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1 Introduction

The study of the characteristics of the Higgs boson is one of the primary tasks of the LHC
program: the forthcoming Run3 and the High-Luminosity phase will increase the accuracy
in the measurement of Higgs production cross sections and decay rates, allowing for a
more stringent test of the Standard Model (SM) predictions. One of the main production
processes being investigated is the so called Higgs-strahlung process pp→ V H, in which a
single Higgs boson is emitted together with a weak vector boson (V = Z,W ). The leptonic
decays of the weak boson can be exploited as a trigger for measurements of elusive Higgs
decays. In particular, the decay H → bb̄ has been observed for the first time by ATLAS
and CMS, using an analysis focused precisely on the associated production category [1, 2].

In this paper, we are interested in the associated production of a Higgs and a Z

boson. The theoretical predictions for pp → ZH are accurate at next-to-next-to-leading-
order (NNLO) in QCD, and at next-to-leading-order (NLO) in the EW interactions [3].
The leading and next-to-leading contributions are connected to the qq̄-initiated channel,
allowing to interpret pp→ ZH mainly as a Drell-Yan process [4, 5].

The gluon-initiated channel gg → ZH arises for the first time at NNLO in QCD. It is
an O(α2

S) correction, but the contribution from this process to the hadronic cross section
is non-negligible because of the large gluon luminosity at the LHC. It has been shown that
the relevance of gg → ZH is even more enhanced in the boosted kinematic regime, to the
point of being comparable to the quark-initiated contribution near the tt̄ threshold [6]. The
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factorization- and renormalization-scale uncertainties related to the gluon-induced process
also affect significantly the uncertainty on the total pp → ZH cross section. This issue
is specific to the ZH final state, since the gluon-induced channel is absent in pp → WH.
The knowledge of the NLO corrections to gg → ZH would reduce the scale uncertainties,
facilitating precision studies in the next runs of the LHC. The gg → ZH contribution is
relevant also for New Physics (NP) studies, since it is sensible to both sign and magnitude
of the top Yukawa coupling, dipole operators [7] and can receive additional contributions
from new particles [8].

An improved knowledge of the SM prediction for the gluon-induced contribution is
therefore very important both for precision measurements of ZH production within the SM
and for testing NP in this channel. The leading order (LO) contribution to the gg → ZH

amplitude, given by one-loop diagrams, was computed exactly in refs. [9, 10]. At the
NLO the virtual correction part contains two-loop multi-scale integrals that constitute,
at present, an obstacle to an exact evaluation of the NLO contribution. Specifically, the
corrections due to the two-loop box diagrams are still not known analytically. A first
computation of the NLO terms was obtained in ref. [11] using an asymptotic expansion
in the limit mt → ∞ and mb = 0, and pointed to a K-factor of about 100% with respect
to the LO contribution. Soft gluon resummation has been performed in ref. [12] including
next-to-leading logarithmic terms, and the result has been matched to the fixed NLO
computation of ref. [11]. Finite top-quark-mass effects to gg → ZH have been investigated
in ref. [13] using a combination of large-mt expansion (LME) and Padé approximants. In
addition, a data-driven method to extract the non-Drell-Yan part of pp → ZH, which is
dominated by the gluon-induced contribution, has been proposed in ref. [14], exploiting
the known relation between WH and ZH associated production when only the Drell-Yan
component of the two processes is considered. A qualitative study focusing on patterns in
the differential distribution has been conducted in ref. [15], where 2 → 2 and 2 → 3 LO
matrix elements were merged and matched to improve the description of the kinematics.

Very recently, a new analytic computation of the NLO virtual contribution based
on a high-energy expansion of the amplitude, supported by Padé approximants, and on
an improved LME, has been carried out [16]. The results are in agreement with a new
exact numerical study [17], in the energy regions where the expansions are legitimate.
Nonetheless, an improvement on the analytic calculation is still desirable, since the heavy-
top and the high-energy expansions do not cover well the region 350 GeV .

√
ŝ . 750 GeV,

where
√
ŝ is the partonic center of mass energy. It should be remarked that this region

provides a significant part of the hadronic cross section at the LHC, about 68%.
In this paper, we present an analytic calculation of the virtual NLO QCD corrections

to the gg → ZH process that covers the region
√
ŝ . 750 GeV, which contributes about

