
Received February 20, 2021, accepted February 27, 2021, date of publication March 2, 2021, date of current version March 11, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3063246

Virtual Edge: Exploring Computation Offloading
in Collaborative Vehicular Edge Computing

NARISU CHA1, CELIMUGE WU 1, (Senior Member, IEEE),

TSUTOMU YOSHINAGA 1, (Member, IEEE), YUSHENG JI 2, (Senior Member, IEEE),

AND KOK-LIM ALVIN YAU 3, (Senior Member, IEEE)
1Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu 182-8585, Japan
2Information Systems Architecture Research Division, National Institute of Informatics (NII), Tokyo 101-8430, Japan
3School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia

Corresponding author: Celimuge Wu (celimuge@uec.ac.jp)

This work was supported in part by the ROIS National Institute of Informatics Open Collaborative Research under Grant 2020-20S0502,

and in part by the JSPS KAKENHI under Grant 18KK0279, Grant 19H04093, and Grant 20H00592.

ABSTRACT Vehicular edge computing (VEC) has been a new paradigm to support computation-intensive

and latency-sensitive services. However, the scarcity of computational resources is still a challenge. Making

efficient use of sporadic idle computational resources on smart vehicles in the vicinity to extend the resource

capability of each vehicle is an important research issue. In this paper, we propose Virtual Edge, which is an

efficient scheme to utilize free computational resources of multiple vehicles as a virtual server to facilitate

collaborative vehicular edge computing.We design a virtual edge formation algorithm that considers both the

stability of virtual edge and the computational resources available at the vehicles constituting the virtual edge.

The prediction of the link duration between vehicles reduces the number of computation offloading failures

caused by unexpected link disconnections. Extensive simulations with realistic vehicle movements are

conducted to show the advantage of the proposed scheme over existing baselines in terms of the completion

ratio of computation offloading tasks and average task execution time.

INDEX TERMS Collaborative vehicular edge computing, virtual edge, computation offloading.

I. INTRODUCTION

The emergence of vehicular edge computing (VEC) has been

a new paradigm to support the ever-growing computation-

intensive and latency-sensitive services in intelligent trans-

portation systems (ITS) [1]. However, there are still some

challenges in conducting efficient edge computing tasks due

to the high mobility of vehicles and the limited bandwidth

in vehicular networks. Smart vehicles are also referred to

as ‘‘computers with the wheels’’, which are equipped with

communication devices to connect with each other, and have

powerful processing unit to execute computation tasks. It is

forecasted by IHS Markit that the number of vehicles on

the roads and in-vehicle equipment could reach nearly two

billion by 2025, and each car could produce up to 30 terabytes

of data every day [2]. On the other hand, the workloads in

the vehicles are not evenly distributed. First, slow-moving

vehicles have less computation tasks [3] in a relatively stable

The associate editor coordinating the review of this manuscript and

approving it for publication was Ivan Wang-Hei Ho .

road traffic context. In contrast, fast-moving vehicles have

to process a much larger amount of data in a shorter time to

guarantee a safe driving. Second, for some specific scenarios,

such as vehicle platoons, some vehicles conduct computation

tasks (platoon leader) and inform the results to other vehicles

(platoon members) through vehicle-to-vehicle communica-

tions. There could be also some differences in computational

capabilities for different vehicles. Therefore, the problem of

‘‘how to efficiently utilize the idle vehicle computational

resources’’ needs further investigations.

Most existing studies discuss about the offloading of com-

putation tasks from vehicles to roadside units (RSU), cloud

servers, or a single vehicle. In this paper, we discuss how to

offload tasks to multiple vehicles. In order to conduct effi-

cient task offloading to multiple vehicles, the communication

capability between the vehicles should be considered. This

is because a task requester vehicle must allocate its tasks to

neighboring vehicles that aggregate their computed results in

a collaborative manner. Existing studies split each task into

multiple jobs and basically use a reactive approach to allocate

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 37739

https://orcid.org/0000-0001-6853-5878
https://orcid.org/0000-0002-5238-8938
https://orcid.org/0000-0003-4364-8491
https://orcid.org/0000-0003-3110-2782
https://orcid.org/0000-0003-0043-2025

N. Cha et al.: Virtual Edge: Exploring Computation Offloading in CVEC

jobs to multiple vehicles after the task offloading request is

made. However, the reactive approach has a fatal problem

that the task requester must first perceive the environment and

then conduct task offloading, and so a certain amount of time

must be incurred before decisions are made. Moreover, since

each task requester makes decision independently, the global

optimum is difficult to achieve.

In this paper, we propose a proactive task offloading

framework, namely, virtual edge, to solve the task offloading

problem in vehicular environments. Each virtual edge node

consists of multiple vehicles with low relative moving speed

and good wireless connectivity between them. It enables the

vehicles to share free computational resources and provide

task execution functionality to other vehicles. By efficiently

utilizing the computational resources of multiple vehicles,

the virtual edge is able to provide a much powerful computa-

tional capability than a single vehicle could provide. When a

vehicle needs to offload computation tasks to other vehicles,

it constructs a new virtual edge and offloads the tasks to it,

or offloads the tasks to a virtual edge in the vicinity. By using

the concept of the virtual edge, an efficient virtual computing

node can be constructed, resulting in a much efficient task

offloading as compared with the conventional reactive task

offloading approaches.

In order to provide a satisfactory service to task requesters,

a virtual edge must be a relatively stable unit that does not

vary too much in terms of the number and capabilities of

the members. However, the formation of virtual edge is a

complex problem. Due to themobility of vehicles, there could

be frequent changes in the members of a virtual edge, which

incurs a negative impact on the virtual edge performance.

Therefore, the number of members should be limited, and

the members should have stable connections with each other.

In other words, the vehicle velocity, the wireless connectivity

between vehicles, and computational capability of vehicles

should be considered in the virtual edge formation. In this

paper, we propose virtual edge to facilitate a collaborative

vehicular edge computing environment. Our main contribu-

tions in the paper are as the following.

• We propose a new scheme, namely, virtual edge, which

is formed by multiple vehicles with available computa-

tional resources in the vicinity, for facilitating collabora-

tive vehicular edge computing. The virtual edge scheme

can use multiple vehicles in vicinity to enhance task

processing in vehicular networks.

• We propose an efficient algorithm to form a virtual edge.

In order to predict the time duration of a virtual edge,

we introduce a new metric, namely, the companion time

among the members of the virtual edge. The companion

time and computational resources are considered in the

formation of the virtual edge.

• Extensive computer simulations with realistic vehicle

mobility are conducted, and the effectiveness of the

proposed approach is shown by comparing it with

three existing baselines. By considering the connection

duration time and computational capability at each vehi-

cle, the proposed scheme is able to provide a much

higher performance as comparedwith existing baselines.

This paper is an extension of our previous conference

paper [4]. While [4] only discusses the problem of how to

establish a virtual edge, this paper includes all the details of

task offloading using virtual edge, and shows new simula-

tion results regarding the task offloading performance. The

remainder of this paper is as follows. Related studies are sum-

marized in section II, including computation offloading and

the collaboration among vehicles in vehicular edge comput-

ing. Then, we briefly describe the architecture of virtual edge

in section III. In section IV, we present system model and

problem formulation. In section V, the proposed scheme is

described in detail, and experimental results are demonstrated

in section VI. Finally, conclusion and future work are drawn

in section VII.

