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Abstract: The paper suggests the methodology for validation of designed systems and experiments through the use of 
the developed simulation tools and interactive models. The primary idea is prototyping on the basis of virtual visual 
samples imitating interacting physical objects. The desired electronic functionality is implemented in reconfigurable 
hardware and, therefore, can easily be changed, which significantly simplifies such problems as verification of 
alternative implementations and eliminating potential errors. The desired physical functionality is modeled through 
observation of and experiences with interacting images which look like physical objects. The proposed methodology is 
very helpful and effective for many practical applications, such as mechanical systems control, robotics, process 
automation, transportation systems, computational devices, etc. 
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1. INTRODUCTION 
 
Modeling and simulation are useful techniques that 

permit the designed systems to be verified and evaluated. 
Dependently on target requirements these techniques 
can be applied differently. For example, when we 
consider electronic devices, they can be checked with 
the aid of a test-bench model that provides input values 
(test cases) to the device and tests if output values from 
the device are correct. Very often a test-bench model is 
composed of entities, coded in a hardware description 
language (such as VHDL [1]) and executed in software 
simulator in such a way that one entity provides inputs, 
another one imitates the functionality of the device and 
the results are presented as waveforms of output signals 
displayed on a monitor screen. Different varieties of 
test-bench models and the relevant techniques are 
described in [1].  

For many practical applications it is easier to verify 
the functionality of developed devices using visual 
modes. Such modes are especially beneficial for devices 
with slowly changing states, which is quite common for 
mechanical systems, robotics, transportation systems, 
etc. For example, verification of a traffic light control 
considered in [1] as an example, can be much easier 
done on a picture of a traffic light displayed on a 
monitor screen. Such technique has already been used in 
numerous debugging tools, such as [2]. A more 
advanced technique is described in [3] where a 
combined software/hardware model of a system that 
consists of a control part (mainly implemented in 
hardware) and a datapath (modeled partially in 
hardware and partially in software) was proposed. 
Hardware (implemented on the basis of Field 
Programmable Gate Arrays - FPGA) and software 
(running in general-purpose computer) components 
communicate through a pre-established interface. Note 
that the capabilities of modern FPGA make it possible 
to implement the complete system in hardware and this 
paper reports the relevant results. The primary idea is 

prototyping on the basis of virtual visual objects 
imitating interacting physical entities in such a way that: 
 The desired electronic functionality is implemented 

in a reconfigurable hardware and, therefore, can 
easily be changed, which significantly simplifies 
such problems as verification of alternative 
implementations and eliminating potential errors; 

 The desired physical functionality is modeled 
through observation of and experiences with 
interacting images whose shapes look like physical 
objects. 

One example is shown in Fig. 1 [4] that depicts two 
interacting objects of a self-controlled transport section: 
a robot on the left-hand side; and a container on the 
right-hand side that can move from left to right and vice 
versa. Functionalities of the robot and the container 
have to be provided in parallel (the relevant algorithms 
Z1 for the robot and Z2 for the container are given in [4]). 
In a simplified mode the robot is controlled by two 
actuators move left and move right, which force the 
respective motions. The track, where the robot is 
moving, is bounded by the sensors left sensor and right 
sensor in such a way that if left sensor=1/right sensor 
=1, the robot is at the left/right edge. The container has 
exactly the same behavior, except capital letters are used 
instead of lower-case letters in the description. The 
transfer is also controlled by algorithms Z3- Z6 in such a 
way that Z3 forces the robot to take something at the 
left-hand side of the transfer line; Z4 delivers the object 
carried by the robot to the container; Z5 unloads the 
container at the right-hand side, and Z6 tests the entire 
system before initiating the working stage. The 
algorithm in Fig. 1 assumes that several iterations are 
needed for the robot to load the container.  

Taking into account all the considered above details 
we can conclude that Fig. 1 describes the functionality 
of a simplified real-world system. Functionality of this 
system can be verified using different techniques. For 
example, a test-bench model can be created for testing 
electronic components implementing the algorithms 
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Z1,…,Z6. This paper suggests another way illustrated in 
Fig. 1, a. The system (Fig. 1, b) is displayed on a 
monitor screen (Fig. 1, a) and all motions are visualized 
in real time. Electronic components are implemented in 
an FPGA interacting with the monitor (and possibly 

with some other peripheral devices) and they control 
mechanical components in a similar way that is used in 
a physically realized system. The paper is dedicated to 
such type of environment that is very helpful for 
prototyping and experiments. 
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Fig. 1 Visual simulation (a) of a self-controlled transport section (b). 

