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Summary

A QSAR approach based on the use of various topological indices as new theoretical molecular descriptors was
applied to the study of a set of 64 anti-tuberculosis agents involving the substituted benzoxazines and phenyl-
quinazolines. In order to evaluate the reliability of the proposed linear QSAR model, several statistical tests were
proposed. The resulting model was subsequently applied to a wider virtual molecular library, which, together with
the original set of 64 molecules with known activities contained another 512 molecules for which the predictions
were made. Based on this prediction some new structures were proposed as especially promising candidates for
active anti-tuberculotic drugs.

Abbreviations: ITS, Internal Test Sets; L1O, Leave-one-out; MIC, Minimal inhibitory concentration; MLR, Mul-
tilinear regression; QSAR, Quantitative Structure-Activity Relationships; TQSI, Topological Quantum Similarity
Indices; UFS, Unsupervised Forward Selection.

Introduction

Tuberculosis, caused by Mycobacterium tuberculosis,
kills more humans than malaria, AIDS, and all trop-
ical diseases together. In recent years, the number
of new cases worldwide has increased – one of the
consequences of the AIDS epidemic. The dramatic
increase in the number of new infections, which be-
comes the subject of important concern for public
health, is due to two factors. The first is the resurgence
of tuberculosis in the west from the 1980s, where
the disease had been showing a steady decline from
the beginning of the century [1]. The second, a num-
ber of outbreaks of multi drug resistant tuberculosis
in many parts of the world, in the late 1980s and
early 1990s. Infections caused by multidrug-resistant
M. tuberculosis are difficult to treat. In addition, new

M. tuberculosis strains have emerged that are resistant
to all currently used anti-tuberculosis agents. These
alarming trends prompted the World Health Organiza-
tion to declare tuberculosis a global health emergency
in 1993, an unprecedented distinction.

A review by World Health Organization of a series
of 63 surveys of drug resistant tuberculosis carried out
worldwide between 1985 and 1994 led to the conclu-
sion that the new epidemic may be global [2]. Rates of
primary resistance to isoniazid ranged from 0–17%;
to streptomycin, 0–24%; to rifampicin, 0–3%; and
to ethambutol, 0–4%. The rates of acquired resist-
ance were isoniazid, 4-54%; streptomycin, 0–19%;
rifampicin 0–15%; and ethambutol, 0–14%. Drug
resistance in tuberculosis is not a new phenomenon.
It was recognized very soon after the introduction
of effective anti-tuberculosis drugs, that M. tubercu-
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Figure 1. Substitution pattern defined in Combinator program in
order to generate the virtual library.

losis could rapidly become resistant to the drugs used
against it. Today, the term is used to signify disease
due to M. tuberculosis that is resistant to the two most
effective current anti-tuberculosis drugs, isoniazid and
rifampicin, with or without resistance to other drugs
[3].

Thus, there is an urgent need for potent inhibitors
of M. tuberculosis, that exhibit favourable resistance
profiles, and that are well tolerated by patients. New
compounds potentially active against these bacteria
are therefore constantly being sought [4, 5]. Most of
the currently available drug design methods need a
previous knowledge about the mechanism of action
involved. However, extra-mechanistic approaches are
increasingly used to the design of new drugs. Espe-
cially useful in this respect is the approach based on
the exploitation the so-called topological indices as
new molecular descriptors applicable for the design of
theoretical Quantitative Structure-Activity Relation-
ships (QSAR). The aim of this study is to develop new
QSAR models able to predict in vitro activities of new
drugs against M. tuberculosis. In this work, several
benzoxazine and quinazoline derivatives with known
anti-tuberculosis activity are studied in order to design
new antibacterial compounds.

Molecular structures

Figure 1 depicts the general pattern used to identify all
the molecules considered in this article. All of them
can be formally seen as a substituted benzene ring at
positions R1, R2 and R3.

Waisser et al. have synthesised 64 structural de-
rivatives belonging to 9 kinds of generic series and
these investigators have also determined their respect-
ive activities against M. tuberculosis. Following the
scheme of Figure 1, in Table 1 are found the original
structures studied by Waisser. There, every generic la-
bel (a, b, c, ...) identifies a R1 substitution. The activit-
ies [6–9] of these 64 compounds are shown in Table 2.
In vitro activities are expressed as MIC (minimum in-
hibitory concentration in µmol L−1) measured after

14 days of incubation, at 37 ◦C, of M. tuberculosis My
331/88 obtained from the Czech National Collection
of Type Cultures, National Institute of Public Health,
Prague. Reference compound is isoniazid, with MIC
= 4 µmol L−1. More details concerning the synthetic
procedures and experimental protocols can be found
in aforementioned studies. Molecular reference labels
are obtained from Table 2. The label of a compound
is the combination of a letter (from a to i) indicating
the congeneric series in Table 1, and a number (from
1 to 12) which will identify R2 and R3 substitutions.
For instance, the parent non-substituted molecules of
Table 1 (R2=R3=H) are denoted here as a1, b1, ...,
i1 and corresponding activities can be read in the first
row of Table 2.

