
- 4781 -

Virtual Environment for Prototyping and Experiments
Valery Sklyarov and Iouliia Skliarova

Department of Electronics, Telecommunications and Informatics,
University of Aveiro/IEETA, Portugal (Tel : +351-234-401-539;

E-mail: skl@ua.pt, iouliia@ua.pt)

Abstract: The paper suggests the methodology for validation of designed systems and experiments through the use of
the developed simulation tools and interactive models. The primary idea is prototyping on the basis of virtual visual
samples imitating interacting physical objects. The desired electronic functionality is implemented in reconfigurable
hardware and, therefore, can easily be changed, which significantly simplifies such problems as verification of
alternative implementations and eliminating potential errors. The desired physical functionality is modeled through
observation of and experiences with interacting images which look like physical objects. The proposed methodology is
very helpful and effective for many practical applications, such as mechanical systems control, robotics, process
automation, transportation systems, computational devices, etc.

Keywords: visual simulation, prototyping, FPGA

.

1. INTRODUCTION

Modeling and simulation are useful techniques that

permit the designed systems to be verified and evaluated.
Dependently on target requirements these techniques
can be applied differently. For example, when we
consider electronic devices, they can be checked with
the aid of a test-bench model that provides input values
(test cases) to the device and tests if output values from
the device are correct. Very often a test-bench model is
composed of entities, coded in a hardware description
language (such as VHDL [1]) and executed in software
simulator in such a way that one entity provides inputs,
another one imitates the functionality of the device and
the results are presented as waveforms of output signals
displayed on a monitor screen. Different varieties of
test-bench models and the relevant techniques are
described in [1].

For many practical applications it is easier to verify
the functionality of developed devices using visual
modes. Such modes are especially beneficial for devices
with slowly changing states, which is quite common for
mechanical systems, robotics, transportation systems,
etc. For example, verification of a traffic light control
considered in [1] as an example, can be much easier
done on a picture of a traffic light displayed on a
monitor screen. Such technique has already been used in
numerous debugging tools, such as [2]. A more
advanced technique is described in [3] where a
combined software/hardware model of a system that
consists of a control part (mainly implemented in
hardware) and a datapath (modeled partially in
hardware and partially in software) was proposed.
Hardware (implemented on the basis of Field
Programmable Gate Arrays - FPGA) and software
(running in general-purpose computer) components
communicate through a pre-established interface. Note
that the capabilities of modern FPGA make it possible
to implement the complete system in hardware and this
paper reports the relevant results. The primary idea is

prototyping on the basis of virtual visual objects
imitating interacting physical entities in such a way that:
 The desired electronic functionality is implemented

in a reconfigurable hardware and, therefore, can
easily be changed, which significantly simplifies
such problems as verification of alternative
implementations and eliminating potential errors;

 The desired physical functionality is modeled
through observation of and experiences with
interacting images whose shapes look like physical
objects.

One example is shown in Fig. 1 [4] that depicts two
interacting objects of a self-controlled transport section:
a robot on the left-hand side; and a container on the
right-hand side that can move from left to right and vice
versa. Functionalities of the robot and the container
have to be provided in parallel (the relevant algorithms
Z1 for the robot and Z2 for the container are given in [4]).
In a simplified mode the robot is controlled by two
actuators move left and move right, which force the
respective motions. The track, where the robot is
moving, is bounded by the sensors left sensor and right
sensor in such a way that if left sensor=1/right sensor
=1, the robot is at the left/right edge. The container has
exactly the same behavior, except capital letters are used
instead of lower-case letters in the description. The
transfer is also controlled by algorithms Z3- Z6 in such a
way that Z3 forces the robot to take something at the
left-hand side of the transfer line; Z4 delivers the object
carried by the robot to the container; Z5 unloads the
container at the right-hand side, and Z6 tests the entire
system before initiating the working stage. The
algorithm in Fig. 1 assumes that several iterations are
needed for the robot to load the container.