98% to the hadronic cross section. The most difficult parts, i.e. the two-loop box diagrams,
are computed in terms of a forward kinematics [18] via an expansion in the Z (or Higgs)
transverse momentum, pT , while the rest of the virtual corrections is computed exactly.
We remark that our calculation is complementary to the results of ref. [16], which covers
the region of large transverse momentum of the Z. Furthermore, the merging of the two
analyses allows an analytic evaluation of the NLO virtual corrections in gg → ZH in the
entire phase space.
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The paper is structured as follows: in the next section we introduce our notation and
the definitions of the form factors in terms of which we express the amplitude. In sec-
tion 3, we present the expansion of the amplitude in terms of the Z transverse momentum.
Section 4 is devoted to a discussion of the expected range of validity of the evaluation of
the amplitude via a pT -expansion, by comparing the exact result for the LO cross section
with the pT -approximated one. In section 5 we present an outline of our NLO computa-
tion, while the section 6 contains our NLO results. Finally we present our conclusion in
section 7. The paper is complemented by two appendices. In appendix 8, we report the
explicit expressions for the orthogonal projectors we employ in the calculation. We present
also the relation between our form factors and the ones used in ref. [16]. In appendix 9, we
report the exact results for the triangle and the reducible double-triangle contributions.

2 Definitions

In this section we introduce our definitions for the calculation of the NLO QCD corrections
to the associated production of a Higgs and a Z boson from gluon fusion.

The amplitude gµa (p1)gνb (p2)→ Zρ(p3)H(p4) can be written as

A = i
√

2mZGFαS(µR)
π

δabε
a
µ(p1)εbν(p2)ερ(p3)Âµνρ(p1, p2, p3), (2.1)

Âµνρ(p1, p2, p3) =
6∑
i=1
Pµνρi (p1, p2, p3)Ai(ŝ, t̂, û,mt,mH ,mZ), (2.2)

where GF is the Fermi constant, αS(µR) is the strong coupling constant defined at a
scale µR and εaµ(p1)εbν(p2)ερ(p3) are the polarization vectors of the gluons and the Z boson,
respectively. The tensors Pµνρi are a set of orthogonal projectors, whose explicit expressions
are presented in appendix 8. The corresponding form factors Ai(ŝ, t̂, û,mt,mH ,mZ) are
functions of the masses of the top quark (mt), Higgs (mH) and Z (mZ) bosons, and of the
partonic Mandelstam variables

ŝ = (p1 + p2)2, t̂ = (p1 + p3)2, û = (p2 + p3)2, (2.3)

where ŝ+ t̂+ û = m2
Z +m2

H and we took all the momenta to be incoming.
The Ai form factors can be expanded up to NLO terms as

Ai = A(0)
i + αS

π
A(1)
i (2.4)

and the Born partonic cross section can be written as

σ̂(0)(ŝ) = m2
ZG

2
FαS(µR)2

64ŝ2(2π)3

∫ t̂+

t̂−
dt̂
∑
i

∣∣∣A(0)
i

∣∣∣2 , (2.5)

where t̂± = [−ŝ+m2
H +m2

Z ±
√

(ŝ−m2
H −m2

Z)2 − 4m2
Hm

2
Z ]/2.

The Feynman diagrams that contribute to the gg → ZH amplitude up to NLO can be
separated into triangle, box and double-triangle contributions, the last type appearing for
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Figure 1. Examples of Feynman diagrams contributing to gg → ZH at LO and NLO.

the first time at the NLO level. Examples of LO (NLO) triangle and box categories are
shown in figure 1 (a)–(c) ((d)–(f)). Due to the presence of a γ5 in the axial coupling of
the Z boson to the fermions in the loop, the projectors Pµνρi are proportional to the Levi-
Civita total anti-symmetric tensor εαβγδ (see appendix 8), whose treatment in dimensional
regularization is, as well known, delicate and will be discussed in section 5.

In our calculation we treat all the quarks but the top as massless. As a consequence,
the contribution to the amplitude of the first two generations vanishes. Concerning the
third generation, the contribution of the bottom is present in the triangle diagrams with the
exchange of a Z boson (figure 1(b), (e)) and in the double-triangle diagrams (figure 1(g)).
A nice observation in ref. [11] allows to compute easily the full (top+bottom) triangle
contribution. As noticed in that reference, the triangle contribution with a Z exchange
contains a ggZ∗ subamplitude which in the Landau gauge can be related to the decay of
a massive vector boson with mass

√
ŝ into two massless ones, a process that is forbidden

by the Landau-Yang theorem [19, 20]. As a consequence, the full triangle contribution can
be obtained from the top triangle diagrams with the exchange of the unphysical scalar G0,
with the propagator of the G0 evaluated in the Landau gauge. This part of the top triangle
diagrams can be obtained from the decay amplitude of a pseudoscalar boson into two gluons
which is known in the literature in the full mass dependence up to NLO terms [21, 22].
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Given the above observation, our calculation of the NLO corrections to the gg → ZH

amplitude focuses on the analytic evaluation of the double-triangle (figure 1(g)) and two-
loop box contributions (figure 1(f)). The former contribution is evaluated exactly. The
latter is evaluated via two different expansions: i) via a LME, following ref. [23], up to and
including O(1/m6

t ) terms, which is expected to work below the 2mt threshold; ii) via an
expansion in terms of the Z transverse momentum, following ref. [18], whose details are
presented in the next section.

