
Virtual Environment
for Synthetic Smoke Clouds Generation

Angelo Genovese, Ruggero Donida Labati, IEEE, Member,
Vincenzo Piuri, IEEE, Fellow, Fabio Scotti, IEEE, Member

Department of Information Technology
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Abstract—In this paper we propose a virtual environment
for the creation of synthetic wildfire smoke frame sequences,
able to simulate a distant smoke plume and to integrate it
with an existing frame sequence. This work provides a virtual
tool to measure the accuracy of existing image-based wildfire
smoke detection systems without the need to produce real smoke
and fires in the environments. The proposed algorithm uses a
cellular model driven by the rules of propagation and collision
to simulate the basic physical principles of advection, diffusion,
buoyancy, and the response to external forces (such as the wind).
Adverse environmental conditions like fog and low-light are also
simulated, together with the introduction of noise in order to
reproduce acquisition defects. The resulting frame sequences
are then evaluated by using a smoke detection system, which
shows that our method for virtual smoke simulation gives results
comparable to real situations. The extracted data can then be
used to increase the performance of smoke detection systems
when few real data are available.

Index Terms—Computer vision, smoke detection, lattice-
boltzmann, simulation, virtual environment.

I. INTRODUCTION

Fire and smoke detection systems based on sensor read-
ings suffer from some disadvantages. First, they need to be
sufficiently close in order to be effective, which can possibly
result in a high number of nodes. Second, it is necessary to
define a trade-off between power consumption and system
reactivity: frequent measurements result in a more precise
description, but they quickly drain the batteries. Moreover, a
great number of sensors need a complex network architecture
in order to communicate and relate information. Furthermore,
some sensors, such as smoke sensors, give better results when
they operate indoors and can be poorly effective in open
environments [1].

The use of machine vision and image processing tech-
niques for the purpose of fire and smoke detection has the
advantages of a great distance vision, absence of latency and
the possibility to extract more information (such as position,
size, growth and kind of fire and smoke) [2]. Moreover,
cameras can be used for other applications, such as intruder
surveillance and control systems. The automation of fire and
smoke detection requires ad-hoc techniques and algorithms,
which need to be tested in many possible conditions. Ideally,
the tests should be perfomed on real scenarios or, at least, a
great number of different real frame sequences. However, it

is difficult to perform such tests in real situations and even
to collect frame sequences regarding every possible situation.
For these reasons, in this paper we propose an approach
to virtually recreate frame sequences of different smoking
scenarios, in order to test the effectiveness of smoke detection
techniques in the greatest number of possible situations using
synthetic data. The proposed approach is designed to simulate
frame sequences related to vaste areas by implementing a
simulation of the principles of fluid advection, fluid diffusion
and buoyancy. The proposed algorithms are also constrained
by the general physical laws of mass and momentum con-
servation. The model is completed with the simulation of
pseudo-random effects in order to reproduce the apparently
unconstrained behaviour of smoke dispersion, which can be
caused by different factors (for instance, by the wind). The
generated synthetic smoke plume is then merged with a real
frame sequence and postprocessing techniques are used to
simulate the effects produced by bad atmospheric conditions
and low quality equipments.

The paper is structured as follows. Section II presents a lit-
erature review, regarding mathematical equations and models.
Section III describes the proposed approach, and Section IV
presents the experimental results.

II. PREVIOUS WORK

A. The equations of fluid flow

The physical model used in fluid dynamics is described
by the Navier-Stokes equations, which treat the flow of a
compressible viscous fluid in terms of a velocity vector field
u [3]:

∇u = 0 ; (1)
∂u
∂t

= −(u∇)u− 1

ρ
∇p+ ν∇2u+ f , (2)

where u is the velocity vector field, ν is the kinematic viscosity
of the fluid, ρ is its density and f is an external force. The
symbol ∇ is the vector of partial spatial derivatives. The
Navier-Stokes equations are obtained by imposing that the
fluid conserves both mass (Eq. 1) and momentum (Eq. 2). As
described in [4], these equations can be solved considering the
right-hand side contributions independently:
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1) External forces: different forces, such as the buoyancy
force or the force exerted by the wind, are represented
by the term f ;

2) Advection: the advection term −(u∇)u describes how
the velocity is transported;

3) Diffusion: the diffusion term (ν∇2u) considers how the
smoke particles spread across the space;

4) Pressure: the pressure is described by the term 1
ρ∇p.