Taking into account all the considered above details
we can conclude that Fig. 1 describes the functionality
of a simplified real-world system. Functionality of this
system can be verified using different techniques. For
example, a test-bench model can be created for testing
electronic components implementing the algorithms

ICROS-SICE International Joint Conference 2009
August 18-21, 2009, Fukuoka International Congress Center, Japan

PR0002/09/0000-4781 ¥400 © 2009 SICE

- 4782 -

Z1,…,Z6. This paper suggests another way illustrated in
Fig. 1, a. The system (Fig. 1, b) is displayed on a
monitor screen (Fig. 1, a) and all motions are visualized
in real time. Electronic components are implemented in
an FPGA interacting with the monitor (and possibly

with some other peripheral devices) and they control
mechanical components in a similar way that is used in
a physically realized system. The paper is dedicated to
such type of environment that is very helpful for
prototyping and experiments.

Container (Z2)

LEFT SENSOR RIGHT SENSOR

FULL

MOVE RIGHT
MOVE LEFT

Robot
(Z1)

left sensor right sensor

deliver (Z4)

move right
move left

take (Z3)

a)

b)

Fig. 1 Visual simulation (a) of a self-controlled transport section (b).

The remainder of the paper is organized in four

sections. Section 2 suggests architecture of a visual
environment and its basic components. Section 3
presents different examples of prototyping. Section 4
discusses implementation details. It also compares
hardware with software/hardware techniques and points
to their application areas with the relevant advantages
and disadvantages. The conclusion is given in Section 5.

2. SYSTEM ARCHITECTURE

Fig. 2 depicts the proposed architecture of the

simulation environment. Let us assume that we would
like to verify the functionality of an electronic system
that controls a transfer line [3]. Dynamic behavior of the
line is displayed on a monitor screen and we can see a
set of steps that are needed in order to complete some
desired treatment of metallic components. Each step is
controlled by a customizable sub-system implemented
in hardware and communicating with a visual
sub-system through a pre-established interface. Two
sub-systems, as well as the interface, are implemented
within the same FPGA.

There are three functional components in Fig. 2:
A. FPGA circuits for interaction with virtual

controlled objects (such as a self-controlled
transport section shown in Fig. 1);

B. An interface, transmitting signals to actuators and
from sensors of virtual objects (block A) from/to
the electronic controller (block C);

C. Physically implemented circuits realizing control
algorithms that have to be verified and validated.

There are also some auxiliary components (such as a
keyboard D, shown in Fig. 2) for human intervention.

The proposed architecture can be used in several
ways:
 For verifying and validating functionality of

software and hardware, controlling such objects for
which correctness of behavior can be evaluated
visually (e.g. mechanical systems control, robotics,
process automation, transportation systems).
Hardware is implemented in FPGA. Software is
running on soft/hard processing elements often
available as an IP-core or embedded in FPGA;

 For attaching virtual peripheral devices (e.g. liquid
crystal displays, joysticks, dipswitches, pushbuttons)
displayed on a monitor screen, which permits to
verify prospective ideas for data input and output;

 For verifying design ideas. For example, the
self-controlled transport section in Fig. 1 can be
controlled by software running on built-in FPGA
processing elements or, alternatively, by
communicating finite state machines (such as that
are studied in [4]) mapped to hardware circuits. In
this case for the same A and B components of Fig. 2
we can compare and evaluate different circuits for
the block C.

Fig. 3 shows more detailed architecture of the
developed system. In particular, the main blocks of
component A (see Fig. 2) are shown in Fig. 3, which

- 4783 -

include a VGA controller, a VGA memory, and a
customizable symbol memory. The latter can be
programmed to keep and supply different images (see
examples in Fig. 3) that compose the picture on a
monitor screen.

Let us assume that we would like to model a system
described in [5]. In this case the memory symbols
(primitives) are cars, traffic lights, etc. Each particular
primitive has an associated binary code. In order to
display the primitive on a monitor screen, its code has to
be written to a proper position of VGA memory. The
latter can be organized differently depending on the size
of matrix for the primitives in video pixels. Memory
organization (as well as other similar parameters) is
customizable through the relevant hardware description
language (HDL) generic statements.

Fig. 2 Architecture of the simulation environment.