II. RELATED WORK

A. COMPUTATION OFFLOADING FOR VEHICULAR

EDGE COMPUTING

Improving task execution performance in computation

offloading is one of the key challenges in multi-access edge

computing (MEC). To face the challenge, researchers conduct

many kinds of studies, and the results are mainly focused on

the energy-efficient allocation of computing resources [5],

binary computation offloading [6], and partial computation

offloading [7], [8]. In [9], [10], the authors systematically

summarize the recent efforts on investigations related to com-

putation offloading inMEC.Most of the existing studies only

consider the offloading computation tasks from vehicles to

edge servers, such as roadside units (RSU) or cloud servers,

and the problem of how to offload computation tasks to

multiple moving vehicles has not been clarified.

Smart vehicles on the road can be viewed as edge nodes

with computational resources to execute driving tasks, such as

3D traffic scene generation, lane identification, positioning,

image processing, and traffic sensing.Multiple smart vehicles

can collaborate with each other to accomplish collaborative

tasks in some scenarios where existing infrastructure cannot

support the tasks with adequate resources. These tasks feature

intensive computations that can be offloaded to some vehicles

in the vicinity. In [10], Mao et al. introduce a method of using

joint radio and computational resource management to merge

the two disciplines of wireless communications and mobile

computing seamlessly. Some studies [11]–[13] conceive the

idea of vehicles as an infrastructure (VaaI) where moving and

parked vehicles with idle resources are viewed as infrastruc-

tures for communications and computing, and analyze the

feasibility of VaaI. Hou et al. [11] concludes that adjacent

moving vehicles have good connectivity with one another and

they can form a powerful computation cluster. They describe

four kinds of application scenarios and a three-layer vehicu-

lar fog computing (VFC) paradigm, then verify them using

real-world vehicular mobility traces. The results indicate that

37740 VOLUME 9, 2021

N. Cha et al.: Virtual Edge: Exploring Computation Offloading in CVEC

VFC can increase the availability and capability of resources.

Ning et al. [14] propose a decentralized three-layer VFC

architecture, where moving and parked cars are viewed as fog

nodes for processing local traffic data to balance the network

load. Vehicular MEC with collaborative task offloading can

guarantee low latency of the applications [15]. The optimal

policy for computation offloading to multiple base stations

in an ultra-dense sliced RAN is modeled by Markov deci-

sion process, and a new algorithm to offload computation

tasks based on double deep Q-network is proposed in [16].

To tackle the spatial intelligence of vehicular Internet of

Things (IoT), the technology of using Q-learning to combine

decentralizedmoving edge nodes withmulti-tier multi-access

edge clusters is discussed in [17]. Sun et al. in [18] develop an

algorithm to exploit the abundant resource on vehicles. There

are also some discussions on joint resource allocation and

computation offloading [19]–[21]. However, how to utilize

the computing capabilities of moving vehicles efficiently in

dynamic vehicular networks has not been adequately dis-

cussed in existing studies.

B. COLLABORATIVE VEHICULAR EDGE COMPUTING

Collaborative vehicular edge computing (CVEC) has been

studied in many articles covering collaborative coali-

tion formation [22], collaborative computation offloading

between vehicles [23], volunteer assisted collaborative

offloading [24], and collaborative route selection [25].

Wang et al. [26] consider using edge servers with both

horizontal and vertical collaborative offloading to support

vehicular services in CVEC. While these studies focus on

how to optimize computation offloading in some specific

scenarios, this paper discusses how to form a stable virtual

edge node, which can be used for meeting different types of

computation offloading requirements.

Compared with cloud computing, devices available in

CVEC, such as vehicle nodes, are resource-limited. These

devices have the following characteristics: sporadic resource

availability, high mobility, and high heterogeneity. Therefore,

one of the core problems of CVEC is how to orchestrate

the resources and computation efficiently in the edge nodes.

Due to the vehicle movement, vehicular services on the

edge must be migrated promptly and regularly to guaran-

tee a constrained latency. The study [9] considers virtual

machines (VMs) as the virtualization platform. However,

the overhead incurred by the VMs has not been addressed.

Due to the high mobility of vehicles, the authors fore-

see a demand on a kind of lightweight container (a vir-

tualization technology to achieve collaborative computing)

with the following requirements: to rapidly reconfigure the

switching context, to seamlessly orchestrate the allocation

of resources, and to migrate task execution state to a new

location. Recently, container-based task execution has drawn

great attention of many researchers because of its lightweight

feature as compared with VMs [27]. Alam et al. [28] combine

Docker, which is a platform using container based virtual-

ization technology, with edge computing micro-service to

execute IoT applications in different layers. Tang et al. in [29]

develop a container, which is deployed on the edge server

with abstraction and management functions. Compared with

the studies mentioned above, Huang et al. in [30] consider a

scenario where each vehicle is installed with a container, and

the parking lots are equipped with a backbone of VEC servers

for task offloading in order to acquire a higher overall utility

level. What we can conclude from the previous studies is that

there is a trend that virtualization technologies are spreading

from the core networks to the infrastructure on the edge.

III. VIRTUAL EDGE ARCHITECTURE

The architecture of the classical VEC consists of three lay-

ers: the cloud layer, the edge layer, and the user layer. The

vehicles, which are in the user layer, can be viewed as

mobile nodes with available computational resources in the

architecture.

A. CLOUD LAYER

This layer consists of the cloud server to store long-term data.

For example, traffic management and trusted third authority

data are stored in this layer to monitor global traffic and

optimize the entire system.

B. EDGE LAYER

This layer consists of network infrastructures, such as RSU,

smart traffic light, and VEC server at the base station (BS).

The layer processes data collected from the user layer, and

then send it to the cloud server.

C. USER LAYER

All of the user devices with constrained resources belong to

this layer, including vehicle, cell phone, and so on. This layer

generates raw data.

As shown in Fig. 1, each virtual edge, which lies in the

user layer of the conventional VEC architecture, consists of

multiple vehicle nodes, including the master vehicles and

slave vehicles, as follows.

D. VEHICLE NODE

A vehicle with computational and caching capabilities can

serve as an edge node to accomplish the computation tasks.

Every vehicle is installed with a container for offloading

external tasks. Vehicle nodes are equippedwith IEEE 802.11p

enabled communication module for exchanging information

with other vehicle nodes.

E. MASTER NODE

The master node is the leader of a virtual edge. The master

node assigns computation tasks to other members of the

virtual edge, namely, slave nodes, as explained below. When

a vehicle wants to offload computation tasks to other vehicles,

and there is no virtual edge available in the vicinity, the vehi-

cle can work as a master node to establish a new virtual edge.

The established virtual edge can be used by other vehicles.

VOLUME 9, 2021 37741

N. Cha et al.: Virtual Edge: Exploring Computation Offloading in CVEC

FIGURE 1. Virtual edge and VEC.

F. SLAVE NODE

The slave node is a member of a virtual edge that can provide

free computational resources to the master node. A virtual

edge may contain multiple slave nodes.

Influenced by the deployment cost and communication

range of the underlying infrastructure, the link duration [31]

between a vehicle and a MEC server is limited. In this

case, using available resources on the vehicles for offloading

has many potential advantages. It is generally acknowledged

that smart vehicles have more sensing and computational

resources than manual driving vehicles. Vehicle nodes with

insufficient computational resources, including those who do

not obtain computing resources adequately from base sta-

tions, offload their computation tasks to other vehicle nodes.

