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Abstract—Recent powered (or robotic) prosthetic legs
independently control different joints and time periods of the
gait cycle, resulting in control parameters and switching rules
that can be difficult to tune by clinicians. This challenge might
be addressed by a unifying control model used by recent bipedal
robots, in which virtual constraints define joint patterns as
functions of a monotonic variable that continuously represents
the gait cycle phase. In the first application of virtual constraints
to amputee locomotion, this paper derives exact and approximate
control laws for a partial feedback linearization to enforce virtual
constraints on a prosthetic leg. We then encode a human-inspired
invariance property called effective shape into virtual constraints
for the stance period. After simulating the robustness of the
partial feedback linearization to clinically meaningful conditions,
we experimentally implement this control strategy on a powered
transfemoral leg. We report the results of three amputee subjects
walking overground and at variable cadences on a treadmill,
demonstrating the clinical viability of this novel control approach.

I. INTRODUCTION

Amputee locomotion is slower, less stable, and requires

more metabolic energy than able-bodied locomotion [1]–[3].

Individuals with lower-limb amputations fall more frequently

than able-bodied individuals and often struggle to navigate

ramps, hills, and stairs [2]. These challenges can be attributed

largely to the use of mechanically passive prosthetic legs [3],

which do not actively respond to perturbations or contribute

positive work as do the muscles in biological legs. Recent

powered legs could significantly improve mobility and quality

of life for millions of lower-limb amputees, but control

challenges currently limit the clinical viability of these devices.

With the addition of sensors and motors, powered prosthetic

legs must continuously make control decisions throughout

the gait cycle, thus increasing the complexity of these

devices. Control engineers typically handle this complexity
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by discretizing the gait cycle into multiple time periods1, each

having its own separate control model [4]–[7]. The prevailing

methodology also controls each joint independently in multi-

joint prostheses [5], [6]. Each control model may enforce

desired impedances (i.e., joint stiffness and viscosity [4], [5])

or track pre-defined patterns of joint angles [8], [9], velocities

[10], or torques [7], [11]. These prosthetic legs switch between

control models based on switching rules or estimates of gait

cycle phase that rely on multiple sources of sensory feedback.

This approach to prosthetic leg control has two key

challenges: 1) reliability of the phase estimate for switching

control models and 2) difficulty of tuning control parameters

for several control models to each joint, patient, and task. An

error in the phase estimate can cause the prosthesis to enact the

wrong control model at the wrong time, potentially causing the

patient to fall. Moreover, each control model must be carefully

tuned by a team of clinicians and researchers to work correctly

for a particular patient performing a particular task [6]. Some

prosthetic control systems have five discrete periods of gait

with more than a dozen control parameters per joint per period

[5]. Although recent methods attempt to automate the tuning

of these parameters [6], multiple tasks (e.g., walking, standing,

and stair climbing) add up to hundreds of parameters for multi-

joint prosthetic legs. The goal is therefore to minimize the

number of control switches and hand-tuned parameters.

This goal could potentially be achieved by parameterizing

a nonlinear control model with a mechanical representation of

the gait cycle phase, which could be continuously measured

by a prosthesis to match the body’s progression through the

cycle. This idea originates from recent work in autonomous

bipedal robots, which can walk, run, and climb stairs using

a control framework known as partial feedback linearization2

[12]. This geometric control approach produces joint torques

to virtually enforce kinematic constraints, which define desired

joint patterns as functions of a mechanical phase variable

(e.g., hip position). Although experiments with bipedal robots

including [12]–[16] demonstrate the exceptional performance

enabled by virtual constraints, this control approach has never

been applied to the field of prosthetics. The closest known

approach [9] tracks a pre-recorded human ankle trajectory

based on a mechanical phase variable, but data-driven patterns

may not generalize to different users, tasks, or joints as easily

as symbolic virtual constraints defined from a minimal set

of tunable parameters. Prosthetic virtual constraints could

1These discrete periods of gait are commonly called ‘phases,’ but we avoid
this nomenclature to avert confusion with our continuous definition of phase.

2The feedback linearization is called ‘partial’ because only the input-output
dynamics are linearized, whereas the internal dynamics may remain nonlinear.



coordinate multi-joint patterns across different periods of gait,

measuring a phase variable to match human motion as opposed

to methods relying on feedback from the sound leg [8], [17].

The application of virtual constraints to prosthetics

raises new theoretical challenges related to partial feedback

linearization with human-machine interaction, such as the

presence of interaction forces and the lack of state feedback

from the human body. We recently derived a linearizing

controller for a prosthetic ankle using only feedback available

to sensors on the prosthesis [18], but this strategy did not

include the knee joint for transfemoral (above-knee) amputees.

We extended virtual constraints to the knee joint and simulated

this coordinated control strategy in [19]. These simulations

motivated pilot experiments with a powered prosthetic leg in

[20], where the prosthesis was attached to the thigh of an able-

bodied subject through a leg-bypass adapter. These preliminary

works did not, however, demonstrate the clinical viability of

the control strategy with amputee patients.

This paper employs the method of virtual constraints

on a powered prosthetic leg to unify the stance period,

coordinate ankle and knee control, and accommodate clinically

meaningful walking conditions in both simulations and

experiments with transfemoral amputee subjects. Because

amputees often struggle to adapt to varying conditions like gait

speed and shoe geometry [2], we employ the invariant property

of effective shape (or rollover shape) as a virtual constraint.

An effective shape is the trajectory of the center of pressure

(COP)—the location of the ground reaction force under the

foot—mapped into a moving reference frame attached to

the stance leg [21]. From the perspective of the leg, the

COP stays on an effective shape that is invariant over gait

speeds [22], heel heights [23], shoe curvatures [24], and body

weights [21], suggesting that a prosthetic leg could naturally

accommodate these conditions by enforcing the effective

shape. We therefore model two effective shapes as virtual

constraints that parameterize the stance period with the heel-

to-toe movement of the COP as a phase variable.

We begin with the theory of virtual constraints for a

prosthetic leg in Section II, extending the preliminary works

[18], [19] by defining both exact and approximate feedback

linearizations for general constraint functions before modeling

the effective shapes. In Section III we model the hybrid system

of an amputee biped with prosthetic legs controlled by virtual

constraints during stance and joint impedance during swing.

Going beyond the case of exact feedback linearization in [19],

the simulations in Section IV demonstrate the robustness of the

virtual constraints to variable walking conditions, approximate

feedback linearization, and noisy phase measurements. These

simulations motivate the experimental implementation in

Section V, where we report the results of three transfemoral

amputee subjects walking overground and at variable cadences

on a level treadmill. All three subjects achieved stable walking

(Fig. 1) after minimal tuning of a small set of parameters. We

discuss these results and limitations of the study in Section

VI, and we conclude in Section VII.

Fig. 1. Images of transfemoral amputee subject walking on the Vanderbilt
prosthetic leg (designed in [5]) using the proposed virtual constraint strategy.
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Fig. 2. Kinematic model of transfemoral amputee biped, where the prosthetic
stance leg is shown in solid gray and the body in dashed black. The lengths
of the heel, shank, and thigh segments are labeled ℓf , ℓs, and ℓt, respectively.
The radius of curvature Rf and center of rotation Pf define the rocker foot
geometry. Dorsiflexion/plantarflexion of the stance ankle and extension/flexion
of the stance knee are defined in the positive/negative directions.

II. VIRTUAL CONSTRAINTS FOR A PROSTHETIC LEG

We now present a prosthetic control framework that is

capable of unifying certain periods of the gait cycle through

the use of virtual constraints. After deriving both an exact and

an approximate control law for general virtual constraints, we

specifically employ the invariance property of effective shape

to 1) unify the stance period, 2) coordinate multi-joint control,

and 3) enable the prosthesis to accommodate variations in

cadence, shoe geometry, and body mass.

A. Modeling the Prosthesis

The prosthetic leg depicted in Fig. 2 (solid gray) is attached

to the hip of the body, which is shown in dashed black. We

first model the prosthetic leg for our control derivation in this

section and return to the full biped model in Section III for

the purpose of simulation in Section IV.

1) Dynamics: We model the prosthetic leg as a kinematic

chain with respect to an inertial reference frame attached to

the ground (Fig. 2). We define a floating coordinate frame at



the prosthetic heel, treating its position coordinates (qx, qz) as

state variables that will later be constrained by a contact model.