Line data

Line address

Symbol codeVGA
Controller

VGA
Memory

Customized
Symbol
Memory

Top level architecture
of the developed

system
(structural HDL)

VGAM
address

VGAM
data

R
G
B

HS
VS

A
B&C

D

Monitor screen controlled
through VGA interface

Fig. 3 More detailed architecture of the simulation

environment.

Motions of visual objects are provided through

periodic update of the VGA memory addresses for the
selected from the symbol memory visual objects. This
process is controlled by the interface circuits (B), which
convert signals to actuators to the proper sequences of
memory addresses with parameterizable rates of change.
The components D enable the user to change parameters,
such as speed of moving objects. The VGA controller
[6] can be customized for the majority of commercial
VGA monitors and video modes.

The component A (see Fig. 3) was described in
VHDL [6] and the interaction of a tested
application-specific block (ASB) with this component is
established through the following interface:

ASB: entity work.name_of_ASB
 generic map (
 -- generic values

)
 port map (

ASCII_in => ASCII,
 ASCII_out => RAMData,
 Address_in => WriteAddress,
 Address_out=> RAMWriteAddress,
 clk => Clock,
 rst => Reset,
 WE_in => WriteEnable,
 WE_out => RAMWriteEnable,
-- other peripheral components, for example
 Button => Button,
 Led => Led,
 Switch => Switch,
 segments => segments,
 displays => displays -- etc.

);

Fig. 4 demonstrates a possible use of the considered

above interface. Let us assume that ASB receives data
from a keyboard. In a trivial case when the keyboard
supplies inputs (ASCII codes) and the symbol memory
(see Fig. 3) converts ASCII codes to the relevant
symbols on the screen, we can built a simple text editor
through the connections of the keyboard outputs with
the VGA memory (e.g. ASCII_out <= ASCII_in). In a
more complex case the symbol memory converts input
codes to special images, such as a robot shown in Fig. 4.
Finally, the ASB supplies all necessary functionality of
a simulated system, such as that is demonstrated in Fig.
1. In the last case the top part of Fig. 4 becomes more
complicated (see Fig. 5).

entity name_of_ASB is
generic (AddressBits : natural;

NumberOfColumns : natural; …………..
);

Port (ASCII_in : in STD_LOGIC_VECTOR (7 downto 0);
ASCII_out : out STD_LOGIC_VECTOR (7 downto 0);
Address_in : in STD_LOGIC_VECTOR (AddressBits 1 downto 0);
Address_out : out STD_LOGIC_VECTOR (AddressBits 1 downto 0);
clk : in STD_LOGIC;
rst : in STD_LOGIC;
WE_in : in STD_LOGIC;
WE_out : out STD_LOGIC;

. .
);

end name_of_ASB;

AS
BWEi

Codei

WAi

WEo

WAo

A
Codeo

RAM

Fig. 4 An example of interaction between the blocks

A and C (see Fig. 2 and 3).

Simulation-targeted input/output blocks enable a user

to supply input actions (if required) and to provide
functionality in a visual mode based on interaction of
visual objects on a monitor screen. There is also an

- 4784 -

opportunity to change working clock frequency, which
allows to increase or decrease speed of simulation. The
next section presents some examples.

ASB
WEi

Codei

WAi

WEo

WAo

Codeo
Si
m
ul
at
io
n
ta
rg
et
ed

in
pu

t
bl
oc
k

Si
m
ul
at
io
n
ta
rg
et
ed

ou
tp
ut

bl
oc
k

Changing
clock

frequency

Fig. 5 ASB with attached input/output blocks

supporting interaction with a user and visual simulation

3. EXAMPLES OF PROTOTYPING

Let us consider two potential modes of simulation
that are message based and graphics based. The first
mode is significantly easier to implement because it just
allows displaying states of sensors (inputs) and
actuators (outputs) in form of text messages. Suppose
the functionality of a robot and a container in Fig. 1 is
described by parallel hierarchical algorithms Z1 and Z2
[4] shown in Fig. 6.

