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Abstract| This paper o®ers a new viewpoint to oscilla-
tor noise, bringing transparent insight into the phase noise.
Built around the well-known concept of phase di®usion, this
work bridges fundamental physics of noise and existing oscil-
lator phase noise theories. The concept of virtual damping is
presented as a measure of phase noise utilizing an ensemble
of oscillators. The explanation of the linewidth compres-
sion through virtual damping provides a uni¯ed view of res-
onators and oscillators. The direct correspondence between
phase noise and the Einstein relation is demonstrated, il-
luminating underlying physics of phase noise. The validity
of this new approach is positively con¯rmed by consistent
experimental agreement.

Keywords| oscillators, resonators, LC oscillators, ring
oscillators, integrated circuits, analog integrated circuits,
radio-frequency (RF) circuits, phase noise.

I. Introduction

OSCILLATOR phase noise has been studied from sev-
eral di®erent angles, ranging from a mathematical

physics treatment [1] - [4] to CAD-oriented methods [5] [6]
and design-oriented approaches [7] - [12], to name a few.
The design-oriented approaches have evolved from a famil-
iar linear time-invariant approach [7] to a more accurate
time-varying theory [12], adding additional insight into the
oscillator design. These studies have helped circuit design-
ers understand the evolution of noise in oscillators, leading
to more accurate phase noise predictions, and lower noise
designs (e.g., [13] [14]). However, the currently available
works on the phase noise assume rather phenomenological
or pure mathematical standpoints and a more fundamental,
yet intuitive understanding of the phase noise phenomenon
is still needed.

The primary goal of this paper is to provide essential
physical understanding of the phase noise. This work de-
velops a framework with a supporting measurement that
¯lls in the gap between the fundamental physics of noise
and the existing phase noise theories. Based on thought
experiments and fundamental arguments, this theory em-
phasizes a simple, physical picture of phase noise. The
results are commensurate with the time-varying theory in
[12], but the di®erent emphasis leads to several new in-
sights. The speci¯c contributions and outline of the paper
are listed below.
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A. Organization and Contributions

Section II reviews phase noise from the perspective of
phase di®usion based on the original contributions in [1] -
[4].

The new contributions are presented from Section III on.
In Section III, we introduce the concept of virtual damp-
ing through a thought experiment. We show that virtual
damping is another manifestation of phase di®usion and
demonstrate the virtual damping rate as a fundamental
measure of phase noise, both theoretically and experimen-
tally. The virtual damping concept will enable us to view
oscillators and resonators in a uni¯ed framework, leading
to a deep and intuitive understanding of linewidth compres-
sion.
Section IV derives the virtual damping rate in terms

of circuit parameters in a general time-varying case. The
derivation using the di®usion equation explains intuitively
how the time-varying e®ects physically modify the virtual
damping rate but why we never directly observe the time-
variations themselves in phase noise measurement.

In Section V, we give a physical interpretation of the
virtual damping rate, revealing the direct correspondence
between the Einstein relation and phase noise. This inter-
pretation elucidates the underlying physics of phase noise
by identifying its two key elements, sensitivity and energy
loss. The fundamental argument also establishes a link be-
tween existing dissipation-based phase noise models (e.g.,
[7]) and °uctuation-based phase noise models (e.g., [12]).

Finally, Section VI combines the results from the pre-
vious sections to calculate the ratio of the resonator's
linewidth to the oscillator's linewidth. The anatomy of
this linewidth compression in conjunction with the phase
noise physics of Section V will form a simple, yet essential
perspective of the oscillator phase noise.

II. Review of Phase Noise Fundamentals

In this section, we review phase noise fundamentals from
the viewpoint of phase di®usion. This review is based on
the original works presented in [1] - [4] in which central
concepts and equations of this section are found (perhaps
apart from certain notational di®erences). Essentially the
same equations have reappeared in numerous subsequent
developments to analyze phase noise (e.g., [6], [15], and
[16], to name a few). We will refer only to original source(s)
in this section.
The phase di®usion concept reviewed in this section will

be crucial in understanding our contributions presented
from Section III on. Since the treatments in currently
available phase di®usion literature are often very mathe-
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Fig. 1. Generic model for the self-sustained LC oscillator.

Fig. 2. Limit cycle in the V -I state-space.

matical, we have made this section rather self-contained,
emphasizing intuitive understanding.

A. Phase Di®usion

Self-sustained oscillators are realized by combining some
sort of frequency selection mechanism and positive active
feedback. For example, an LC oscillator is derived by plac-
ing the LC resonator in a positive feedback loop with gain
larger than 1. Figure 1 depicts a generic model for the LC
oscillator. The resistance, R, represents the parasitic tank
loss. The active devices form the positive feedback loop,
which compensates the tank loss by converting dc energy
to ac energy and injecting it into the LC tank. The oscilla-
tion frequency, !0, is given by !0 = 1=

p
LC. The tank loss

and the active devices generate noise, which are modeled
as the current sources in Fig. 1.
The dynamics of an LC oscillator can be visualized by

mapping the voltage, V , across the capacitor and the cur-
rent, I , of the inductor onto a trajectory in the V -I state-
space as shown in Fig. 2. For a stable oscillator, the limit
cycle representing the steady-state oscillation is a closed
curve due to the periodicity [17]. Regardless of its starting
point, the state will be ultimately attracted to the limit cy-
cle after the initial transient fades away, as shown in Fig.
2.

Fig. 3. Ensemble of N identical oscillators.