 
The remainder of the paper is organized in four 

sections. Section 2 suggests architecture of a visual 
environment and its basic components. Section 3 
presents different examples of prototyping. Section 4 
discusses implementation details. It also compares 
hardware with software/hardware techniques and points 
to their application areas with the relevant advantages 
and disadvantages. The conclusion is given in Section 5. 

 
2. SYSTEM ARCHITECTURE 

 
Fig. 2 depicts the proposed architecture of the 

simulation environment. Let us assume that we would 
like to verify the functionality of an electronic system 
that controls a transfer line [3]. Dynamic behavior of the 
line is displayed on a monitor screen and we can see a 
set of steps that are needed in order to complete some 
desired treatment of metallic components. Each step is 
controlled by a customizable sub-system implemented 
in hardware and communicating with a visual 
sub-system through a pre-established interface. Two 
sub-systems, as well as the interface, are implemented 
within the same FPGA. 

There are three functional components in Fig. 2: 
A. FPGA circuits for interaction with virtual 

controlled objects (such as a self-controlled 
transport section shown in Fig. 1); 

B. An interface, transmitting signals to actuators and 
from sensors of virtual objects (block A) from/to 
the electronic controller (block C); 

C. Physically implemented circuits realizing control 
algorithms that have to be verified and validated. 

There are also some auxiliary components (such as a 
keyboard D, shown in Fig. 2) for human intervention. 

The proposed architecture can be used in several 
ways: 
 For verifying and validating functionality of 

software and hardware, controlling such objects for 
which correctness of behavior can be evaluated 
visually (e.g. mechanical systems control, robotics, 
process automation, transportation systems). 
Hardware is implemented in FPGA. Software is 
running on soft/hard processing elements often 
available as an IP-core or embedded in FPGA; 

 For attaching virtual peripheral devices (e.g. liquid 
crystal displays, joysticks, dipswitches, pushbuttons) 
displayed on a monitor screen, which permits to 
verify prospective ideas for data input and output; 

 For verifying design ideas. For example, the 
self-controlled transport section in Fig. 1 can be 
controlled by software running on built-in FPGA 
processing elements or, alternatively, by 
communicating finite state machines (such as that 
are studied in [4]) mapped to hardware circuits. In 
this case for the same A and B components of Fig. 2 
we can compare and evaluate different circuits for 
the block C. 

Fig. 3 shows more detailed architecture of the 
developed system. In particular, the main blocks of 
component A (see Fig. 2) are shown in Fig. 3, which 
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include a VGA controller, a VGA memory, and a 
customizable symbol memory. The latter can be 
programmed to keep and supply different images (see 
examples in Fig. 3) that compose the picture on a 
monitor screen.  

Let us assume that we would like to model a system 
described in [5]. In this case the memory symbols 
(primitives) are cars, traffic lights, etc. Each particular 
primitive has an associated binary code. In order to 
display the primitive on a monitor screen, its code has to 
be written to a proper position of VGA memory. The 
latter can be organized differently depending on the size 
of matrix for the primitives in video pixels. Memory 
organization (as well as other similar parameters) is 
customizable through the relevant hardware description 
language (HDL) generic statements. 

 
Fig. 2 Architecture of the simulation environment. 
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Fig. 3 More detailed architecture of the simulation 

environment. 
 
Motions of visual objects are provided through 

periodic update of the VGA memory addresses for the 
selected from the symbol memory visual objects. This 
process is controlled by the interface circuits (B), which 
convert signals to actuators to the proper sequences of 
memory addresses with parameterizable rates of change. 
The components D enable the user to change parameters, 
such as speed of moving objects. The VGA controller 
[6] can be customized for the majority of commercial 
VGA monitors and video modes.  