Begin

left sensor

move left

right sensor

(Z3) take

0

1

Z1

move right

0

End

wait

FULL

LEFT SENSOR
1

0

(Z4) deliver

1

0

1

Begin

RIGHT SENSOR

MOVE RIGHT

0

1

Z2

(Z5) UNLOAD

LEFT SENSOR

MOVE LEFT

0

1

WAIT

FULL
10 End

a11

a12 a13

a14

a15

a16

a17

a21

a22 a23

a24 a25

a26

Fig. 6 Modules Z1 and Z2 for robot and container in

Fig. 1.

Changing clock frequency enables us to execute Z1
and Z2 slower or faster and the frequency can be altered
during execution time. There are 3 modules (Z3, Z4 and
Z5) in Fig. 6 that have to be activated hierarchically.
Suppose Z1 and Z2 are activated simultaneously and the
following sequence of messages is displayed:

robot left sensor Off
robot right sensor Off
robot move left No
robot move right No

container FULL No
container LEFT SENSOR Off
container RIGHT SENSOR Off
container MOVE LEFT No
container MOVE RIGHT No

(Z1) robot Active
(Z2) container Active

(Z3) take Passive
(Z4) deliver Passive
(Z5) unload Passive

The values of inputs can be changed manually and
these permit to verify correctness of control circuits that
execute given algorithms (such as Z1 and Z2).

Graphical mode permits manipulations with images
that are used for such objects as a robot and a container.
We can distinguish simple objects associated with one
symbol (with one unique code) and composed objects
associated with more than one symbol (with a group of
unique codes). The same symbol (graphical primitive)
can be included in different objects. Operations (like
“robot move left”) define potential manipulations with
the relevant objects. Conditions (like “robot left
sensor“) are formed through checking coordinates of the
object image in the VGA memory. Thus, customizable
symbol memory (see Fig. 3) makes it possible to create
images for objects and operations with the VGA
memory (see Fig. 3) enable logic conditions
(representing sensors) to be generated. A complete
example of this type is considered in [5].

At the moment, just images for relatively simple
objects have been created and tested. They can be
manipulated in two dimensions. This is because the
primary objective is to verify FPGA-based circuits that
control such equipment whose functionality can be
verified visually. Note that the environment does not
provide support for complex 3D graphical images such
as that might be needed for simulation of six degree of
freedom articulated robot arm. This is because the
primary objective was to verify circuits inside FPGA but
not to create sophisticated support for graphics that
would undoubtedly consume considerable FPGA
resources. If essential support for sophisticated graphics
is indeed needed we would recommend either to use a
dedicated to graphics separate FPGA or to apply
software-hardware co-simulation described in [9].

There are numerous potential applications for the
presented technique and we will describe just three of
them from different application areas.

In [5] an automatic system for garage control is
considered. The objective is to provide for automatic car
parking in a garage. Fig. 7 demonstrates the basic ideas
of visual simulation. In this case a car is a symbol.
Motion of a car is controlled by an electronic circuit.
Inputs of the circuit are supplied by sensors (such as that
used for intelligent cruise control). Outputs of the circuit
change locations (addresses) of the symbol (the car) in
the VGA memory (see Fig. 3). An image of a car might
also be composed of more than one symbol, which
allows visualizing smoother motions. So, object
primitives are symbols (matrices of pixels) and they are
used for simulation instead of manipulating individual
graphical pixels, which allows hardware resources
needed for simulation in graphical mode to be reduced
significantly. A number of parameters can be controlled
during simulation, for example, the number of arriving
cars per time slot, speeds of cars inside the garage, etc.
Results of all necessary experiments (testing alternative

- 4785 -

circuits, examining deadlocks, etc.) are represented
visually in form of moving images of cars and this is
very close to physical (real-time) functionality.

Parking slots

Parking slots

Parking slots

Parking slots

Entrance gate

Exit gate

A queue of cars
for parking

- sym b ol

Car
control

Garage
control

Fig. 7 Simulation of functionality of an automatic

system for garage control

Similar simulation can also be implemented with

autonomous electronic circuits and this is especially
interesting for education. For example, an extended
architecture of a customizable 8-bit FPGA-based
processor [10] has been used within different disciplines
for students of Aveiro University (Portugal). The results
of simulation are presented in a general form shown in
Fig. 8.

