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Elastography ultrasound (EUS) imaging is a vital ultrasound imagingmodality.
The current use of EUS faces many challenges, such as vulnerability to sub-
jective manipulation, echo signal attenuation, and unknown risks of elastic
pressure in certain delicate tissues. The hardware requirement of EUS also
hinders the trend ofminiaturization of ultrasound equipment. Here we show a
cost-efficient solution by designing a deep neural network to synthesize virtual
EUS (V-EUS) from conventional B-mode images. A total of 4580 breast tumor
cases were collected from 15 medical centers, including a main cohort with
2501 cases for model establishment, an external dataset with 1730 cases and a
portable datasetwith 349 cases for testing. In the task of differentiating benign
andmalignant breast tumors, there is no significant difference between V-EUS
and real EUS on high-end ultrasound, while the diagnostic performance of
pocket-sized ultrasound can be improved by about 5% after V-EUS is equipped.

Ultrasound imaging (US) is an essential component ofmodernmedical
imaging technology. Elastography ultrasound imaging (EUS), as a
widely used ultrasound imaging modality, can be used to assess the
biomechanical properties of soft tissues. EUS provides distinctive
information different from other US modalities and plays an increas-
ingly important role in diagnosing many diseases, especially tumors,
with significant clinical value1,2.

With the rapid development of integrated circuits, an important
trend in US equipment is towards miniaturization and portability to
take full advantage of real-time, non-invasive, inexpensive, and easily
accessible US3,4. Due to the hardware requirements of EUS, none of the
existing pocket-sized ultrasound instruments are able to provide
elastography modality, which has become an obstacle to the

widespread use of miniaturized ultrasound equipment3,5. On the other
hand, compared with B-mode ultrasound imaging (BUS), EUS is more
susceptible to subjective manipulation, including probe position,
applied pressure, and frequency of compression, which dictates a
higher operator dependence and longer learning curve6. In addition,
EUS requires the calculation of tissue displacement based on ultra-
sound echo signals, and the accuracy of displacement calculation is
strongly influenced by signal attenuation, with the consequence that
the quality of EUS of deep tissues degrades significantly. Furthermore,
as EUS relies on stress changes to capture the elasticity of tissue, and
the biomechanical properties of delicate tissues, such as carotid pla-
que, eye, and brain tissue, are not well understood, leading to no clear
conclusions about the safety of EUS in the diagnosis of these lesions.
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With the rapid development of artificial intelligence, deep
learning-based medical image synthesis technology offers promising
solutions to many data-driven clinical application challenges. For
example, data synthesis technology can improve the imaging quality
of low-end acquisition equipment and break through the limits of the
original imaging methods in various aspects such as imaging speed7,
resolution8, modality9, and slice staining techniques10.

To tackle the barriers mentioned above to use EUS in clinical
applications, in this paper, we propose a cost-efficient solution by
designing an image synthesis method based on deep learning. Speci-
fically, a virtual EUS (V-EUS) reconstruction method based on gen-
erative adversarial network (GAN) is proposed to establish an end-to-
end mapping relationship from BUS to EUS. To fully validate the clin-
ical value of V-EUS, we choose the clinical problem of breast cancer
diagnosis and validate it in 4580 breast tumor cases from 15 medical
centers. In order to obtain an accurate elasticity assessment of the
tumor region and to make the color distribution of V-EUS highly
compatible with the one of real EUS, we propose to integrate a tumor
discriminator module and a color balancing module in the GAN fra-
mework.Weperformextensive evaluations of V-EUS, which are carried
out in terms of the following data organization: internal validation on
2501 cases, external validation on 14 cohorts of 1730 cases from 14
centers, and another external validation on 349 cases obtained from
pocket-sized ultrasound equipment. The comparisons between V-EUS
and real EUS are performed from the following perspectives: numer-
ical indicatorsof image similarity, visual evaluationby radiologistswith
different years of experience, contribution to the diagnostic accuracy
of breast cancer, stability of elastography of different imaging depth,
diagnostic effectiveness of pocket-sized ultrasound instrumentwith or
without V-EUS. The overview of the construction and evaluation of
V-EUS is shown in Fig. 1.

Results
Patient and breast lesion Characteristics
All radiologists involved in the project at each sub-center had at least 3
years of experience in breast EUS and were uniformly trained in ima-
gingmethodsprior to the start of the study. The acquired imagingdata
were stored on harddisks and sent to the study center for analysis. The
mean age of 4580 cases was 48± 14 age, including 4578 women and 2
men. These included 2226 malignant tumors and 2354 benign tumors,
with the most common of the malignant tumors being invasive ductal
carcinoma and the most common of the benign tumors being fibroa-
denoma. The patient demographics and breast lesion characteristics
are listed in Table 1.

