the two gesture animations could not be
played in sequence, lest the stroke phase of the Ak+1 must be
truncated. Since changing the stroke phase would change the
meaning of the gesture, we remove the gesture animation with
the lower priority of the two from the schedule.

• If tss
k+1 > tgrl

k, the two gesture can be played in sequence

together. We create a blending transition from tgrl
k in Ak to

tss
k+1 in Ak+1 and remove the portion t < tss

k+1 in Ak+1

from the timeline. This way the gesture animation Ak+1

would start directly from the stroke start point, instead of from
the idle pose.

We also compute the transition velocity vk→k+1 using the time in-
terval tss

k+1
− tgrl

k and distance between hand positions in tgrl
k

and tss
k+1.

• If vk→k+1
− vk+1 > vth, where vth is the gesture blend

speed threshold, then there is not enough time to blend from
Ak to Ak+1 without incurring obvious velocity change. This
will impact the animation quality when concatenate two ges-
tures together. Therefore we either replace Ak+1 with a new
animation A′

k+1 in category ck+1 that fits the velocity con-
straint, or remove the gesture animation with lower priority
from the time-line.

• If vk→k+1 < vk+1, we need to reduce vk→k+1 to avoid ve-
locity discontinuity artifacts. As shown in Figure 4, we do this



by postponing tgrl
k to tgrl

k⋆
= tgrl

k+ th so that vk→k+1 =
vk+1 with the new time interval tss

k+1
−tgrl

k
−th. This will

yields more gesture holding to match the velocity vk→k+1 to
the velocity vk+1 of next gesture. We add Perlin noise [Per-
lin 2002] on upper body channels to remove ”freezing” effect
during the gesture hold.

Post-stroke holds are done to ensure synchronization with coexpres-
sive parts of speech [McNeill 1992]. Additionally they can be used
to emphasize parts of the speech. For example, the speaker may
point at the listener and hold that gesture to express strong anger.

Gazing and Head Movements. Our animation component synthe-
sizes gazes by controlling any number of joints along the character’s
spine, neck and eyes. The gaze controller overrides values gener-
ated from previous animation stages, since the gazing control needs
to orient the body or head in a particular direction.

Head movements play an important role during conversation. The
head controller produces head movements by applying a phase-
shifted sine wave on head and neck joints. Complex head move-
ments that involve several degree of freedom can be synthesized by
combining multiple joint rotations along different axes.

Lip Syncing. Our method uses a diphone-based approach similar
to [Deng et al. 2006]. The audio signal is translated into a phoneme
(word sound) schedule by a commercial tool [FaceFX 2012] which
generates phonemes and aligns them according to the speech signal.
Offline, we hand-animate curves using static facial poses that repre-
sent the lip and facial poses needed to express a particular diphone.
Thus, each diphone corresponds to a small set of facial curves,
which are sequenced together, then smoothed to produce the final
lip syncing result during runtime. We also apply the word stress
value obtained in Section 3.1.5 to drive the open-mouth shape. Thus
the mouth would open wider while speaking more loudly.

Emotion, Facial Expression and Eye Movements. Behavior
Mapping stage (see 3.4) can specify changes to parts of the face,
such as eyebrows, cheeks, eyelids, nose, and so forth. Such be-
haviors are typically done in parallel with gestures, such as lower-
ing the eyebrows and shaking the head at the same time. In addi-
tion, eye movements, such as saccades, can be triggered from the
Function Derivation Classes. Note that the eye saccades, like head
movements, are additive motions, in order to cooperate with the eye
gazing, which is specified during an earlier animation stage.

System Performance. Our acoustic analysis stage takes approxi-
mately 250ms per second of audio. Once processed, the analysis
phases typically takes less than 1s to process an utterance. Anima-
tion synthesis from the behavioral description occurs in real time.
Thus, our entire system can generate results in real time, assuming
that the audio transcription, acoustic processing and analysis phases
are preprocessed. Our system could be used for near-real time uses,
such as instant messaging and virtual conferencing, assuming that
delays of a matter of seconds between vocalization and transmis-
sion are acceptable.