In the case of a gaseous fluid (such as the smoke) the effects of
the viscosity are negligible. Moreover, when the smoke veloc-
ity is well below the speed of sound, the compressibility effects
are also negligible. These assumptions permit to semplify the
equations as the incompressible Euler equations [5]:

∇u = 0 ; (3)
∂u

∂t
= −(u∇)u−∇p+ f . (4)

B. Lagrangian and Eulerian Viewpoints

In order to describe the motion of a fluid (or a deformable
solid) there are two possible approaches, named the La-
grangian and Eulerian viewpoints. The Lagrangian viewpoint
models the system considering each particle with a position
x(t) and a velocity u(t). The Eulerian viewpoint, instead of
tracking each particle, considers fixed points in the space and
describe how the fluid quantities measured at those points
(such as density, velocity, temperature) change in time. The
function u(x, t), which describes the value of the vector field u
at the position x and time t, is based on the Eulerian viewpoint
[6].

In this paper, we use the Eulerian viewpoint in order
to consider the smoke as a spatial function d(x, t), which
describes the concentration of the gas at the position x and
time t, within a fixed reference grid.

C. Computational Fluid Dynamics and Computer Graphics

The two major areas which deal with fluid simulation are the
Computational Fluid Dynamics (CFD) and Computer Graphics
(CG). The applications of CFD are mainly concerned with
the exact solution of the equations of fluid mechanics, in
order to achieve a precise understanding of the phenomenon,
especially for engineering and testing purposes. CG applica-
tions, however, try to simulate a realistic fluid motion and give
importance to the real time simulation. In such applications, it
is not mandatory to implement precise physical laws, but it is
important to give the sense of reality and the ability to render
such scenes as fast as possible (e.g. in computer games) [7].

In this paper, we focus more on the CG approach, since
the exact simulation of physical laws would be unnecessarily
complicated for the purpose of simulating distant smoke. CG
applications of fluid simulation, however, often start with the
implementation of numerical methods to solve the Navier-
Stokes equations, such as the method proposed in [8]. This
method is stable only for a sufficiently small simulation period
of time ∆t. An always stable approach for the solution of the
equations is proposed in [4]. Some implementations are even
available in the literature [9].

One of the problems of the numerical methods for the
approximation of the Navier-Stokes equations is the numerical
dissipation, which consists in an attenuation of fluid features,
caused by the approximation errors introduced by finite-
precision computers. For this reason, dissipation can cause a
fluid more “passive” and less realistic. Two approaches for the
solution of this problem are proposed in [10] and [7], with the
method of “Vorticity Confinement”, which consists in feeding
energy back into the systems in the form of vortexes.

D. Lattice gas and lattice Boltzmann method

Other approaches exploit the lattice gas cellular automata
(LGA) in order to simulate fluid flows. These approaches
do not deal directly with the solution of the Navier-Stokes
equations, instead they try to mimic the behaviour of the
microscopic particles composing the fluid. The model consists
in a lattice, in which each site can take a certain number of
different states. Each state corresponds to a particle with a
certain velocity. The evolution of the simulation is done in
discrete time steps. After each instant of time, the state of a
given site can be determined by the state of the site itself and
the neighboring sites in previous instants of time. The state of
each site is boolean and represents whether there is a particle
that is moving upwards.

At each instant of time, two processes are carried out,
propagation and collision. In the propagation process, each
particle will move to a neighboring site determined by the
velocity of the particle. In the collision process, rules are used
to determine what happens if multiple particles reach the same
site. These collision rules are required to maintain the total
mass and to conserve the total momentum [11]. If the physical
laws of mass and momentum conservation are respected, it is
possible to derive the equations of Navier-Stokes [12, 13] by
analyzing the interactions of such particles on a large scale.

Examples of clouds and smoke simulation using the lattice
gas automata are proposed in [14, 15].

Lattice Boltzmann methods (LBM) are derived from the
lattice gas model. The improvement consists in replacing the
boolean values in the LGA model with real-valued densities of
microscopic particles that move along each bond of the lattice,
and in considering the motion as an average distribution of
microscopic particles. From this model, it is also possible to
derive the Navier-Stokes equations [16].