Quantitative evaluation metrics and subjective evaluation
methods of V-EUS
In order to assess the quality of V-EUS comprehensively, we perform
both quantitative and subjective evaluations. Quantitative evaluations
are performed in following two aspects: similarity between V-EUS and
real EUS and the efficacy of V-EUS in the diagnosis of breast cancer.We
use structure similarity index measurement (SSIM), mean absolute
percentage error (MAPE), and color histogram correlation (CHC) to
quantitatively measure the reconstruction error between V-EUS and
real EUS. These three indexes quantitatively compare V-EUS with EUS
in terms of similarity of image structure, similarity of elasticity values,
and similarity of color distribution, respectively. As an intuitive inter-
pretation, large SSIM and CHC values indicate good agreement
between V-EUS and real EUS, while large MAPE values indicate large
synthetic errors. The calculation methods of these three indexes are
detailed in Methods. We further quantify the stiffness of the tumor by
calculating the strain ratio (SR),which is a simi-quantitative assessment
method and defined as the ratio of the deformation of the normal
breast tissue to the tumor tissue, and then analyze its diagnostic

efficacy by using the receiver operating characteristic (ROC) curve.
The detailed calculation process of SR is illustrated in Methods.

In addition to the objective evaluation, we also conduct subjective
blind evaluations on V-EUS. Both junior and senior US radiologists are
required to perform visual Turing tests to evaluate the visual fidelity of
V-EUS. The procedure of subjective evaluations is described in
Methods.

V-EUS evaluation in the internal validation set
The overall values of SSIM,MAPE andCHCare 0.903, 0.304 and0.849,
respectively, which indicates a good agreement between V-EUS and
real EUS. The detailed quantitativemetrics stratified by tumor size and
tumor location is shown in Fig. 2a.

An essential aspect of evaluating V-EUS is the application in the
clinical practice, differentiating between benign and malignant breast
tumors in our application.We calculate the SR values of real EUS andV-
EUS, respectively, and use the SR values to calculate the AUCs for
breast cancer diagnosis. The performance of SR values obtained from
real EUS is similar to that of V-EUS, with AUC of 0.773 and 0.752,
respectively (p =0.396, Fig. 2b). In the task of breast cancer diagnosis,
we usually choose a smaller diagnostic threshold to ensure high sen-
sitivity, and it can be seen from the ROC that the diagnostic perfor-
mance of real EUS and V-EUS is similar at this time. Further, we
compared the diagnostic performance of V-EUS and real EUS stratified
by tumor size (Fig. 2c) and location (Fig. 2d). The statistical results
show that the performance of real EUS and V-EUS in the diagnosis of
benign and malignant tumors in different groups is similar, without
significant statistical difference. Several representative examples are
shown in Fig. 2e.

Generalization to multi-center external testing sets
Due to differences in imaging parameters and clinical settings, US
images can vary greatly amongdifferentmedical centers. It is therefore
important to verify that themodel trained on themain cohort is robust
to different cohorts from other medical centers. We collected 1730
cases from 14 medical centers as external test cohorts to evaluate the
generalization performance of the model. The sample distribution of
external cohort is shown in Fig. 3a.

We also evaluated the results of V-EUS from two perspectives. For
quantitative evaluation, SSIM, MAPE, and CHC were calculated
(Fig. 3b). For diagnosing breast cancer, the SR of real EUS and V-EUS
were calculated, respectively, and the diagnostic AUCs of each center
were analyzed (Fig. 3c). It was found that the diagnostic AUC of V-EUS
is not significant different from that of real UES in each centers. These
results indicate that our model is capable of generalizing to diverse
data sources.

Tumor depth dependence of diagnostic efficiency
EUS is strongly influenced by imaging attenuation and it was reported
to show reduced sensitivity for diagnosing lesions at relatively deep
locations11–13. With the reconstruction results we found that V-EUS
rarely showed artefacts or loss of elastic pseudo-color in deeper
tumors. We therefore design experiments to test whether V-EUS is
robust to imaging depths. We mixed the main cohort and the multi-
center cohort and then all 4231 cases were divided into training and
testing datasets according to the depth of tumors.We set 15mmas the
threshold and get 2826 training cases with tumor depth less than
15mm and 1405 testing cases. We use the AUCs of SR in determining
breast malignancy to measure the effectiveness of EUS.