This peculiar property of the self-sustained oscillator di-
rectly a®ects its °uctuation behavior in the presence of
noise. The °uctuations would remain small in the radial
(amplitude) direction due to the tendency of the state to
return to the limit cycle. However, °uctuations in the di-
rection along the limit cycle do not experience any restor-
ing force to return the phase to its original value. Con-
sequently, in the presence of noise, the state point walks
randomly along the limit cycle, or, the phase undergoes a
\di®usion" process [1] - [4].
To see this phase di®usion more clearly, let us run a

thought experiment using an ensemble of N identical oscil-
lators as in Fig. 3 where N is a very large number. All the
oscillators are assumed to be at the same initial phase of
zero at t = 0. In the state-space picture shown in Fig. 4(a),
the state points from the ensemble are all on the top of one
another initially, rotating on the limit cycle together. How-
ever, the rotating oscillation points di®use along the limit
cycle with time, eventually spreading all over the limit cy-
cle. This implies that the oscillator will completely lose its
initial phase information after a su±ciently long time.
In the time-domain, the fundamental component of the

voltage across the LC tank in Fig. 1 is expressed as

V (t) = V0 cos[!0t+ Á(t)] (1)

where V0 is the amplitude of the fundamental component.
We ignored the amplitude noise since it remains relatively
small as discussed shortly before. The °uctuation along the
direction of the limit cycle in the state-space corresponds
to the phase °uctuation, Á(t), in (1), which assumes a dif-
fusion process, as mentioned earlier. The time-domain pic-
ture of this phase di®usion is shown in Fig. 4(b). Initially,
the oscillator output signals from the ensemble are all on
the top of one another since the oscillators are at the same
initial phase. After a su±ciently long time, however, the
output signals become incoherent due to the phase di®u-
sion and eventually go totally \out of sync".
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Fig. 4. (a) Phase di®usion in the state-space. (b) Phase di®usion
in the time-domain. (c) Time evolution of P (Á; t). In all cases,
t1 < t2.

Based on the ensemble, we can de¯ne the time-dependent
probability distribution of the phase, P (Á; t). By de¯nition,
P (Á; t)dÁ represents the probability for the phase to be
in (Á; Á + dÁ) for a given time, t. Figure 4(c) shows the
evolution of P (Á; t) with time. Since all the oscillators in
the ensemble are at the same initial phase of zero, the initial
distribution is given by P (Á; t = 0) = ±(Á) where ±(Á)
is the Dirac delta. As time elapses, the phase undergoes
di®usion and the probability distribution of Á spreads out.
As demonstrated in [1] - [4], if the phase di®usion is due to
white noise, the variance of Á, which signi¯es the width of
the probability distribution, is given by

hÁ2(t)i = 2Dt (2)

a key signature of any di®usion process subject to white
noise1 [18] [19]. The validity of (2) in the general time-
varying case will be positively con¯rmed in Section IV.
Extensive discussion of (2) is also found in [20] - [22] in
the special context of timing jitters in ring oscillators. The
constant, D, called phase di®usion constant, indicates how
fast the phase di®usion occurs.2 As will be seen shortly,
this phase di®usion constant will be the sole factor that
determines the oscillator phase noise.
In Fig. 4(a) and (b), D is a measure of how fast the

oscillator loses its initial phase information or how fast the
ensemble evolves to the ultimately chaotic state (the max-
imum entropy state) at t = 1. Therefore, D can be also
thought of as the entropy-growth-rate. For instance, an

1a.k.a., Wiener process
2Although D is a notation traditionally used for the di®usion con-

stant, di®erent notations are often found in the existing literature.
For example, in [1], W is used as an indicator of the di®usion rate
where D = W=2. The constant, ·, used in the context of timing
jitters in [21] and [22] is related to D through D = ·2!2

0
=2.

atomic clock is a system in which the entropy grows ex-
tremely slowly.

While the phase di®usion is the fundamental phe-
nomenon solely responsible for the oscillator phase noise,
the phase noise is usually characterized in terms of the os-
cillator power spectrum broadening due to its ease of mea-
surement. Indeed the spectrum broadening is a natural
outcome of the phase di®usion. In the following subsec-
tion, we will discuss this relation between phase di®usion
and phase noise (spectrum broadening).

B. Phase Noise

As shown in [1] - [4], when the oscillator phase, Á(t), is a
di®usion process satisfying (2) subject to white noise, the
power spectral density of V (t) in (1) is given by the familiar
Lorentzian:

SV (!) = V
2
0

D

(¢!)2 +D2
(3)

where ¢! ´ ! ¡ !0 is called the o®set frequency from the
carrier. Note that regardless of the value of D the total
oscillation energy remains the same value, V 20 =2, as can be
seen by integrating SV (!) over the whole frequency range.

Figure 5 shows SV (!) versus ! for di®erent phase dif-
fusion constants for the ¯xed oscillator energy of V 20 =2.
For a larger D, the Lorentzian shape is shorter and fatter,
distributing the same oscillation energy (the area under
the power spectrum curves) more widely around the cen-
ter frequency, hence increasing the errors in the reference
frequency. This is the frequency domain meaning of the
phase di®usion constant, D.

The degree of this energy spreading about the center
frequency for a given total energy is characterized by phase
noise. The phase noise at a given o®set frequency, ¢!, is
de¯ned as the ratio of the power spectral density at the
frequency of3 !0+¢! to the total oscillation energy, V

2
0 =2,

[23], which is given by

Lf¢!g ´ SV (!)

V 20 =2
=

2D

(¢!)2 +D2
(4)

This de¯nition of phase noise is widely-used due to its ease
of measurement using common instruments such as spec-
trum analyzers. If the o®set frequency is large enough as
compared to D, i.e., for ¢! À D, (4) assumes a familiar
f¡2 behavior [7]:

Lf¢!g ¼ 2D

(¢!)2
(5)

We have to emphasize once again that the phase noise
solely depends upon the phase di®usion constant, D. In
other words, the phase di®usion constant is a direct mea-
sure of the phase noise. A slower phase di®usion corre-
sponds to a smaller spectrum broadening in the frequency
domain.