Let us consider an example of simulation. Suppose
the following sequence of two instructions has to be
executed:

SUBi, 64, 1,
STAi, 128, ADDR_LED,

The first instruction (SUBi, 64, 1,) reads data from
RAM (6410 is the base address of RAM) using offset 1;
subtracts the data from a processor accumulator; and
stores the result in the accumulator. The second
instruction (STAi, 128, ADDR_LED,) displays the value
of the accumulator on LEDs (12810 is the base address
of input/output devices and ADDR_LED is an offset
address for the LEDs). During simulation each
instruction will be sequentially displayed in a window
dedicated to “Running Assembly Language Instruction”.
The selected RAM address for the first instruction will
be shown as 1. We can see the value of RAM at the
address 1 and how this value is copied to the
accumulator. Finally, we can see which LEDs are on and
off. The working processor clock frequency can be
changed during run time and this gives very convenient
opportunities for visual debugging.

The last example is dedicated to verification of
advanced finite state machines (FSM), such as
hierarchical FSM, recursive hierarchical FSM, parallel
FSM and FSM with dynamically alterable functionality
(reprogrammable FSM). Fig. 9 gives an example. A
recursive algorithm (Fig. 9, a) for data sorting in a
binary tree (Fig. 9, b) was taken from [11], where all
necessary details can be found. The tree is coded in
RAM as it is shown in Fig. 9, c, and explained in detail
in [11].

Running Assembly Language Instruction
Contents of

RAMSelected
addressStates of Peripheral Devices

Contents of processor registers

Fig. 8 Simulation of functionality of an 8-bit

processor

Begin

x 1

y
3

0

1

End, y5

y1,y2,z

y1,y4,z

a) Z
10

7 12

81

10
1

2

0 1 2 3 4

0

1 2

3 4

7
3

4

12
N

N

3
N

N

8
N

N

RAM

ad
dr
es
se
s

b)

c)

Fig. 9 Recursive sorting algorithm (a); a binary tree

for sorting (b); coding of the binary tree in memory (c)

As we can see in Fig. 9, a, the algorithm (module Z)

calls itself, i.e. it is recursive. The algorithm is
implemented in a VHDL template for a recursive
hierarchical FSM [11], which uses stacks instead of a
register memory. The results of simulation are presented
much like it is shown in Fig. 8 (for example, the
selected memory addresses and the currently active
FSM states/modules are indicated). Clock frequency for
FSM can be changed during execution time. For the
example in Fig. 9, b, the following sequence can be
examined: begin from RAM address 0; jump to RAM
address 1; jump to RAM address 3; display the value 3
from RAM at the address 3; return back to RAM
address 1; display the value 7 from RAM at the address
1; jump to RAM address 4; display the value 8 from
RAM at the address 4; return back to RAM address 1;
return back to RAM address 0; display the value 10
from RAM at the address 0; jump to RAM address 2;
display the value 12 from RAM at the address 2; return
to RAM address 0; end. The sequence 1, 7, 8, 10, 12
represents the sorted values. In case of any error it can
easily be detected.

4. IMPLEMENTATION DETAILS

All customizable functional blocks of Fig. 3 have

been implemented [6] using Xilinx ISE and tested in
three prototyping boards: DETIUA-S3 [7], NEXYS2 [8]
and Celoxica RC10 (information about some of former
Celoxica products is available through [2]).

- 4786 -

The customizable symbol memory in Fig. 3 permits
to store symbol images that are used as moving objects
during visual simulation. Each image is coded by a
matrix composed of VGA pixels. The size of matrices
might be adjusted in accordance with the necessary
requirements (complexity of images, etc.).

The developed virtual environment was tested for the
system shown in Fig. 1, for traffic control, micro-robot
competition, remotely controlled processor with
variable instruction set, and an automatic system [5]
(these systems were examined within different projects
developed and implemented by students).

The results of evaluation of the proposed technique
and experiments with the environment can be
summarized as follows:

 The technique is applicable to a number of
real-world problems when a visual mode of
simulation is more appropriate;

 The technique is especially useful in pedagogical
practice. The considered visual simulation was
successfully used by students within different
disciplines (see [12] for details).