The diagnosis AUC of real EUS and V-EUS are 0.751 and 0.767
(Fig. 4a), respectively. The diagnostic performance of V-EUS is not
significantly different from that of real EUS. From a more detailed
perspective, we statistic the diagnosis AUC for samples of different
tumor depth in the test set (Fig. 4b). With increasing tumor depth, the
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Fig. 1 | Overviewof the experimentalworkflow. In V-EUSmodeling, thegenerator
takes BUS as input and synthesizes V-EUS, and then the discriminator determines
whether the input EUS is real. A color rebalancemoduleand a tumordiscrimination
module are designed to regularize the model. In V-EUS evaluation, the perfor-
mance of the model is inspected from three aspects: image quality metrics,
determining tumor malignancy, and blind evaluation. We design five experiments
in this work. a Themodel is trained on 2001 high-quality US images from the main

cohort. b The hold-out 500 high-quality US images are used as an internal test.
cWe evaluate the trained model on an external multi-center test cohort with 1730
high-quality US images. d The model is further evaluated on a more challenging
dataset containing 349 low-quality US images collected from pocket-sized US
devices. e In order to analyze tumor depth dependency, all high-quality US images
are divided according to different tumor depth intervals, modeling with 15mm as
division thresholds.
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diagnostic performance of V-EUS progressively exceeds that of
real EUS.

Representative examples of different tumor types with different
tumor depths are shown in Fig. 4c. According to the statistics, we find
when the tumor depth is greater than 20mm, 25.9% (62 of 239) of real
EUS exhibit artifacts caused by signal attenuation. It can be seen that
V-EUS ismore accurate inmeasuring the hardness of the lesion and can
effectively avoid artifacts at the deep-located lesion.

Blind evaluation on V-EUS
There are two indispensable reasons that motivate us to perform the
blind evaluation. One is the gap between human visual perception and
computational metrics, and the other is the wide application of the
Tsukuba score system (detailed description in Methods) in clinical US
examinations. 500 cases were randomly selected from 4231 cases
among 15 centers for blind evaluation, which were completed by two
radiologists (a senior one with 10 years’ experience and a junior one
with 4 years’ experience). To facilitate fair and effective US image
evaluation, we released a blind evaluation software for observers
(detailed description in “Methods”). During the evaluation, two radi-
ologists were asked to observe a set of real EUS and V-EUS respectively

and to give three answers: (1) a corresponding BI-RADS score based on
each of the two images, (2) which of the two images was true, and (3)
Tsukuba scores for each of the two images based on the Tsukuba
scoring system (see “Methods”). The blind evaluation results are
summarized in Supplementary Fig. 4.

For the perceptual realism test, if the operator successfully picks
out the real one from the twodisplayedEUS (one is real and theother is
virtual), the model is considered to be failed and will score 0. Other-
wise, the score will be 1. Therefore, if our model exactly reproduced
real EUS, the perceptual score would be 0.5. Interestingly, in the blind
test of junior radiologists, the perceptual score is 0.73, indicating our
results are deemed more realistic than real EUS. In the blind test of
senior US radiologists, the model score is 0.53, which also shows that
V-EUS and real EUS are similar in visual authenticity (Supplemen-
tary Fig. 4a).

In the experiment on the diagnosis of breast cancer, the Tsukuba
scores of real EUS and V-EUS are used as a complement to the BI-RADS
scores respectively, thus testing the extent to which they can con-
tribute to the diagnostic performance (the combination method of
Tsukuba scores and BI-RADS scores is described in Methods). In the
junior radiologists group, the AUC of BI-RADS using the BUS is 0.754,
while the AUCs are increased to 0.840 and 0.816 respectively when
supplementedwith the Tsukuba scoring system based on real EUS and
V-EUS. (Supplementary Fig. 4b). In the senior radiologists group, the
AUC using BUS is 0.789, while the AUCs are promoted to 0.890 and
0.862 respectively when incorporating with real EUS and V-EUS (Sup-
plementary Fig. 4c).

Generalization to portable US images
Compared with the US images collected by high-end US devices, the
US images collected by pocket-sized US devices have lower resolution,
which challenges the generalization ability of the model. Since the
pocket-sized US devices cannot perform strain imaging to get the
training data, we use US images collected from high-end US devices to
train the model and test it with the pocket-sized US images (Fig. 5a). A
total of 349 cases with breast tumors were collected by pocket-sized
US devices. Similarly, radiologists with different years of experience
were involved to performblind tests. Subjects first performedBI-RADS
grading on B-mode US, and then gave the strain scores according to
V-EUS. In the junior radiologist group, the AUC of BI-RADS is 0.706,
while after using the strain scores of V-EUS, the AUC increases to 0.755
(Fig. 5b). In the senior radiologist group, the AUC of BI-RADS is 0.729,
while after using the strain scores of V-EUS, the AUC increases to 0.781
(Fig. 5c). The V-EUS has a significant improvement in determining
breast malignancy (p =0.0001 in the junior radiologist group and
p =0.0012 in the senior radiologist group). As shown in some exam-
ples, we can see that the proposed model can effectively capture the
elastic information of the lesion (Fig. 5d).