The full configuration of the leg in configuration space Q =
R

2×T
3 is given by q = (qx, qz, φ, θa, θk)

T , where φ is the foot

orientation with respect to vertical, θa is the ankle angle, and

θk is the knee angle. The state of the dynamical system is then

given by vector x = (qT , q̇T )T ∈ TQ, where q̇ ∈ R
5 contains

the joint velocities. The state trajectory evolves according to

a differential equation of the form

M(q)q̈ +N(q, q̇) +A(q)Tλ = Bu+ J(q)TF (1)

where M ∈ R
5×5 is the inertia/mass matrix, N ∈ R

5

is a vector that groups the Coriolis/centrifugal terms and

gravitational forces, A ∈ R
c×5 is the matrix modeling c

physical constraints between the foot and ground, and λ ∈ R
c

is the Lagrange multiplier used to calculate the contact forces.

The external forces on the right-hand side of (1) respectively

comprise actuator torques and interaction forces with the body.

Ankle and knee actuation from torque input u ∈ R
2 is mapped

into the leg’s coordinate system by B = (02×3, I2×2)
T ∈

R
5×2. The interaction force F = (Fx, Fz,My)

T ∈ R
3 at the

socket—the connection between the prosthesis and body at the

hip in Fig. 2—comprises two linear forces and a moment in

the sagittal plane [25], which can be measured by a 3-axis

load cell at the socket. Force vector F acts at the end-point of

the leg’s kinematic chain and is mapped to joint torques/forces

by the body Jacobian matrix J(q) ∈ R
3×5, which we model

using the standard procedure in [26].

2) Stance Period: During the prosthesis stance period

we must model the physical forces associated with contact

between the prosthetic foot and ground. These contact forces

prevent the foot from slipping and falling through the ground,

which constitute at least two physical constraints on dynamics

(1). Therefore, foot geometry is commonly modeled (e.g.,

[12]–[15], [27]) as a vector holonomic constraint

a(q) = 0, (2)

where a : Q → R
c for c ≥ 2. In Section III we will employ

the rocker feet seen in Fig. 2, but other geometries such as flat

feet [28], [29] could similarly be modeled in this framework.

Given contact constraint a(q) = 0, we follow the method in

[26] to compute the constraint matrix A = ∇qa and Lagrange

multiplier λ = λ̂+λ̃u+λ̄F , where (omitting matrix arguments)

λ̂ = W (Ȧq̇ −AM−1N), (3)

λ̃ = WAM−1B, λ̄ = WAM−1JT

for W = (AM−1AT )−1. These terms enter into dynamics (1)

only during the stance period of the prosthetic leg.

3) Swing Period: During the swing period of the prosthesis,

the prosthetic foot is not in contact with the ground, so no

contact constraints are invoked in the prosthesis dynamics, i.e.,

λ = 0 in (1). Although the prosthesis is still modeled with

respect to its heel point, the interaction force F in prosthesis

dynamics (1) suspends the prosthetic leg from the body’s hip.

B. Definition of a Virtual Constraint

Although defined in a similar manner to physical/contact

constraints, virtual constraints are enforced by actuator torques

rather than external physical forces. The vast majority of

virtual constraints used in bipedal robots are holonomic [12]–

[16], so we translate these design principles into our prosthetic

framework by considering virtual holonomic constraints

h(q) = 0, (4)

where h : Q → R
2 for an actuated knee and ankle, i.e., one

virtual constraint per actuated degree-of-freedom (DOF).

Remark 1: Meaningful virtual constraints, i.e., output

functions h(q), can be defined in a variety of ways. Reviewing

previous work in bipedal robotics (e.g., [12], [13], [15]), virtual

constraints can be used to control the actuated joints specified

by h0(q) = (θa, θk)
T to a desired trajectory hd(Θ(q)) ∈ T

2 as

a function of a monotonic quantity Θ(q) ∈ R. This quantity,

known as the phase variable or timing variable, provides a

unique representation of the gait cycle phase to drive forward

the desired pattern in a time-invariant manner. In this case,

the output function of equation (4) would be defined by

h(q) = h0(q) − hd(Θ(q)). The desired pattern hd can be

defined first as a function of time (via boundary-constrained

optimization) and then re-parameterized into a function of

Θ(q) [12]. We will see that h(q) can also be defined directly

from geometric relationships found in human walking, without

specifying a desired angular trajectory.

Given desired virtual constraints (4), the goal of a virtual

constraint controller is to drive output function h(q) to zero.

Therefore, the control system output

y := h(q) (5)

corresponds to tracking error from the desired constraint (4).

Some torque control methods are better suited than others

at driving this output to zero. If we do not start with a desired

joint pattern hd (Remark 1), it is not always possible to solve

a virtual constraint (4) for a unique joint trajectory as needed

for joint impedance methods [4]–[7]. Bipedal robots typically

enforce virtual constraints using partial (i.e., input-output)

feedback linearization [12], which has appealing theoretical

properties including exponential convergence [30], reduced-

order stability analysis [12], and robustness to model errors

[13]. However, the application of this method to prosthetics

presents unique challenges with human-machine interaction.

C. Partial Feedback Linearization of the Prosthesis

We cannot expect to have either a model of the human

or sensors at intact joints in a clinically viable system. The

controller should then rely only on the prosthesis model, i.e.,

terms in (1), and feedback available to onboard sensors, i.e.,

state x = (qT , q̇T )T and interaction force F . The lack of full

state feedback from the biped system presents a challenge not

previously encountered in implementations of partial feedback

linearization on bipedal robots [13]. Therefore, in this section

we show that measurements of interaction force F will allow

us to achieve similar results on a prosthetic leg.



As previously stated, our goal is to define a feedback control

law for input u that drives output y to zero in dynamics (1). An

input-output linearizing control law is derived in [19] using Lie

derivative notation from [30], but for clarity here we derive an

equivalent control law in terms of the matrices in (1). We start

by examining the first-order output dynamics ẏ = (∇qh)q̇.

Because the control input u does not appear in these dynamics,

output y has relative degree greater than one (cf. [30]) and

another time-derivative is needed to expose the control input.

Letting H := ∇qh, the second-order output dynamics are

ÿ = Ḣq̇ +Hq̈

= Ḣq̇ +HM
−1(−N −ATλ+Bu+ JTF )

= Ḣq̇ −HM
−1(N +AT λ̂) +HM

−1(B −AT λ̃)u

+ HM
−1(JT −AT λ̄)F. (6)

The output function y = h(q) can be chosen such that the

2× 2 decoupling matrix

D(q) := HM
−1(B −AT λ̃)

= HM
−1(I −ATWAM−1)B (7)

is non-singular over feasible walking configurations, which

can be verified numerically. We can then solve for the control

law that inverts the output dynamics (6):

ulinz := D−1[−Ḣq̇ +HM
−1(N +AT λ̂)

−HM
−1(JT −AT λ̄)F + upd]. (8)

Defining a proportional-derivative (PD) input

upd := −Kpy −Kdẏ (9)

with positive-definite Kp,Kd ∈ R
2×2, control law (8) renders

the output dynamics (6) linear and exponentially stable:

ÿ = upd = −Kpy −Kdẏ. (10)

Remark 2: The linear output dynamics (10) imply y(t) → 0
exponentially fast as t → ∞ for y(0) 6= 0. The feedback

linearization provides y ≡ 0 in steady-state, implying that

the surface Z = {x | y = 0, ẏ = 0} is invariant3 under

the closed-loop continuous dynamics. This allows system

(1) to be restricted to lower-dimensional zero dynamics on

surface Z, where holonomic virtual constraints provide greater

dimensionality reduction than nonholonomic constraints [12],

[30]. The holonomic outputs characterize the two actuated

DOFs, whereas the zero dynamics represent the unactuated

DOFs (qx, qz, φ) coupled with the human through interaction

force F . These lower-dimensional dynamics determine the

continuous behavior of the full system (1) through the virtual

constraints. Classical results in [30] can be invoked to show

that the full system is stable if the zero dynamics are stable

under control law (8). However, walking has discontinuous

impact events (Section III), so surface Z may not be hybrid

invariant, i.e., y = 0 immediately before heel strike may not

imply y = 0 immediately after heel strike. We will see in

Section IV that the PD terms in (10) quickly correct errors

3Any state trajectory initialized on an invariant surface of a continuous
system will remain on the surface for all time [30].

from impacts, by which we approximate hybrid zero dynamics

to provide stability of the full hybrid system (cf. [12]). We will

exploit the existence of passive gaits down shallow slopes [31]

to stabilize the hybrid zero dynamics (and therefore the full

hybrid system) in the simulations of Section IV. Similarly, the

human wearing the prosthesis will help stabilize the hybrid

zero dynamics in the experiments of Section V.