An implementation of the lattice Boltzmann method for gas
simulation is described in [17].

III. THE PROPOSED APPROACH

The proposed approach performs a visually realistic simula-
tion of a distant smoke plume. Since at great distances most of
the features of the smoke are not visible, our approach doesn’t
focus on a rigorous implementation of physical principles,
but it is based on physical models and image processing
techniques. The proposed approach can be divided in the
following steps:

1) initial plume computation;
2) external forces computation;



3) velocity estimation;
4) merging with the frame sequence.

A. Initial plume computation

The first step is based on the lattice Boltzmann method and
consists in the initialization of a two-dimensional grid with
a finite number of particles. The particles are then scattered
throughout the grid with each frame.

The number of particles is a real number and is described by
a space-time function fi(x, y, t), which describes the number
of particles at the position (x, y) in the instant time t, with
direction i. In our model, we consider only four possible
directions (0◦, 90◦, 180◦, 270◦). Each time step ∆t consists in
an image, and the evolution of the model generates a series of
frames. The evolution is governed by the rules of propagation
and collision [17]. The propagation rule can be written as
follows:

fi(x+ eix, y + eiy, t+ 1) = fi(x, y, t) , (5)

where eix and eiy are the x and y velocities components of
the i-th direction, expressed in pixel / frame. The collision rule
can be expressed as:

f ′i(x, y, t) = Ci
∑
i

fi(x, y, t) , (6)

where f ′i(x, y, t) is the new number of particles with direction
i, position (x, y), and time t. Ci is the collision coefficient
which represents the percentage of particles in the cell with
direction i after the collision. The coefficient set C is modeled
by a matrix, which is similar to the one presented in [15],
and models the interaction with air particles by scattering the
particles in the four possible directions, as:

C =

 0 0.20 0
0.20 0.32 0.20

0 0.08 0

 . (7)

The particles are more scattered towards higher regions than
lower regions. It is possible to observe that smoke columns
tend to be scattered by the resistance of the air and to rise
relatively to their initial velocity. In order to guarantee the
mass conservation, the following equation must be respected:∑

i

Ci = 1 . (8)

To simulate a plausible physical phenomenon by respecting the
Navier-Stokes equations, momentum conservation must also
be guaranteed. Combining Eq. 5 and Eq. 6, the global equation
which describes the evolution of the model is:

fi(x+ eix, y + eiy, t+ 1) = Ci
∑
i

fi(x, y, t) . (9)

Momentum conservation is verified by imposing a fixed ve-
locity ei for each particle in the lattice:

ei =
√
e2ix + e2iy = 1 . (10)

In order to simulate the progressive disapperance of the
particles, cells with a particle concentration lower than a prede-
termined threshold are not considered during the evolution of
the model. This condition also helps to limit the computational
complexity.

B. External forces

The model of the smoke plume is completed by the intro-
duction of external forces, such as wind and buoyancy. The
wind is modeled by adding additional pseudo-random move-
ments to the propagation equation (Eq. 5). In order to model
the major wind force at greater heights, these movements are
proportional to the distance of the particles from the smoke
source. The movements mx and my in the x and y directions
are given by:

mx = Mdx ; my = Mdy , (11)

where dx and dy are the drift directions and M is the drift
value, given by the equation:

M =

(
D

H

)2

· fd , (12)

where D is the distance of the cell from the source of
the smoke, H is the height of the smoke plume and fd
is a multiplying factor. Drift directions and probabilities are
changed every Nc and Np frames respectively.

The coefficient matrix C described in Eq. 7 caused the
smoke plume to rise at each istant of time. After this initial
rising step, we simulate a smoke cloud which moves mainly
in horizontal directions by changing the scattering coefficients
and drift directions. The new coefficient matrix which favours
the scattering of the particles in the leftward direction can be
expressed as:

CL =

 0 0.20 0
0.20 0.32 0.08

0 0.20 0

 . (13)

Similarly, it is possible to derive the matrix CR in order to
favour the rightward direction.