Virtual molecular generation and computation of
indices

Based on the set of structures summarised in Table 2
a virtual library was generated in our laboratory. This
was performed using Combinator program [10]. This
computer code allows the generation of 3D chemical
structures from a molecular basis or scaffold where
different fragments are placed as substituents at dif-
ferent molecular sites. The general structure depicted
in Figure 1 has been given to Combinator as the
molecular generation basis.

In the next step the series of all the structures which
can be formed by the combination of generation basis
with all possible combinations of various R1, R2 and
R3 substituents was generated by the Combinator pro-
gram. Taking into account that R1 involves the set of
9 benzoxazine or phenylquinazoline moieties listed in
Table 1, and each of the R2 and R3 corresponds to
one of 8 substituents listed in Table 2, the above pro-
cedure resulted in the generation of the virtual library
containing 9 × 8 × 8 = 576 structures. This set in-
volves as a subset the series of 64 molecules actually
studied by Waisser, whose structures are also specified
in the Table 2. After having generated the set of mo-
lecules, the geometries of all individual species were
optimized using MOPAC [11] program.

Once the molecular library is created, each struc-
ture is sent to TQSI program [12], for the computation
of indices. This program generates, for each mo-
lecule, several 2D topological indices (Wiener and
Wiener Path Number, Randic, Schultz, Balaban and
Hosoya indices, Harary Number, Kier and Hall gener-
alised connectivity indices, and Gálvez charge indices)
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Table 1. Generic compound series considered in this study. Each generic label identifies a R1 substitution in Figure 1
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Table 2. Molecules tested by Waisser et al. Activities are expressed as MIC (in µmol L−1). See text for more details

Number Substituents Congeneric series

R3 R2 a b c d e f g h i

1 -H -H 125 500 62 62 8 32 31 1 1

2 -H -CH3 62 500 16 31 4 16 16 0.5 0.5

3 -CH3 -CH3 250

4 -H -OCH3 62 >125 125 62

5 -H -F 125 >125

6 -Cl -H 31 8 8 4 8 0.5 1

7 -H -Cl 16 16 >16 8 32 4 0.5 0.5

8 -Cl -Cl 8 >62 8 8 16 4 0.5 1

9 -H -Br 31 250 16 31 16 16 4 0.5 0.5

10 -NO2 -H 16 250 16

11 -H -NO2 16

12 -H -N(CH3)2 >125 >62 >125

No. of tested molecules 11 8 8 9 5 5 6 6 6

Reference 6 6 7 7 8 8 9 9 9

[13–16] and 3D variants constituting the so called To-
pological Quantum Similarity Indices (TQSI) [17, 18].
In this way, a set of 162 indices was obtained for each
compound. More information about these indices, spe-
cially the quantum-related ones, can be found in the
cited references.

The dimensionality of this primitive set of indices
was reduced using the Unsupervised Forward Selec-
tion (UFS) algorithm by Whitley et al. [19]. UFS
procedure has been implemented with a couple of
modifications. Thus for example, while in the original
algorithm, some vector descriptors were discarded
if the absolute standard deviation from the mean is
greater than a previously defined threshold, in our
approach the descriptor variables were discarded if
their relative variance was smaller than 5% compared
to the mean value. In addition to this, the original
procedure of discarding variables according to pre-
selected parameter Rmax was also modified so as to
be less restrictive. As a consequence, the modified al-
gorithm selects more indices than the original one of
Whitley and collaborators. Thus, for example while
original UFS procedure selected in our case the set
of 11 descriptors, the modified procedure selected 66
different indices. Thus the final working matrix used
in this work has dimension 576×66. In addition to
this whole matrix a submatrix of dimension 64×66
was also considered in order to deal specifically with
the 64 compounds of Table 2 for which experimental
activities are available.

Tests of model predictability

A first test was performed on the series of 64 mo-
lecules of Table 2. It consisted in a standard leave-
one-out (L1O) cross-validation procedure using Multi-
linear Regression (MLR) [20–22]. Models involving k

descriptors (k = 1–6) were considered. For every value
of k, the standard L1O procedure was performed using
the Algorithm A, which also allows for the variable
subset selection:

Algorithm A(n, m, k): Standard MLR-L1O on n mo-
lecules for obtaining linear models involving k indices
selected from a set of m.