The zero dynamics on Z are defined by the virtual

constraints, independent of the control law enforcing them

(and other methods exist, e.g., finite-time control [12], inverse

dynamics [29], and control Lyapunov functions [32]). We now

present a simpler control law that approximates this partial

feedback linearization for our experimental implementation.

D. Approximation of the Partial Feedback Linearization

Although this partial feedback linearization has many

beneficial properties, control law (8) can be difficult to

implement in practice. Its dependence on interaction force

F requires a 3-axis load cell at the socket. This control

law also requires an accurate dynamical model (1) of the

prosthesis, which could present a barrier to clinical viability

when components like prosthetic feet are interchangeable.

We can avoid these potential limitations, while still

leveraging the theoretical results of Remark 2, by

approximately enforcing virtual constraints with the linear

part (9) of control law (8). With sufficiently large PD gains in

matrices Kp,Kd, the linear terms will dominate the nonlinear

terms in (8). We therefore approximate the exact control

law ulinz using only the output PD control law upd. Virtual

constraints are typically implemented in this approximate

manner on experimental bipedal robots [12]–[15].

Remark 3: If the decoupling matrix D(q) is positive-definite

and the PD gains are sufficiently large, the outputs will remain

close to zero in the output dynamics (6) under control law

(9). The prosthesis dynamics (1) will then be close to the

zero dynamics in Remark 2, providing a lower-dimensional

system for the human-in-the-loop to stabilize. Alternatively,

the human interaction force in (6) may help enforce the virtual

constraints, allowing the use of small gains in controller (9)

as we will see in Section V.

Although control law (9) is linear in the outputs, these

outputs are typically nonlinear functions of configuration q,

e.g., the phase variable Θ(q). In the next section we will

choose these nonlinear functions such that their dependence

on a phase variable allows a prosthetic leg to perform phase-

specific behaviors that mimic able-bodied human gait.

E. Choosing the Virtual Constraints

The goal of this paper is to implement virtual constraints

that unify the stance period, coordinate ankle and knee

control, and accommodate clinically meaningful conditions

on a powered prosthetic leg. For this purpose we employ

a geometric relationship of the stance leg that is invariant

across walking conditions including gait speed, shoe geometry,

and body weight [21]. This invariance property, known as the

effective shape in the prosthetics field, is often used as a metric



Fig. 3. Diagrams of the ankle-foot (left) and knee-ankle-foot (right) effective
shapes. The COP moves along each shape (dashed curve) in the shank-based
or thigh-based coordinate frame (solid axes).

for aligning passive prostheses [33]. We define the effective

shape and show that it can be treated as a virtual holonomic

constraint with certain assumptions about the stance contact

model—the swing period is considered later.

1) Definition of Effective Shape: Reviewing the preliminary

works [19] and [20], an effective shape characterizes how

the stance leg joints move as the COP travels from heel to

toe. Able-bodied humans have effective shapes specific to

activities such as walking [21], stationary swaying [34], and

stair climbing [35], and each shape can be characterized by

the curvature of the COP trajectory with respect to a reference

frame attached to the stance leg. In particular, the ankle-

foot (AF) effective shape is the COP trajectory mapped into

a shank-based reference frame (axes x̂s, ẑs in Fig. 3, left),

and the knee-ankle-foot (KAF) effective shape is the COP

trajectory mapped into a thigh-based reference frame (axes

x̂t, ẑt in Fig. 3, right). These leg-based frames share an origin

at the ankle, but ẑs is attached to the knee and ẑt to the hip.

These two shapes can be modeled by the distance between

the COP and a point Pi = (Xi, Zi)
T attached to the respective

leg-based reference frame:

||Pi − COP || = Ri, i ∈ {s, t}, (11)

where the radius of curvature Ri is approximately constant

within standing or walking tasks [34]. These two effective

shapes provide two virtual constraints to control two joints—

the ankle and knee of the prosthesis.

2) Effective Shape as a Virtual Holonomic Constraint:

In order to employ these effective shapes in the linearizing

control law (8), equation (11) must be expressed as a

holonomic constraint in the coordinates of our leg model.

This requires the COP to be a function of the configuration q,

despite the fact that the COP is usually expressed as a function

of forces [36]. We can treat the COP as a position variable if

we assume rolling point contact between the foot and ground,

which can be achieved with a rocker foot as depicted in Fig. 2.

This modeling assumption originates from works showing that

rocker feet are suitable substitutes for compliant feet, which

are difficult to model, when simulating human-like dynamic

walking [27], [37] and when designing prosthetic feet [38].

This contact model is defined in Section III-B and Appendix

A, and its limitations are discussed in Section IV-E.

We can now express the vector from the COP to the center

of rotation Pi as a function PCOP
i (q), i ∈ {s, t}, as defined in

Appendix B. Equation (11) is then given in model coordinates

by the kinematic constraint hi(q) = 0 for

hi(q) := Ri − norm(PCOP
i (q)), i ∈ {s, t}. (12)

This function is the output of a virtual constraint, which

corresponds to the distance from the desired effective shape.

Hence, the vector output of the AF and KAF virtual constraints

is defined as y := h(x) = (hs(x), ht(x))
T .

Remark 4: These effective shapes are virtually enforced on

a prosthetic leg by driving output y to zero, which can be

achieved exactly using control law (8) or approximately using

(9). Virtual constraints (12) depend on the COP, which moves

monotonically from heel to toe during steady walking. This

choice of constraints should then synchronize the knee and

ankle patterns through their mutual dependence on the COP

as a phase variable, i.e., Θ(q) = qx in Remark 1.

Because an effective shape is not defined for the swing leg

(which has no COP), we will instead control the swing period

with the clinically familiar concept of joint impedance—the

stiffness and viscosity of a joint—which is the current standard

for controlling powered prosthetic limbs [5]–[7]. We will use

joint PD control for this purpose in Sections III–V. Our

feedback linearization approach could be used during swing

with another choice of virtual constraints, but in this paper

we focus on the stance period as a starting point for the first

application of this theory to a prosthetic leg.

Now that we have derived an exact and an approximate

partial feedback linearization for clinically-motivated virtual

constraints, we should validate the feasibility and analyze

the robustness of this prosthetic control strategy before

experimentally implementing it for amputee subjects. We will

perform this analysis in simulation, requiring us to model a

biped to interact with the prosthetic limb as would an amputee.

III. MODELING AN AMPUTEE BIPED FOR SIMULATION

In this section we model the amputee biped of Fig. 2 for the

purpose of simulating a prosthetic leg under virtual constraint

control in Section IV. These simulations require us to consider

the coupled dynamics of the body and the prosthesis for a total

of 8 DOFs. The extended configuration vector is denoted by

qe = (qT , θh, θsa, θsk)
T ∈ Q × T

3, where θh is the body’s

hip angle, θsa is the swing ankle angle, and θsk is the swing

knee angle. For simplicity we assume symmetry in the full

biped (i.e., a bilateral transfemoral amputee with two identical

prosthetic legs), where each prosthesis uses the same control

strategy. The prosthetic legs do not communicate, so each

leg interacts with the model’s hip and opposing leg through

interaction forces in (1) as it would with a human body,

whether or not the opposing leg is prosthetic.

We model a passive human hip in order to 1) test the

inherent stability of the prosthesis controller without active

human assistance and 2) avoid the impractical task of modeling



a realistic human controller. For this purpose we exploit the

existence of passive walking gaits, which arise on declined

surfaces when the potential energy converted into kinetic

energy during each step replenishes the energy dissipated at

impacts [28], [31]. This behavior reflects certain characteristics

of human gait, such as ballistic swing motion [39] and

energetic efficiency down slopes [40]. We therefore model a

downhill slope condition to power the hip in these simulations.

A. Control Strategy

Although the control laws in Section II could employ virtual

constraints for both the stance and swing periods, this paper

focuses on the use of effective shape as a virtual constraint for

its invariance properties during stance. Because no effective

shape is known for the swing leg [21], we instead use the

standard method of joint PD control (often called impedance

control) during swing [5]. This passive method can enable

ballistic motion of the swing leg as in human walking [39].

Because the prosthesis does not bear the user’s body weight

during the swing period, this model-free method can accurately

drive the prosthetic joints to flexion angles needed to achieve

toe clearance, which is critical to amputee locomotion.