3Or alternatively, at !0 ¡¢!
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Fig. 5. Power spectral densities of the oscillator output for di®erent
di®usion constants for the same oscillation energy.

III. Virtual Damping

The previous section reviewed phase noise fundamentals
based on [1] - [4]. The rest of this paper presents our work
on phase noise, beginning with the virtual damping in this
section.

A. Virtual Damping Concept

To derive the virtual damping concept, we resort to the
thought experiment of Fig. 3 again that involves the en-
semble of identical oscillators. Time-domain picture of the
phase di®usion was depicted in Fig. 4(b) using the ensem-
ble of oscillators and is redrawn at the top of Fig. 6. Ini-
tially, the oscillators in the ensemble have the same phase
and hence the ensemble average, hV (t)i, is equal to V (t)
of any single oscillator in the ensemble. After a su±ciently
long time, however, the oscillator signals become incoher-
ent due to the phase di®usion and hence hV (t)i tends to
zero with time, as shown at the bottom of Fig. 6. We
refer to this damping of the ensemble average as virtual
damping. Even though the single oscillator output, V (t),
per se sustains itself, its ensemble average which matters
in the measurement of phase noise virtually damps. One
can intuitively guess that the phase di®usion constant, D,
is associated with the virtual damping rate: a slower phase
di®usion is expected to result in a slower virtual damping.
A quantitative veri¯cation of the virtual damping is

given here. For a Gaussian distribution of Á, hcosÁi =
e¡hÁ

2i=2 and hsinÁi = 0 [18]. In the presence of white
noise, the oscillator phase, Á(t), satis¯es (2), and hence the
ensemble average of V (t) in (1) is given by

hV (t)i = V0e¡hÁ
2(t)i=2 cos(!0t) = V0e

¡Dt cos(!0t) (6)

which clearly shows the virtual damping. The virtual
damping assumes an exponential behavior and the virtual
damping rate is identical to the phase di®usion constant,
D, as we guessed earlier. From the mathematical perspec-
tive, (6) per se is not surprisingly new as it results from the
standard probability calculation similar to the one shown

Fig. 6. Ensemble average of V (t) and virtual damping.

in [24], which alone does not necessarily provide a physi-
cal meaning in conjunction with phase di®usion or its far-
reaching implications. However, the virtual damping con-
cept indeed has far-reaching implications, leading to an in-
tuitive understanding of phase noise in a uni¯ed framework
where resonators and oscillators are viewed from the same
angle, as will be seen shortly.

1=D # of cycles phase noise
(time constant) within 1=D (dBc/Hz)

1 millisecond 1:0£ 106 -99
1 second 1:0£ 109 -129
1 minute 6:0£ 1010 -146
1 hour 3:6£ 1012 -164
1 day 8:6£ 1013 -178
1 month 2:6£ 1015 -193
1 year 3:1£ 1016 -203

Table 1. Phase noise of a 1 GHz oscillator at 600 kHz o®set for

di®erent values of D obtained using (5). The white noise °oor of the

real measurement system is being ignored.

The virtual damping rate, D, and the phase noise of the
oscillator are related through (5). To get a feel for the size
of the virtual damping rate, let us consider an example:
a 1 GHz RF oscillator whose phase noise is -121dBc/Hz
at 600 kHz o®set has D ¼ 5:6 Hz or D=f0 » 10¡9 ac-
cording to (5). As this numerical example shows, typical
oscillators have very slow virtual damping rates when com-

pared to oscillation frequencies. The time constant, 1=D,
associated with this particular virtual damping is approxi-
mately 0.2 seconds and phase errors will be apparent after
this amount of time. Within this time constant, there are
approximately 108 oscillation cycles.
More numerical examples are tabulated in Table 1, which

lists phase noise values of a 1 GHz RF oscillator at 600 kHz
o®set for di®erent virtual damping rates. All the phase
noise values are calculated using (5) and some of the smaller
values cannot be measured in the practical measurement
due to the white noise °oor of the measurement system. As
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can been seen, currently available silicon-based on-chip os-
cillators whose phase noise values range typically between
-100 dBc/Hz and -140 dBc/Hz at the o®set frequency (e.g.,
[13], [14], [25] - [31]) have virtual damping time constants
roughly between milliseconds and seconds.

B. Experimental Veri¯cation

We can observe the virtual damping phenomenon exper-
imentally as well. Typical LC oscillators have very slow
virtual damping rates as compared to the oscillation fre-
quency, making them less suitable for experimental veri¯-
cation. Instead, we use ring oscillators whose phase noise
is signi¯cantly degraded by injection of a white noise cur-
rent whose power spectrum can be controlled externally.
However, we must emphasize that the exponential virtual
damping is a general phenomenon in any types of oscilla-
tors in°uenced by white noise, as the generic mathematical
model in the previous subsection suggests.
The experimental setup is shown in Fig. 7. The ring

oscillator is obtained by placing a cascade of ¯ve inverter
stages in a feedback loop. The oscillation frequency is con-
trolled by adjusting the supply voltage, Vdd. The exter-
nally injected noise is generated by an HP33120A arbitrary
waveform generator and has a white spectrum across the
bandwidth of interest. This bandwidth refers to the fre-
quency band within which the spectrum of the oscillator is
above the noise °oor and phase noise is measurable.
A Tektronix TDS3054 digital oscilloscope is used to sam-

ple the output waveform multiple times and calculate the
average overN samples, i.e., hV (t)iN . TheN output wave-
forms are triggered at the same phase at t = 0. To make
this average as close to the mathematical ensemble average
as possible, a considerably large N of 512 was chosen and
the environmental parameters such as temperature were
maintained as constant as possible throughout the mea-
surement. Under this carefully controlled environmental
conditions, the average of the output waveforms from the
same oscillator sampled at di®erent time intervals will con-
verge to ensemble average as N increases.4

Figure 8 shows this average for 512 samples as a function
of time. As can be seen clearly, the average is an exponen-
tially damping sinusoidal even though the single output
waveform is a steady-state sinusoidal. This measurement
result is in complete agreement with the virtual damping
concept and equation (6).
Using this experiment, the virtual damping rate, D, was

measured for di®erent injected noise power levels. As (6)
indicates, D is the inverse of time constant of the best-¯t
exponential to the resultant time domain averaged wave-
form such as the one in Fig. 8. The measured virtual
damping rate was used in (5) to predict the phase noise at
the 1 MHz o®set frequency. The oscillator phase noise was
also directly measured at the same o®set frequency using
an HP8563E spectrum analyzer with phase noise measure-
ment utility. Table 2 summarizes the experimental results.