The vehicle nodes with tasks may establish an on-demand

virtual edge among vehicle nodes with available computa-

tional resources in the vicinity. The link duration between

the vehicle nodes is predicted and used in the creation of the

virtual edge.

A virtual edge is established by vehicle nodes to explore

lower-cost resources when the computational resources pro-

vided by a VEC server do not satisfy the vehicle node’s

requirements. This architecture is suitable for dense vehicle

traffic, such as urban areas, and it can utilize the compu-

tational resources of parked vehicles and/or other vehicle

nodes running in the same direction. Without modifying the

classical framework of CVEC, virtual edge can be used as a

complement to expand the function of utilizing resources in

the vicinity. Since the virtual edge is fully compliant with the

conventional VEC architecture, a task can be sent to the edge

server or cloud server when it cannot be completed at virtual

edge.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

A. SYSTEM MODEL

Short-range communication technologies are widely used in

vehicle-to-vehicle (V2V) information exchange. Until now,

two types of V2V communication technologies are well

discussed, namely, IEEE 802.11p and cellular-V2V. While

the performance difference of the two types of technologies

depends on the distribution of vehicles and traffic flow [32],

this paper discusses the use of IEEE 802.11p in V2V commu-

nications. According to IEEE 1609.4 [33], each vehicle needs

to broadcast a basic safety message (BSM) in a certain time

interval. BSM includes vehicle information, such as position,

velocity, direction, acceleration, and so on. The standard

payload of BSM is 39 bytes. BSM can be further extended

to contain the information related to available computational

resources like CPU frequency, caching size, etc. Each vehicle

maintains a BSM table to keep track of the information of

vehicles in the vicinity, and then computes the link duration

between two vehicles.

There are |V (t)| vehicles moving on the road to their desti-

nations where one of the vehicles is the master vehicle. Each

vehicle is willing to offer its idle computational resources to

the master node. Every vehicle follows an intelligent driver

model with traffic lights [34] to generate realistic mobility

of vehicles in the urban area. A vehicle may offload its

computation to the other vehicles when its local resource

cannot satisfy the requirement. Master node plays the role

of the service requester and the others are service providers.

The set of vehicles with available computational resource at

time t is shown by V(t), where V(t)= {v1, v2, . . .,v|V (t)|}, and

|V (t)| represents the total number of vehicles at time t. Vv(t)

is the set of virtual edge members led by node v at time t and

Vv(t) ⊆ V (t), where v represents a node with computation

tasks required to be offloaded. Computation tasks can be

divided into multiple blocks, which are denoted as D =

{d1, d2, . . . , d|Vv(t)|}, where |Vv(t)| represents the number of

virtual edge members. To establish a virtual edge, the master

node selects some vehicles based on the information of BSM

table (all the information of vehicles in the vicinity is recorded

in the table). Then, computation sub-tasks are offloaded to the

slave node based on their computational capabilities.

The establishment process of a virtual edge utilizes the

information of the BSM table and link duration. As shown

in Fig. 2, vehicles within the single-hop communication range

show different levels of capabilities. It is assumed that vehicle

v2 has some tasks and needs to offload these tasks to the other

vehicles. v1, v3, v4, v5 are located within the communication

range of v2. Due to the movement of vehicles, the duration

of connection between v2 and v1 becomes short because

two vehicles are driving in the opposite direction. The link

between v2 and v5 is unstable too because v5 is located at the

border of the transmission range of v2. Therefore, v1 and v5
should not be included in the virtual edge led by v2.

B. COMMUNICATION MODEL

The computation tasks of the master node are allocated to

the slave nodes by using V2V communications. We use the

same transmission model in the study [24]. Transmission data

37742 VOLUME 9, 2021

N. Cha et al.: Virtual Edge: Exploring Computation Offloading in CVEC

FIGURE 2. An example of collaborative vehicular edge computing; the
link duration and the available computational resources are considered
in the establishment of a virtual edge.

rate pv,u from amaster node v to a slave node u is expressed as

pv,u = b0 log2(1+
rv,uhv,u

σ 2
v,u

) (1)

where rv,u denotes the transmission power from node v at

node u, and hv,u is the channel gain. b0 is the allocated

bandwidth when transmitting computation tasks from node

v to node u, and σ
2
v,u represents the additional white Gaussian

noise power.

The time for sending computation tasks from the master

node v to the slave node u is expressed as

ttra,u =
du

pv,u
, du ∈ D. (2)

The total transmission time for sending computation tasks

from the master node v to all its slave nodes Vv(t) can be

calculated as

ttra,v =
∑

∀u∈Vv(t)

ttra,u. (3)

The efficiency of the offloading process is not only affected

by the stability of the link between vehicles but also the

hop count during data transmissions. We use an experimental

result as shown in Fig. 3 to estimate the data transmission

time for different numbers of hop counts.

C. COMPUTATION MODEL

In this paper, we consider the task, such as image recognition

and video retrieval. This kind of the task can be divided into

many sub-blocks. Each sub-block would be sent to a remote

server (edge server) for execution. The results will be returned

to the original node immediately after the computation is

completed. Compared to the input data size, the output data

FIGURE 3. The throughput achieved by using TCP (RENO) for data
transmission over V2V communication without interference. The speed of
the vehicle is 20km/h, and the data rates are 6 Mbps and 27 Mbps
respectively.

size of the task is very small and the returning (sending back)

time of results (tret,v) could be ignored. Therefore, the time

for returning results equals to zero in the paper.

The processing time of computation tu can be expressed as

tu =
γ du

αufu
, u ∈ Vv(t) (4)

where the computational resource (i.e., CPU clock frequency)

of the vehicle u is expressed as fu, αu is the idle resource

ratio of the vehicle u, du denotes the data size of the block

for vehicle u, and γ is service coefficient describing the

relationship between data size and the required CPU cycle

count for the computation. The members of virtual edge can

process the computation simultaneously, and therefore the

processing time of the computation is expressed as

tcom,v = {max tu|∀u ∈ Vv(t)} (5)

D. PROBLEM FORMULATION

Our objective is to minimize the execution time of computa-

tion tasks on the virtual edge. The execution time consists of

three parts: the transmission time ttra,v for sending blocks of

computation tasks from the master node u to the slave nodes,

the time for processing computation on the slave nodes tcom,v,

and the time for returning (sending back) the computation

results from the slave nodes to the master node tret,v. The

objective function can be expressed as

min
Vv(t)

(ttra,v + tcom,v + tret,v)

s.t. ttra,v + tcom,v + tret,v ≤ tdur,v

Vv(t) ⊆ V (t) (6)

where tdur,v represents the duration of the virtual edge. Vv(t)

represents the set of virtual edge members led by the master

node v. The constraint denotes that the computation tasks

must be processed completely before the virtual edge is bro-

ken.

To obtain the minimum processing time of computation,

the master node must consider all possible combinations of

VOLUME 9, 2021 37743

N. Cha et al.: Virtual Edge: Exploring Computation Offloading in CVEC

vehicles in the formation of virtual edge, which are varying

with time. Therefore, the above problem is considered a

Knapsack problem which has proven to be NP-hard in [35].

To solve the problem, we propose a heuristic approach that

jointly considers the duration of virtual edge and computa-

tional capability of vehicles. The details of the scheme will

be explained in section V.

