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Abstract

In this paper, we study applications of the virtual element method (VEM) for simulating the deformation of multiphase
composites. The VEM is a Galerkin approach that is applicable to meshes that consist of arbitrarily-shaped polygonal
and polyhedral (simple and nonsimple) elements. In the VEM, the basis functions are defined as the solution of a
local elliptic partial differential equation, and are never explicitly computed in the implementation of the method. The
stiffness matrix of each element is built by using the elliptic projection operator of the internal virtual work (bilinear
form) and it consists of two terms: a consistency term that is exactly computed (linear patch test is satisfied) and a
correction term (ensures stability) that is orthogonal to affine displacement fields and has the right scaling. The VEM
simplifies mesh generation for a multiphase composite: a stiff inclusion can be modeled using a single polygonal or
polyhedral element. Attributes of the virtual element approach are highlighted through comparisons with Voronoi-cell
lattice models, which provide discrete representations of material structure. The comparisons involve a suite of two-
dimensional linear elastic problems: patch test, axisymmetric circular inclusion problem, and the deformation of a
three-phase composite. The simulations demonstrate the accuracy and flexibility of the virtual element method.
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1. Introduction

Opportunities exist for designing multiphase mate-
rials with improved composite properties [1]. In many
cases, these materials consist of one or more dispersed
particulate (or fibrous) phases within a binding phase.
Along with the properties of the individual phases, typ-
ically the behavior of the phase interfaces has primary
influences on the composite properties, notably those re-
lated to fracture and mass transport. Concrete, which
consists of aggregate inclusions embedded in a cement-
based matrix, is a prime example of a multiphase partic-
ulate material that benefits from mesoscale analysis and
design.

Even though continuum approaches, including the fi-
nite element method, have been used for mesoscale mod-
eling of concrete materials, various discrete modeling
approaches have also received much interest. Particle-
based lattice models are advantageous in the simple and
natural way cracks and other forms of displacement dis-
continuity are represented [2, 3], largely avoiding the
stress-locking phenomenon associated with ordinary con-
tinuum representations of fracture. Such lattice models
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permit deformation and fracture of inclusions (hetero-
geneities) to be efficiently represented and captured in
simulations but they cannot in general exactly represent
homogeneous deformation states (elastic homogeneity)
for arbitrary Poisson’s ratio ν [4]. In contrast, finite ele-
ments satisfy the patch test but the need for high-quality
meshes for heterogeneous microstructures and the com-
putational costs that are incurred limit the number of in-
clusions that can be explicitly modeled.

In this paper, we demonstrate the flexibility and capa-
bilities that the virtual element method (VEM) [5] affords
to model the deformation of multiphase composites, such
as cement-based materials that contain aggregate inclu-
sions. Some of the previous contributions in the model-
ing of the concrete mesostructure using the VEM are due
to Benedetto et al. [6] and Rivarola et al. [7, 8]. We com-
pare the performance of the VEM against a Voronoi-cell
lattice model (VCLM) based on the rigid-body-spring
concept of Kawai [9, 10]. Our emphasis in this paper is
to promote VEM as a methodology that has the desirable
attributes of such lattice models as well as the FEM to
model multiphase materials (e.g., concrete composites).

The virtual element element (VEM) [5] is a stabi-
lized high-order Galerkin discretizations on polygonal
and polyhedral meshes to solve boundary-value prob-
lems. It provides a variational framework for the first
order mimetic finite-difference scheme [11], and is a gen-
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eralization of hourglass finite elements [12] to polytopal
meshes [13]. In the VEM, the basis functions are defined
as the solution of a local elliptic partial differential equa-
tion, and are never explicitly computed (ergo the name
virtual) in the implementation of the method. Over each
element E in the mesh, the trial and test functions belong
to the local discretization (virtual) space that consist of
polynomials of order less than or equal to k (k is the order
of the element) and in addition nonpolynomial functions.
Since the virtual basis functions are unknown in each ele-
ment, the VEM uses their elliptic polynomial projections
to build the bilinear form (stiffness matrix) and continu-
ous linear functional (body force term) of the variational
formulation. Such projections are computable from the
degrees of freedom within each element. The bilinear
form on E consists of two parts: the consistency term that
approximates the stiffness matrix on a given polynomial
space and the correction term that ensures stability. Es-
sential boundary conditions in the VEM are imposed as
in the FEM, and element-level assembly procedures are
used to form the global stiffness matrix and force vector.