Discussion
In this study, we propose a GAN-based model to directly translate US
images into V-EUS, which is validated by comprehensive experiments
to have good visual consistency and clinical value with real EUS. There
are two main considerations in choosing the clinical task of breast
cancer diagnosis. First, breast cancer accounts for 30%ofmalignancies
in women, and its incidence continues to increase and result in note-
worthy cancer death14. Breast cancer screening examinations prior to
breast cancer diagnosis can reduce the mortality rate15. Second, con-
ventional BUS combined with EUS is becoming the agenda operation
and has improved the accuracy of identifying breast malignancies,
both in diagnosis and screening12,16–18.

Compared with the real EUS acquired by high-end US devices via
signal processing, V-EUS avoids artifacts caused by attenuation of
ultrasound signals in deep-located tumors. According to the statistical
results, we find that among 239 cases with tumor depth greater than

Table 1 | patient demographics and breast lesion
characteristics

Characteristics Main cohort External cohort Portable US

Total no. of cases 2501 1730 349

Age,years: median
(25th, 75th, percentiles)

49 (39, 60) 44 (24, 52) 48 (39, 61)

Lesion size (mm)

<10 (%) 545 (21.8%) 259 (15.0%) 41 (11.7%)

10~19.9 (%) 1100 (44.0%) 863 (49.9%) 156 (44.7%)

20~30 (%) 546 (21.8%) 450 (26.0%) 108 (30.9%)

>30 (%) 310 (12.4%) 158 (9.1%) 44 (12.6%)

Lesion depth (mm)

<10 (%) 385 (15.4%) 287 (16.6%) 72 (20.6%)

10~14.9 (%) 1256 (50.2%) 893 (51.6%) 184 (52.7%)

15~20 (%) 710 (28.4%) 461 (26.6%) 80 (22.9%)

>20 (%) 150 (6.0%) 89 (5.1%) 13 (3.7%)

BI-RADS categorya

2 (%) 5 (0.2%) 1 (0.1%) 2 (0.6%)

3 (%) 335 (13.4%) 595 (34.4%) 39 (11.2%)

4a (%) 728 (29.1%) 443 (25.6%) 110 (31.5%)

4b (%) 415 (16.6%) 245 (14.2%) 47 (13.5%)

4c (%) 643 (25.7%) 296 (17.1%) 92 (26.4%)

5 (%) 375 (15.0%) 150 (8.7%) 59 (16.9%)

Lesion location

Upper outer (%) 1050 (42.0%) 780 (45.1%) 154 (44.2%)

Upper inner (%) 710 (28.4%) 438 (25.3%) 92 (26.3%)

Lower inner (%) 215 (8.6%) 167 (9.7%) 32 (9.2%)

Lower outer (%) 526 (21.0%) 345 (19.9%) 71 (20.3%)

Lesion type

Invasive carcinomab (%) 1100 (44.0%) 587 (33.9%) 174 (49.9%)

Carcinoma in situ (%) 170 (6.8%) 28 (1.6%) 16 (4.6%)

Other malignantc (%) 80 (3.2%) 65 (3.8%) 6 (1.7%)

Fibroadenoma (%) 730 (29.2%) 700 (40.5%) 90 (25.8%)

Other benignd (%) 421 (16.8%) 350 (20.2%) 63 (18.0%)
aThe BI-RADS category summarized in this table is based on the interpretation of the US radi-
ologists who originally performed the US examinations.
bThe invasive carcinoma includes invasive ductal carcinoma, invasive lobular carcinoma.
cThe other malignant includes mucinous carcinoma and non-specific malignant results.
dIncludes adenosis, hyperplasia, papillomas tumours and benign phyllodes.
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20mm, there are 62 cases with obvious artifacts caused by ultrasound
signal attenuation, accounting for 25.9% of the cases in this group. As a
result, the diagnostic performance of real EUS decreased dramatically
when the tumor depth is greater than 20mm. In contrast, the diag-
nostic performance of V-EUS is hardly affected by tumor depth. In

order to provide US radiologists with the superiority of V-EUS in clin-
ical diagnosis, an envisage is that if the tumor depth is greater than
20mm, radiologists use the results of V-EUS, otherwise they use the
real EUS provided by US devices. Applying this idea to our retro-
spective study, we observe a significant improvement in breast cancer