The proposed approach also considers the effect of the
buoyancy force on the smoke cloud. In the case of gaseous
substances, such effect depends on the temperature of the
gas, because the volume occupied by the gas is directly
proportional to the temperature. It is possible to write the
equation of the buoyancy force with respect to the temperature
of the gas as described in [17]:

Fb = Hg(Tk − Tambient) , (14)

where Fb is the buoyancy force, g is the gravity in the
vertical direction, H is the coefficient of thermal expansion,
and Tambient is the predefined ambient temperature value. The
evolution of the temperature in the system is governed by the
heat equation:

∂u

∂t
− α∇2u = 0 , (15)



where u is the function u(x, y, z, t) that describes the variation
of the temperature in a given region over the time [18].
We used a simplified model of the heat dispersion. Since
temperature variations are similar to the gas particle scattering
and it is plausible to simulate them by applying smoothing
techniques to the smoke plume, our approach considers that
the temperature is proportional to the particle concentration in
each cell, and is subject to the same convection and diffusion.
This approach is similar to the method proposed in [17], which
uses a gaussian smoothing function in order to simulate the
heat diffusion.

Assuming that the ambient temperature is constant, the
buoyancy force (Eq. 14) can be modeled as a movement in
the vertical direction, which is proportional to the number of
particles in the cell:

B =

∑
i fi(x, y, t)

fb
, (16)

where B is the movement of the particles at the location (x, y),
and fb is a proportionality factor.

C. Velocity estimation

The simulation of slow moving smoke plumes is done by
performing the operations of propagation, drift and the appli-
cation of buoyancy force only at certain frame intervals. The
contributions on the global velocity are expressible according
to the formulas:

Sh =
3

Nc
+
M

Nd
; (17)

Sv =
3

Nc
+
M

Nd
+

B

Nb
, (18)

where Sh and Sv are the velocities in the horizontal and
vertical directions, 3 represents the three applications of the
propagation rule, M is the maximum drift value, B is the
movement related to the buoyancy force, and Nc, Nd, Nb are
three frame intervals which determine the time duration of
the simulation phenomena. The greater this intervals are, the
slower the resulting simulated smoke is.

D. Merging with the frame sequence

The merging of the simulated smoke model with a real
frame sequence is done frame-by-frame by adding the smoke
intensity to the intensity of the pixel of the frame:

F (x, y, t) = R(x, y, t) +
S(x, y, t)

fm
∀x, y, t , (19)

where R and S are the real and simulated smoke sequences,
fm is a reducing factor used to control the visibility of the
smoke and F is the resulting merged video. With positive
values of fm, the resulting smoke is a high albedo smoke,
while negative values of fm produce a low albedo smoke.
This approach naturally solves the problem of blending the
smoke with the background.

(a) (b)

(c) (d)

Fig. 1. Examples of simulated adverse conditions: (a) original image; (b)
additive noise; (c) increased luminance; (d) fog.

E. Simulating adverse conditions

Noise in the acquisition process is simulated by artificially
adding Poisson-distributed noise generated directly from the
image data, which visually gives the most realistic result (Fig.
1b).

Light effects simulating different seasons or moments of
the day are added by increasing (or decreasing) the global
luminance component of each image by a certain factor (Fig.
1c).

Fog effects are simulated assuming that lower regions of a
frame are closer to the point of capture than higher regions,
due to a perspective effect. Since fog is more visible in distant
objects, we simulate the fog effect by superposing a gradient
image over the real one, because the brighter regions of the
gradient image are situated on the top part of the image (distant
from the observation point). An example of simulated fog is
shown in (Fig. 1d).

IV. EXPERIMENTAL RESULTS

Smoke sequences are simulated by performing an initial
plume computation, expansion, horizontal drift, and disper-
sion. The resulting sequences are then processed in order to
simulate the adverse conditions described before. We used
the same frame sequences to perform a comparison between
the real and simulated data. We evaluated the obtained frame
sequences by a visual inspection and by using a smoke
detection software. Examples of virtual smoke simulation on
real scenarios are depicted in Fig. 2.

The smoke detection software used for the evaluation of the
obtained results is a pixel classifier based on neural networks,
which uses features related to the movement, color and shape
of the smoke plumes [19]. The system was tested with two
different sets of frame sequences:



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Examples of synthetic smoke: (a),(d),(g) Scenes without smoke; (b),(e),(h) Scenes at time t = 0; (c),(f),(i) Scenes after 200 frames.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Examples of real and synthetic smoke in the same conditions: (a,b,c) real smoke; (d,e,f) synthetic smoke.