4 Applications

4.1 Previsualization and Animatics

Previsualization is a technique used in film and television produc-
tion that allows a director to experiment with various camera, scene,
lighting and staging options. An extension to storyboarding, 3D
visualization tools typically allow the incorporation of nonmoving
elements, such as buildings and props, as well as simple animat-
ics to convey motion and timing, such as characters placed in rigid
poses. Our method allows the incorporation of an entire character’s

performance based on the audio signal. Thus a previsualization can
become a rich representation of the final video results, as shown
in Figure 1 and Figure 5. Our video results present a comparison
with feature films. We do not claim that our method produces com-
parable results to trained actors, rather that our performances are
reminiscent of the final performance given only audio recordings
and transcriptions. It is conceivable that an entire 3D performance
could be generated given a script, camera angles and audio perfor-
mance. Similarly, table read throughs are common practices when
evaluating a script for television or film. Our video shows an exam-
ple of how our method can be used to visualize a table read through.

4.2 Video Game NPC Performance Generation

There are many non-player characters (NPCs) who appear in mod-
ern video games for whom generation of an entire animated per-
formance would be overly costly to generate. Random gestures are
commonly used in combination with audio to animate NPC move-
ments. Our study in Section 5 also shows that our method performs
significantly better than random gestures. In addition, our anima-
tion specification is done using BML, which could be easily in-
terpreted, edited, and replayed if changes to the performance were
desired. Thus, our method is well suited for the generation of such
characters performances’ based only on recorded audio assets and
an audio transcription.

5 Study

We perform a study in order to test the influence of semantics ges-
tures on the appropriateness of a performance. For each one of 5
audio files extracted from features films, we generated 3 videos of
virtual human performance. The first video (our method) shows
the suggested gestures generated by using the semantic analysis ca-
pacity of our system and. On the second video (random), we re-
placed the gestures suggested by our study by gestures randomly
selected from our animation gesture database. Finally, the third
video (prosody) shows beats based on prosody. Head movements
and facial expression were appropriately selected and not affected
by the video variations. However, since head movements are syn-
thesized as additive motion, the exact position and orientation of
the head varied slightly according to the underlying gesture pose
being simultaneously executed. Figure 6 gives an example of the
three variations.

Amazon Mechanical Turk platform [Amazon 2012] was used to
recruit 69 participants. They were ask to watch the three perfor-
mances in a row and to rate the appropriateness of each of them,
using a scale from 1 (not at all appropriate) to 10 (very appropri-
ate).

Figure 7 shows the results of this study. Overall, the resulting
grades of the left graph demonstrate that our method performs con-
siderably better. When using a normalized scale to obtain a relative
notation (purple bars), this is even more apparent. The normaliza-
tion was conducted by normalizing the scale of each subject’s an-
swers with the maximum appropriateness selected by the respective
subject. A one-way ANOVA was conducted to compare the effects
between the proposed method, prosody, and random one. Across
the groups a significant effect could be observed with [normalized:
F(2, 180) = 55.66, p < .001; unnormalized: F(2, 180) = 21.41, p
< .001]. Post-hoc comparisons using the Tukey HSD test indicated
that the mean score for proposed method (µ = 0.89, σ = 0.24) was
significantly rated better than the other two conditions (random: µ
= 0.28, σ = 0.36; prosody: µ = 0.36, σ = 0.42). However, there was
no significant difference between the random and prosody varia-
tions.



Figure 4: We ensure that the blending time between gestures does not exceed the speed of the stroke of the latter gesture. Failure to do
so might cause the viewer to perceive the transition between gestures to be of greater significance than the latter gesture’s execution. We
postphone the post-stroke hold phase of Gesture 1 and then blend over a shorter timespan to ensure consistent velocity of movement between
the transition and the upcoming gesture’s stroke phase.

Figure 5: Previsualization results generated from our system. Our method produce an entire character’s performance from audio signal.

The right part of Figure 7 shows the participants preferred video
(i.e. the one that got the higher grade). The video generated us-
ing the proposed method is selected as the first choice 71% of the
time. It is interesting to note than less than 2% of the subjects rated
our video as the worst while prosody and random were rated worst
respectively 48% and 51% of the time.

Surprisingly, the prosody videos do not receive significantly better
results that the random method. One possible explanation could be
related to the human tendency to attribute meaning to gestures, even
when inconsistent with the content of the utterance. The prosody-
based method fires beats on stressed words; except from empha-
sizing stressed words, beats do not convey any additional meaning.
We can argue that the gestures used in the random method, even if
inconsistent, could be interpreted as another communicative intent
caused by another internal process, independent from speech, such
as cognitive processing or emotional arousal. Therefore, this per-
formance could be judged more informative than the one obtained
using the prosody-based method.