V. FORMATION OF VIRTUAL EDGE

In order to predict the time duration of a virtual edge,

we first introduce a new metric, namely, the companion time,

to show the relative mobility level between two vehicles.

Then, we explain the implementation process of the proposed

scheme. The implementation of virtual edge is illustrated

in Fig. 4. First, the master node selects the candidates of

slave nodes, and then sends requests to the candidates. After

receiving acknowledgments (ACKs) from the candidates,

the master node confirms the slave node members. Then,

the computation tasks can be offloaded from the master node

to the slave nodes.

FIGURE 4. The implementation of virtual edge.

A. DURATION TIME OF VIRTUAL EDGE

The selection process of slave nodes considers the time dura-

tion of the virtual edge. Due to the fast mobility of vehicles,

it is challenging to choose appropriate vehicle nodes to estab-

lish a stable virtual edge. The prediction of the time duration

of the virtual edge is important to ensure that the computation

results can be returned before the link between vehicles is

broken.

Based on the interaction between vehicles, vehicle mobil-

ity models in the literature can be categorized into three

types: macroscopic, mesoscopic, and microscopic. Macro-

scopic and mesoscopic models focus on the effect of the

traffic parameters, such as the vehicle density and the traffic

arrival rate, to the overall performance. Microscopic model

describes the mobility of vehicles based on their interactions

with neighboring vehicles and the driving behavior of indi-

vidual vehicles. Here, we use a microscopic approach. In the

following, we first introduce three definitions, then define

the companion time between two vehicles, and derive the

duration of a virtual edge.

Definition 1: Given the assumption that V (t) is the set of

vehicle nodes, for node v, u ∈ V (t), we say that v and u

can communicate with each other directly if dist(v, u) < r

is satisfied, where dist(v, u) is the distance between node v

and u, and r is the communication range of the vehicles. It is

denoted by < v, u >.

Definition 2: Given the assumption that U is the subset of

V(t), if ∀v, u ∈ U , ∃v1, v2, . . . , vn ∈ U , satisfy < v, v1 >, <

v1, v2 >, . . . , < vn−1, vn >, < vn, u >, then it is called that

U is interconnected.

Definition 3: Given the assumption that U is the subset of

V(t), in the period T, if ∀t ∈ [0,T], ∀v, u ∈ U , nodes v and u

are connected directly, it is called that the duration of U is at

least T.

Estimating the duration of subset U encounters some dif-

ficulties because of vehicle mobility. Therefore, in the fol-

lowing, we exploit a method to derive the duration of a

virtual edge. Here, we introduce the companion time, which

is expressed by the upper limit of the link duration between

two nodes. The companion time is derived based on a gen-

eral discretized longitudinal kinematic motion equation of

vehicles [34]. The equation of acceleration in this paper

is based on the intelligent driver model (IDM) [34]. Each

vehicle is only responsible for calculating the companion

time of direct connection with its neighborhoods. The vector
⇀

Pv = (px,v, py,v, pz,v),
⇀
vv = (vx,v, vy,v, vz,v), and

⇀
av =

(ax,v, ay,v, az,v) denote the position, velocity, and acceleration

of vehicle v, respectively. Three elements of each vector

represent the values in the x, y, and z directions, respectively.

The relative distance of two vehicles is

⇀

P =
⇀

Pu−
⇀

Pv = (px,u − px,v, py,u − py,v, pz,u − pz,v). (7)

Similarly, the relative velocity and acceleration of two

vehicles are

⇀
a =

⇀
au−

⇀
av = (ax,u − ax,v, ay,u − ay,v, az,u − az,v) (8)

and

⇀
v =

⇀
vu−

⇀
vv = (vx,u − vx,v, vy,u − vy,v, vz,u − vz,v). (9)

The trajectory of node u relative to node v can be expressed

as

⇀

S =
1

2

⇀
a t2 +

⇀
v t +

⇀

P . (10)

Then, the length of relative trajectory can be expressed as

⇀

S ·
⇀

S = r2, (11)

where r is the radius of the vehicle’s communication range,

and (·) denotes the inner product. The formula above is

expanded as

(
1

2
(ax,u − ax,v)t

2 + (vx,u − vx,v)t + px,u − px,v)
2+

(
1

2
(ay,u − ay,v)t

2 + (vy,u − vy,v)t + py,u − py,v)
2+

(
1

2
(az,u − az,v)t

2 + (vz,u − vz,v)t + pz,u − pz,v)
2+ = r2.

(12)

For the equation above, only variable t is unknown, and

t equals to the companion time between nodes v and u.

37744 VOLUME 9, 2021

N. Cha et al.: Virtual Edge: Exploring Computation Offloading in CVEC

The companion time of two nodes can be expressed as the

following when two nodes communicate with each other

through multiple relay nodes,

t<v,u> = {min t<xi,xi+1>|x1 = v, xn = u,

dist(xi, xi+1)<r, xi∈V (t), i=1, 2, . . . , n− 1}.

(13)

The duration of a virtual edge is determined by the min-

imum companion time between the master node and other

members, and therefore it can be expressed as

tdur,v = {min t<v,u>|v is master node,

u is any slave node}.
(14)

In order to prevent members from being replaced fre-

quently, the companion time between the master and a slave

node must meet the following requirement.

t<v,u> ≥
r

vmax
, (15)

where vmax is the maximum allowable speed (speed limit) of

the vehicle [34], which is related to traffic, vehicle, and road

conditions.

1) COLLECTION OF VEHICLE INFORMATION

From the perspective of information exchange, there exist

two types of approaches for collecting vehicle information:

probing and beaconing. In the former one, the request mes-

sages are sent from the master node to other vehicles in the

vicinity for collecting vehicle information into the BSM table.

After the reception of a request message, each vehicle replies

with a response message by including the required informa-

tion. In the latter one, BSM with the vehicle information

is broadcasted periodically in fixed intervals, and the BSM

table is updated after the reception of a beacon message. Both

approaches utilize the BSM table to calculate the time dura-

tion for a link between two vehicles, and then send requests to

the vehicles for establishing virtual edge. The establishment

of a virtual edge completes when the master node receives

acknowledgments from all the vehicles. The whole process

is implemented in simulation, and the comparison of the

formation time of two approaches is illustrated in Fig. 5.

As seen from Fig. 5, with increasing of the number of slave

nodes, the formation time will be increased. It is because

that the time sending the request to establish virtual edge and

the time returning ACKs will be increased. We also observe

that the formation time of probing is longer than beaconing.

In addition, according to the view of the author [32], the cur-

rent setting in Table 1 does not affect the Quality-of-service

(QoS) of networks. Therefore, we choose beaconing as the

establishment approach for virtual edge in this paper.

2) AVAILABLE COMPUTATIONAL RESOURCE

To evaluate the computational resource of the virtual edge,

which contain multiple slave nodes, ‘‘edge power’’ is intro-

duced in this paper, and it is used to indicate the potential

FIGURE 5. Formation time of a virtual edge for probing and beaconing.

computational power provided by a virtual edge member.

The edge power of node u is demonstrated as the following

equation.

Pu = αufutu,v (16)

where fu is CPU frequency, αu is the ratio of idle resource,

and tu,v is the companion time of node u, respectively. Then,

the power of the virtual edge can be calculated as

Pv =
∑

u∈U (t)

αufutdur,v (17)

where U(t) is the set of virtual edge members formed by

node v at time t. The edge power increases with the number

of member nodes and the duration of the virtual edge.