3 Expansion in the transverse momentum

The transverse momentum of the Z boson can be written in terms of the Mandelstam
variables as

p2
T = t̂û−m2

Zm
2
H

ŝ
. (3.1)

From eq. (3.1), together with the relation between the Mandelstam variables, one finds

p2
T + m2

H +m2
Z

2 ≤ ŝ

4 + ∆2
m

ŝ
, (3.2)

where ∆m = (m2
H −m2

Z)/2. eq. (3.2) implies p2
T/ŝ < 1 that, together with the kinematical

constraints m2
H/ŝ < 1 and m2

Z/ŝ < 1, allows the expansion of the amplitude in terms of
these three ratios.

A direct expansion in pT is not possible at amplitude level, since pT itself does not
appear in the amplitudes. However, as we argued in ref. [18], the expansion in p2

T/ŝ � 1
is equivalent to an expansion in terms of the ratio of the reduced Mandelstam variables
t′/s′ � 1 or u′/s′ � 1, depending whether we are considering the process to be in a forward
or backward kinematics. The s′, t′ and u′ variables are defined as

s′ = p1 · p2 = ŝ

2 , t′ = p1 · p3 = t̂−m2
Z

2 , u′ = p2 · p3 = û−m2
Z

2 (3.3)

and satisfy
s′ + t′ + u′ = ∆m. (3.4)

The cross section of a 2 → 2 process can always be expanded into a forward and
backward contribution. Looking at the dependence of σ upon t′, u′ we can write

σ ∝
∫ tf

ti

dt′F(t′, u′) =
∫ tm

ti

dt′F(t′, u′) +
∫ tf

tm
dt′F(t′, u′)

∼
∫ tm

ti

dt′F(t′ ∼ 0, u′ ∼ −s′) +
∫ tf

tm
dt′F(t′ ∼ −s′, u′ ∼ 0) (3.5)

where ti = (t̂− − m2
Z)/2, tf = (t̂+ − m2

Z)/2 and tm is the value of t′ at which t′ = u′ =
(−s′+ ∆m)/2. The two terms in the second line of eq. (3.5) represent the expansion in the
forward and backward kinematics, respectively.

If the amplitude is symmetric under t′ ↔ u′ exchange then

σ ∝
∫ tm

ti

dt′F(0,−s′) +
∫ tf

tm
dt′F(−s′, 0)

=
∫ tm

ti

dt′F(0,−s′) +
∫ tf

tm
dt′F(0,−s′) =

∫ tf

ti

dt′F(0,−s′) (3.6)

so that the expansion in the forward kinematics actually covers the entire phase space.
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In the case of gg → ZH the process itself is not symmetric under the t′ ↔ u′ exchange.
However, as can be seen from the explicit expressions of the projectors in appendix 8, it
can be written as a sum of symmetric and antisymmetric form factors. To perform only
the expansion in the forward kinematics one can proceed in the following way. On the sym-
metric form factors the expansion can be directly performed. For the antisymmetric ones,
it is sufficient first to extract the overall antisymmetric factor (t̂ − û) just by multiplying
the form factor by 1/(t̂ − û), written as 1/(2s′ − 4t′ − 2∆m), then perform the expansion
in the forward kinematics and finally multiply back by (t̂− û).

As discussed in ref. [18], to implement the pT -expansion at the level of Feynman dia-
grams it is convenient to introduce the vector rµ = pµ1 + pµ3 , which satisfies

r2 = t̂, r · p1 = t̂−m2
Z

2 , r · p2 = − t̂−m
2
H

2 , (3.7)

and therefore can be also written as

rµ = − t̂−m
2
H

ŝ
pµ1 + t̂−m2

Z

ŝ
pµ2 + rµ⊥ = t′

s′
(pµ2 − p

µ
1 )− ∆m

s′
pµ1 + rµ⊥, (3.8)

where
r2
⊥ = −p2

T . (3.9)

From eq. (3.1) one obtains

t′ = −s
′

2

1− ∆m

s′
±

√(
1− ∆m

s′

)2
− 2p

2
T +m2

Z

s′

 (3.10)

that implies that the expansion in small pT (the minus sign case in eq. (3.10)) can be
realized at the level of Feynman diagrams, by expanding the propagators in terms of the
vector rµ around rµ ∼ 0 or, equivalently, pµ3 ∼ −p

µ
1 , see eq. (3.8).