The component A (see Fig. 3) was described in 
VHDL [6] and the interaction of a tested 
application-specific block (ASB) with this component is 
established through the following interface: 

ASB: entity work.name_of_ASB  
    generic map ( 
      -- generic values 

       ) 
    port map ( 

ASCII_in => ASCII, 
 ASCII_out => RAMData, 
 Address_in => WriteAddress, 
 Address_out=> RAMWriteAddress, 
 clk    => Clock, 
 rst    => Reset, 
 WE_in    => WriteEnable, 
 WE_out    => RAMWriteEnable, 
-- other peripheral components, for example 
 Button   => Button, 
 Led   => Led, 
 Switch   => Switch, 
 segments   => segments, 
 displays    => displays   -- etc. 

     ); 
 
Fig. 4 demonstrates a possible use of the considered 

above interface. Let us assume that ASB receives data 
from a keyboard. In a trivial case when the keyboard 
supplies inputs (ASCII codes) and the symbol memory 
(see Fig. 3) converts ASCII codes to the relevant 
symbols on the screen, we can built a simple text editor 
through the connections of the keyboard outputs with 
the VGA memory (e.g. ASCII_out <= ASCII_in). In a 
more complex case the symbol memory converts input 
codes to special images, such as a robot shown in Fig. 4. 
Finally, the ASB supplies all necessary functionality of 
a simulated system, such as that is demonstrated in Fig. 
1. In the last case the top part of Fig. 4 becomes more 
complicated (see Fig. 5). 

entity name_of_ASB is
generic ( AddressBits : natural;

NumberOfColumns : natural; …………..
);

Port ( ASCII_in : in STD_LOGIC_VECTOR (7 downto 0);
ASCII_out : out STD_LOGIC_VECTOR (7 downto 0);
Address_in : in STD_LOGIC_VECTOR (AddressBits 1 downto 0);
Address_out : out STD_LOGIC_VECTOR (AddressBits 1 downto 0);
clk : in STD_LOGIC;
rst : in STD_LOGIC;
WE_in : in STD_LOGIC;
WE_out : out STD_LOGIC;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
);

end name_of_ASB;
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Fig. 4 An example of interaction between the blocks 

A and C (see Fig. 2 and 3). 
 
Simulation-targeted input/output blocks enable a user 

to supply input actions (if required) and to provide 
functionality in a visual mode based on interaction of 
visual objects on a monitor screen. There is also an 
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opportunity to change working clock frequency, which 
allows to increase or decrease speed of simulation. The 
next section presents some examples.    
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Fig. 5 ASB with attached input/output blocks 

supporting interaction with a user and visual simulation 
 

3. EXAMPLES OF PROTOTYPING 
 

Let us consider two potential modes of simulation 
that are message based and graphics based. The first 
mode is significantly easier to implement because it just 
allows displaying states of sensors (inputs) and 
actuators (outputs) in form of text messages. Suppose 
the functionality of a robot and a container in Fig. 1 is 
described by parallel hierarchical algorithms Z1 and Z2 
[4] shown in Fig. 6. 
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Fig. 6 Modules Z1 and Z2 for robot and container in 

Fig. 1. 
       

Changing clock frequency enables us to execute Z1 
and Z2 slower or faster and the frequency can be altered 
during execution time. There are 3 modules (Z3, Z4 and 
Z5) in Fig. 6 that have to be activated hierarchically. 
Suppose Z1 and Z2 are activated simultaneously and the 
following sequence of messages is displayed: 

robot left sensor   Off 
robot right sensor   Off 
robot move left    No 
robot move right    No 

container FULL   No 
container LEFT SENSOR  Off 
container RIGHT SENSOR  Off 
container MOVE LEFT   No 
container MOVE RIGHT   No 

(Z1) robot   Active 
(Z2) container   Active 

(Z3) take   Passive 
(Z4) deliver   Passive 
(Z5) unload   Passive 

The values of inputs can be changed manually and 
these permit to verify correctness of control circuits that 
execute given algorithms (such as Z1 and Z2).  

Graphical mode permits manipulations with images 
that are used for such objects as a robot and a container. 
We can distinguish simple objects associated with one 
symbol (with one unique code) and composed objects 
associated with more than one symbol (with a group of 
unique codes). The same symbol (graphical primitive) 
can be included in different objects. Operations (like 
“robot move left”) define potential manipulations with 
the relevant objects. Conditions (like “robot left 
sensor“) are formed through checking coordinates of the 
object image in the VGA memory. Thus, customizable 
symbol memory (see Fig. 3) makes it possible to create 
images for objects and operations with the VGA 
memory (see Fig. 3) enable logic conditions 
(representing sensors) to be generated. A complete 
example of this type is considered in [5]. 