B. VIRTUAL EDGE FORMATION AND TASK OFFLOADING

The process of virtual edge formation and task offloading

is illustrated in Algorithm 1. First, the basic vehicle infor-

mation, including position and signal strength information,

is achieved by exchanging BSM among neighbors. Based

on this information, the edge power of an edge neighbor

vehicle is calculated, and the neighbors are sorted by the edge

power. After that, the neighbors with acceptable companion

time are selected as the members of the virtual edge (slave

nodes). In this way, both the computational capability and the

relative mobility of vehicles are considered in the virtual edge

formation. The selected members of the virtual edge are allo-

cated with proper tasks according to the idle computational

resources.

C. VIRTUAL EDGE MAINTENANCE

Due to the mobility of vehicles, the serving time of a virtual

edge is constrained by the duration time. In order to execute

long time computation tasks (i.e., large computation tasks that

require longer processing time) smoothly, it is necessary to

maintain the virtual edge. When a slave node leaves a virtual

edge, the master node possibly needs to add a new node in

order to guarantee the computational capability of the virtual

edge. The master node also needs to trigger the maintenance

VOLUME 9, 2021 37745

N. Cha et al.: Virtual Edge: Exploring Computation Offloading in CVEC

Algorithm 1 Processes for Virtual Edge Establishment and

Computation Offloading

1: Each vehicle broadcasts BSM message.

2: Each vehicle updates the BSM table.

(Master node executes the following steps.)

3: Vv(t)← ∅;

4: Calculate duration of the neighbor vehicles according to

Eq.(14) and update BSM table;

5: Calculate the edge power of all neighbors according to

Eq.(16) and update BSM table;

6: Sort the neighbor nodes by the edge power with descend-

ing order;

7: for Each neighbor do

8: if The companion time > the predefined threshold

then

9: Add the neighbor into Vv(t);

10: Send a virtual edge request to vehicle u;

11: else

12: Break;

13: end if

14: end for

15: Wait for a short time period;

16: for Each u ∈ Vv(t) do

17: if The ACK is received from the node then

18: Offload block du to the slave node u;

19: else

20: Wait for a short time period and try again for this

node;

21: Continue;

22: end if

23: end for

process of the virtual edge in case of an unexpected link

disconnection. However, there could be a failure in virtual

edge maintenance due to the difficulty in finding appropriate

slave nodes. If the virtual edge maintenance fails, the master

node waits for a predefined time (i.e., 5 seconds by default)

for the appearance of another node. This process continues

until the virtual edge maintenance succeeds.

D. OPTIMAL NUMBER OF VIRTUAL EDGE MEMBERS

Being selected as a member of virtual edge needs to satisfy

two conditions. The one is that the companion time between

the master and the member vehicle is larger than the task

execution time on the vehicle. The other one is that the

sum of communication time and the execution time on the

vehicle node is smaller than the execution time of the task

on the master node. The maximum number satisfying two

conditions above is the optimal number for a virtual edge.

With the increase of the number of slave nodes, the compu-

tational capability of virtual edge increases while the duration

time decreases. There is a tradeoff between the computational

capability and duration of virtual edge. The optimal value

of the members of a virtual edge is dependent on the task

size, network resources, vehicle velocity, and vehicle density.

To obtain the optimal number of virtual edge, it is important

to predict companion time and execution time on the local

and remote nodes (on the slave nodes), respectively. However,

obtaining the optimal number faces many challenges. First,

the accuracy of the prediction to duration time and execution

time influences the results of obtaining the optimal number.

Second, the inter-vehicle distance and communication range

also influence the optimal value. In this paper, we discuss the

effect of different virtual edge members in various environ-

ments while the optimization algorithm for the number of vir-

tual edge members is considered as future work. We discuss

this in the future work part of the last section.

E. IMPLEMENTATION ISSUE

For the implementation aspect of the virtual edge, a container-

based virtualization technology is introduced to enhance the

efficiency of the resource management of vehicles. ‘‘Con-

tainer’’ is a light-weight virtualization technology to achieve

collaborative computing. For example, Docker [36] and

Kubernetes [37] are containers that can be installed in vehi-

cles to manage computational resources [30]. Compared to

the traditional virtual machines (VMs), the containers have

many advantages, such as fast start-up, resource sharing, and

independent running environment [27], so that it is effectively

utilized for task offloading and scheduling in VEC [38].

Container-based virtualization mainly depends on the shar-

ing of OS kernel between containers, including hardware

abstraction and device driver. Container-based virtualization

not only improves computational resource efficiency but also

avoids the interference of the resources by creating an isolated

environment.

VI. EVALUATION

In order to validate the performance of the proposed virtual

edge scheme, the discrete event simulator OMNeT++ and

the mobility generator SUMO are integrated to provide a

realistic wireless-enabled traffic network. We compare the

proposed scheme with three benchmarks. The simulation

process consists of three parts: the establishment of a virtual

edge, virtual edge maintenance, and computation offloading.

The parameters used in the simulation are listed in Table 1.

A 4000m bi-directional straight road is used. In order to sim-

ulate the effect of intersections, we put 5 traffic lights evenly

spaced among them along the road. The reference speed of

the vehicle is limited to 50 km/h and the vehicle arrives at

a random interval of [0.125, 0.33] vehicles per second. Each

vehicle is installed with a container, so it is able to execute

offloaded tasks from other vehicles. The master node starts

to establish a virtual edge to offload the computation after

the warm-up process is finished.

For the slave node selection, we compare the pro-

posed scheme with three benchmarks, namely, the random

approach, the minimum distance first approach, and the max-

imum available resources first approach. The detail of each

benchmark is as follows.

37746 VOLUME 9, 2021

N. Cha et al.: Virtual Edge: Exploring Computation Offloading in CVEC

TABLE 1. Parameters in the simulation.

• Random (rand) selects slave nodes among nodes within

the single-hop communication range randomly.

• Minimum distance first (minDist) selects vehicles with

comparatively shorter distance to the master vehicle as

slave nodes.

• Maximum available resources first (maxRes) selects

vehicles with comparatively higher available resources

as slave nodes.

• Proposed scheme (Prop) considers the link dura-

tion between vehicles and the available computational

resources jointly when selecting slave nodes.

A. VIRTUAL EDGE ESTABLISHMENT

Fig. 6 shows the duration of a virtual edge for different

numbers of slave nodes (virtual edge members). As shown

in Fig. 6, the duration of virtual edge in the proposed scheme

is better than other approaches. There is a trend that the

duration time of all four approaches becomes shorter with

the increase of the number of slave nodes. The reason is

that, involving more nodes in a virtual edge increases the risk

of the breakage of a virtual edge. With the increase of the

number of slave nodes, the available computational resource

calculated by Eq. (16) increases too, as shown in Fig. 7.

However, a very large virtual edge is impractical due to

FIGURE 6. Duration time of virtual edge for different numbers of virtual
edge members (without virtual edge maintenance).