6 Discussion

Our method utilizes both the lexical content of an utterance as well
as the audio signal and its acoustic information in order to gener-
ate a virtual character performance. For example, the method can
generate different performances based on the timing of the words
from the audio signal. The proximity of the words spoken can cause
behaviors that would ordinarily be triggered by each word to be ig-
nored, coarticulated, or blended together to synthesize a novel mo-
tion. The performance may also differ according to the emotional
state of the character, which can be automatically detected from
the prosodic information. Each emotional state triggers a different
set of behaviors through rules for that state. In addition, the stress
detected on each word through the audio signal changes the per-
formance by triggering an additional stressed word behavior, such

Figure 6: Study comparing the same utterance using (left) our
method, (middle) prosody-based beats, and (right) random ges-
tures.

as a beat gesture, which in turn could cause nearby behaviors to
be altered or dropped from the performance. Thus, many different
performances can be generated while holding the words in the utter-
ance constant. The human subject studies demonstrate that drawing
inferences about the functional content of the utterance in addition
to prosodic analysis leads to improved performances over gesturing
using just prosodic analysis or arbitrary gesturing.

Based on our experience with this work, we feel it is absolutely
critical to stress a comprehensive approach to behavior generation
that spans head movements, posture shifts, gaze, facial expressions
and gestures. The addition of all these behavioral pieces creates a
powerful gestalt that brings the character to life. Further each of
these pieces is critical. Rich head movement, beyond simple nods
and shakes, is often not a focus in research on automated techniques
however we have found it to be critical in conveying a sense that



Figure 7: Comparison of appropriateness between random ges-
tures, prosody-based beats and our method’s semantic gestures.

the character possesses internal mental states. In some respects this
should not be surprising. A close observation of human speakers
reveals that often the head is in constant motion. And obviously the
details of a how a behavior is realized is also critical. Gesturing,
for example, that cannot realize co-articulation and holds will not
only look un-natural, it will also inhibit the ability of the character
to build up a natural emotion in their performance.

As noted in the introduction, in human face-to-face interaction non-
verbal behaviors express meaning through their form and dynam-
ics. By inferring and exploiting that communicative function in
the creation of the character’s performance, the performances our
method creates are more expressive and life-like than behaviors cre-
ated by prosody. Moreover, techniques that rely on prosody alone
run a greater risk of false implicatures, conveying meaning through
the nonverbal behavior that is inconsistent with the communicative
goals of the utterance.

Moving forward, one of the key issues will be to expand the func-
tional analysis being performed by the system, especially the under-
lying lexical knowledge it uses, as well as exploring the feasibility
of making finer grained distinctions in the prosodic analysis. Also
as we noted previously, nonverbal behaviors can replace or contra-
dict the speech message [Ekman and Friesen 1969] and, of course,
they are also determined by culture, gender, personality, attitudes as
well as the context in which the communication takes place [Bur-
goon et al. 2009]. The work presented here, is leveraging the ut-
terance in deriving the communicative function implicit or explicit
in the utterance, but even richer use of nonverbal behaviors would
benefit from tagging the utterance with such information. Fortu-
nately, the staged approach we have taken of functional derivation
followed by behavior generation phases supports such tagging of
additional requirements on the input.
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Figure 8: Simplified processing of the utterance: ”I guess not, I think I must’ve misread all of those signals.” Acoustic processing: the audio
signal is processed to generate the agitation probability of the utterance (here “high”) and determine the amount of stress for each word. In
this case, the threshold value of .1 causes the detection of two stressed words (W2, W11). Syntactic analysis: the text utterance is parsed to
determine its syntactic structure. Noun phrase and verb phrase are detected (resp. W1 and W2). Function derivation: pattern-matching rules
looks for comparators, quantifiers, deixis and other constructs to trigger behaviors when used in conjunction with the previous stages. Deixis
functions are triggered when encountering expressions signifying self (e.g. pronouns and pronominal adjectives such as I, me, my) (W1,
W4, W6) or determiner suggesting distal deixis (“those” at W11). The first noun phrase and verb phrase trigger the initial noun phrase and
initial verb phrase functions. Stressed words (W2, W11) are associated to emphasis spoken word functions. Complex combinations can be
elaborated like at (W11, W12) when the deixis distal combines with the noun. Behavior mapping: applies the function-to-behavior mapping
to generate a BML file. For example, the deixis self triggers a gesture me (W1, W4, W6). Head and eyes movements are also generated, for
example at negation (W3), shake head is generated along with gesture negation.