 Additional resources required for the considered
technique depend on the complexity of the problem.
The circuit shown in Fig. 3 without an attached
application-specific block consumes about 12% of
xc3s500e FPGA available on the prototyping board
[8], which is quite appropriate for simulation
purposes.

Comparing the proposed technique with software/
hardware co-simulation (see examples in [3,9]) permits
to list the following advantages and disadvantages:

 Simulation just in hardware requires quite a long
time for synthesis and implementation of
FPGA-based circuits with built-in simulation tools.
This disadvantage is not completely eliminated in
case of software/hardware co-simulation;

 Supplementary software tools needed for
simulation are easier to implement and test;

 Specific interfacing circuits are involved for
software/hardware co-simulation and the relevant
interaction requires longer time;

 The main advantage of simulation just in hardware
is the simplicity to satisfy numerous real-time
constraints;

 Software/hardware co-simulation makes sense
when the modeled application-specific block is
partially implemented in hardware and partially in
software;

 Hardware simulation is preferable when we would
like to verify an application-specific block
completely implemented in hardware and when
there exist hard real-time constraints.

5. CONCLUSION

The paper describes a virtual environment for
prototyping and experiments with FPGA-based circuits.
The basic architectural components of the environment
establish communication with peripheral devices (such

as a VGA monitor and a keyboard) that are used for
visualizing the results and human interaction. There are
two available modes for simulations that permit to
display the results either in form of input/output
messages or through moving graphical images imitating
physical objects. Customization of object images is
achieved through reloading of a symbol memory.
Interactions with inputs (e.g. sensors) and outputs (e.g.
actuators) are provided through periodic update of a
monitor memory and verification of location addresses
in the memory for object images. Examples from
different application areas are presented and examined.
The results demonstrate practicability and usefulness of
the proposed technique, which is especially
recommended for educational and experimental
purposes.

REFERENCES

[1] P.J. Ashenden, Digital Design. An Embedded

System Approach Using VHDL, Morgan Kaufmann,
2008, 573 pp.

[2] Available at: “http://agilityds.com/support/product-
descriptions/DK5-SPD.pdf”.

[3] V. Sklyarov, “Hardware/Software Modeling of
FPGA-based Systems”, Parallel Algorithms and
Applications, vol. 17, No. 1, 2002, pp. 19-39.

[4] V. Sklyarov, I. Skliarova, "Design and
Implementation of Parallel Hierarchical Finite
State Machines", Proc. of the 2nd Int. Conf. on
Communications and Electronics – HUT-ICCE
2008, Hoi An, Vietnam, June 2008, pp. 33-38.

[5] V. Sklyarov, I. Skliarova, A. Neves, "Modeling and
Implementation of Automatic System for Garage
Control”, Proc. of ICCAS-SICE, Fukuoka, Japan,
August 2009.

[6] Available at: “http://sweet.ua.pt/~a16360".
[7] M. Almeida, B. Pimentel, V. Sklyarov, I. Skliarova,

"Design Tools for Rapid Prototyping of Embedded
Controllers", Proc. of the 3rd Int. Conf. on
Autonomous Robots and Agents - ICARA'2006,
Palmerston North, New Zealand, Dec. 2006, pp.
683-688.

[8] Available at: “http://www.digilentinc.com/
Products/Detail.cfm?NavTop=2&NavSub=451&Pr
od=NEXYS2”.

[9] V. Sklyarov, I. Skliarova, B. Pimentel, M. Almeida,
"Multimedia Tools and Architectures for
Hardware/Software Co-Simulation of
Reconfigurable Systems", Proc. of the 21st Int.
Conf. on VLSI Design, Hyderabad, India, January
2008, pp. 85-90.

[10] Customizable 8-Bit FPGA Processor. Available at:
“http://www-md.e-technik.uni-rostock.de/lehre/vlsi
_i/proc8/index.html”.

[11] V.Sklyarov, “FPGA-based implementation of
recursive algorithms”, Microprocessors and
Microsystems. Special Issue on FPGAs, 2004, vol.
28/5-6, pp. 197-211.

[12] Available at: “http://www.ieeta.pt/~skl”.