A notable advantage of the VEM is that computa-
tions can be done over meshes with arbitrarily-shaped
convex and nonconvex (simple and nonsimple) elements
without needing to compute the shape functions (gener-
alized barycentric coordinates [14]) on such elements.
In particular, hanging nodes on nonmatching (quadtree
or weakly convex elements) meshes lead to conforming
approximations. This facilitates modeling bimaterial in-
terfaces, such as those that arise between polygonal in-
clusions and the matrix in cement-based composites, and
also simplifies the imposition of contact conditions along
interfaces [15, 16]. Furthermore, mesh generation is sim-
plified: an irregular-shaped stiff inclusion can be mod-
eled using a single polygonal virtual element [17]. Many
of these and other positive attributes of the VEM have
been emphasized and demonstrated in the virtual element
literature, initially for low- and high-order formulations
for scalar elliptic problems [18–22] and more recently
for linear and nonlinear problems in the deformation of
solid continua [15, 16, 23–30].

In recent studies, the versatility of the VEM in com-
posites modeling (multiphases, unit cell homogenization,
and multiscale computations) has been shown [7, 8, 31,
32]. In this paper, we provide comparisons of the VEM
versus Voronoi-cell lattice models for modeling the elas-
tic deformation of two-dimensional multiphase compos-
ites, which serve as a basis for modeling fracture in future
work. The comparisons highlight attributes of the VEM,
including its accuracy and flexibility in discretizing mul-
tiphase materials.

Figure 1: Elastostatic model problem for a three-phase composite.

2. Elastostatic Model for Multiphase Materials: Strong
and Weak Formulations

Consider a linear elastic solid that occupies the do-
main Ω ⊂ R2, with boundary Γ = ∂Ω. The solid is com-
posed of m isotropic, linearly elastic homogeneous ma-
terials, and the domain of each material is Ωi, such that
Ω = Ω1 ∪Ω2 ∪ . . . ∪Ωm. The boundary that defines the
material interface between Ωi and Ω j is denoted by Γi j.
The material interface is assumed to be perfectly bonded.
The external boundary Γ = Γu ∪ Γt, with Γu ∩ Γt = ∅.
The boundary subsets Γu and Γt are where displacements
and tractions are imposed, respectively. A schematic of
the model problem for a three-phase composite is shown
in Fig. 1.

In the absence of body forces, the governing equa-
tions of the elastostatic boundary-value problem are:

∇ · σ = 0 in Ω, (1a)
σ = Ci : ε in Ωi, (1b)
ε = ∇su in Ω, (1c)

where u is the displacement field, ∇s is the symmetric
gradient operator, ε is the small-strain tensor, σ is the
Cauchy stress tensor, and Ci is the material moduli tensor
for a homogeneous, linear elastic isotropic material in
the domain Ωi (i = 1, 2, . . . ,m). The essential boundary
conditions, traction boundary conditions, and interface
conditions are:

u = ū on Γu, (2a)
n · σ = t̄ on Γt, (2b)
[[u]] = 0 on Γi j, (2c)

[[n · σ]] = 0 on Γi j, (2d)

where n is the unit vector that is normal to the indicated
boundary and [[·]] is the jump operator that represents
the jump in its argument across the interface.

The presence of a material (weak) discontinuity is
met in the standard finite element method and also in the
virtual element method via meshing the domain and its
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internal and external boundaries so that Γi j is the union
of element edges in the FE mesh. The additional advan-
tage in the VEM is that this condition is retained even if
nodal conformity is not met on an edge that is shared
by two elements (hanging nodes are allowed). How-
ever, unlike use of polygonal finite elements that require
shape functions over weakly convex polygons (quadtree
meshes) [33], this is achieved in the VEM without the
need to form the shape functions.