Although the human hip joint is powered by gravity in our

simulation, we add a spring-damper to the joint for consistent

step placement. Therefore, the vector of control torques for

the entire biped (prostheses and amputee) is given by

τe = (BT , 02×3)
Tust+(01×5, 1, 01×2)

Tuh+(02×6, I2×2)
Tusw

where ust = ulinz(x) or ust = upd(x), and the hip input uh ∈
R and the swing prosthesis inputs in usw = (usa, usk)

T ∈ R
2

have the form

ui := −kpi(θi − θeqi )− kdiθ̇i, (13)

where kpi, kdi, and θeqi respectively correspond to the stiffness,

viscosity, and equilibrium angle of joint i ∈ {h, sa, sk}. We

saturate the prosthesis torques at 80 N·m to simulate the torque

limit of the experimental prosthesis in Section V.

B. Hybrid Dynamics

Bipedal locomotion involves both continuous and discrete

dynamics, which constitute a hybrid dynamical system. Here

we summarize these hybrid dynamics from [19]. The biped’s

continuous dynamics are governed by a differential equation

of the form (1). Noting that the derivation for control law (8) in

Section II did not depend on a specific choice of foot contact

constraints, we must first define a contact model.

To model the biped’s contact constraints in the context of

Section II-A2, we choose constant-curvature rocker feet to

approximate the deformation of human feet during walking

[27], [37]. The associated contact constraints (2) are modeled

in Appendix A, where aroll1 (q) constrains coordinates qx, qz
to an arc of radius Rf , and aroll2 (q) constrains φ to be

perpendicular to the arc. The foot does not extend behind

the heel link in Fig. 2, so depending on orientation φ the

rocker may not be in contact with the ground at heel strike

(qx = qz = 0). In this case the biped rotates about the heel

with constraints defined by aheel1 (q) := qx, aheel2 (q) := qz ,

which fix the heel position to the ground. These constraints

model physical contact, whereas the effective shapes in Section

II-E serve as virtual constraints for joint control.

Given this contact model, the constraint terms A and λ
in dynamics (1) are computed according to the definitions

in Section II-A2. We denote the heel contact matrix as

Aheel = ∇qa
heel or Aeheel = ∇qea

heel and the rolling contact

matrix as Aroll = ∇qa
roll or Aeroll = ∇qea

roll. The model

switches from heel contact to rolling contact when the sole

intersects the ground, i.e., when aroll2 (q) = 0.

One step period then consists of a sequence of heel contact

dynamics, a foot-slap impact event, rolling contact dynamics,

and a ground-strike impact event with impact map ∆e:

Meq̈e +Ne +Ae
T
heelλe = τe, if aroll2 (qe) 6= 0

q̇e
+ = (I − X(AerollX)

−1Aeroll)q̇e
−, if aroll2 (qe) = 0

Meq̈e +Ne +Ae
T
rollλe = τe, if pzγ(qe) 6= 0

(q+e , q̇e
+) = ∆e(q

−

e , q̇e
−), if pzγ(qe) = 0

which then returns to the beginning of the sequence for

the next step [19]. Note that X = M−1
e Ae

T
roll, superscripts

+/− respectively denote post/pre-impact, and pzγ(qe) ∈ R is

the height of the swing foot heel above ground with slope

angle γ. Extended terms are defined as in Section II with

respect to the extended configuration qe. After imposing the

contact constraints, the full biped model has one degree of

underactuation: foot orientation φ, which is constrained to a

one-to-one relationship with the COP during rolling contact.

C. Stability of Hybrid Limit Cycles

This hybrid dynamical system can be analyzed for stability

as in [28]. Letting xe = (qTe , q̇e
T )T be the state vector for the

full biped, walking gaits are cyclic and correspond to solution

curves xe(t) of the hybrid system such that xe(t) = xe(t+T )
for all t ≥ 0 and some minimal T > 0. These solutions

define isolated orbits in state space known as hybrid limit

cycles, which correspond to equilibria of the Poincaré map

P : G → G, where G = {xe | pzγ(qe) = 0} is the switching

surface indicating heel strike. This return map represents a

hybrid system as a discrete system between impact events,

sending state xej ∈ G ahead one step to xej+1 = P (xej). A

periodic solution xe(t) then has a fixed point x∗

e = P (x∗

e).
We verify stability about a fixed point x∗

e by approximating

the linearized map ∇xe
P (x∗

e) through a perturbation analysis

[28], [31]. The discrete system is locally exponentially stable

(LES) if the eigenvalues of ∇xe
P (x∗

e) are strictly within the

unit circle, by which we infer that the hybrid limit cycle is LES

[28]. We now use this hybrid model to simulate and analyze

our prosthesis control strategy, which will later inform the

experiments presented in Section V.

IV. SIMULATION AND ROBUSTNESS RESULTS

In this section we simulate the prosthesis with the amputee

model to validate the virtual constraint approach and analyze

its robustness to variable walking conditions, approximate

feedback linearization, and noisy measurements of the phase

variable. To guide the experiments in Section V, we set the
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TABLE I
SIMULATION PARAMETERS

Parameter Variable Value

Hip mass mh 31.73 [kg]
Thigh mass mt 9.45 [kg]

Thigh moment of inertia It 0.1995 [kg·m2]
Thigh/shank length ℓt, ℓs 0.428 [m]
Shank mass ms 4.05 [kg]

Shank moment of inertia Is 0.0369 [kg·m2]
Heel height ℓf 0.07 [m]
Foot mass mf 1 [kg]
Foot radius Rf 0.3(ℓs + ℓt) [m]
Slope angle γ 1.72 [deg]

KAF/AF effective radius Rt, Rs 0.41(ℓs + ℓt) [m]
KAF/AF center of rotation Xt, Xs 0 [m]

KAF/AF proportional gain (linz) Kpt, Kps 2 ·mass [N]

KAF/AF derivative gain (linz) Kdt, Kds 1.4
√

Kps [N·s]

KAF/AF proportional gain (pd) Kpt, Kps 400 ·mass [N]

KAF/AF derivative gain (pd) Kdt, Kds 10
√

Kps [N·s]

Swing hip equilibrium angle θ
eq

h
−22.9 [deg]

Swing hip proportional gain kph 0.106 [N·m/deg]
Swing hip derivative gain kdh 0.043 [N·m·s/deg]

Swing knee equilibrium angle θ
eq

k
17.2 [deg]

Swing knee proportional gain kpk 0.212 [N·m/deg]
Swing knee derivative gain kdk 0.036 [N·m·s/deg]

Swing ankle equilibrium angle θ
eq

a 0 [deg]
Swing ankle proportional gain kpa 2.12 [N·m/deg]
Swing ankle derivative gain kda 0.270 [N·m·s/deg]

model parameters in Table I to average values of adult males

[41] with trunk masses grouped at the hip. We characterized

foot compliance using the physical foot radius Rf = 0.3ℓL for

leg length ℓL = ℓs + ℓt as suggested in [37]. The human hip

relied on passive dynamics from a decline of γ = 1.72 deg.

The effective shape parameters defined in Section II-E were

chosen according to previous human subject studies [21].

During walking both the AF and KAF effective shapes have

a constant radius of curvature (circular arcs in Fig. 3), and

these radii are approximately the same: Rt = Rs = 0.41ℓL.

The centers of rotation are in front of the leg for level-

ground walking, but on downhill slopes these shapes are more

plantarflexed [21], e.g., Xs = Xt = 0. The constraint defined

by (12) is satisfied when the COP passes through the respective

leg-based axis, so the ẑi-component of Pi is necessarily given

by Zi =
√
R2

i −X2
i − ℓf , for i ∈ {s, t}.

Due to these anatomical normalizations of the effective

shape parameters [21], only four PD gains needed to be tuned

for the entire stance period. We chose Kps = Kpt = 2 N/kg

and Kds = Kdt = 1.4
√
Kps to achieve a desired damping

ratio in the linearized output dynamics (10), where

Kp =

(
Kps 0
0 Kpt

)
, Kd =

(
Kds 0
0 Kdt

)
. (14)

During the prosthesis swing period, the impedance controller

(13) facilitated toe clearance by driving the ankle to its neutral

position and the knee to a flexion angle. Other impedance

parameters in Table I were manually tuned—replacing this

method with virtual constraints is left to future work.

A. Ideal Case of Exact Partial Feedback Linearization

We first report the stable walking gaits achieved with the

exact control law (8) under ideal conditions. The biped model

was simulated in MATLAB as described in [19]. Once the

biped converged to a steady-state gait, we numerically verified

that the associated fixed point was LES as in Section III-C.