1) DSR: collection of real smoke frame sequences;
2) DSV: collection of synthethic smoke frame sequences

generated from non-smoke sequences of DSR.

Examples of real and synthetic smoke images are shown in

Fig. 3. We computed three feature datasets from these frame
sequences: one related to the set of frame sequences DSR,
one related to the frame sequences of DSV, and one related
to all the frame sequences of DSR and DSV. The samples of



TABLE I
SUMMARY OF DATASETS

Dataset Frame Features × Non smoke samples /
Name Sequence Samples Smoke samples
DSR DSR 14× 20318 19923/395
DSV DSV 14× 28207 27756/451

DSRV DSR+DSV 14× 48525 47679/846

TABLE II
RESULTS OF DETECTION ALGORITHM ON REAL AND SIMULATED SMOKE

Reference Dataset Tp Tn Fp Fn Sens. Spec. Total
Method Name (%) (%) (%) (%) (%) (%) (%)
Neural DSR 1.94 98.06 0.00 0.00 100.00 100.00 0.00

Approach DSV 1.59 98.37 0.04 0.01 99.33 99.96 0.05
DSRV 1.74 98.24 0.00 0.02 98.95 100.00 0.02

Notes: Sens. = Sensitivity; Spec. = Specificity.

the datasets correspond to the features related to each pixel
of the frame sequences. The target values used in testing the
classifiers were computed from the segmentation of the smoke
region in every frame. The datasets are summarized in Table
I.

Table II shows the results obtained by the smoke detection
method using both real and simulated smoke frame sequences.
We refer to the True Positives as the smoke samples correctly
identified as such, and the True Negatives as the non-smoke
samples correctly identified as non-smoke. It is possible to
observe that the classification accuracy obtained by using
the DSV dataset (composed by synthetic smoke samples) is
comparable to the accuracy obtained using the DSR dataset
(composed by real smoke samples). Moreover, the test per-
formed by using the dataset DSRV (composed both by real and
synthetic smoke sequences) shows that the frame sequences
simulated by the proposed method can effectively be used in
order to train smoke detection methods when few real data are
available.

We also evaluated the proposed algorithms for the sim-
ulation of adverse environmental conditions by modifying
the frame sequences of the dataset DSV and evaluating the
performances of the method described in [19]. The results are
summarized in Table III. It is possible to observe that the
total classification error increases slightly, especially in the
case of fog and low illumination. The proposed methods for
the simulation of adverse environmental conditions, in fact,
reduce the visibility of the smoke plumes.

The obtained results suggest that simulated data are useful
to design fire and smoke detection systems. In fact, it is very
difficult to capture a sufficient number of frame sequences,
especially in adverse conditions.

V. CONCLUSIONS

The paper presented a new method for the creation of
realistic wildfire smoke plumes in order to easily assess the
accuracy of smoke detection algorithms. The proposed method
is based on the lattice Boltzmann model and it is governed by
the rules of propagation and collision. The model is completed
by simulating the effects of wind drifting and buoyancy. The
simulation of virtual adverse conditions is also proposed.

TABLE III
SUMMARY OF RESULTS UNDER ADVERSE CONDITIONS

Reference Dataset Tp Tn Fp Fn Sens. Spec. Total
Method Name (%) (%) (%) (%) (%) (%) (%)

DSV 1.59 98.37 0.04 0.01 99.33 99.96 0.05
Neural DSV (+ Fog) 1.50 98.12 0.22 0.15 90.80 99.78 0.37

Approach DSV (- Lum) 1.47 98.14 0.24 0.15 90.66 99.76 0.39
DSV (+ Lum) 1.69 98.12 0.06 0.13 92.68 99.94 0.19
DSV (+ Noise) 1.74 98.24 0.00 0.02 98.86 100.00 0.41

Notes: Sens. = Sensitivity; Spec. = Specificity; Fog = addition of simulated fog; -Lum:
decreased luminance (Y) channel; +Lum = increased luminance (Y) channel; Noise =
additive poisson noise.

We evaluated the realism of the obtained frame sequences
by visual inspections and by using our smoke detection
software, in particular performing a comparison between real
and simulated smoke sequences under the same environmental
conditions. The obtained results showed that the obtained
frame sequecences can be compared to real data. The data
extracted from the synthetic frame sequences can then be used
to increase the performance of smoke detection system when
few real data are available.
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