Let Ui (i = 1, 2) denote the affine subspace of func-
tions in the Sobolev space H1(Ω) whose trace on Γu is
equal to ūi and whose normal derivative on Γi j is discon-
tinuous. In addition, let U0 denote the linear subspace of
functions in the Sobolev space H1(Ω) that vanish on Γu

and whose normal derivative on Γi j is discontinuous. The
weak form of (1) and (2) is: find the trial displacement
field u ∈ U1 × U2 such that

a(u, v) = `(v) ∀v ∈ U0 × U0, (3a)

where v is the test displacement field, and the internal vir-
tual work (bilinear form) a(·, ·) and the linear functional
`(·) are given by

a(u, v) :=
∫

Ω

σ(u) : ε(v) dx, `(v) :=
∫

Γt

t̄ · v ds. (3b)

3. Virtual Element Method for Plane Elasticity

The formulation and implementation of the lowest-
order virtual element method for 2D and 3D solid con-
tinua is well-documented [19, 24, 25, 28, 30]. We follow
the exposition in Sukumar and Tupek [30] to present the
main elements of VEM for 2D solid continua.

3.1. Decomposition of the domain
Let Ω ⊂ R2 be the problem domain and T h a decom-

position of Ω into nonoverlapping polygons (simple or
nonsimple). The number of nodes in T h is N. We refer
to E ∈ T h as an element. The vertices of E are denoted
by vi, and the coordinate of vertex vi by xi := (xi, yi).
The diameter, centroid (barycenter) and area of E are
denoted by hE . xE and |E|, respectively. A polygon E
has NE vertices and NE edges, with the edges denoted
by ei (i = 1, 2, . . . ,NE). For the convergence proofs, re-
strictions are placed on the shape-regularity of the ele-
ments [5].

3.2. Polynomial spaces and virtual element space
Let Pk(E) be the function space on E that consists of

all polynomials of order less than or equal to k. By con-
vention, P−1 = {0}. The dimension of Pk(E) is denoted
by dimPk(E), and dimPk(E) = (k + 1)(k + 2)/2 in two
dimensions. The set consisting of the scaled monomials

of order less than or equal to k on E is defined asMk(E).
In this paper, we use the first-order VEM (k = 1). In two
dimensions,

P1(E) = {1, x, y} , M1(E) =

{
1,

x − xE

hE
,

y − yE

hE

}
are the first-order (polynomial and scaled monomial, re-
spectively) basis sets. All elements inM1(E) are ofO(1).

Let P1(E) = [P1(E)]2 be the polynomial basis for a
vector field in R2. For planar linear elasticity, there are
three rigid-body (zero-energy) modes. Let

ξ :=
x − xE

hE
, η :=

y − yE

hE
. (4)

For 2D solid continua, we define M̂(E) := M1(E) as the
scaled monomial first-order vectorial basis set:

M̂(E) =

[{
1
0

}
,

{
0
1

}
,

{
−η
ξ

}
,

{
η
ξ

}
,

{
ξ
0

}
,

{
0
η

}]
, (5)

where the first three vectorial bases in (5) contain the
rigid-body modes.

Let V(E) denote the first-order virtual element space
on element E. The virtual element space for 2D solid
continua is [23]:

V(E) =
{
vh : vh ∈ [H1(E)]2, ∆vh = 0,

vh|e ∈ P1(e) ∀e ∈ ∂E, vh|∂E ∈ [C0]2(∂E)
}
,

where vh is a piecewise continuous affine vector polyno-
mial on the boundary of the polygon.