The outcome of the evaluation of the gg → ZH amplitude via a pT -expansion is
expressed in terms of a series of Master Integrals (MIs) that are functions of ŝ and m2

t

only, and whose coefficients can be organized in terms of powers of ratios of small over
large parameters where p2

T , m
2
H and m2

Z are identified as the small parameters while m2
t

and ŝ as the large ones. Thus, the range of validity of the expansion depends on the
condition that p2

T can be treated as a “small parameter” with respect to m2
t because all

the other ratios, small over large, are always smaller than 1.

4 LO comparison

In order to investigate the range of validity of the evaluation of the gg → ZH amplitude
via a pT -expansion, we compare the exact result for the LO partonic cross section [9, 10]
with the result obtained via our pT -expansion. The latter is expressed in terms of the same
four MIs that enter into the analogous calculation of the gg → HH LO amplitude [18], or

B0[ŝ,m2
t ,m

2
t ] ≡ B+

0 , B0[−ŝ,m2
t ,m

2
t ] ≡ B−0 , (4.1)

C0[0, 0, ŝ,m2
t ,m

2
t ,m

2
t ] ≡ C+

0 , C0[0, 0,−ŝ,m2
t ,m

2
t ,m

2
t ] ≡ C−0 (4.2)

– 6 –
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where

B0[q2,m2
1,m

2
2] = 1

iπ2

∫
dnk

µn−4
1

(k2−m2
1)((k+q)2−m2

2)
(4.3)

C0[q2
a, q

2
b ,(qa+qb)2,m2

1,m
2
2,m

2
3] = 1

iπ2

∫
dnk

µn−4
1

[k2−m2
1][(k+qa)2−m2

2][(k−qb)2−m2
3]

(4.4)

are the Passarino-Veltman functions [24], with n the dimension of spacetime and µ the ’t
Hooft mass.

As an illustration of our LO result we present the explicit expressions for one symmet-
ric, A2, and one antisymmetric, A6, form factor including the first correction in the ratio
of small over large parameters which will be referred to as1 O(p2

T ). We divide the result
into triangle (4) and box (�) contribution or

A(0,4)
2 = − pT√

2 (m2
Z + p2

T )
(ŝ−∆m)m2

tC
+
0 , (4.5)

A(0,�)
2 = pT√

2 (m2
Z + p2

T )

{
(
m2
t −m2

Z

ŝ− 6m2
t

4ŝ − p2
T

12m4
t − 16m2

t ŝ+ ŝ2

12ŝ2

)
B+

0

−
(
m2
t −∆m

m2
t(

4m2
t + ŝ

) +m2
Z

24m4
t − 6m2

t ŝ− ŝ2

4ŝ
(
4m2

t + ŝ
) −

p2
T

48m6
t − 68m4

t ŝ− 4m2
t ŝ

2 + ŝ3

12ŝ2 (4m2
t + ŝ

) )
B−0

+
(

2m2
t −∆m +m2

Z

3m2
t − ŝ
ŝ

+ p2
T

3m2
t ŝ− 2m4

t

ŝ2

)
m2
t C
−
0

+
(
ŝ− 2m2

t +m2
Z

ŝ− 3m2
t

ŝ
+ p2

T

2m4
t − 3m2

t ŝ+ ŝ2

ŝ2

)
m2
t C

+
0

+ log
(
m2
t

µ2

)
m2
t(

4m2
t + ŝ

)(∆m + 2m2
Z + p2

T

2ŝ− 2m2
t

3ŝ

)

−∆m
2m2

t(
4m2

t + ŝ
) +m2

Z

ŝ− 12m2
t

4
(
4m2

t + ŝ
) + p2

T

8m4
t − 2m2

t ŝ+ ŝ2

4ŝ(4m2
t + ŝ)

}
, (4.6)

1With a slight abuse of notation we indicate the counting of the orders in the expansion as O(p2n
T ) that

actually means the inclusion of terms that scale as (x/y)n, where x = p2
T , m2

Z , m2
H and y = ŝ, m2

t , with
respect to the ŝ, m2

t → ∞ contribution. The latter is indicated as O(p0
T ) and corresponds to the first non

zero contribution in the expansion of the diagrams in terms of the vector rµ.
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Figure 2. LO partonic cross section as a function of the invariant mass MZH . The full result (red
line) is plotted together with results at different orders in the pT -expansion (dashed lines). In the
bottom part, the ratio of the full result over the pT -expanded one at various orders is shown.

and

A(0,4)
6 = 0, (4.7)

A(0,�)
6 = t̂− û

ŝ2 pT

[
m2
t

2
(
B−0 −B

+
0

)
− ŝ

4

− 2m2
t + ŝ

2 m2
t C
−
0 + 2m2

t − ŝ
2 m2

t C
+
0

]
, (4.8)

where in eqs. (4.6), (4.8) the B0 functions are understood as the finite part of the integrals
on the right hand side of eq. (4.3).