4We assume ergodicity that the time average is equal to the en-
semble average, which is a fundamental assumption used in many
measurement systems such as spectrum analyzers.

Fig. 7. Measurement setup for the virtual damping.

Fig. 8. A measurement example: measured hV (t)i512 versus t.

As can be seen, there is close and consistent agreement be-
tween the two phase noise measurement methods, hence
con¯rming the validity of the virtual damping concept.

Measured PN from measured

i2n=¢f D measured D PN
(A2=Hz) (sec¡1) (dBc/Hz) (dBc/Hz)

2:6£ 10¡15 1:02£ 104 -92.9 -93.0
4:8£ 10¡15 1:56£ 104 -91.0 -90.0
9:7£ 10¡15 3:53£ 104 -87.4 -86.5
2:1£ 10¡14 9:30£ 104 -83.3 -81.7
6:0£ 10¡14 1:90£ 105 -80.2 -79.5

Table 2. Measured D, phase noise calculated from the measured D,

and phase noise measured using a spectrum analyzer at di®erent in-

jected noise power levels for the ring oscillator whose center frequency

was set at 5 MHz. The o®set frequency at which the phase noise was

measured is 1 MHz.

Apart from the virtual damping, the measurement setup
in Fig. 8 also facilitates observation of the full Lorentzian
behavior given by (4). For practically usable oscillators,
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Fig. 9. Measured phase noise vs. o®set frequency for a very large D.
The Lorentzian shape is apparent.

the virtual damping rate, D, is very small as compared to
the typical o®set frequencies (e.g., Table 1), which justi-
¯es the widely-used 1=f2 approximation in (5) for phase
noise characterization. In other words, the plateau of the
Lorentzian spectrum predicted by (4) is hard to observe for
the typical good oscillators due to their relatively small D.
However, in the oscillator of Fig. 8 where D can be made
comparable to the typical o®set frequencies via injection of
external white noise, the full Lorentzian spectrum becomes
observable. Figure 9 shows a phase noise measurement ex-
ample using the spectrum analyzer for a very large D. In
the ¯gure, the plateau as well as the familiar -20dB/decade
reduction part is apparent, and hence the full Lorentzian
spectrum.

C. Linewidth Compression

The virtual damping concept provides a uni¯ed frame-
work to view the resonator and the oscillator from the same
angle. This subsection will explain this viewpoint, giving a
fundamental yet intuitive understanding of linewidth com-
pression (Fig. 10).
The left-hand side of Fig. 10 shows a parallel LC res-

onator. The energy loss due to the parasitic resistance,
R, causes the voltage across the tank to damp exponen-
tially from a given initial value as shown in the ¯gure. This
damping in the time-domain corresponds to the line broad-
ening in the energy spectrum in the frequency-domain.
The right-hand side of Fig. 10 shows an oscillator derived

from the same LC resonator by driving it in positive active
feedback. The phase di®usion due to the active and passive
device noise is responsible for the line broadening of oscil-
lator's power spectrum (phase noise) as discussed earlier.
Since the virtual damping is another manifestation of the

Fig. 10. Linewidth compression.

phase di®usion, the line broadening in oscillator's power
spectrum can be alternatively thought of as the result of
the exponential virtual damping, and henceforth, the vir-
tual damping rate in the time-domain corresponds to the
spectrum linewidth in the frequency domain.5 The virtual
damping is extremely slower than the oscillation frequency
as discussed earlier and hence it is almost always much
slower than the damping in the resonator. Correspond-
ingly, the linewidth of the oscillator's output spectrum is
much smaller than the linewidth of the resonator's energy
spectrum, as shown hypothetically in Fig. 10.
In conclusion, placing a resonator in a positive feedback

loop to make a self-sustained oscillator results in linewidth
compression. The ratio of the oscillator's virtual damping
rate, D, to the resonator's damping rate, 1=(2RC), is the
measure of this linewidth compression ratio:

r ´ ¢osc

¢res
=

D

1=(2RC)
=
2Q

!0
¢D (7)

where the unloaded quality factor, Q, of the LC tank is
de¯ned as usual:

Q = RC!0 (8)

5To be the most accurate, the linewidth of the oscillator power
spectrum corresponds to the damping rate of the autocorrelation,
hV (t)V (t+ ¿)i, as opposed to the virtual damping rate of the mean,
hV (t)i, since the power spectrum is the Fourier transform of the au-
tocorrelation. However, since the virtual damping of the mean and
the damping of the autocorrelation are of the same physical origin,
the simpler view of relating the virtual damping of the mean to the
spectrum linewidth in this paper will serve the essential purpose. Ad-
ditionally, the damping rate of the autocorrelation calculated in [1] is
exactly the same as the virtual damping rate of the mean!
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To get a sense for the size of this linewidth compression
ratio, let us consider an example of a 1 GHz LC oscillator
whose phase noise at 600 kHz o®set is -121 dBc/Hz. Let
us assume that the LC tank has Q of 10. According to (5),
D ¼ 5:6 Hz and therefore, r ¼ 1:8£ 10¡8. As can be seen,
the linewidth compression ratio for this typical example is
extremely small, showing that the linewidth of a resonator
is narrowed by almost 8 orders of magnitude when placed
in a positive feedback loop to make an oscillator. In the
time-domain picture, this observation is equivalent to the
fact that the virtual damping rate of the oscillator is 8
orders of magnitude smaller than the damping rate of the
resonator.
This linewidth compression concept with the aid of Fig.