The hybrid limit cycle is shown in Fig. 4. The model

maintained heel contact for 274 ms followed by rolling contact

for 572 ms (Fig. 5, left), during which the COP moved

monotonically from heel to toe as a phase variable. The
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Fig. 6. Maximum absolute eigenvalue (MAE) over slope angle (left), foot radius (center), and body weight (right) during steady-state walking with both
control laws. A MAE value below one indicates a LES steady-state gait at the x-axis condition.

heel-to-rolling transition caused a discontinuity in the joint

velocities, but controller (8) attenuated the outputs during both

contact conditions without saturating the joint torques (Fig.

5). Each ground-strike event introduced output error, i.e., the

effective shapes were not hybrid invariant (Remark 2), but

the outputs remained small and converged to zero within each

step period. This result implies that the controller enforced

both effective shapes (Fig. 4, right) and created approximate

hybrid zero dynamics (Remark 2) that were stabilized by the

passive dynamics of the body. A supplemental video of the

simulation is available for download.

B. Robustness to Approximate Partial Feedback Linearization

Although the exact partial feedback linearization produces

ideal results, control law (8) can be difficult to implement

in practice. We introduced the output PD control law (9)

as a clinically viable alternative, which we wish to show

approximates the results of the exact control law.

Using the large PD gains in Table I, control law (9) similarly

produced a LES walking gait. We see in Fig. 5 (right) that this

controller produced larger control torques than did the exact

control law, likely because the PD controller used substantially

larger gains (but still did not saturate the actuators). These

torques dorsiflexed the ankle more and flexed the knee later

compared to Fig. 4 (center) from the exact control law. The

PD controller allowed output tracking error during mid-stance

but corrected most of the error by heel strike (Fig. 5, center),

resulting in nearly-constant shape curvature. Although the

exact controller performed better, the PD controller reasonably

approximated the desired feedback linearization.

We were unable to find stable gaits with PD controller

(9) using small gains like those previously used in the exact

controller. The exact linearizing controller (8) directly cancels

the nonlinear terms in the output dynamics (6), whereas the

PD controller (9) must rely on large gains or assistance

from the human interaction force to compensate for these

nonlinearities (Remark 3). The passive human hip in these

simulations cannot actively compensate for instabilities arising

from tracking error in the output dynamics, but we will see

in the experiments of Section V that human subjects help

stabilize the gait when small gains are used. We now show

that the approximate feedback linearization retains similar

robustness properties to the exact feedback linearization.

C. Robustness to Variable Walking Conditions

Here we report the robustness of both the exact and

approximate feedback linearizations across the clinically

meaningful conditions of gait speed, ground slope, shoe

geometry, and body weight. We separately varied each

condition starting from the parameters in Table I, computing

the eigenvalues of the steady-state gait across conditions to

determine the effect on stability [28], where a maximum

absolute eigenvalue (MAE) below one in Fig. 6 implied LES.

Because we relied on downhill passive dynamics to model

the human part of the biped, we could not directly command

the amputee model to walk at different speeds. However,

walking speed typically has a one-to-one relationship with

ground slope in passive dynamic walking [28], [31], i.e.,

steeper slopes result in faster speeds. We therefore varied the

slope—without changing controller parameters—to examine

robustness to variations in both walking speed and terrain. We

see in Fig. 7 that gait speed changed linearly with ground

slope, where the prosthesis accommodated speeds between

0.68 and 1.06 m/s using both control laws. Despite the use of

a passive hip, the amputee model achieved stable walking on

slopes very close to level ground (Fig. 6, left), with the closest

being a 0.57 deg decline. The biped could not walk stably

on level ground without active contribution from the human

body, but modeling a hip controller was beyond the scope of

this paper. We will instead rely on the amputee experiments of

Section V to demonstrate variable cadences on level ground.

We studied invariance across shoe geometries by varying the

foot radius Rf as suggested by [24]. The stable eigenvalues in

Fig. 6 (center) imply some robustness to different foot models,

where the exact control law was able to accommodate a

slightly greater range than the approximate control law. These

simulations suggest that an experimental implementation of

the control strategy may be robust to different prosthetic feet

or shoes worn by amputees [23], [24].

We increased the human hip mass mh in Fig. 6 (right)

to simulate a subject carrying heavy weights as suggested

by [21]. The new weight was unknown to the prosthetic leg

except through measurements of the interaction force in the

exact control law (8). The prosthesis accommodated up to 24.5

kg in addition to the original body mass (almost a two-fold

increase) using the exact control law and up to 14.5 kg using

the approximate control law, which has no interaction force

measurement. Notably the body weight had little effect on how

well the exact control law tracked the outputs (Fig. 8). These



0.5 1 1.5 2
0.6

0.7

0.8

0.9

1

1.1

Slope angle [deg]

S
te

p
 v

e
lo

c
it
y
 [

m
/s

]

 

 

linz

pd

Fig. 7. Step velocity over slope for steady-state gait under both control laws.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−1

−0.5

0

0.5

11
x 10

−3

Time [s]

O
u

tp
u

t 
[m

]

 

 
AF (linz)

KAF (linz)

AF (linz + 24.5 kg)

KAF (linz + 24.5 kg)

Fig. 8. Output trajectories under extreme weight with the exact control law.

simulations demonstrate that both the exact and approximate

linearizations can enforce the invariant property of effective

shape to accommodate variations in experimental conditions.

D. Robustness to Phase Variable Noise and Delay

Because our phase variable, the COP, will be calculated

from force measurements (Appendix C), this variable will

have more noise than feedback from joint encoders in our

experiments. We therefore examined the robustness of the

PD controller (9) to measurement noise in the phase variable

qx. Based on a signal analysis of our load cells, we added

Gaussian white noise with 2 mm root-mean-squared error

to simulate the noisy signal. We then applied a fourth-order

Butterworth filter (10 Hz low-pass cutoff) to simulate realistic

phase-delay from a digital filter. We represented the COP

velocity q̇x with the numerical derivative of this filtered signal.

Using the same PD gains in Table I, the biped walked in a

similar manner to the non-noisy PD condition. The noisy COP

signal caused larger peak torques (saturating the actuators)

during mid-stance, resulting in a brief non-monotonic period

of the true COP and greater output tracking error (Fig. 5).

The random noise prevented the biped from converging to

a period-one hybrid limit cycle, but its ability to take 50+

steps with little deviation suggests the presence of a stable

attractor [31]. This simulation demonstrates the robustness of

the approximate controller to noise and phase-delay, further

motivating our experimental implementation in Section V.

E. Discussion of Model Limitations

These simulations demonstrate the feasibility and robustness

of our control approach despite the limitations of the walking

model, particularly with regard to the contact assumptions.

We assumed point contact during stance in order to model the

effective shape as a holonomic virtual constraint (4). Although

rolling point contact may not be a realistic assumption for most

prosthetic feet (exceptions include the Shape&Roll foot [38]

and running ‘blades’ [2]), rocker foot models approximate the

compliant motion of the human ankle-foot complex [21], [37].

We saw that our control strategy can accommodate a range of

foot curvatures and non-ideal COP behavior, suggesting some

robustness to the contact model. Rocker feet are often modeled

without ankle joints, but recent work shows that human gait

is better predicted by rocker feet with ankles [27], which

may allow enforcement of the effective shapes defined from

different leg segments [21]. The experiments of Section V will

demonstrate that our holonomic treatment of effective shape

has no impact on the approximate controller (9).

Although the rolling contact model provided a monotonic

COP trajectory in the exact case, the heel-contact condition

resulted in a static COP at the start of each step. This fixed

contact condition could be avoided in future work by modeling

the foot with an arc behind the heel as in [15], [27]. We will

see in our experiments that control law (9) produces a strictly

monotonic COP trajectory when a human is in the loop, i.e.,

the COP acts as the phase variable of the virtual constraints.

Other limitations associated with our simplified walking

model include the instantaneous double-support phase and

downhill slope condition. The assumption of instantaneous

impact (common in dynamic walking models [12]–[16], [28],

[31]) allows the use of an algebraic impact map instead

of differential equations associated with compliant ground

contact. We modeled downhill walking to avoid the need for an

active controller at the human hip, demonstrating the inherent

stability of the prosthesis controller without human help. We

now verify these simulation results, while avoiding the model

limitations, by performing experiments with amputee subjects.