Fig. 2 | Performance of the deep learning model on the internal validation set.
a Detailed quantitative metrics comparison stratified by tumor size and tumor
location.bComparison of ROCs between real EUS and V-EUS in determining breast
tumor malignancy. c Comparison of diagnostic performance stratified by tumor
size. n indicates the number of cases in the interval. Error bar indicates 95%

confidence intervals of AUC. dComparison of diagnostic performance stratified by
tumor location. n indicates the number of cases in the interval. Error bar indicates
95% confidence intervals of AUC. e Results of several examples. Source data are
provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-36102-1

Nature Communications |          (2023) 14:788 5



diagnosis (p <0.05). It is worth nothing that our study is based on
clinical data of Asian patients, and the results may be more pro-
nounced for European, American and African patients, who tend to
have deeper breast tumor than Asian patients.

In addition to providing assistance for high-endUS devices, V-EUS
has a more profound impact on pocket-sized US devices that cannot
perform EUS imaging. The current dilemma is that although the mar-
ket share of pocketed-sizedUSdevices is increasing in recent yearsdue
to its high flexibility and low cost, it is currently unable to performEUS
imaging for the limitation of imaging hardware. In resource-limited
areas, portable US scanner, rather than standard high-end US scanner,
could serve as a primary detection modality for early breast cancer
detection because of its portability and low cost19. However, due to
cost and size limitations, the function of portableUS scanner is limited,
for example, it does not have the function of elastography, which can
improve the accuracy of breast cancer screening as mentioned above.
V-EUS provides a solution with almost hardware cost free for pocket-

sized US devices. In this study, we train the deep learning model with
paired BUS and EUS images acquired from high-end US devices and
test the model with BUS acquired from pocket-sized US devices
without any fine-tuning or domain adaption. The diagnostic results
and examples shown in Fig. 5 demonstrate that V-EUS has a great
potential to empower the pocket-sizedUS devices. To better exploit V-
EUS, we also explore the performance of the model after domain
adaption. We first standardized the US images acquired from pocket-
sized US devices through a CycleGAN model and then use the stan-
dardized US images to generate V-EUS20,21. Results are shown in Sup-
plementary Fig. 5. The results illustrate that by standardizing the US
images, more realistic V-EUS images can be generated. Similarly, blind
evaluation was performed and the results showed that the virtual EUS
generated from BUS after domain adaption did not significantly
improve the diagnostic performance of breast cancer (p > 0.05), which
indicates that our model has the ability to synthesize V-EUS with clin-
ical value from original pocket-sized US.

Fig. 3 | Adaptability to externalmulti-center external test cohorts. aNumber of
cases comparison of multi-center external test cohort. b SSIM, MAPE and CHC
comparison in all 14 medical center data. c ROC comparison of 14 medical center.
* indicates a significant difference (p <0.05, the p-value for the center E is 0.0005

and the p-value for the center H is 0.0055). # indicates that the AUC of V-EUS is
greater than that of real EUS. Error bar indicates 95% confidence intervals of AUC.
Source data are provided as a Source Data file.
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Although we have demonstrated that V-EUS performs well in
the clinical task of breast cancer diagnosis, there are many aspects
of future work that can be extended. From the perspective of
clinical tasks, the effectiveness of V-EUS in the diagnosis of other
breast diseases and the imaging of other organs, such as thyroid
and liver, still need to be proved. In fact, the deep learning model
proposed in this work is very convenient to transfer to other
US image synthesis tasks. Using the shear wave elastography
(SWE) images as training labels, the model can establish a mapping
from B-mode US images to SWE images. If the clinical effectiveness

of the synthesized SWE images can be proved, it will have a pro-
found impact on the development and clinical application of US
devices.

In conclusion, we present a deep learning framework for synthe-
sizing V-EUS through BUS, and validate the clinical value of V-EUS in
diagnosing breast cancer through comprehensive experiments. V-EUS
can not only provide high-end US devices with accurate diagnostic
results in examining deep located tumors, but more importantly,
endow the pocket-sized US devices with the capability of performing
EUS imaging.