10 elucidates that the phase noise of the resonator-based
oscillators is optimized by a two-step procedure. The ¯rst
step is to select a resonator with the narrowest possi-
ble linewidth. Since the resonator's linewidth is ¢res »
1=(2RC) = !0=2Q where Q is given by (8), this ¯rst op-
timization step is actually equivalent to high-Q resonator
selection. The second optimization step is to achieve the
highest possible linewidth compression by minimizing r in
(7) in placing the resonator in the positive feedback loop.
As will be seen in Section VI, the linewidth compression ra-
tio, r, strongly depends on the noise-to-carrier ratio (NCR)
de¯ned as [30]

NCR ´ Ethermal
Etank

=
kBT

CV 20
(9)

where Ethermal = kBT=2 and Etank = CV
2
0 =2 are the ther-

mal and tank energy, respectively. Therefore the maximum
linewidth compression in the second step may be achieved
through the minimization of the NCR.6

Each of the two steps described above is well known in
the context of phase noise optimization. The ¯rst step of
optimizing resonator'sQ has been a traditional focus in the
oscillator design. The second step of the NCR minimiza-
tion is typically exercised through the oscillation amplitude
maximization but there have recently been emphases on
the more proper tank energy maximization [26] [30] [32].
However, these two quantities, Q and NCR, have been un-
derstood rather separately but not in the context of the
two-step procedure, and understanding of how phase noise
behaves as a whole depending on both Q and the NCR
has been lacking. For instance, the link between the NCR
and the phase noise has never been clearly explained, e.g.,
[30] [32] [33], to the best of our knowledge. The linewidth
compression concept addresses this issue, establishing the
link between the NCR and the phase noise and leading to
a global picture of phase noise.
This understanding of phase noise via linewidth compres-

sion will be further enhanced after the study of phase noise
physics in Section V with an explicit expression for D in
terms of circuit parameters in hand. Section VI will revisit
this linewidth compression. The following section derives
the virtual damping rate in terms of circuit parameters.

6In most practical cases, these two optimization steps are intermin-
gled.

IV. Virtual Damping Rate

In order to derive the virtual damping rate, D, we ¯rst
have to ¯nd the governing equation of phase dynamics in
the presence of white noise. To this end, let us consider
the LC circuit in Fig. 1 and its associated V -I state space
and limit cycle in Fig. 11. At time t, the oscillation point
is assumed to be at point A on the limit-cycle. During
an in¯nitesimal time interval, (t; t + dt), a noise current,
in, will dump a charge, indt, to the capacitor, resulting in
the instantaneous voltage change, dV = indt=C, across the
capacitor, or equivalently the momentary shift of the state
point from A to A0 where AA0=dV . The perturbed point,
A
0, will eventually return to the limit cycle at point B0

after traveling along the trajectory shown with the broken
curve. During the same amount time, if there were no
such perturbation, the state point A would travel along
the limit cycle to end up at point B. This shift from B to
B
0 is responsible for the phase change, dÁ, due to the noise

perturbation [5] [12]. For small enough perturbations, dÁ
is proportional to dV and is inversely proportional to the
oscillation amplitude, V0. For the same dV , the resultant
phase change, dÁ, also depends on where the state point
was on the limit cycle at the time of the noise injection
due to the periodic sensitivity of the state point to the
perturbation. We use a unitless periodic function, ¡(t),
to denote this periodic sensitivity, the so-called impulse
sensitivity function (ISF)7 [12] [34]. Then the governing
equation of the phase dynamics can be written as

dÁ =
dV

V0
¡(t) =

indt

CV0
¡(t) =

indt

qmax
¡(t) (10)

where
qmax ´ CV0 (11)

signi¯es the charge amplitude.
Additionally, the noise source, in(t), is cyclostationary in

general due to the periodic change of the operating point,
and hence should be replaced with in(t)®(t) where in(t)
is stationary noise and ®(t) is the unitless periodic noise
modulating function (NMF) [12] [34]. Then the generalized
version of (10) is given by

dÁ

dt
=

1

qmax
in(t)¡eff (t) (12)

where the unitless periodic function, ¡eff (t) ´ ®(t)¡(t), is
called e®ective ISF [12] [34]. As can be seen, the phase,
Á(t), is an integration of the white noise, in(t), and hence
represents a di®usion process as mentioned earlier several
times.
In order to ¯nd the phase di®usion constant, D, we de-

rive, from (12), the di®usion equation describing the time
evolution of the phase probability distribution, P (Á; t), in-
troduced in Section II. See Fig. 4(c). This type of conver-
sion is a standard exercise in stochastic theory [18] and in

7Analytical evaluation of the ISF is di±cult as it involves detailed
mechanism how the perturbed state point returns to the limit cycle
[6] [12] [34]. In practice, we can use an empirical method to obtain
the ISF utilizing charge injection simulation [12] [34].
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Fig. 11. Geometric description of phase dynamics.

this special case leads to [35]:

@P

@t
= D(t)

@2P

@Á2
(13)

where

D(t) =
1

4q2max
¢ i

2
n

¢f
¢ ¡2eff (t) (14)

Equation (13) resembles the typical di®usion equation [18]
[19] except that the di®usion rate, D(t), is not constant
but periodic due to the time-varying e®ect represented by
¡eff (t). Seemingly complicated, it can be rather easily
shown that solving the time-varying di®usion equation (13)
is equivalent to solving the following typical di®usion equa-
tion