At the moment, just images for relatively simple 
objects have been created and tested. They can be 
manipulated in two dimensions. This is because the 
primary objective is to verify FPGA-based circuits that 
control such equipment whose functionality can be 
verified visually. Note that the environment does not 
provide support for complex 3D graphical images such 
as that might be needed for simulation of six degree of 
freedom articulated robot arm. This is because the 
primary objective was to verify circuits inside FPGA but 
not to create sophisticated support for graphics that 
would undoubtedly consume considerable FPGA 
resources. If essential support for sophisticated graphics 
is indeed needed we would recommend either to use a 
dedicated to graphics separate FPGA or to apply 
software-hardware co-simulation described in [9]. 

There are numerous potential applications for the 
presented technique and we will describe just three of 
them from different application areas. 

In [5] an automatic system for garage control is 
considered. The objective is to provide for automatic car 
parking in a garage. Fig. 7 demonstrates the basic ideas 
of visual simulation. In this case a car is a symbol. 
Motion of a car is controlled by an electronic circuit. 
Inputs of the circuit are supplied by sensors (such as that 
used for intelligent cruise control). Outputs of the circuit 
change locations (addresses) of the symbol (the car) in 
the VGA memory (see Fig. 3). An image of a car might 
also be composed of more than one symbol, which 
allows visualizing smoother motions. So, object 
primitives are symbols (matrices of pixels) and they are 
used for simulation instead of manipulating individual 
graphical pixels, which allows hardware resources 
needed for simulation in graphical mode to be reduced 
significantly. A number of parameters can be controlled 
during simulation, for example, the number of arriving 
cars per time slot, speeds of cars inside the garage, etc. 
Results of all necessary experiments (testing alternative 
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circuits, examining deadlocks, etc.) are represented 
visually in form of moving images of cars and this is 
very close to physical (real-time) functionality.    
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Fig. 7 Simulation of functionality of an automatic 

system for garage control 
 
Similar simulation can also be implemented with 

autonomous electronic circuits and this is especially 
interesting for education. For example, an extended 
architecture of a customizable 8-bit FPGA-based 
processor [10] has been used within different disciplines 
for students of Aveiro University (Portugal). The results 
of simulation are presented in a general form shown in 
Fig. 8.  

Let us consider an example of simulation. Suppose 
the following sequence of two instructions has to be 
executed: 

SUBi, 64, 1,  
STAi, 128, ADDR_LED, 

The first instruction (SUBi, 64, 1,) reads data from 
RAM (6410 is the base address of RAM) using offset 1; 
subtracts the data from a processor accumulator; and 
stores the result in the accumulator. The second 
instruction (STAi, 128, ADDR_LED,) displays the value 
of the accumulator on LEDs (12810 is the base address 
of input/output devices and ADDR_LED is an offset 
address for the LEDs). During simulation each 
instruction will be sequentially displayed in a window 
dedicated to “Running Assembly Language Instruction”. 
The selected RAM address for the first instruction will 
be shown as 1. We can see the value of RAM at the 
address 1 and how this value is copied to the 
accumulator. Finally, we can see which LEDs are on and 
off. The working processor clock frequency can be 
changed during run time and this gives very convenient 
opportunities for visual debugging. 

The last example is dedicated to verification of 
advanced finite state machines (FSM), such as 
hierarchical FSM, recursive hierarchical FSM, parallel 
FSM and FSM with dynamically alterable functionality 
(reprogrammable FSM). Fig. 9 gives an example. A 
recursive algorithm (Fig. 9, a) for data sorting in a 
binary tree (Fig. 9, b) was taken from [11], where all 
necessary details can be found. The tree is coded in 
RAM as it is shown in Fig. 9, c, and explained in detail 
in [11]. 