Fig. 4 | Dependence of V-EUS on tumor depth in diagnosing breast cancer.
a Comparison of ROCs in determining tumor malignancy on test set when dividing
training and test set with 15mm as the threshold. b The diagnostic performance of
real EUS and V-EUS varies with the depth of tumor. For the real EUS, the centers of
the error bar for each interval are 0.812, 0.790, 0.775, 0.709, 0.702, and 0.647,
respectively. For the V-EUS, the centers of the error bar for each interval are 0.766,
0.777, 0.770, 0.781, 0.791 and0.794 respectively. n indicates the number of cases in

the interval. Error bar indicates 95% confidence intervals. (*p <0.05; **p <0.01, the
p-values for the last three intervals are 0.0013, 0.0017, 0.0004 respectively).
c Examples of typical case results. ROIs were cropped from the US images and
displayed on the right together with V-EUS. We observe that for the deep-located
tumor, V-EUS not only performbetter than real EUS, but also avoid artifacts caused
by US signal attenuation. Pink arrows highlight the US imaging at the signal
attenuation. Source data are provided as a Source Data file.
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Methods
Data collection and pre-processing
This study, carried out fromAugust 2016 toMarch 2021, was approved
by theRuijinHospital EthicsCommittee, Shanghai Jiao TongUniversity
School of Medicine, and written informed consent to participate were
acquired before examinations. All patients in the 15 centers underwent
core needle biopsy or surgery after conventional US and elastography
examination, and thus the histopathological findings were obtained
for all breast lesions. The high-end US instrument usedwas the Resona
7 ultrasound system (MindrayMedical International, Shenzhen, China)
equipped with L11-3 high-frequency probe, and the pocket-sized US
device used was the Stork diagnostic ultrasound system (Stork
Healthcare Co., Ltd. Chengdu, China) with L12-4 high-frequency probe.

Prior to data collection, all participating US radiologists from the
15 hospitals with at least 3 years of experience in breast elastography
have received standard training in both conventional US and elasto-
graphy examinationof breast. After quality control by radiologistswith
more than 10 years of experiences on breast elastography, the ultra-
sound data consisting of 4231 paired BUS and EUS from high-end
instruments and 349 B-mode US images from pocket-sized devices.

In clinical setting, BUS and EUS of breast lesions are completely
aligned, and the target imaging area is determined by the experienced
radiologists. A typical US image is shown in Supplementary Fig. 1. The
proposed model aims to learn a statistical transformation between
BUS and EUS. In order to reduce the influenceof irrelevant information
in the US image, we extract the region of interest (ROI) marked by the
radiologists, and use the fully registered ROIs of BUS and EUS as the
input and the target of the model. For pocked-size US images, tumor
ROIs are also marked by radiologists and sent to the model for
inference.

Deep neural network architecture, training and validation
Overall architecture of the model. As illustrated in Fig. 1, the GAN
baseddeep learningmodel consists of a generator and adiscriminator,
both of which are in a dynamic game process during training22.

Generator. Under the paradigm of the GANmodel, the architecture of
the generator follows the design of U-net23, as shown in Fig. 1. It is
pretty suitable to use U-net structure for this study. In addition to
learning the overall mapping relationship between inputs and outputs,

Fig. 5 | Adaptability to pocket-sized US images. a The deep learning model
trained on high-quality US images is adapted to low-quality pocket-size US images.
b ROCs comparison of blind evaluation results of the junior radiologist. c ROCs
comparison of blind evaluation results of the senior radiologist in diagnosing

breast cancer. d Examples of typical case results. For lesions with different tumor
depth and different benign and malignant types, the model can capture the elastic
information effectively. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-36102-1

Nature Communications |          (2023) 14:788 8



the encoder-decoder structure of the model is helpful to learn
semantic information at different scale. The skip connection between
encoder and decoder ensures that the decoder can integrate more
low-level features which is essential for enriching the details of EUS
image24.

After data preprocess, the input BUS with a size of 256*256 were
feed into the generator. In the encoder, it contains an input layer and 6
convolutional blocks. Each convolutional block is composed of a ReLU
layer, a convolutional layer and a batch-normalization layer25. Between
each convolutional block, we used convolution with step size of 2
instead of down-sampling, whichmay decrease the information loss26.
The output channels of each convolutional block in encoder was set to
64, 128, 256, 512, 512, 512, 512.In the decoder, it contains 6 convolu-
tional blocks and an output layer. Different from the convolutional
blocks in the encoder, the convolution operation in decoder is
replaced by the deconvolution operation, which reconstructs the
feature map back to the input image size. The input channels of each
convolutional blocks in decoder was set to 512, 1024, 1024, 1024, 512,
256, 128. The last layer is a deconvolution operation followedby aTanh
activation layer, which mapping 128 channels feature maps into 3
channels EUS.

Discriminator. Thediscriminator, as shown in Fig. 1, receives 4-channel
composite image (concatenating 1-channel BUS and 3-channel EUS) as
input. This is a paradigmof conditional GAN, which aims to expose the
discriminator to more prior knowledge27. The 4 channels composite
image is then feed into a convolutional layer followed by 4 convolu-
tional blocks and an output layer. Each convolutional block is com-
posed of a convolution layer, a batch-norm layer and a Leaky-ReLU
activation layer. The output channels of each convolution layer in
discriminator were set to 64, 128, 256, 512, 512 and 1. The local con-
nection characteristic of convolution operationmakes patch retain the
spatial information of the input image, so the discriminator effectively
models the input image as a Markov random field, which is crucial for
high-frequencies reconstruction27,28.