In figure 2 the exact partonic LO cross section (red line) is shown as a function of the
invariant mass of the ZH system, MZH , and compared to various pT -expanded results.
For the numerical evaluation of the cross section here and in the following, we used as SM
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MZH [GeV] O(p0
T ) O(p2

T ) O(p4
T ) O(p6

T ) full
300 0.3547 0.3393 0.3373 0.3371 0.3371
350 1.9385 1.8413 1.8292 1.8279 1.8278
400 1.6990 1.5347 1.5161 1.5143 1.5142
600 0.8328 0.5653 0.5804 0.5792 0.5794
750 0.5129 0.2482 0.3129 0.2841 0.2919

Table 1. The partonic cross section σ̂(0) at various orders in pT and the full computation for several
values of MZH .

input parameters

mZ = 91.1876 GeV, mH = 125.1GeV, mt = 173.21 GeV,
mb = 0 GeV, GF = 1.16637 GeV−2, αs(mZ) = 0.118.

In the lower part of figure 2 the ratio of the exact result over the pT -expanded one is shown.
From this ratio one can see that the O(p0

T ) contribution covers well the ZH invariant mass
region MZH . 2mt, corresponding to the range of validity of an expansion in the large top
quark mass. Furthermore, when the contributions up to O(p4

T ) are taken into account a
remarkable agreement with the exact result is found up to MZH . 750GeV. This agree-
ment is extended to sligthly higher values ofMZH when the O(p6

T ) contribution is included,
a finding in close analogy to the result for di-Higgs production [18]. Similar conclusions
can be drawn from table 1, where it is shown that the partonic cross section at O(p4

T )
agrees with the full result for MZH . 600GeV on the permille level and the agreement
further improves when O(p6

T ) terms are included. As a final remark for this section, we
notice that, from the comparison with the LO exact result, the pT -expanded evaluation of
the amplitude is expected to provide an accurate result up to MZH ∼ 700− 750GeV that
corresponds, from eq. (3.2), to pT . 300− 350 GeV ≈ 2mt.

5 Outline of the NLO computation

In this section we discuss our evaluation of the three different types of diagrams that appear
in the virtual corrections to the gg → ZH amplitude at the NLO.

The triangle contribution (figure 1(d), (e)) was evaluated using the observation of
ref. [11], i.e. we adapted the result of ref. [22] for the decay of a pseudoscalar boson into
two gluons to our case. This contribution is evaluated exactly and explicit expressions for
the form factors are presented in appendix 9. We notice that if we interpret the exact
result in terms of our counting of the expansion in pT , the pT -expansion of the triangle
contribution stops at O(p2

T ).
Given the reducible structure of the double-triangle diagrams (figure 1(g)), an exact

result for the double-triangle contribution can be derived in terms of products of one-loop
Passarino-Veltman functions [24]. Explicit expressions for this contribution are presented
in appendix 9. Although we write the amplitude using a different tensorial structure with
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respect to ref. [16] we checked, using the relations between the two tensorial structures
reported in appendix 8, that our result is in agreement with the one presented in ref. [13].

The box contribution (figure 1(f)) was computed evaluating the two-loop multi-scale
Feynman integrals via two different expansions: a LME up to and including O(1/m6

t ) terms,
and an expansion in the transverse momentum up to and including O(p4

T ) terms. The
former expansion was used as “control” expansion of the latter. Indeed, the pT -expanded
result actually “contains” the LME one. The LME differs from the expansion in pT by the
fact that ŝ is treated as a small parameter with respect to m2

t , and not on the same footing
as in the latter case. This implies that if the pT -expanded result is further expanded in
terms of the ŝ/m2

t ratio the LME result has to be recovered. This way, we were able to
reproduce, at the analytic level, our LME result.

We conclude this section outlining some technical details concerning our computation.
We generated the amplitudes using FeynArts [25] and contracted them with the projectors
as defined in appendix 8 using FeynCalc [26, 27] and in-house Mathematica routines.
We used dimensional regularization and the rule for the contraction of two epsilon tensors
written in terms of the determinant of n-dimensional metric tensors. This is not a consistent
procedure and needs to be corrected. A correction term should be added [28] to the form
factors computed as described above, A(1,ndr)

i , namely

A(1)
i = A(1,ndr)

i − αS
π
CFA(0)

i . (5.1)

In order to check eq. (5.1), following ref. [29] we bypassed the problem of the treatment of γ5
in dimensional regularization computing the amplitude via a LME working in 4 dimension,
employing the Background Field Method (BFM) [30] and using as regularization scheme
the Pauli-Villars method. This result was compared with the LME evaluation of A(1,ndr)

i ,
finding that the difference between the two evaluations was indeed given by the second
term on the right-hand-side of eq. (5.1).