@P

@t
= D(t)

@2P

@Á2
(15)

whereD(t) signi¯es the time average ofD(t) over its funda-
mental period, or equivalently, its dc component (See Ap-
pendix for the proof.). In other words, even in the presence
of the periodic time-varying e®ects, the di®usion occurs
with the di®usion constant of D(t), or hÁ2(t)i = 2 ¢D(t) ¢ t,
as if there were no time-varying e®ects. This veri¯es (2)
in the general time-varying case where the phase di®usion
constant, or the virtual damping rate, D, is given by

D = D(t) =
1

4q2max
¢ i

2
n

¢f
¢ ¡2eff;rms (16)

Here ¡eff;rms signi¯es the root mean square of the e®ective
ISF.
While the phase di®usion itself occurs as if there were

no time-varying e®ects, the shape of the periodic ¡eff (t)
does a®ect the di®usion speed by modifying the averaged
(rms) value in (16). This is essentially because di®usion
is an accumulation process: D represents an overall di®u-
sion speed, which is obtained through accumulation of a

large number of phase random walks during numerous os-
cillation cycles. In this accumulation process, the details
of the time-varying e®ects are all lost except its average
e®ect. Put in the language of measurement, even though
we cannot see the time-variations themselves in the mea-
sured oscillator power spectrum, the measured phase noise
does re°ect the time-varying e®ects in an averaged sense,
and thus, the time-varying e®ects cannot be ignored in the
calculation of phase noise. One example of modifying the
averaged di®usion speed via the shape of ¡eff (t) is to align
ISF with NMF di®erently, as fully discussed in [12].
The foregoing argument only dealt with a single white

noise source. In the presence of multiple uncorrelated white
noise sources, it can be easily shown that the overall di®u-
sion constant, D, is sum of all the di®usion constants due
to the multiple noise sources. If Dk represents the di®usion
constant due to the k-th white noise current, in;k, in Fig.
1 and if there are total M uncorrelated noise sources, the
overall di®usion constant, D, is given by

D =
MX

k=1

Dk

=

MX

k=1

1

4q2max
¢
i2n;k
¢f

¢ ¡2eff;k;rms (17)

where ¡eff;k is the e®ective ISF associated with the k-th
white noise current. Combining (17) and (5), we see that
the phase noise model this work predicts is commensurate
with the phase noise model in [12] [34]. The emphasis in
this section was on illuminating the time-varying e®ects in
the context of phase di®usion.
The virtual damping rate, D, in (17) looks rather compli-

cated and hence its physical interpretation is still needed
to understand the phase noise phenomenon better. The
following section is devoted to this physical interpretation.

V. Physics of Phase Noise

The key to a meaningful interpretation of the virtual
damping rate, or the phase di®usion constant, D, is to
note that the rate of any di®usion process is determined
by two essential elements a®ecting the process: the sen-
sitivity of the physical quantity undergoing the di®usion
and the friction (energy loss) of the environment in which
the di®usion process occurs. This important notion is per-
fectly captured in the Einstein relation, which he derived
to explain Brownian motion [36] [37]. We will begin with
a brief introduction to the Einstein relation in the context
of Brownian motion. This mechanical example facilitates
intuitive understanding, appealing to our everyday experi-
ence (e.g., an ink droplet in water).

A. Einstein Relation in Brownian Motion

A Brownian particle of mass, m, immersed in a liquid
at temperature, T , with frictional coe±cient of ° shown in
Fig. 12 undergoes a di®usion process. This is because the
Brownian particle walks randomly, incessantly bombarded
by thermally agitated liquid molecules. When the random
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Fig. 12. Brownian motion.

force exerted by the liquid molecules has a white spectrum,
the variance of the displacement, x, of the Brownian par-
ticle increases proportionally with time, i.e., hx2i = 2Dt,
where D is the di®usion constant [18] [19] [37]. This is
a key signature of any di®usion process subject to white
noise, and is analogous to (2) for the phase di®usion case.
The di®usion constant, D, of the Brownian particle is

given by the Einstein relation8 [18] [19] [37] :

D =
kBT

m| {z }
sensitivity

¢ 1
°|{z}
loss

(18)

where kB is the Boltzmann constant. The kBT=m fac-
tor represents the sensitivity of the Brownian particle to
perturbations and becomes smaller for a heavier particle,
agreeing with our intuition. Fundamentally, this sensitivity
factor derives from the equipartition theorem stating that
each independent degree of freedom of a system in equilib-
rium at temperature T has a mean energy of kBT=2 [19],
that is, hmv2=2i = kBT=2, or hv2i = kBT=m where v is
the velocity of the Brownian particle.
On the other hand, if two identical Brownian particles

with the same mass are immersed in liquids with di®erent
frictions, the Brownian particle in a medium with higher
friction will exhibit a slower di®usion as we can guess in-
tuitively, and hence the second factor, 1=°, in (18), origi-
nating from the friction (energy loss) of the environment.
Summarizing, the di®usion constant can be determined
only when both sensitivity and friction (energy loss) ele-
ments are known.

B. Einstein Relation in Phase Noise

The phase di®usion in the oscillator is analogous to the
di®usion of the Brownian particle and hence the phase dif-
fusion constant can be also explained using the Einstein
relation. To this end, we recast the expression for the
phase di®usion constant in (17) into a di®erent form by
expressing the noise intensity of the k-th noise current as

i2n;k
¢f

=
4kBT

Rk
(19)

where Rk is the e®ective equivalent resistance associated
with the k-th noise current. If the noise is of thermal origin,

8In semiconductor physics, the Einstein relation is usually expressed
as D=¹ = kBT=e where ¹ is mobility [38]. It can be easily shown that
this expression is equivalent to (18) [19].