3.3. Computation of energy projection matrices
For linear elasticity, we take the values of vh at the

vertices of the polygon as its degrees of freedom (DOFs).
Let {φi}

NE
i=1 be virtual canonical basis functions that satisfy

the Lagrange interpolation property, φi(x j) = δi j. Define
the vectorial basis function matrix:

ϕ =

[
φ1 . . . φNE 0 . . . 0
0 . . . 0 φ1 . . . φNE

]
:=

[
ϕ1 . . . ϕNE ϕNE+1 . . . ϕ2NE

]
,

(6)

where ϕi = {φi 0}T and ϕNE+i = {0 φi}
T for i = 1, . . . ,NE ,

are the 2NE vectorial basis functions. The trial displace-
ment field in E is:

vh(x) =

2NE∑
i=1

ϕi(x)vi :=
2NE∑
i=1

ϕi(x)dofi(vh), (7)

where vi are scalar coefficients and dofi(·) extracts the
i-th DOF of its argument.

Let ah
E(·, ·) represent the discrete bilinear form of the

countinuous operator in (3a). The variational problem
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to determine the projector is determined via the energy
orthogonality condition:

ah
E(mα, vh − Πεvh) = 0 ∀mα ∈ M̂(E), (8a)

which is supplemented by the condition:

P0(mα, vh − Πεvh) = 0 (α = 1, 2, 3), (8b)

P0(u, v) =
1

NE

NE∑
j=1

u(x j) · v(x j), (8c)

where the projector P0(·, ·) defines a discrete L2 inner
product on E. Note that for α = 1, 2, 3, (8a) yields 0 = 0.

On using (6), we define

Πεϕi =

6∑
β=1

mβπ
i
β = M̂πi (i = 1, 2, . . . , 2NE) (9)

as the projection of the i-th vectorial basis function onto
the scaled monomial basis set, where πi

β are unknown
coefficients. On substituting vh = ϕi (i = 1, 2, . . . 2NE)
in (8), using the divergence theorem on the right-hand
side and linear momentum balance (∇·σ = 0), we obtain
the linear system of equations:

GΠ = B̃, Π = G−1B̃, (10a)

Gαβ =

 1
NE

∑NE
j=1 mα(x j) · mβ(x j) (α = 1, 2, 3)

σ(mα) : ε(mβ) |E| (α = 4, 5, 6)
, (10b)

B̃αi =

 1
NE

∑NE
j=1 mα(x j) · ϕi(x j) (α = 1, 2, 3)

σ(mα) :
∑NE

j=1

∫
e j
ϕi ⊗ nj ds (α = 4, 5, 6)

, (10c)

where Π = [π1,π2, . . . ,π2NE ] is the matrix representa-
tion of the projection of the canonical basis functions
in the scaled monomial basis set. The boundary inte-
gral in (10c) can be exactly computed using a two-point
Gauss-Lobatto quadrature scheme.

Using the decomposition ϕi = Πεϕi + (1 − Πε)ϕi in
the bilinear form and the orthogonality condition (8a),
the stiffness matrix can be expressed as:

KE = Kc
E + Ks

E ,

Kc
E = ΠT G̃Π,

Ks
E = (I − DΠ)T ah

E(ϕ,ϕ) (I − DΠ),

and to ensure stability we approximate ah
E(ϕ,ϕ) by a di-

agonal matrix Sd
E that scales as Kc

E :

Ks
E := (I − DΠ) Sd

E (I − DΠ),

where Kc
E and Ks

E are the consistency and stabilization
matrices, respectively, and G̃ is the matrix G with its first
three rows set to zero. In addition, Diα = dofi(mα) is the
DOF-matrix and the i-th diagonal entry of Sd

E is chosen
as max

(
tr (C)/3, (Kc

E)ii
)

[22], where C is the isotropic
linear elastic constitutive matrix.

3.4. Assembly and solution procedure

On the natural boundary Γt, the virtual element shape
functions are identical to piecewise linear finite elements.
So on using (3b), the element force vector fE = `(ϕ)
is computed. Having computed KE for each element,
we then perform standard finite element assembly proce-
dures to form the global stiffness matrix K and the global
force vector f . On incorporating the essential boundary
conditions, the linear system is solved to obtain the nodal
displacement vector d.