After the contraction of the epsilon tensors the diagrams were expanded as described
in section 3. They were reduced to MIs using FIRE [31] and LiteRed [32]. The resulting
MIs were exactly the same as previously found for di-Higgs production [18]. Nearly all of
them are expressed in terms of generalised harmonic polylogarithms with the exception of
two elliptic integrals [33, 34]. The top quark mass was renormalized in the onshell scheme2

and the IR poles were subtracted as in ref. [35].

6 NLO results

We now present our numerical results for the virtual corrections. We have implemented
our results into a FORTRAN programme. For the evaluation of the generalised harmonic
polylogarithms we use the code handyG [36], while the elliptic integrals are evaluated using
the routines of ref. [34]. In order to facilitate the comparison of our results with the ones

2Different choices for the renormalized top mass can be easily implemented in our calculation.
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ŝ/m2
t t̂/m2

t ref. [17] O(p6
T )

1.707133657190554 −0.441203767016323 35.429092(6) 35.430479

3.876056604162662 −1.616287256345735 4339.045(1) 4340.754

4.130574250302561 −1.750372271104745 6912.361(3) 6915.797

4.130574250302561 −2.595461551488002 6981.09(2) 6984.20

Table 2. Comparison of Vfin4/(α2
Sα

2) with the numerical results of ref. [17].

presented in the literature, we define the finite part of the virtual corrections as in ref. [16]3

Vfin = G2
Fm

2
Z

16

(
αS
π

)2
[∑

i

∣∣∣A(0)
i

∣∣∣2 CA2
(
π2 − log2

(
µ2
R

ŝ

))

+2
∑
i

Re
[
A(0)
i

(
A(1)
i

)∗]] (6.1)

and in the numerical evaluation of eq. (6.1) we fixed µR =
√
ŝ.

First, both the triangle and box LME contributions to A(1)
i up to O(1/m6

t ) terms
were checked, at the analytic level, against the results of refs. [13, 16] finding perfect
agreement. Then, the pT -expanded results for low MZH were confronted numerically with
the LME ones, finding a good numerical agreement. We recall that, at the same order
in the expansion, the pT -expanded terms are more accurate than the LME ones, although
computationally more demanding.

In ref. [17] a numerical evaluation of eq. (6.1) was presented. In that reference the
exact NLO amplitude was reduced to a set of MIs that were evaluated numerically using
the code pySecDec [37, 38]. Table 3 of that reference presents the numerical results for
various points in the phase space. A comparison of the four points lying within the range
of validity of our expansion is shown in table 2 using the same inputs as ref. [17]. As
can be seen from the table the relative difference between the two results is less than half
a permille.

In order to present our results we define a virtual part of the partonic cross section
from the finite part of the virtual corrections in eq. (6.1) by

∆σ̂virt =
∫ t̂+

t̂−
dt̂

αs
16π2

1
ŝ2Vfin (6.2)

and show it in figure 3. The dashed lines in the plot show the different orders in our expan-
sion. For all parts of the matrix elements we use the best results available, i.e. both A(0)

and the double-triangle contribution are evaluated exactly, while for A(1) we use the various
orders in the pT -expansion. For comparison, we show the results where A(1) is replaced by
the one computed in LME up to O(1/m6

t ) (full black line), which as mentioned before is
valid up to MZH < 2mt. We see that within the validity of the LME our results agree well

3Our definition of the matrix elements differs by a factor of 1
ŝ
from ref. [16], cf. also appendix 8.
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O(p0

T )

O(p2
T )

O(p4
T )

LME O
(

1
m6
t

)

mt→∞ reweighted

Figure 3. ∆σ̂virt defined by eq. (6.2), shown as a function of MZH . The various orders of the
pT -expansion are plotted as dashed lines, while the black and red continuous lines stand for the
LME and reweighted mt →∞ results, respectively.

with it. Furthermore, we show the results in the infinite top mass limit reweighted by the
full amplitudes squared (full red line), corresponding to the approach of ref. [11], keeping
though the double triangle contribution in full top mass dependence. Differently from the
LME line, the mt →∞ reweighted one shows a behaviour, for MZH & 400GeV, similar to
the behaviour of the pT lines. Still, the difference between the reweighted result and the
pT -expanded ones is significant. The pT -expanded results show very good convergence. The
zero order in our expansion agrees extremely well with the higher orders in the expansion,
and all the three results are very close up to MZH ∼ 500GeV.

Finally, we note that the evaluation of Vfin requires a running time per phase space
point less than one second. In addition, the integration over the t̂ variable in eq. (6.2)
converges very well, such that figure 3 could be produced on a standard laptop in a few
hours. Thus, our computation of the two-loop virtual corrections in gg → ZH is suitable
to be used within a Monte Carlo code.