Running Assembly Language Instruction
Contents of

RAMSelected
addressStates of Peripheral Devices

Contents of processor registers

 
Fig. 8 Simulation of functionality of an 8-bit 

processor 
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Fig. 9 Recursive sorting algorithm (a); a binary tree 

for sorting (b); coding of the binary tree in memory (c) 
             
As we can see in Fig. 9, a, the algorithm (module Z) 

calls itself, i.e. it is recursive. The algorithm is 
implemented in a VHDL template for a recursive 
hierarchical FSM [11], which uses stacks instead of a 
register memory. The results of simulation are presented 
much like it is shown in Fig. 8 (for example, the 
selected memory addresses and the currently active 
FSM states/modules are indicated). Clock frequency for 
FSM can be changed during execution time. For the 
example in Fig. 9, b, the following sequence can be 
examined: begin from RAM address 0; jump to RAM 
address 1; jump to RAM address 3; display the value 3 
from RAM at the address 3; return back to RAM 
address 1; display the value 7 from RAM at the address 
1; jump to RAM address 4; display the value 8 from 
RAM at the address 4; return back to RAM address 1; 
return back to RAM address 0; display the value 10 
from RAM at the address 0; jump to RAM address 2; 
display the value 12 from RAM at the address 2; return 
to RAM address 0; end. The sequence 1, 7, 8, 10, 12 
represents the sorted values. In case of any error it can 
easily be detected.  

 
4. IMPLEMENTATION DETAILS 

 
All customizable functional blocks of Fig. 3 have 

been implemented [6] using Xilinx ISE and tested in 
three prototyping boards: DETIUA-S3 [7], NEXYS2 [8] 
and Celoxica RC10 (information about some of former 
Celoxica products is available through [2]). 
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The customizable symbol memory in Fig. 3 permits 
to store symbol images that are used as moving objects 
during visual simulation. Each image is coded by a 
matrix composed of VGA pixels. The size of matrices 
might be adjusted in accordance with the necessary 
requirements (complexity of images, etc.). 

The developed virtual environment was tested for the 
system shown in Fig. 1, for traffic control, micro-robot 
competition, remotely controlled processor with 
variable instruction set, and an automatic system [5] 
(these systems were examined within different projects 
developed and implemented by students).  

The results of evaluation of the proposed technique 
and experiments with the environment can be 
summarized as follows:  

 The technique is applicable to a number of 
real-world problems when a visual mode of 
simulation is more appropriate; 

 The technique is especially useful in pedagogical 
practice. The considered visual simulation was 
successfully used by students within different 
disciplines (see [12] for details).  

 Additional resources required for the considered 
technique depend on the complexity of the problem. 
The circuit shown in Fig. 3 without an attached 
application-specific block consumes about 12% of 
xc3s500e FPGA available on the prototyping board 
[8], which is quite appropriate for simulation 
purposes. 

Comparing the proposed technique with software/ 
hardware co-simulation (see examples in [3,9]) permits 
to list the following advantages and disadvantages: 

 Simulation just in hardware requires quite a long 
time for synthesis and implementation of 
FPGA-based circuits with built-in simulation tools. 
This disadvantage is not completely eliminated in 
case of software/hardware co-simulation; 

 Supplementary software tools needed for 
simulation are easier to implement and test; 

 Specific interfacing circuits are involved for 
software/hardware co-simulation and the relevant 
interaction requires longer time; 

 The main advantage of simulation just in hardware 
is the simplicity to satisfy numerous real-time 
constraints; 

 Software/hardware co-simulation makes sense 
when the modeled application-specific block is 
partially implemented in hardware and partially in 
software; 

 Hardware simulation is preferable when we would 
like to verify an application-specific block 
completely implemented in hardware and when 
there exist hard real-time constraints.  
  

5. CONCLUSION 
 

The paper describes a virtual environment for 
prototyping and experiments with FPGA-based circuits. 
The basic architectural components of the environment 
establish communication with peripheral devices (such 

as a VGA monitor and a keyboard) that are used for 
visualizing the results and human interaction. There are 
two available modes for simulations that permit to 
display the results either in form of input/output 
messages or through moving graphical images imitating 
physical objects. Customization of object images is 
achieved through reloading of a symbol memory. 
Interactions with inputs (e.g. sensors) and outputs (e.g. 
actuators) are provided through periodic update of a 
monitor memory and verification of location addresses 
in the memory for object images. Examples from 
different application areas are presented and examined.    
The results demonstrate practicability and usefulness of 
the proposed technique, which is especially 
recommended for educational and experimental 
purposes.  
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