4. Voronoi-Cell Lattice Models

Figure 2: Voronoi-cell lattice element based on the rigid-body-spring
concept (top); and spring-set force components for nodal stress calcu-
lation (bottom).

Particle-based lattice models share many features with
classical lattice models, yet they differ in that each node
is positioned within a geometric construct, or particle.
In this case, the Voronoi diagram is used to partition the
domain, such that each lattice node is associated with
a Voronoi cell. For elasticity problems, the lattice el-
ement formulations are based on the rigid-body-spring
concept of Kawai [9]. The Voronoi cells are assumed to
be rigid and interconnected via zero-size spring sets lo-
cated midway along the facets common to neighboring
cells (Fig. 2). The stiffness matrices of these lattice ele-
ments are akin to those of ordinary frame elements and
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assemble into the system stiffness matrix in the conven-
tional manner. The spring sets contain components that
are normal and tangential to the corresponding Voronoi
facet. When these spring components have the same stiff-
ness (i.e., kn = kt), the assembly of lattice elements is
elastically homogeneous under uniform straining [10],
albeit with ν = 0.

The desired representation of both elastic constants
(Young’s modulus and Poisson’s ratio) can be achieved,
in a macroscopic sense, by appropriately setting the spring
stiffness coefficients [34–36]. The assignment of spring
coefficients depends on the type of loading. For the case
of plane stress, and the type of random lattice consid-
ered herein, the coefficients can be determined according
to [36]

ν =
1 − α
3 + α

, (11a)

E = E0
2 + 2α
3 + α

, (11b)

where α = kt/kn and E0 is the effective elastic modulus
at the element level. Alternatively, Asahina et al. [37,
38] have developed a procedure (based on kn = kt) in
which the Poisson effect is introduced iteratively using
the concept of auxiliary stress. This provides both local
and global representations of elastic behavior.

5. Numerical Examples

Numerical simulations are performed using the VEM
and VCLM models on a suite of two-dimensional test
problems. Within each example, the same Voronoi tes-
sellation is used to define each model.

5.1. Patch test
The VEM and VCLM models are assessed on the dis-

placement patch test. Two forms of VCLM are consid-
ered in this example: (a) global representation of elastic
behavior according to (11a) and (11b); and (b) elastic be-
havior based on kn = kt and the iterative introduction of
the Poisson effect.

The meshes utilized for the patch test are shown in
Fig. 3. On all meshes, including the mesh in Fig. 3c
that contains a nonsimply-connected element, the VEM
passes the patch test as indicated in Table 1. The per-
formance of the VCLM depends on the aforementioned
assignment of its spring coefficients. When using (11a)
and (11b), such that kn , kt, relative errors are O(10−2).
This outcome has been viewed, with arguably some merit,
as an effective means for representing the heterogene-
ity of concrete materials [34]. By setting kn = kt and
introducing the effect of Poisson’s ratio using auxiliary
stresses, however, the VCLM passes the patch test. For
both VEM and VCLM (kn = kt), the errors in the stress

components are also found to be within machine preci-
sion. We point out that if kn = kt is used in VCLM,
but without the auxiliary stress modifications in the algo-
rithm, then the displacement field matches the exact so-
lution yet the computed stresses correspond to the case
of ν = 0.

Table 1: L2 norm of the error in the displacement for the patch test.