– 12 –



J
H
E
P
0
5
(
2
0
2
1
)
1
6
8

7 Conclusion

In this paper, we computed the two-loop NLO virtual corrections to the gg → ZH process.
Among the two-loop Feynman diagrams contributing to the process, the ones belonging
to the triangle and double-triangle topology were computed exactly. The ones belonging
to the box topology, which contain multiscale integrals, were evaluated via an expansion
in the Z transverse momentum. This novel approach of computing a process in the for-
ward kinematics was originally proposed in ref. [18] for double Higgs production where the
particles in the final state have the same mass. In this paper, we extended the method
to the more general case of two different masses in the final state and to a process whose
amplitude is not symmetric under the t̂↔ û exchange.

The result of the evaluation of the box contribution is expressed, both at one- and
two-loop level, in terms of the same set of MIs that was found in ref. [18] for double
Higgs production. The two-loop MIs can be all expressed in terms of generalised harmonic
polylogarithms with the exception of two elliptic integrals.

As we have shown explicitly at the LO, the range of validity of our computation covers
values of the invariant mass MZH . 750 GeV corresponding to 98.5% of the phase space
at LHC energies. We showed that few terms in our expansion were sufficient to obtain an
incredible good agreement with the numerical evalution of Vfin presented in ref. [17], at the
level of a permille or less difference between our analytic result and the numerical one.

The advantage of our analytic approach compared to the numerical calculation is also
in the computing time. With an average evaluation time of half a second per phase space
point, an inclusion into a Monte Carlo programme is realistic. Due to the flexibility of our
analytic results, an application to beyond-the-Standard Model is certainly possible.

Finally, we remark that our calculation complements nicely the results obtained in
ref. [16] using a high-energy expansion, that according to the authors provides precise
results for pT & 200GeV. The merging of the two analyses is going to provide a result
that covers the whole phase space, can be easily implemented into a Monte Carlo code and
presents the flexibility of an analytic calculation.
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8 Orthogonal projectors in gg → ZH

In this appendix we present the explicit expressions of the projectors Pµνρi appearing in
eq. (2.2). The projectors are all normalized to 1. They are:

Pµνρ1 = mZ√
2s′p2

T

[
pν1ε

µρp1p2 − pµ2 ε
νρp1p2 + qµt ε

νρp2p3 (8.1)

+ qνuε
µρp1p3 + s′εµνρp2 − s′εµνρp1

]
, (8.2)

Pµνρ2 = 1√
2s′pT

[
qνuε

µρp1p3 + qµt ε
νρp2p3

]
, (8.3)

Pµνρ3 =
√

3
2s′pT

[
s′εµνρp1 + s′εµνρp2 − pν1εµρp1p2 − pµ2 ε

νρp1p2

+ (qνuεµρp1p3 − qµt ενρp2p3)
(

1
3 + m2

Z

p2
T

)

+ m2
Z

p2
T

(qµt ενρp2p1 − qνuεµρp1p2)
]
, (8.4)

Pµνρ4 = mZ√
2s′p2

T

[
qµt (ενρp2p1 − ενρp2p3)− qνu(εµρp1p2 − εµρp1p3)

]
, (8.5)

Pµνρ5 = 1√
6s′pT

[
qµt ε

νρp2p3 − qνuεµρp1p3

]
, (8.6)

Pµνρ6 = 1
s′pT

[
gµνερp1p2p3 + s′εµνρp3 + pν1ε

µρp2p3 − pµ2 ε
νρp1p3 − s′

2 ε
µνρp2

+ 1
2
(
pν1ε

µρp1p2 + pµ2 ε
νρp1p2 + qνuε

µρp1p3 − qµt ενρp2p3 − s′εµνρp1
)

+ m2
Z

2p2
T

(qµt ενρp2p1 − qνuεµρp1p2 + qνuε
µρp1p3 − qµt ενρp2p3)

]
, (8.7)

where we defined qµt = (pµ3− t′

s′ p
µ
2 ) and qνu = (pν3− u′

s′ p
ν
1) and we used the shorthand notation

εµνρp2 ≡ εµνρσpσ2 .
Using these projectors we obtained the relations between the form factors Ai defined

in eq. (2.2) and those defined in section 2 of ref. [16]:

A1 = p2
T

2
√

2mZ(p2
T +m2

Z)

[
(t′+u′)F+

12−(t′−u′)F−12

]
, (8.8)

A2 =− pT

2
√

2(p2
T +m2

Z)

[
(t′+u′)F+

12−(t′−u′)F−12

− p
2
T +m2

Z

2s′ ((t′+u′)F+
3 −(t′−u′)F−3 )