FIGURE 7. Computational resources for different numbers of virtual edge
members (without virtual edge maintenance).

the mobility of the vehicles. Note that, the duration of the

proposed scheme decreases dramatically when the number of

slave nodes reaches six, or more than six. The reasons can be

explained from the following two aspects. First, the number

of vehicles is limited due to the limited single-hop com-

munication range. Second, the stability of a virtual edge is

influenced by the traffic light and the length of the lane. Thus,

the optimal number of the members of a virtual edge depends

on the traffic environment.

Fig. 8 shows the duration time of virtual edge for different

vehicle arrival rates under various numbers of slave nodes.

We observe an increase of duration time when the arrival

rate increases from 0.1 to 0.2 vehicles per second. However,

when the arrival rate is higher than 0.3 vehicles per second,

the duration time decreases as the arrival rate increases. This

is because the selection of virtual edge members considers

both the connectivity (duration time) and the computational

capability at each member. Since the computational capabil-

ity of each vehicle is randomly generated in order to simulate

a realistic vehicular environment in the simulation, some

vehicles with shorter duration time and higher computational

capability could be selected, resulting in a shorter duration

time of virtual edge. Note that this is a correct behavior as the

consideration of computation capability is also mandatory,

especially for a task that requires a large amount of computa-

tional resources.

B. VIRTUAL EDGE MAINTENANCE

In order to measure the task offloading performance under the

virtual edge maintenance, four metrics, namely, the duration

of a virtual edge, unexpected link disconnection, failure of

virtual edge maintenances, and available CPU cycle, are eval-

uated in this paper. The duration time of virtual edge for dif-

ferent numbers of slave nodes is illustrated in Fig. 9. We can

see that the curve of the duration in the proposed scheme

overlaps with the minDist benchmark and it is better than

others. From the difference between Fig. 6 and Fig. 9, we can

observe the importance of virtual edge maintenance. It is

concluded from above that the virtual edge with maintenance

VOLUME 9, 2021 37747

N. Cha et al.: Virtual Edge: Exploring Computation Offloading in CVEC

FIGURE 8. Duration time of virtual edge for different vehicle arrival rates
under various numbers of slave nodes (without virtual edge
maintenance).

FIGURE 9. Duration time of virtual edge for different numbers of virtual
edge members (with virtual edge maintenance).

is suitable for offloading long time computation tasks than

other approaches.

An unexpected link disconnection of a slave node could

result in a failure of returning the result of the computation to

the master node. There are many reasons causing unexpected

link disconnections, such as vehicle mobility and the weak

signal quality. The number of unexpected link disconnections

for different numbers of virtual edge members is illustrated

in Fig. 10. It can be seen from the figure that, unexpected

link disconnections increase with the increase of the number

of slave nodes. The proposed scheme shows the best per-

formance with the lowest number of link disconnections by

considering the link duration for the virtual edge formation.

Fig. 11 illustrates the number of virtual edge maintenance

failures for different numbers of virtual edge members. It is

indicated that the number of failures of the proposed scheme

equals to the minDist benchmark, and it is smaller than other

approaches. This is because the proposed scheme reduces

the possibility of virtual edge failures by considering vehicle

mobility, which results in a reduction of virtual edge mainte-

nance failures as well.

FIGURE 10. The number of unexpected link disconnections for different
numbers of virtual edge members.

FIGURE 11. The number of virtual edge maintenance failures for different
numbers of virtual edge members.

FIGURE 12. Available CPU cycle of virtual edge for different numbers of
slave nodes.

We observe from Fig. 9 and Fig. 11 that for some cases,

the proposed scheme and minDist show the same values.

This does not mean the proposed scheme and minDist select

the same virtual edge members. From the result of minDist,

we can observe that the selection of virtual edge member by

considering solely the inter-vehicle distance can achieve an

acceptable duration time and number of failures. However,

as we will show in Fig. 13 and Fig. 14, the minDist shows a

37748 VOLUME 9, 2021

N. Cha et al.: Virtual Edge: Exploring Computation Offloading in CVEC

FIGURE 13. Impact of data size on the average task execution time: (a) with 2 slave nodes; (b) with 3 slave nodes; (c) with 4 slave nodes.

FIGURE 14. Impact of data size on the task completion ratio: (a) with 2 slave nodes; (b) with 3 slave nodes; (c) with 4 slave nodes.

poor performance in terms of the average execution time and

completion ratio.

The power of a virtual edge is calculated by Eq. (16), which

are the available CPU cycles at all the members of the virtual

edge throughout its lifetime. Fig. 12 illustrates the compari-

son of virtual edge power per second (i.e., the available CPU

cycles at all the members per second) for different numbers of

slave nodes. From this figure, we find the following results.

First, the power of a virtual edge is stronger than a single

vehicle (the local resource as indicated in the figure). Second,

the proposed scheme is better than the other approaches due

to the joint consideration of the virtual edge duration and

available resources. Third, with the increase of the number

of slave nodes in a virtual edge, the power of a virtual edge

improves. By comparing Fig. 7 and Fig. 12, we find that the

power of a virtual edge with maintenance is stronger than a

virtual edge without maintenance.

Containing more slave nodes in a virtual edge also faces

some challenges. For example, the prediction of the vir-

tual edge duration becomes more difficult, and the proba-

bility of the virtual edge maintenance increases, as shown

in Fig. 10 and Fig. 11. With increase of the number of slave

nodes, the prediction of the virtual edge duration becomes

more complex. Additionally, adding more members can

inevitably lead to a vehicle with weak performance becoming

one of the members. An increase of the number of slave

nodes leads to a higher probability of link failure between

the master node and a member node. As a result, the num-

ber of unexpected link disconnections increases, and the

number of virtual edge maintenances increases. Unexpected

link disconnections during the execution also have negative

effects on collaborative offloading tasks. It can be seen from

Fig. 10, a virtual edgewith six slave nodes obtains the optimal

computational resources since the number of unexpected link

disconnections is the lowest. A similar result can be seen from

Fig. 11, whereby a virtual edge with four slave nodes obtains

the largest virtual edge power due to the fact the number of

virtual edge maintenances is the smallest in that case.

C. COMPUTATION OFFLOADING

In order tomeasure the performance of a virtual edge for com-

putation offloading, we conduct a simulation for offloading

computation tasks from the master node to the slave nodes.

To eliminate the influence of the duration time of a virtual

edge, we choose scenarios with 2, 3, and 4 member nodes,

respectively, and evaluate the impact of the data size on the

average execution time and completion ratio. Fig. 13 shows

the impact of data size on the task completion ratio. While

the existing baselines show a decrease in the completion

ratio with the increase of task load, the proposed scheme

achieves a significant advantage over them. This is because

the proposed scheme considers the computational capability

of vehicles in the virtual edge formation. We can also observe

in Fig. 14 that with the increase of data size and the number

of slave nodes, the task completion ratio of all schemes drops.

As compared with other three baselines, the proposed scheme

significantly improves the completion ratio by considering

the duration time of communication links between nodes,

and reducing the number of link disconnections in the virtual

edge.

VOLUME 9, 2021 37749

N. Cha et al.: Virtual Edge: Exploring Computation Offloading in CVEC

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose virtual edge, which is a collaborative

task offloading scheme that utilizes sporadic computational

resources on vehicles efficiently for task execution in vehic-

ular environments. The proposed scheme is able to generate

an efficient virtual edge by considering the vehicle mobility

and computational capability of vehicles jointly in the virtual

edge formation. We use extensive computer simulations to

evaluate the performance of the proposed scheme by com-

paring its performance with existing baselines. Simulation

results show that the proposed scheme can generate efficient

virtual edge, and therefore it can achieve a much higher task

completion ratio with reasonable average task execution time

as compared with existing baselines.