V. TRANSFEMORAL AMPUTEE EXPERIMENTS

In this section we experimentally test the clinical viability

and robustness of our control strategy with transfemoral

amputee subjects walking both overground and at variable

cadences on a treadmill. Because of experimental time

constraints we did not examine variations in foot geometry

or body weight other than differences across subjects.

A. Control Implementation

We implemented the approximate controller (9) on the

Vanderbilt leg (Fig. 9), a powered knee-ankle prosthesis

developed at Vanderbilt University (see [5] for design details).

This device had encoders to measure joint angles/velocities

and two brushless DC actuators to provide control of the knee

and ankle joints. The leg did not have sensors to measure the

foot orientation or COP, requiring us to design and integrate

the custom instrumented foot in Fig. 10 (see Appendix C).

An onboard microcontroller computed4 the desired control

torques, which were converted into open-loop current inputs

to each actuator—these control loops are depicted in Fig. 11.

4Note that the microcontroller was pre-programmed with an impedance
control law of the form (13), so during the stance period an off-board computer
sent the microcontroller impedance commands that inverted the impedance
loop and inserted desired torques from virtual constraint control law (9).
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The integrated leg-and-foot system provided the feedback

needed to implement the output PD control law (9) as in Fig.

11. The control gains in Table II were held constant during the

stance period. We introduced a new gain Kdts as the bottom-

left term of matrix Kd in (14) to facilitate knee flexion as the

ankle plantarflexed for forward propulsion during late stance.

The prosthesis employed control law (9) during the stance

period, as detected from the vertical force measured by the

load cells. When the load dropped below a threshold of about

10% body weight, the prosthesis switched to the impedance-

based swing controller (13) from Section III-A. However, the

experimental leg had unmodeled joint friction, preventing the

ballistic swing motion we observed in our simulations. The

knee would not passively extend during late swing as needed

to accept the body’s weight in the next step. To compensate

for friction and provide clinicians with the ability to prescribe

angles for both early knee flexion and late knee extension, we

employed two periods of impedance control during swing as

commonly done in both passive [3] and powered prostheses

[5], [6]. We programmed the control system to switch from

one set of impedance parameters (‘Swing 1’ in Table II) to

another set (‘Swing 2’ in Table II) when the knee flexion angle

reached a threshold of about 70 deg.

For the sake of brevity we defer the details regarding

transition rules of the state machine to [6]. We now present

the experiments conducted with this prosthetic control system.

TABLE II
INITIAL EXPERIMENTAL PARAMETERS

Parameter Variable Value

Prosthesis shank length ℓs 0.406 [m]
Prosthesis heel height ℓf 0.10 [m]
Prosthesis foot radius Rf 0.3(ℓs + ℓt) [m]
Slope angle γ 0 [deg]

KAF/AF effective radius Rt, Rs 0.158 · height [m]
KAF/AF center of rotation Xt, Xs −0.02 · height [m]
KAF proportional gain Kpt 2 ·mass [N]
AF proportional gain Kps 1 ·mass [N]

KAF derivative gain Kdt 1.1
√

Kpt [N·s]

AF derivative gain Kds 1.1
√

Kps [N·s]
KAF coupled AF-derivative gain Kdts −0.5Kdt [N·s]

Swing 1 knee equilibrium angle θ
eq1

k
80 [deg]

Swing 1 knee proportional gain kpk1 0.65 [N·m/deg]
Swing 1 knee derivative gain kdk1 0.04 [N·m·s/deg]

Swing 1 ankle equilibrium angle θ
eq1
a 0 [deg]

Swing 1 ankle proportional gain kpa1 2.5 [N·m/deg]
Swing 1 ankle derivative gain kda1 0.25 [N·m·s/deg]

Swing 2 knee equilibrium angle θ
eq2

k
0 [deg]

Swing 2 knee proportional gain kpk2 0.7 [N·m/deg]
Swing 2 knee derivative gain kdk2 0.08 [N·m·s/deg]

Swing 2 ankle equilibrium angle θ
eq2
a 0 [deg]

Swing 2 ankle proportional gain kpa2 2 [N·m/deg]
Swing 2 ankle derivative gain kda2 0.15 [N·m·s/deg]

B. Experimental Protocol

Three transfemoral amputee subjects were recruited to

participate in an experimental study of this prosthetic control

system during level-ground walking. All subjects provided

written informed consent in accordance with Northwestern

University IRB protocol STU00069039. Inclusion criteria

required subjects to be aged between 18 to 70 (to reduce

the risk of injury), lighter than 113 kg (to meet the load

specifications of the prosthesis), and taller than 1.7 m (to allow

the subject to walk on the prosthesis without using a lift on

the sound foot). Each subject was more than two months post

independent ambulation with a unilateral amputation above

the knee. During walking trials subjects were provided either

a ceiling-mounted harness or handrails to mitigate the risk of

injury from falls. A certified prosthetist and an occupational

therapist provided clinical support during the experiments and

ensured the comfort and safety of the subjects.

At the beginning of each experiment, three anatomical

measurements were taken from the subject: body mass [kg],

height [m], and residual thigh length ℓt [m] between the

prosthetic knee joint and the subject’s hip joint. These

three measurements alone allowed us to set all the control

parameters needed for the subject to begin walking on the

prosthesis. We set the shape parameters for level-ground

walking using the height-normalized5 formulae Rs = Rt =
0.158 · height and Xs = Xt = −0.02 · height based on able-

bodied observations in [22]. We then set Zs =
√
R2

s −X2
s −ℓf

and Zt =
√

R2
t −X2

t −ℓf by definition of effective shape. All

subjects started with the same weight-normalized PD gains in

Table II for stance control law (9). Even though simulations

with this controller in Section IV-B suggested the use of large

5According to [21], [22], this height-normalized formula for Rs and Rt

produces approximately the same values as the formula Rs = Rt = 0.41ℓL
in Section IV. The height-normalized formula was used in these experiments
because subjects likely know their height rather than their leg length.
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DC motors. Note that the approximate controller (9) does not require measurements of the socket interaction forces as does the exact control law (8).

PD gains, we adopted small gains from the exact controller

(8) in Section IV-A to ensure the safety of our subjects. The

impedance parameters used for swing control (Table II) were

obtained from the impedance-only control strategy in [6].

After loading the subject’s parameters into the prosthetic

control system, the subject was instructed to walk back and

forth along a short level path between parallel bars (2-3

prosthesis steps per pass). All three subjects were able to

walk with the initial set of normalized parameters, but 15

to 45 minutes were dedicated to fine-tuning the parameters

(and in some cases the transition rules of the state machine

[6]) to maximize the subject’s comfort. For example, TF01

desired more ankle power, so we increased the ankle gain to

Kps = 1.1 ·mass. The two other subjects requested slightly

less ankle power, for which we lowered the ankle gains. The

final gains employed by the three subjects were quite similar,

with only minor adjustments made from the initial parameters

at the request of the subject or clinical staff.

Once the subjects became comfortable with the prosthetic

control system, they were instructed to make 10 consecutive

passes along an extended walkway (4-5 prosthesis steps per

pass, Fig. 1) without using the parallel bars unless needed

for stability. After completing the overground trials, subjects

were instructed to walk on a level treadmill at 3 different

speeds (within the range simulated in Fig. 7) to test the

invariance of the controller. We first allowed the subjects to

find a comfortable self-selected speed on the treadmill, which

was between 0.8 and 0.9 m/s for all subjects. We recorded

20 prosthesis steps at this ‘normal’ speed. We then increased

the speed by 0.134 m/s and recorded 20 prosthesis steps

at the resulting ‘fast’ speed. Finally, we decreased the self-

selected speed by 0.134 m/s and recorded 20 prosthesis steps

at this ‘slow’ speed. No changes to control law (9) were made

between speeds. A supplemental video of the treadmill and

overground experiments is available for download.

C. Experimental Results

We analyzed the experimental data by first applying a

second-order Butterworth filter (12 Hz low-pass cutoff) and

segmenting steps based on the vertical load measured by the

foot. For overground trials we discarded turn-around steps at

the end of each walkway pass as well as the step immediately

following this transition. The timeline for each step was

normalized between initial heel strike (0% stance) and toe off

(100% stance) before averaging across steps.

Focusing on the stance period of the prosthesis—when the

virtual constraint controller was employed—Fig. 12 shows the

mean data for 20 overground steps by TF02. We see in Fig. 12a

that the COP moved monotonically from heel to toe, implying

that it served as the phase variable of the virtual constraints

as intended. The outputs of the virtual constraints stayed in a

small neighborhood about zero (Fig. 12b), demonstrating that

the clinically viable controller (9) reasonably approximated

the theoretical controller (8) to enforce the virtual constraints.