Tumor discriminator. The aim of elasticity reconstruction is to accu-
rately evaluate the degree of elasticity of the tumor. Therefore, in
addition to the global discriminator used to classify whether the input
image is real or fake, we further designed a local discriminator to
determine whether the tumor area is real or fake. Because the color
distribution of the tumor region is different from the normal tissue on
EUS, the local discriminator, by taking tumor area as input, can
effectively distinguish between tumor tissue and normal tissue, thus
improving the realism of the elastic reconstruction of the tumor
region. (see example in Supplementary Fig. 6). The results of the
ablation test show that tumor discriminator has improved the quality
of V-EUS (see results in Supplementary Table 1).

Color rebalancing. A remarkable characteristic of EUS is the simple
color distribution, with blue and red dominating most of the color
distribution. As shown by the empirical distribution of pixels in lab
space shown in Supplementary Fig. 7, the output of the model has a
tendency to be dominated by a large number of color types if dis-
tribution differences are not taken into account, whichmay reduce the
realism of the virtual strain images. To accommodate this, we pro-
posed a color-rebalancing coefficient to reweight L1 loss during
training based on the color rarity. We statistic and calculate the color
distribution in lab color space. Compared with RGB space, lab space is
more in line with the visual perceptual and convenient for
calculation29. The factor γ 2 RQ is defined by Eq. (1):

γp = ðαeP + ð1� αÞ=QÞ�1 ð1Þ

where eP is the empirical distribution of pixel p, Q is the number of
quantized ab space, so 1=Q is a uniform distribution and wemixed the
prior distribution anduniformdistributionwithweight α 2 ½0,1�. In our
experiment, α =0:8 works well. The results of the ablation test show
that it has improved the quality of V-EUS images (see results in
Supplementary Table 1).

The calculationmethods of SSIM,MAPE, CHC. SSIM,MAPE andCHC
aremetrics that commonly used to evaluate the similarity between two
images. The calculation formulas are listed as below:

The SSIM is a metric to measure the similarity between two ima-
ges, as defined in (2):

SSIM=
ð2μrealμvirtual +C1Þð2σreal,virtual +C2Þ

ðμ2
real +μ

2
virtual +C1Þðσ2

real + σ
2
virtual +C2Þ

ð2Þ

where μreal and μvirtual are the average of real EUS and V-EUS, respec-
tively. σreal and σvirtual are the variance of real EUS and V-EUS,
respectively. σreal,virtual is the covariance of real EUS and V-EUS. C1 and
C2 are constants.

The MAPE denotes percentage of the mean absolute error
between SR of real EUS and V-EUS, as defined in (3):

MAPE=
1
m

Xm
i= 1

∣preal
i � pvirtual

i ∣
preal
i

ð3Þ

where preal
i and pvirtual

i represents the strain scores of real EUS and V-
EUS, respectively.

The CHC is a metrics to measure the histogram correlation (HC)
between two images in hue and saturation color space. The HC is
defined in (4):

HC= 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

P ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cntreal � Cntvirtual

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Cntreal �
P

Cntvirtual
p

s
ð4Þ

where the Cntreal and Cntvirtual are vectors containing the count of
every bin in the histogram of real EUS and V-EUS respectively.
Therefore, CHC is the mean of HC in hue and saturation
color space.

Decoding pseudo color of EUS via color bar and strain ratio cal-
culation. A typical US image collected from high-end US instrument
(Resona 7 ultrasound system, Mindray Medical International, Shenz-
hen, China) is shown in Supplementary Fig. 1. The pseudo color which
depicts tissue elasticity is overlaid on BUS to formEUS, as shown in the
right of Supplementary Fig. 1.

As shown by the color bar in the upper left of Supplementary
Fig. 1, the red in EUS indicates that the tissue is hard, and the blue
indicates that the tissue is soft. In order to qualify the difference in
tissue elasticity represented by different colors in EUS, we use the
color bar to decode the colors in EUS. Specifically, we first subtract
BUS from EUS to obtain the pure color. Then, we decode the pure
color image by using the color bar30. The elasticity modulus value is
encodedwith 256 pseudo-color levels from blue to red. Each pixel in
pure color image is compared with all the color in color bar and the
modules value with the smallest distance is taken as the elasticity
value at this pixel. The distance d between the pixel and the color is
defined in (5):

d cð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRpixel � RcÞ2 + ðGpixel � GcÞ2 + ðBpixel � BcÞ2

q
ð5Þ

where R, G, B is three color channel and the subscripts pixel and c
represent the pixel in pure strain image and pixel in color bar. In our
experiment, the color bar is divided in to 256 color classes fromblue to
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red, so the range of c is 1 to 256. This process is shown in Supple-
mentary Fig. 2.