In this paper, we discussed the effect of different vir-

tual edge members in various environments. In future work,

we will discuss how to optimize the number of virtual edge

members in a dynamic vehicular environment according to

varying application requirements. We will consider using

some AI-empowered approaches to further improve the per-

formance of our scheme by enhancing the virtual edge selec-

tion process. We will also evaluate the performance of our

scheme in different applications by conducting real-world

experiments.

REFERENCES

[1] N. Hassan, K.-L.-A. Yau, and C. Wu, ‘‘Edge computing in 5G: A review,’’

IEEE Access, vol. 7, pp. 127276–127289, 2019.

[2] C. Huang, R. Lu, and K.-K.-R. Choo, ‘‘Vehicular fog computing: Archi-

tecture, use case, and security and forensic challenges,’’ IEEE Commun.

Mag., vol. 55, no. 11, pp. 105–111, Nov. 2017.

[3] J. Feng, Z. Liu, C. Wu, and Y. Ji, ‘‘AVE: Autonomous vehicular edge

computing framework with ACO-based scheduling,’’ IEEE Trans. Veh.

Technol., vol. 66, no. 12, pp. 10660–10675, Dec. 2017.

[4] N. Cha, C. Wu, T. Yoshinaga, and Y. Ji, ‘‘Virtual edge: Collaborative com-

putation offloading in VANETs,’’ in Proc. 10th Int. Conf. EAI MONAMI,

Nov. 2020, pp. 79–93.

[5] C. You, K. Huang, H. Chae, and B.-H. Kim, ‘‘Energy-efficient resource

allocation for mobile-edge computation offloading,’’ IEEE Trans. Wireless

Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.

[6] S. Bi and Y. J. Zhang, ‘‘Computation rate maximization for wireless

powered mobile-edge computing with binary computation offloading,’’

IEEE Trans. Wireless Commun., vol. 17, no. 6, pp. 4177–4190, Jun. 2018.

[7] Z. Jiang and S. Mao, ‘‘Energy delay tradeoff in cloud offloading for multi-

core mobile devices,’’ IEEE Access, vol. 3, pp. 2306–2316, 2015.

[8] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, ‘‘Mobile-edge comput-

ing: Partial computation offloading using dynamic voltage scaling,’’ IEEE

Trans. Commun., vol. 64, no. 10, pp. 4268–4282, Oct. 2016.

[9] P. Mach and Z. Becvar, ‘‘Mobile edge computing: A survey on architecture

and computation offloading,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 3,

pp. 1628–1656, 3rd Quart., 2017.

[10] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, ‘‘A survey on

mobile edge computing: The communication perspective,’’ IEEECommun.

Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[11] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, ‘‘Vehicular fog

computing: A viewpoint of vehicles as the infrastructures,’’ IEEE Trans.

Veh. Technol., vol. 65, no. 6, pp. 3860–3873, Jun. 2016.

[12] Y. Wang, K. Wang, H. Huang, T. Miyazaki, and S. Guo, ‘‘Traffic and

computation co-offloading with reinforcement learning in fog computing

for industrial applications,’’ IEEE Trans. Ind. Informat., vol. 15, no. 2,

pp. 976–986, Feb. 2019.

[13] X.Wang, Z. Ning, and L.Wang, ‘‘Offloading in Internet of vehicles: A fog-

enabled real-time trafficmanagement system,’’ IEEE Trans. Ind. Informat.,

vol. 14, no. 10, pp. 4568–4578, Oct. 2018.

[14] Z. Ning, J. Huang, and X. Wang, ‘‘Vehicular fog computing: Enabling

real-time traffic management for smart cities,’’ IEEE Wireless Commun.,

vol. 26, no. 1, pp. 87–93, Feb. 2019.

[15] G. Qiao, S. Leng, K. Zhang, and Y. He, ‘‘Collaborative task offloading

in vehicular edge multi-access networks,’’ IEEE Commun. Mag., vol. 56,

no. 8, pp. 48–54, Aug. 2018.

[16] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, ‘‘Optimized

computation offloading performance in virtual edge computing systems

via deep reinforcement learning,’’ IEEE Internet Things J., vol. 6, no. 3,

pp. 4005–4018, Jun. 2019.

[17] C. Wu, Z. Liu, D. Zhang, T. Yoshinaga, and Y. Ji, ‘‘Spatial intelligence

toward trustworthy vehicular IoT,’’ IEEE Commun. Mag., vol. 56, no. 10,

pp. 22–27, Oct. 2018.

[18] Y. Sun, J. Song, S. Zhou, X. Guo, and Z. Niu, ‘‘Task replication for vehicu-

lar edge computing: A combinatorial multi-armed bandit based approach,’’

in Proc. IEEE Global Commun. Conf. (GLOBECOM), Abu Dhabi, United

Arab Emirates Dec. 2018, pp. 1–7.

[19] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, ‘‘Computation

offloading and resource allocation in wireless cellular networks with

mobile edge computing,’’ IEEE Trans. Wireless Commun., vol. 16, no. 8,

pp. 4924–4938, Aug. 2017.

[20] J. Yan, S. Bi, Y. J. Zhang, and M. Tao, ‘‘Optimal task offloading and

resource allocation in mobile-edge computing with inter-user task depen-

dency,’’ IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 235–250,

Jan. 2020.

[21] X. Xu, Y. Xue, L. Qi, Y. Yuan, X. Zhang, T. Umer, and S. Wan, ‘‘An edge

computing-enabled computation offloading method with privacy preser-

vation for Internet of connected vehicles,’’ Future Gener. Comput. Syst.,

vol. 96, pp. 89–100, Jul. 2019.

[22] R. Xie, Q. Tang, Q. Wang, X. Liu, F. R. Yu, and T. Huang, ‘‘Collaborative

vehicular edge computing networks: Architecture design and research

challenges,’’ IEEE Access, vol. 7, pp. 178942–178952, 2019.

[23] S. Buda, S. Guleng, C. Wu, J. Zhang, K.-L.-A. Yau, and Y. Ji, ‘‘Collabora-

tive vehicular edge computing towards greener ITS,’’ IEEE Access, vol. 8,

pp. 63935–63944, 2020.

[24] F. Zeng, Q. Chen, L. Meng, and J. Wu, ‘‘Volunteer assisted collab-

orative offloading and resource allocation in vehicular edge comput-

ing,’’ IEEE Trans. Intell. Transp. Syst., early access, Mar. 18, 2020, doi:

10.1109/TITS.2020.2980422.

[25] C.Wu, Z. Liu, F. Liu, T. Yoshinaga, Y. Ji, and J. Li, ‘‘Collaborative learning

of communication routes in edge-enabled multi-access vehicular environ-

ment,’’ IEEE Trans. Cognit. Commun. Netw., vol. 6, no. 4, pp. 1155–1165,

Dec. 2020.

[26] K. Wang, H. Yin, W. Quan, and G. Min, ‘‘Enabling collaborative edge

computing for software defined vehicular networks,’’ IEEE Netw., vol. 32,

no. 5, pp. 112–117, Sep. 2018.