Our choice of effective shape as the virtual constraints resulted

in the ankle and knee patterns progressing as a function of

the COP as seen in Fig. 13. Note that the joint patterns look

different over the phase variable than over time (Fig. 12c–d)

because the COP did not increase linearly with respect to time,

i.e., the phase domain in which control law (9) operated was

a warped representation of the time domain [42].

We did not observe any meaningful differences between the

overground and treadmill conditions besides reduced variance

in the treadmill data. The phase portraits of the three subjects

during the treadmill condition (Fig. 14) suggest the existence

of a stable limit cycle. As predicted by our simulations,

the controller maintained invariant effective shapes across

the three treadmill speeds (Fig. 15), resembling able-bodied

behavior reported in [22]. The maximum speed reached by

the subject pool was 1.03 m/s (TF01), which is notably fast

for a transfemoral amputee. We see in Fig. 16 that this subject

achieved a natural vertical ground reaction force (GRF) profile

with the prosthesis, including an initial hump during early-

stance loading and a final hump at late-stance pushoff. This

second hump, which is indicative of active propulsion, cannot

be achieved with most transfemoral prostheses [2].

Analysis of the prosthetic joint kinematics and kinetics

reveals that the virtual constraint controller produced joint
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Fig. 12. Prosthesis kinematics/kinetics from TF02 overground trial compared with human data (dashed red) from [36]. Mean values of 20 prosthesis steps
are shown in solid blue and error bars (±1 standard deviation) are indicated by a shaded region. The COP (a), ankle and knee outputs (b), ankle and knee
angles (c–d), estimated ankle and knee torques (e–f), and estimated ankle and knee powers (g–h) are shown over percentage of stance period, i.e., normalized
time. Note that the prosthesis torques are estimated from the open-loop motor current (and do not account for extensor moments from the knee hard stop),
and these torque estimates are used to approximate the joint powers. All torques and powers are normalized by the total mass of the subject and prosthesis.
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Fig. 13. Prosthetic ankle angle (left) and knee angle (right) as a function of COP during TF02 overground trial. Mean values of 20 prosthesis steps are shown
by a solid blue curve, ±1 standard deviation of the COP by horizontal red bars, and ±1 standard deviation of the joint angle by vertical blue bars.
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suspect that TF03, whose weight was at the upper bound of our inclusion criteria, experienced greater variability because of more frequent actuator saturation.

behavior that was close to normal. The ankle angle trajectory

in Fig. 12c follows the same trends as Winter’s able-bodied

data [36], starting with a period of controlled plantarflexion as

the foot progressed from heel-strike to foot-flat. Subsequently

as the leg rotated over the foot, the ankle dorsiflexed until

a peak of about 13 degrees was reached at about 70% of

stance. The movement then reversed as the ankle actively

plantarflexed, which we see in the torque estimated from the

motor current in Fig. 12e. At this point the controller provided

a powered push-off (Fig. 12g), thus contributing actively

to the energetics of walking. The ankle did not reach the

physiologically appropriate peak torque because its actuator

saturated at 80 N·m (see Fig. 12e). Note that the differences

between the experimental torques here and the simulated

torques in Section IV can be attributed to inaccuracies in the

contact model (Section IV-E) and the downhill slope condition

used in the simulations, requiring different values for shape

parameters Xs, Xt, Zs, and Zt in the prosthesis controller.

Although the prosthesis controller provided knee flexion

during early stance in the simulations of Section IV, we did

not observe this natural behavior in our experiments (Fig. 12d).

All subjects intentionally locked the knee while loading body

weight on the leg, which most prosthesis users do to ensure

the knee does not buckle [2]. The knee torque plot of Fig. 12f

does not show a subsequent extensor moment as in Winter’s

data, but examination of the prosthetic knee angle shows that

the joint was against the hard stop at 4 degrees, which provided

an unmeasured extensor moment. Late-stance knee flexion was

close to natural and in synergy with ankle push-off, allowing

the transfer of positive propulsive energy to the user. In fact,

the total mechanical work done by the prosthetic leg during

stance (normalized by the mass of the subject and prosthesis)

was positive for two of the three subjects: 0.0817 J/kg for

TF16, 0.0436 J/kg for TF01, and −0.0541 J/kg for TF02,

compared to 0.109 J/kg in Winter’s able-bodied data. We

suspect that the prosthesis did negative net work for TF02

because of his use of the handrails (which may have dissipated

energy) and less ankle pushoff (at his request).

VI. DISCUSSION

Our control strategy produced close-to-normal walking

patterns for transfemoral amputee subjects using normalized
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Fig. 16. Vertical GRF measured from instrumented prosthetic foot during
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compensate for differences in task and measurement technique. Mean values
of 20 prosthesis steps are shown in solid blue and error bars (±1 standard
deviation) are indicated by a shaded region. Note the double-hump in the force
profile—one during early-stance loading and one during late-stance pushoff.

effective shape parameters from the literature. The simulations

of Section IV verified the robustness of the virtual constraint

approach to experimental conditions, and by approximating the

desired partial feedback linearization we appeared to achieve

stability in our experiments. We observed convergence to a

periodic orbit—known as a hybrid limit cycle—in the phase

portraits of Fig. 14, suggesting that the controller enabled a

steady-state gait pattern for the amputee subjects. Given that



the outputs remained in a small neighborhood about zero,

control law (9) created approximate hybrid zero dynamics

that were stabilized by the human-in-the-loop, demonstrating

successful human-machine interaction in the context of virtual

constraints. In fact, most subjects did not use the handrails to

maintain gait stability with the experimental prosthesis.

A. Strengths of the Approach

This work shows that knee and ankle control during stance

can be coordinated by one simple objective: maintaining

a constant curvature in the effective shapes. Coordination

and synchrony between leg joints (e.g., through biarticular

muscles) are important to energetic efficiency [43] and

robustness [19], but coordinated control is uncommon in

current multi-joint prostheses. Control law (9) coordinated

knee control with the ankle joint to enforce the KAF effective

shape, which explicitly depends on the ankle angle (Appendix

B). Knee and ankle patterns were also synchronized by their

dependence on the same phase variable (Remark 4). One

subject claimed to notice the two joints working in unison.

By relying on meaningful parameters for clinicians, the

proposed control approach could potentially improve the

clinical viability of powered prosthetic legs. The effective radii

Rs = Rt and centers Xs = Xt are defined by simple fractions

of the user’s height [22], preventing the need for hand-

tuning. We also demonstrated that the five non-anatomical

parameters Kps, Kpt, Kds, Kdt, and Kdts can be normalized

by body mass as a starting point for walking on the prosthesis.

These are the only hand-tuned parameters for stance, whereas

existing approaches have more hand-tuned parameters for this

period (e.g., 18 for impedance control with three stance phases

[5] or more with Hill-type muscle models [7]). By using one

control model during stance, we also eliminated two control

switches and their hand-tuned rules compared to [5], [7].

However, future randomized clinical studies are needed to

compare the performance of these different control methods.

The invariance of the effective shape across conditions

such as walking speed [22], heel height [23], shoe curvature

[24], and body weight [21] suggests that this choice of

virtual constraint could make prosthetic legs more adaptable

than conventional prostheses, which cause discomfort and

instability as these conditions vary. Our treadmill experiments

verified the simulations showing that our control system

adjusts to variable walking speeds by enforcing the effective

shapes. Although the AF effective shape can also be achieved

with the passive Shape&Roll foot [38], this below-knee device

cannot regulate the KAF effective shape. Moreover, this

passive prosthesis can only be tuned to one task at a time,

whereas humans employ effective shapes unique to different

tasks. For example, the shape curvature changes substantially

between walking and stationary standing [34], and upstairs

climbing requires a completely different geometry [35] with

positive mechanical work. For this purpose virtual constraints

can be defined with non-constant curvature in (12), where

the effective shapes associated with stairs may be the most

difficult to model [35]. Our control method could implement

virtual constraints for any effective shape, by which a powered

prosthetic leg could perform a wide variety of tasks.

We did not explicitly design an ankle push-off period into

the control strategy, but enforcing the effective shape as a

virtual constraint provided a period of power generation as

the COP approached the toe. A positive feedback loop arose

when COP movement caused a plantarflexive ankle torque,

which in turn caused the COP to move further forward. During

early stance this positive feedback loop was counteracted by

a negative feedback loop involving the moment arm from

shear forces. Because forces are transferred down the leg from

the socket, subjects were able to influence these feedback

loops and consequently their progression through the step. We

believe this allowed subjects to walk at their preferred speed

overground and accommodate variable speeds on the treadmill.