Discretization
Model Fig. 3a Fig. 3b Fig. 3c

VEM 2 × 10−16 4 × 10−16 1 × 10−16

VCLM (kn , kt) 4 × 10−02 4 × 10−02 –
VCLM (kn = kt) 3 × 10−16 2 × 10−16 –

5.2. Bimaterial subjected to axisymmetric plane strain
We consider a two-phase composite that occupies a

circular region of radius b. The inclusion, Ω1, is a disk
of radius a and the matrix is defined by the region Ω2 =

{r : a < r ≤ b}. A radial displacement of magnitude b
is imposed on r = b. Due to axisymmetry, the displace-
ment field is: u(r, θ) = ur(r)er in which ur(r) is a nonzero
radial displacement field. A schematic illustration of the
boundary-value problem is shown in Fig. 4, along with a
Voronoi-cell discretization of the bimaterial domain that
defines both the VEM and lattice models. This prob-
lem was first proposed in Sukumar et al. [39], and serves
as a benchmark problem in computational solid mechan-
ics [40]. The exact displacement field is [39]:

ur(r) =


[(

1 − b2

a2

)
α + b2

a2

]
r 0 ≤ r ≤ a(

r − b2

r

)
α + b2

r a < r ≤ b
,

uθ = 0,

where

α =
(λ1 + µ1 + µ2) b2

(λ2 + µ2) a2 + (λ1 + µ1)
(
b2 − a2) + µ2b2 ,

and λ1 and µ1 and λ2 and µ2 are the Lamé parameters in
Ω1 and Ω2, respectively.

This problem is solved for several values of the mod-
ular ratio η = E1/E2 with a/b = 0.25 and ν1 = ν2 = 0.3.
Table 2 presents relative L2 norm of the error in the dis-
placement field for the VEM and VCLM models. For
η = 1, the material is homogeneous, leading to uniform
biaxial tension throughout the domain. Both methods
simulate this condition with high precision.

Figure 5 plots major principal stress as a function of
distance from the center of the inclusion. The exact so-
lution for the stress components is:

σrr(r) = 2µiεrr(r) + λi(εrr(r) + εθθ(r)), (12a)
σθθ(r) = 2µiεθθ(r) + λi(εrr(r) + εθθ(r)), (12b)
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(a) (b) (c)

Figure 3: Displacement patch test for different discretization schemes. The displacement field u(x, y) = 1 + x + y, v(x, y) = 2 − 3x − 4y is imposed
on nodes (or generator points) that lie on (or adjacent to) the boundary of the square. (a) Coarse Voronoi cell discretization, indicating element
connectivities defined by the Voronoi vertices and lattice element connectivities defined by the Voronoi generator points; (b) fine Voronoi cell
discretization; and (c) single virtual element discretization of a square region containing an irregularly-shaped inclusion. The mesh in (c) consists
of two virtual elements: the inner element is a nonconvex septagon and the outer element is a nonsimply-connected polygon with an inner boundary
(seven nodes in clockwise orientation) and an outer boundary (four nodes in counter-clockwise orientation).

Table 2: Relative L2 norm of the error in the displacement for the bi-
material problem.

Modular ratio η
Model 1 10 100

VEM 1.2 × 10−15 1.5 × 10−3 1.8 × 10−3

VCLM 2.5 × 10−10 2.7 × 10−3 3.9 × 10−3

where εrr(r) = dur(r)/dr and εθθ(r) = ur(r)/r; the sub-
script on the Lamé constants indicates the material sub-
domain.

For the lattice simulations, the volume-averaged stresses
are computed at the lattice nodes via the relation [41]

σ̄ =
1
V

∫
C
σ dx =

1
V

∫
C

[
I · σ + x ⊗ (∇ · σ)

]
dx

=
1
V

∫
C

(x ⊗ σT ) · ∇ dx =
1
V

∫
∂C

x ⊗ (n · σ) dS

=
1
V

∫
∂C

x ⊗ t dS ≈
1
V

n f∑
k=1

xk ⊗ fk,

(13)

where C is the Voronoi cell and ∂C is its boundary. The
stress tensor is assumed to be divergence-free (no body
forces are present) and t are the boundary tractions. In
addition, fk is a system of n f external forces acting on the
corresponding Voronoi cell having volume V; the forces
act at locations xk with respect to the cell node. Note
that the stress tensor as defined in (13) is not symmetric,
which is consistent with the behavior of a discrete lattice
model as a micropolar (Cosserat) continuum [41].