To calculate the SR, we also select a reference area with a size of
25*25 pixels in the pure strain image, decode it and average the
modules value to obtain the elastic value of the reference region.
According to the definition of SR, we divide the elastic value of tumor
region and reference region to obtain the SR.

Blind evaluation. As shown in Supplementary Fig. 3, the blind eva-
luation software mainly composed of 3 modules, including real EUS
and V-EUS judgement, BUS BI-RADS grading and EUS 5-point scoring.
The process of blind evaluation is as follows:
1. Participant chose their working years (senior or junior) in the

menu, and then select the folder to be evaluated.
2. The US image pair being evaluated is displayed in the image dis-

play area at the bottom of the software interface. The display
position of BUS isfixed and always displayedon the left side of the
imagedisplay area. Real EUS andV-EUS are randomly displayedon
the right sideof theBUS, and their positions aremarked as image 1
and image 2 respectively. Participant is requested to give the BI-
RADS scoreof BUS, the Tsukuba score of image 1 and image 2, and
pick out the real EUS from image 1 and image 2.

3. The status window on the right side of the software interface
outputs the current evaluation status. Click the ‘Next’ button to
evaluate the next pair of US images.

The Tsukuba scoring system. The EUS is scored by sonographer
based on 5-point scoring system17. The detailed scoring rules are as
follows: 1 = even strain over the entire lesion; 2 = strain in most of the
lesion; 3 = strain at the periphery of the lesion with sparing in the
center of a lesion; 4 = no strain in the entire lesion; 5 = no strain in the
entire lesion or the surrounding area. The Tsukuba score and BI-RADS
are combined in the following way: downgrade BI-RADS category in
lesions with the Tsukuba score 1–3, while upgrade BI-RADS category in
lesions with the Tsukuba score 4–5.

Loss function. Ultimately, the loss function of generator and dis-
criminator is defined by Eq. (6):

where x denotes the input B-mode image, yvirtual and yreal refer to the
V-EUS image and the real EUS image respectively, ytumor

virtual and ytumor
real

refer to the tumor area cropped from yvirtual and yreal respectively. The
factor λ is empirically set to 100 to accommodate MAE loss and Cross-
entropy loss from discriminator.

Training parameters. The generator and discriminator of the model
update the parameters alternately in the training process. The max
training epoch is set to 200 with a batch size of 1 empirically. The
model parameters are updated via the Adam optimizer with a learning
rate of 2*10-4, which linearly decay to zero staring from epoch 100. All
convolution kernels were set to 4*4 and were randomly initialized by
using a normal distribution. In order to improve the generalization
ability considering the limited medical data, we apply a differentiable
data augmentation algorithm during training31. In addition, we also
augmented the training data by applying random cropping and

randomflipping.Once themodel training isfinished, the inferenceonly
involves the use of generator, so no additional annotation is required.

Implementation details. The deep neural network was implemented
using Python version 3.6.2 and the model was built based on Pytorch
version 1.7.1. Some other python libraries used in this project were os,
time, the Python Imaging Library (PIL), visdom, argparse, skimage and
numpy. We implemented this software on a 24-core CPUs workstation
with 3 3090 Nvidia GPUs.

Statistical analysis
Descriptive statistics were summarized as mean ± SD or median. The
diagnostic performances of the real EUS and V-EUS for differentiating
breast cancer were expressed as AUC values with 95% confidence
intervals (CIs) were calculated. Comparisons between AUCs were
made by using Delong test. P <0.05 was considered to have a sig-
nificant difference. The statistical analyses were performed using
MedCalc software, version 11.2 [MedCalc Software, Ostend, Belgium].

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source Data are provided with this paper. All data associated with this
study are available from the department of ultrasound in Ruijin Hos-
pital. Requests for academic useof in-house rawdata canbe addressed
to the corresponding author. All requests will be promptly reviewed to
determine whether the request is subject to any intellectual property
or patient-confidentiality obligations, will be processed in con-
cordance with institutional and departmental guidelines and will
require a material transfer agreement. Source data are provided with
this paper.

Code availability
All code was implemented in Python using PyTorch as the primary
deep-learning library. All source codes are available at https://github.
com/yyyzzzhao/VEUS.
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