[27] R. Morabito, J. Kjallman, and M. Komu, ‘‘Hypervisors vs. Lightweight

virtualization: A performance comparison,’’ inProc. IEEE Int. Conf. Cloud

Eng., Tempe, AZ, USA, Mar. 2015, pp. 386–393.

[28] M. Alam, J. Rufino, J. Ferreira, S. H. Ahmed, N. Shah, and Y. Chen,

‘‘Orchestration of microservices for IoT using docker and edge comput-

ing,’’ IEEE Commun. Mag., vol. 56, no. 9, pp. 118–123, Sep. 2018.

[29] J. Tang, R. Yu, S. Liu, and J.-L. Gaudiot, ‘‘A container based edge

offloading framework for autonomous driving,’’ IEEE Access, vol. 8,

pp. 33713–33726, 2020.

[30] X. Huang, R. Yu, S. Xie, and Y. Zhang, ‘‘Task-container matching

game for computation offloading in vehicular edge computing and net-

works,’’ IEEE Trans. Intell. Transp. Syst., early access, May 8, 2020, doi:

10.1109/TITS.2020.2990462.

[31] N. Akhtar, S. C. Ergen, and O. Ozkasap, ‘‘Vehicle mobility and communi-

cation channel models for realistic and efficient highway VANET simula-

tion,’’ IEEE Trans. Veh. Technol., vol. 64, no. 1, pp. 248–262, Jan. 2015.

[32] A. Bazzi, B. M. Masini, A. Zanella, and I. Thibault, ‘‘On the perfor-

mance of IEEE 802.11p and LTE-V2 V for the cooperative awareness

of connected vehicles,’’ IEEE Trans. Veh. Technol., vol. 66, no. 11,

pp. 10419–10432, Nov. 2017.

[33] WAVE Multi-Channel Operation, Standard 1609.4-2006, 2006.

[34] B. Khondaker and L. Kattan, ‘‘Variable speed limit: Amicroscopic analysis

in a connected vehicle environment,’’ Transp. Res. C, Emerg. Technol.,

vol. 58, pp. 146–159, Sep. 2015.

[35] Y. Wang, X. Tao, X. Zhang, P. Zhang, and Y. T. Hou, ‘‘Cooperative

task offloading in three-tier mobile computing networks: An ADMM

framework,’’ IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2763–2776,

Mar. 2019.

37750 VOLUME 9, 2021

http://dx.doi.org/10.1109/TITS.2020.2980422
http://dx.doi.org/10.1109/TITS.2020.2990462

N. Cha et al.: Virtual Edge: Exploring Computation Offloading in CVEC

[36] Docker. Accessed: Oct. 15, 2020. [Online]. Available: https://www.

docker.io/

[37] D. Bernstein, ‘‘Containers and cloud: From LXC to docker to kubernetes,’’

IEEE Cloud Comput., vol. 1, no. 3, pp. 81–84, Sep. 2014.

[38] L. Yin, J. Luo, and H. Luo, ‘‘Tasks scheduling and resource allocation in

fog computing based on containers for smart manufacturing,’’ IEEE Trans.

Ind. Informat., vol. 14, no. 10, pp. 4712–4721, Oct. 2018.

NARISU CHA is currently pursuing the Ph.D.

degree with the Graduate School of Infor-

matics and Engineering, The University of

Electro-Communications (UEC). His current

research interests include mobile edge comput-

ing, vehicular ad hoc networks, and resource

management.

CELIMUGE WU (Senior Member, IEEE)

received the M.E. degree from the Beijing Insti-

tute of Technology, China, in 2006, and the

Ph.D. degree from The University of Electro-

Communications, Japan, in 2010. He is currently

an Associate Professor with the Graduate School

of Informatics and Engineering, The University

of Electro-Communications. His research inter-

ests include vehicular networks, edge computing,

the IoT, intelligent transport systems, and applica-

tion of machine learning in wireless networking and computing. He received

the IEEE Computer Society 2019 Best Paper Award Runner-Up. He is the

Chair of the IEEE TCGCC Special Interest Group on Green Internet of

Vehicles and the IEEE TCBD Special Interest Group on Big Data with

Computational Intelligence. He serves as an Associate Editor for IEEE

OPEN JOURNAL OF THE COMPUTER SOCIETY, IEEE TRANSACTIONS ON NETWORK

SCIENCE AND ENGINEERING, IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND

NETWORKING, and IEEE ACCESS.

TSUTOMU YOSHINAGA (Member, IEEE)

received the B.E., M.E., and D.E. degrees from

Utsunomiya University, in 1986, 1988, and 1997,

respectively. From 1988 to July 2000, he was a

Research Associate with the Faculty of Engineer-

ing, Utsunomiya University. From 1997 to 1998,

he was also a Visiting Researcher with the Lab-

oratory of Electro-Technical. Since August 2000,

he has been with the Graduate School of Infor-

mation Systems, The University of Electro-

Communications, where he is currently a Professor. His research interests

include computer architecture, interconnection networks, and network com-

puting. He is a member of ACM and IPSJ and a Fellow of IEICE.

YUSHENG JI (SeniorMember, IEEE) received the

B.E., M.E., and D.E. degrees in electrical engi-

neering from The University of Tokyo. In 1990,

she joined the National Center for Science Infor-

mation Systems (NACSIS), Japan. She is cur-

rently a Professor with the National Institute of

Informatics (NII) and The Graduate University

for Advanced Studies, SOKENDAI. Her research

interests include network architecture, resource

management, and quality of service provisioning

in wired and wireless communication networks. She is/has been a Sympo-

sium Co-Chair of IEEE GLOBECOM 2012, 2014, and a Track Co-Chair of

IEEE VTC2016-Fall and VTC2017-Fall. She is/has been an Editor of IEEE

TRANSACTIONS ON VEHICULAR TECHNOLOGY.

KOK-LIM ALVIN YAU (Senior Member, IEEE)

received the B.Eng. degree (Hons.) in electri-

cal and electronics engineering from Univer-

siti Teknologi PETRONAS, Malaysia, in 2005,

the M.Sc. degree in electrical engineering from

the National University of Singapore, in 2007, and

the Ph.D. degree in network engineering from the

Victoria University of Wellington, New Zealand,

in 2010. He is currently a Professor with the

Department of Computing and Information Sys-

tems, Sunway University. He is also a Researcher, a Lecturer, and a Con-

sultant in cognitive radio, wireless networks, applied artificial intelligence,

applied deep learning, and reinforcement learning. He serves as a TPCMem-

ber and a Reviewer for major international conferences, including ICC, VTC,

LCN, GLOBECOM, and AINA. He was a recipient of the 2007 Professional

Engineer Board of Singapore Gold Medal for being the Best Graduate of

the M.Sc. degree, in 2006 and 2007. He also served as the Vice General

Co-Chair for ICOIN’18, the Co-Chair for IET ICFCNA’14, and the Co-Chair

(Organizing Committee) for IET ICWCA’12. He serves as an Editor for the

KSII Transactions on Internet and Information Systems, an Associate Editor

for IEEE ACCESS, a Guest Editor for the Special Issues of IEEE ACCESS,

IET Networks, the IEEE Computational Intelligence Magazine, Journal of

Ambient Intelligence and Humanized Computing (Springer), and a Regular

Reviewer for more than 20 journals, including the IEEE journals and maga-

zines, the Ad Hoc Networks, and the IET Communications.

VOLUME 9, 2021 37751