]
, (8.9)
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A3 = pT

2
√

3(p2
T +m2

Z)

[
(t′+u′)F−12−(t′−u′)F+

12

+(p2
T +m2

Z)(F−2 +F4)
]
, (8.10)

A4 =− mZ

2
√

2(p2
T +m2

Z)

[
(t′+u′)F−12−(t′−u′)F+

12

+(p2
T +m2

Z)
(

(1− p2
T

m2
Z

)F−2 +2F4

)]
, (8.11)

A5 = pT

2
√

6(p2
T +m2

Z)

[
(t′+u′)F−12−(t′−u′)F+

12

+(p2
T +m2

Z)
(

4(F−2 +F4)+ 3
2s′

(
(t′+u′)F−3 −(t′−u′)F+

3

))]
, (8.12)

A6 = pT
2 F4. (8.13)

9 Two-loop results

The NLO amplitude can be written in terms of three contributions, namely the two-loop
1PI triangle, the two-loop 1PI box and the reducible double-triangle diagrams,

A(1)
i = A(1,4)

i +A(1,�)
i +A(1,./)

i . (9.1)

We present here the exact results for the double-triangle and triangle contributions to all
the form factors. We find

A(1,./)
1 =− m2

t p
2
T

4
√

2 mZ (m2
Z+p2

T )2

[
Ft(t̂)

(
Gt(t̂, û)−Gb(t̂, û)

)
+(t̂↔ û)

]
, (9.2)

A(1,./)
2 = m2

t pT

4
√

2(m2
Z+p2

T )2

[
Ft(t̂)

(
Gt(t̂, û)−Gb(t̂, û)

)
+(t̂↔ û)

]
, (9.3)

A(1,./)
3 = m2

t pT

4
√

3 ŝ(m2
Z+p2

T )2

[(
m2
H− t̂

)
Ft(t̂)

(
Gt(t̂, û)−Gb(t̂, û)

)
−(t̂↔ û)

]
, (9.4)

A(1,./)
4 =− m2

t

4
√

2 mZ ŝ2 (m2
Z+p2

T )2

[(
m2
Z

(
m2
H− t̂

)2
(9.5)

− t̂
(
m2
Z−û

)2)
Ft(t̂)

(
Gt(t̂, û)−Gb(t̂, û)

)
−(t̂↔ û)

]
,

A(1,./)
5 =− m2

t pT

4
√

6 ŝ(m2
Z+p2

T )2

[(
4m2

Z−ŝ−4û
)
Ft(t̂)

(
Gt(t̂, û)−Gb(t̂, û)

)
−(t̂↔ û)

]
, (9.6)

A(1,./)
6 = 0, (9.7)

– 15 –



J
H
E
P
0
5
(
2
0
2
1
)
1
6
8

where

Ft(t̂) = 1(
m2
H− t̂

)2

[
2t̂
(
B0
(
t̂,m2

t ,m
2
t

)
−B0

(
m2
H ,m

2
t ,m

2
t

))

+
(
m2
H− t̂

)((
m2
H−4m2

t− t̂
)
C0
(
0,m2

H , t̂,m
2
t ,m

2
t ,m

2
t

)
−2
)]
, (9.8)

Gx(t̂, û) =
(
m2
Z−û

)[
m2
Z

(
B0
(
t̂,m2

x,m
2
x

)
−B0

(
m2
Z ,m

2
x,m

2
x

))

+
(
t̂−m2

Z

)(
2m2

xC0
(
0, t̂,m2

Z ,m
2
x,m

2
x,m

2
x

)
+1
)]
. (9.9)

Instead, for the triangle diagrams, we obtain

A(1,4)
1 = p2

T (ŝ−∆m)
4
√

2mZ

K(2l)
t

(p2
T +m2

Z) , (9.10)

A(1,4)
2 = −pT (ŝ−∆m)

4
√

2
K(2l)
t

(p2
T +m2

Z) , (9.11)

A(1,4)
3 = pT (t̂− û)

4
√

3
K(2l)
t

(p2
T +m2

Z) , (9.12)

A(1,4)
4 = −mZ (t̂− û)

4
√

2
K(2l)
t

(p2
T +m2

Z) , (9.13)

A(1,4)
5 = −pT (t̂− û)

4
√

6
K(2l)
t

(p2
T +m2

Z) , (9.14)

A(1,4)
6 = 0, (9.15)

where the K(2l)
t function is defined in eq. (4.11) of ref. [22].

We do not show the explicit results for the pT -expansion of the two-loop box dia-
grams, since the analytic expressions are very lengthy, even for the lowest order term of
the expansion.
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any medium, provided the original author(s) and source are credited.
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