Positive force feedback has been observed during late stance

in able-bodied gait [44], but this biomimetic behavior was

only previously reproduced in a prosthesis using muscle reflex

models [7]. Although we did not tune our control system to

maximize positive work, the energy production we observed

was likely associated with this positive feedback. This feature

in a prosthetic leg might prevent compensatory work at the hip

[3] and allow lower-limb amputees to expend normal levels

of energy when walking [2]. However, this positive feedback

loop should be disabled during stationary standing, as COP

drift towards the toe could cause unintended ankle pushoff.

B. Limitations of the Study

The use of approximate feedback linearization resulted in

a few discrepancies during mid-late stance. Excessive ankle

dorsiflexion in Fig. 12c was associated with tracking error

from the desired effective shapes, which grew during mid-late

stance in both the simulations (Fig. 5) and experiments (Fig.

12b). We suspect that the approximate controller could not

compensate for stronger nonlinearities during this period of

gait, especially in the presence of ankle actuator saturation

(Fig. 12e) and small PD gains. We employed small gains

for the safety of our subjects, who may have helped virtual

constraint enforcement through the socket interaction forces,

which enter into the output dynamics (6). Future work

could compensate for nonlinearities by using larger PD gains

during mid-late stance (via phase-based gain scheduling),

simultaneous linear control methods [45], or the exact

feedback linearization of Section II-C. Performance could be

further improved with series elastic actuation [46], which can

provide closed-loop torque control and larger peak torques.

The prosthetic foot used in these experiments violated

our model’s point-contact assumption (the COP was not

dependent on configuration alone as assumed in Section II-E),

implying that the effective shape was not truly holonomic.

Our experiments successfully employed these nonholonomic

constraints, e.g., output functions of the form h(q, q̇), in the

approximate control law (9), demonstrating some robustness

to unmodeled dynamics. The exact control law (8) could

also be reformulated for nonholonomic constraints as in

[29], resulting in lower-order output dynamics and higher-

order zero dynamics. However, the vast majority of bipedal

robots [12]–[16] use holonomic virtual constraints for lower-

dimensional stability analysis (Remark 2), motivating our



holonomic treatment in this paper. We employed the effective

shape as a starting point for this research, but future work

could find better choices of virtual constraints for use in the

general control framework of Section II.

For example, we could model non-constant curvature into

the effective shape during the double-support period to better

mimic able-bodied gait (Fig. 15, [21]). For simplicity we

continued using the constant-curvature virtual constraints (12)

as the prosthesis entered double support with the intact

leg. We see in Fig. 15 that the approximate controller (9)

provided compliance during this period to resemble able-

bodied effective shapes, but the stance-to-swing transition

(when the most KAF tracking error occurred) was a source of

criticism from the subjects. A more general model of effective

shape with non-constant curvature in (11) could potentially

be used in the future to explicitly enforce the appropriate

shape during double support. Replacing the joint impedance

controller of the swing period with a minimum-jerk control

strategy [47] may also help the stance-to-swing transition.

Alternatively, a definition of effective shape for the swing

period would allow the use of virtual constraints, resulting

in a unified swing period to further reduce the number of

control switches and hand-tuned parameters. This development

may require a new phase variable that is measurable from

the prosthesis during swing (see initial work in [48]). Only

after these promising directions are investigated will the virtual

constraint approach be mature enough for clinical comparison

with state-of-the-art impedance control methods [4]–[6].

VII. CONCLUSION

These simulations and experiments demonstrate that the

theory of virtual constraints could provide a clinically viable

solution for unified control of powered prosthetic legs. In

particular, our stance control strategy produced biomimetic,

robust, and coordinated ankle-knee movement on a prosthetic

leg used by amputee subjects. The controller was able to

operate at variable cadences without changes to control

parameters due to the invariance of the effective shape, which

also holds over shoe geometries and body weights [21].

Our simulations suggest that the proposed control approach

can also accommodate inclines, motivating future experiments

with ramps and stairs. More demanding tasks like running

may require the exact feedback linearization in Section

II-C to prevent output tracking error, necessitating system

identification of the intrinsic dynamics of the prosthetic leg.

Our control approach could also be integrated with a neural

interface (e.g., using electromyography from residual muscles

[49]) to allow the user to subconsciously switch between

virtual constraints when anticipating a task change.

The significance of effective shape begs the question as to

whether human locomotion might employ a phase variable

[42], [48]. Phase-based virtual constraints could also be

applied to powered exoskeletons (e.g., [11]), motivating future

investigation of hybrid zero dynamics for wearable robots.

With further development the proposed control concepts have

the potential to improve mobility and quality of life for

individuals after amputation, stroke, or spinal cord injury.
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APPENDIX

A. Contact Constraints

Because a rolling contact point has zero velocity at any

instant [25], we simplify model-based calculations by treating

this contact point (the COP) as stationary and modeling the

kinematic chain with respect to an inertial frame defined at

the COP. This assumption physically corresponds to rolling

on an ideal treadmill, which can approximate the curvature of

human foot compliance, i.e., the relative motion between the

COP and heel, in a similar manner to rolling overground. We

model the foot as an arc of radius Rf going through the heel

(qx, qz) and the COP. The vector from the COP to the center

of rotation Pf is defined normal to the ground and constrained

by ||Pf−COP || = Rf , yielding equation aroll1 (q) = 0. We also

constrain the foot orientation φ so the heel is perpendicular to

the foot arc (Fig. 2), yielding equation aroll2 (q) = 0.

B. Virtual Constraints

The AF effective shape is the distance constraint (11)

between the COP and the center of rotation Ps in the shank-

based reference frame of Fig. 3 (left). In model coordinates q
defined with respect to the COP, Ps is given by the function

PCOP
s (q) = (qx, qz)

T +ℓf(− sin(φ), cos(φ))T +S(φ+θa)Ps,

where S is the standard 2×2 rotation matrix parameterized by

angle φ+θa. Similarly, the KAF effective shape is the distance

constraint (11) between the COP and the center of rotation Pt

in a thigh-based reference frame (Fig. 3, right). The point Pt

is given in model coordinates by the function

PCOP
t (q) = (qx, qz)

T + ℓf(− sin(φ), cos(φ))T + S(ρ)Pt,

where rotation matrix S is parameterized by angle

ρ = φ+ arctan(
ℓs sin(θa) + ℓt sin(θa + θk)

ℓs cos(θa) + ℓt cos(θa + θk)
).

Finally, these functions define the virtual constraints by (12).

C. Instrumented Foot

We designed the instrumented prosthetic foot in Fig. 10 to

measure the COP for our controller as initially reported in

[20]. Two aluminum plates were mounted around two 6-axis

load cells (model: Mini45, ATI Industrial Automation, Apex,

NC) with one cell towards the heel and the other towards the

toe. This configuration distributed loads encountered during

walking to prevent sensor saturation and bending moments.

The top plate was mounted to the bottom of the leg’s ankle

joint, and the bottom plate was mounted to a carbon fiber

prosthetic foot plate; the configured leg is shown in Fig. 9



(left). The assembled foot adapter (load cells and aluminum

plates) added 0.79 kg to the weight of the foot plate.

The two aluminum plates of the foot adapter were

mechanically coupled only through the load cells, by which

we measured the loads transferred between the leg and ground.

We used a free-body diagram to solve for the COP:

qx =
My1 +My2 + bv(Fx1 + Fx2) + bh(Fz2 − Fz1)

Fz1 + Fz2

,

where Fxi and Fzi are the horizontal and vertical loads,

respectively, at the heel (i = 1) or toe (i = 2), bv = 5.08 cm is

the vertical distance between the bottom of the foot plate and

the reference frame of each load cell, and bh = 7 cm is the

horizontal distance between the ankle joint and the reference

frame of each load cell (Fig. 10). This calculation requires only

three of the six strain gauges in each ATI load cell, which was

chosen for compactness, weight, and load ratings. All six strain

gauges could be used to measure the 3D GRF vector, allowing

selective saturation of control torques to keep the GRF within

the friction cone and thus prevent the foot from slipping.

We did not have an inertial measurement unit to measure

heel rise and foot rotation, so we approximated these variables

based on the rocker-foot contact model in Appendix A.
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