Rk represents the loss associated with the thermal noise ac-
cording to the °uctuation-dissipation theorem [19], which
states the deep-seated link between thermal noise and loss.
For instance, in the case of an ohmic resistor, R, such as
the tank loss in Fig. 1, Rk simply becomes R and (19) is no
more than the Johnson-Nyquist formula for thermal noise.
For another example, for the MOS transistor whose channel
thermal noise intensity is given by 4kBT°gd0 where ° is the
MOS thermal noise factor and gd0 is the channel transcon-
ductance at Vds = 0 [39], Rk is equal to 1=(°gd0). On the
other hand, if the noise is of non-thermal origin (e.g., shot
noise), Rk does not necessarily represent the loss since the
°uctuation-dissipation relation only holds true for the ther-
mal noise sources. In this case, Rk can be simply thought
of as an alternative measure of the noise intensity in the
form of resistance.
By plugging (19) into (17) and ignoring the time-varying

e®ects for simplicity, we obtain

D =
1

V 20
¢ kBT
C

¢
MX

k=1

1

RkC
(20)

where we have also used qmax = CV0 of (11). Now we will
demonstrate this phase di®usion constant as the Einstein
relation.
First, let us consider the di®usion constant only due to

the thermal noise of the tank loss, R, in Fig. 1. From now
on, we will always reserve the index, k = 1, for the tank
loss, that is, R1 = R. Then the di®usion constant due to
the tank loss is given by

D1 =
1

V 20
¢ kBT

C| {z }
sensitivity

¢ !0
Q|{z}
loss

(21)

where Q is the unloaded tank quality factor de¯ned in (8).
In (21), the kBT=C factor represents the sensitivity of

the tank, analogous to the kBT=m sensitivity factor of the
Brownian particle in (18). This sensitivity factor can be
obtained resorting to the equipartition theorem [19] again,
that is, hCV 2=2i = kBT=2 or, hV 2i = kBT=C. At the
same time, the !0=Q factor in (21) is analogous to the 1=°
factor in (18) for the Brownian motion and is associated
with energy loss as the quality factor obviously indicates.
These sensitivity and energy loss elements in the phase
di®usion constant prove the direct correspondence between
the Einstein relation and the phase di®usion constant. The
additional factor, 1=V 20 , in (21) is simply to convert the
di®usion on the limit cycle to the di®usion in the phase
angle (e.g. Fig. 11).
Now, let us consider the overall phase di®usion constant,

D, in Fig. 1. We ¯rst de¯ne the loaded resistance, Rloaded,
as

Rloaded ´ R1jjR2jj ¢ ¢ ¢ jjRM (22)

where R1 is the tank loss, R, as mentioned shortly before.
Then, we can rewrite the phase di®usion constant in (20)
as

D =
1

V 20
¢ kBT
C

¢ !0
RloadedC!0

(23)
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Comparing this overall di®usion constant to the di®usion
constant only due to the tank loss in (21), one can see
that the loading e®ect of the active devices is re°ected via
the change from R to Rloaded. Accordingly, we de¯ne the
loaded tank quality factor, Qloaded, as

Qloaded ´ RloadedC!0 (24)

simplifying (23) to

D =
1

V 20
¢ kBT

C| {z }
sensitivity

¢ !0
Qloaded| {z }
loss/noise

(25)

Note that Qloaded de¯ned above in the oscillator context
is di®erent from the conventional de¯nition of Qloaded in
the context of linear time-invariant (LTI) circuits such as
tuned-tank ampli¯ers. Conventionally, the loaded quality
factor refers to the overall quality factor taking into account
all the relevant circuit parasitics.
As can be seen from (19), (22) and (24), Qloaded de¯ned

here is a direct measure of the amount of noise in the os-
cillator. If all the noise sources are of thermal origin in
Fig. 1, Qloaded is a measure of energy loss in the circuit
due to the connection between thermal noise and loss (the
°uctuation-dissipation theorem). At any rate, !0=Qloaded
in (25) consists of noise and/or loss elements while kBT=C
in the equation is the sensitivity factor, hence demonstrat-
ing the direct correspondence between the Einstein relation
and the overall phase di®usion constant.
In this subsection, we identi¯ed the two key components

determining the oscillator phase noise using a simple phys-
ical argument; apart from the 1=V 20 factor, the phase noise
is determined by the sensitivity of the resonator and the
overall circuit noise represented by the !0=Qloaded factor,
in perfect agreement with our intuition. Although in this
paper the Einstein relation was used as a means of inter-
preting phase noise, the Einstein relation in the phase dif-
fusion is so fundamental that the phase noise formula can
be directly obtained through a cogent physical argument
utilizing the Einstein relation, without going through the
mathematical derivation in Section IV [40].

C. NCR vs. Phase Noise

Using the de¯nition of noise-to-carrier ratio (NCR) in
(9), we can rewrite (25) as

D =
Ethermal
Etank

¢ !0
Qloaded

= [NCR] ¢ !0
Qloaded

(26)

where the thermal energy and the tank energy of the oscil-
lator are given by Ethermal = kBT=2 and Etank = CV

2
0 =2,

respectively, as mentioned earlier. Although there have re-
cently been emphases on the importance of the NCR in de-
sign of oscillators [30] [32] [33], the link between the phase
noise and the NCR has not been clearly explained. Now,
the above equation in association with the Einstein relation
elucidates the link, spelling out that the NCR originates
from the sensitivity factor, kBT=C, and the 1=V

2
0 factor

which converts the di®usion on the limit cycle to the dif-
fusion in the phase angle. As shown in (26), phase noise
and the NCR are connected through the !0=Qloaded factor
which represents the overall noise in the oscillator.
Often in the NCR, only the 1=V 20 factor is emphasized

while the kBT=C factor is neglected, leading to the widely-
held belief that a larger oscillator amplitude always results
in a better phase noise. However, as can be seen in (26),
what actually matters to reduce the NCR is not V0 alone
but Etank determined by both C and V0. If C is already
¯xed, every e®ort should be made to maximize V0 in the
design. If both C and V0 are the design variables, for a
given tank energy, increasing C and thus decreasing V0 does
not worsen the NCR. Therefore, if increasing C can bene¯t
the extra !0=Qloaded factor in (26), C must be increased
(and hence V0 must be decreased) to improve the phase
noise [30].