The simulated stress profiles in the radial direction
(Fig. 5, top) agree well with theory for the range of η val-
ues considered. For the VCLM model, the elements that

span the Γ12 boundary are assigned the harmonic mean
values of the properties of domains Ω1 and Ω2. Further-
more, the Voronoi generator points that define the bound-
ary are positioned close to the boundary. These condi-
tions improve the accuracy of the stress calculations near
the boundary.

For cases of dispersed stiff inclusions, where the de-
gree of modular mismatch is high, the stress field in the
inclusions is approximately uniform. Such inclusions
can be represented using a single VEM element, as shown
in Fig. 4 (bottom). The radial stress value calculated for
this single element, and plotted at r/b = 0 in Fig. 5 (bot-
tom), has a relative error of 3.0 × 10−3. For the region
r > a, the radial stress values for the two cases (i.e., for
the fully discretized and single-element representations
of the inclusion) are essentially the same.

5.3. Three-phase composite

Capabilities of the VEM, and its correspondence to
the VCLM, are further demonstrated through elastic anal-
ysis of a three-phase composite material. Figure 6a shows
the planar discretization of a model porous concrete, in
which disk-shaped aggregate inclusions are coated with
a uniformly thick layer of hardened cement paste; the
lightest shaded regions represent large-scale porosity be-
tween the paste layers. Compressive load is applied in
the form of a uniform downward displacement of the up-
permost vertices (or nodes), producing an average verti-
cal strain of εy. The modular ratio of the inclusion and
cement paste materials is E1/E2 = 3. Poisson’s ratio is
set as ν = 0.2 for both phases, and plane stress conditions
are assumed.

For the applied loading, Fig. 6 shows contours of
minor principal stress, which highlight the nonuniform
transfer of load through the material. Stress risers occur
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Figure 4: Bimaterial boundary-value problem. Model problem and
boundary conditions (top left), Voronoi-cell discretization of the do-
main (top right) and representation of central inclusion using a single
element (bottom) are shown.

due to the stiff inclusions and large-scale porosity. The
corresponding results for the VCLM are quite similar,
except for differences that appear along the loaded faces
of the models. These differences arise from the assign-
ment of the displacement boundary conditions (at either
the Voronoi vertices or generator points for the VEM and
VCLM, respectively) and the difficulties in calculating
nodal stress in the VCLM along the constrained bound-
aries.

Figure 5: Radial profiles of radial stress for moderately stiff inclusions
(top) and a stiff inclusion, highlighting the use of a single virtual ele-
ment to represent the inclusion (bottom).

6. Conclusions

The challenges in simulating the mechanical behav-
ior of multiphase composite materials include the effec-
tive, accurate modeling of elastic behavior, which is a
determining factor for nonlinear material behavior. In
this paper, we have investigated the use of the virtual el-
ement method (VEM) for modeling the deformation of
such composite materials. Displacements and element
stress values were compared with theory and those of
Voronoi-cell lattice models (VCLM) based on the same
(dual) discretization scheme. In practical terms, both the
VEM and VCLM approaches provided comparably ac-
curate results. However, the VCLM required an iter-
ative procedure to satisfy the patch test (elastic homo-
geneity) for arbitrary Poisson’s ratio. In addition, VCLM
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Figure 6: Model of macro-porous concrete under vertical compressive loading. Domain discretization (left), and contours of minor principal stress
using VEM (middle) and VCLM (right) are shown.

nodes reside within the material domain, rather than on
the domain boundaries, which complicates domain dis-
cretization and the assignment of boundary conditions.
In this sense, the VEM has significant advantages. Fur-
thermore, the VEM allows for stiff inclusions to each be
modeled using a single polygonal element, which sim-
plifies meshing relative to other approaches including the
finite element method, particularly for irregularly shaped
inclusions. A promising direction of future work is to
use recent advances in the VEM on mesh-independent
modeling of cracks [42] to simulate the deformation of
multiphase composite materials, including cement-based
composites, and their transition from continuous to dis-
continuous behavior.
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