D. Fluctuation-based and Dissipation-based Phase Noise

Models

Using the relation in (19), we were able to express the
same phase di®usion constant either in the °uctuation-
based form (17) or in the dissipation-based form (25). As
mentioned earlier, the °uctuation-based form (17) is com-
mensurate with the model of [12]. On the other hand,
it can be shown that the dissipation-based form (25) is
equivalent to the familiar Leeson model [7]. By using
Qloaded » !0Etank=Ps = !0CV 20 =(2Ps) in (25) where Ps is
the power dissipation in the resistive part of the resonator,
we can rewrite (25) as

D » kBT

Ps
¢ !20
Q2loaded

(27)

which in conjunction with (5) leads to the Leeson model.
This consideration hence establishes a clear link between
°uctuation-based phase noise models such as [12] and
dissipation-based phase noise models such as [7]. While
apparently very di®erent, they are indeed not contradic-
tory but complementary expressions both describing the
same physical phase di®usion process.

VI. Linewidth Compression Revisited

In Section III, we introduced the concept of the linewidth
compression. By comparing the damping rate of the res-
onator to the virtual damping rate of the oscillator as in
Fig. 10, we obtained the linewidth compression ratio given
by (7). This ratio is a measure of how much linewidth com-
pression is achieved in placing a resonator into a positive
feedback loop. By plugging (25) into (7), we can now ex-
plicitly write the linewidth compression ratio in terms of
circuit parameters:

r » 1

V 20
¢ kBT
C

¢ Q

Qloaded

= [NCR] ¢ Q

Qloaded
(28)

where Q is the unloaded tank quality factor de¯ned in (8)
and we neglected the numeric proportional constant.
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Fig. 13. Anatomy of linewidth compression.

Here we will look at the linewidth compression once
again, now in connection with the Einstein relation. As
already discussed in Section III, the linewidth compression
concept shows that the phase noise is determined through a
two-step process in the design of the resonator-based oscil-
lator (Fig. 13). In the ¯rst step, the resonator's linewidth
on the left hand side of Fig. 13 is determined by the un-
loaded quality factor, Q, of the resonator. This ¯rst step
is associated with the loss factor in the Einstein relation.
In the second step, the resonator's linewidth is compressed
by r in (28) when the resonator is placed in the positive
feedback loop to make an oscillator, resulting in the ¯nal
oscillator's linewidth on the right hand side of Fig. 13. As
can be seen in (28), this second step is closely related to
both the sensitivity factor, kBT=C, in the Einstein rela-
tion, and the voltage swing. Resultantly, the second step
of the linewidth compression overall strongly depends on
the NCR. This explains the so-far-unclear link between the
NCR and the phase noise.

Another factor in the linewidth compression ratio in (28)
that deserves discussion is Q=Qloaded. Since the active de-
vices forming the positive feedback loop load the tank, Q in
¢res should be changed to Qloaded in ¢osc, which is taken
care of by this Q=Qloaded factor. This justi¯es the validity
of our earlier de¯nition of the loaded tank quality factor,

Qloaded, in (24).

VII. Conclusion

This paper presented a new point of view of oscilla-
tor phase noise. We introduced the virtual damping con-
cept as a fundamental measure of phase noise along with
the experimental veri¯cation. The virtual damping con-
cept puts the oscillator phase noise theory and the well-
known resonator theory in the same framework, providing a
deep and intuitive understanding of linewidth compression.
Demonstration of the correspondence between the phase
noise and the Einstein relation illuminated the underly-
ing physics of phase noise. These fundamental considera-
tions allowed a meaningful account for the link between the
noise-to-carrier ratio (NCR) and the phase noise. Addition-
ally, our fundamental treatment established a link between
currently available dissipation-based and °uctuation-based
phase noise models.
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Appendix

In this appendix, we will demonstrate that the time-
varying di®usion equation (13) and the typical di®usion
equation (15) lead to the same solution. Plugging the fol-
lowing Gaussian distribution9

P (Á; t) =
1

p
2¼¾2(t)

exp

·
¡ Á2

2¾2(t)

¸
(29)

into the time-varying di®usion equation (13), we obtain

¾2(t) = hÁ2(t)i

= 2

Z t

0

D(t0)dt0

=
N

2C2V 20
(¡2eff;rms ¢ t+ [sin/cos terms])

¼ N

2C2V 20
¡2eff;rms ¢ t

= 2 ¢D(t) ¢ t (30)

where ¡eff;rms signi¯es the root mean square of the e®ec-
tive ISF. The third line was obtained by decomposing the

9In this Gaussian distribution, it can be shown that hÁ2(t)i = ¾2(t)
always holds true. Hence, ¾2(t) represents the variance of Á(t) for a
given time t.
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time-varying di®usion constant, D(t), into its dc compo-
nent and non-dc components in the second line. Since in
the third line the ¯rst term grows unboundedly with time
while the sine and cosine terms are bounded, the ¯rst term
will eventually dominate, leading to the fourth line.

However, the Gaussian distribution in (29) with ¾2(t) =

2 ¢D(t) ¢ t in (30) is the solution of the di®usion equation
(15) as is well known. Therefore, solving the time-varying
di®usion equation (13) and the typical di®usion equation
(15) essentially result in the same solution.
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