1. Generate all the M =
(

m

k

)
combinations of k

descriptors taken from the group of m.
For every combination:

2. Perform a L1O test:

2.1. For every one of the n molecules, left it
apart and compute a MLR fitting equation
involving the remaining n − 1 ones. Apply
the obtained linear model to the excluded
molecule, giving in this way a predicted
value.

2.2. Statistically evaluate the series of n predic-
tions obtained in the previous step: com-
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Table 3. Results obtained by the standard MLR-L1O
procedure (Algorithm A) involving the 64 compounds
with known activity. The confidence levels of all
models are less than 0.0001

Number of Number of Rcv –logP

descriptors prediction

(k) series (M)

1 66 0.697 9.795

2 2145 0.852 17.17

3 45760 0.896 20.37

4 720720 0.918 22.33

5 8936928 0.936 24.29

6 90858768 0.944 24.90

pute the correlation coefficient against the
experimental values (Rcv) and the statist-
ical significance of the attached single MLR
fitted model involving the k descriptors (F -
value, Student’s t-values and significance for
coefficients and independent term, etc.).

3. Final selected variables are those belonging to the
combination having the highest Rcv coefficient
and an acceptable statistical significance (level of
significance <1%).

4. The final model then corresponds to the MLR fit-
ting equation obtained considering all n molecules
and the selected variables in the previous step.

In order to speed up the above reported L1O proced-
ure in the step 2.1 of the algorithm A, the theorems
[23] avoiding the explicit generation and solving of the
whole set of n fittings involving n − 1 equations were
used. Algorithm A was run for n = 64 molecules, m

= 66 descriptors and k = 1, 2, . . ., 6 descriptors using
Regre, an in-house made program [24]. The results are
summarised in the Table 3.

If models involving the same number of descriptors,
k, are being compared, the best one will be the one
having the highest Rcv correlation coefficient. In es-
sence, this is the criterion followed in Algorithm A
at step 3. Nevertheless, direct comparisons of this
kind cannot be accomplished when considering mod-
els involving different number of descriptors, as those
referred to in the Table 3. In order to overcome this
problem, Pecka and Ponec [25] developed a fast and
direct procedure for the comparison of statistical im-
portance of the MLR correlation models differing in
number of parameters and number of points. The

Table 4. Results obtained for the 64 com-
pounds with known activity and following
the MLR-ITS-L1O method (Algorithm B).
For each number of descriptors, and once
all individual predictions are collected, the
correlation coefficient between predicted and
experimental quantities, Rcv , is tabulated.
Pecka-Ponec statistical parameter is computed
from this quantity

Number of descriptors Rcv –logP

1 0.697 9.795

2 0.821 14.86

3 0.824 14.12

4 0.905 20.44

5 0.941 25.19

6 0.894 17.361

method is based on the calculation of the probability
that in a given correlation with n points and k para-
meters, the correlation coefficient higher than the one
actually observed (R) can be obtained accidentally.
This probability P is

P =

∫ arccosR

0
cosk−1 θ sinn−k−2 θdθ

∫ π/2

0
cosk−1 θ sinn−k−2 θdθ

.

Intrinsically, Pecka-Ponec criterion is similar to a ran-
domization test [26], because the evaluation of the
integral takes into account the probability to obtain
values of the correlation coefficient greater than the ac-
tual R. The lower the value of P , the more significant
the model is. In this work, the negative logarithm of P

is reported. As it is possible to see from the Table 3, the
statistical importance of the QSAR models increases
with increasing the number of descriptors (parameters)
entering into the model. This, however, is not a general
rule and in other situations a maximum in the value of
–logP can often be found.

In connection with the linear cross-validation pro-
cedure implemented by means of Algorithm A, one
has to be aware of the fact that in its original form
this procedure usually over-estimates the predictive
capabilities of selected models. The reason for that is
simple: if a bigger pool of descriptors is considered,
also the number of variable subsets, M , increases
combinatorially, and the probability to find a best cor-
related series in Algorithm A at step 2.2 is higher.
This, however, is just the situation, typical for unstable
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Figure 2. ITS-L1O results obtained for the 64 molecules with known activity and using 5 descriptors. Each point is attached to a fitted linear
model.

over-parametrized models, which are difficult to reveal
[27].

In order to overcome this drawback and to evaluate
the real predictive capabilities of the selected mod-
els, an alternative cross-validation procedure called
Internal Test Sets (ITS) Method [28] was considered
by the authors. As it is explained in the literature, ITS
method is a more realistic L1O procedure. In the case
of linear models this method works as depicted in Al-
gorithm B:

Algorithm B(n, m, k): MLR-ITS-L1O method for
n molecules for obtaining linear models involving k

indices taken from a set of m.

1. Consider the n molecules with known activity and
left apart one at a time. For each molecule:

1.1. Generate all the M =
(

m

k

)
combinations

of k descriptors taken from the group of m.

For every combination:

1.1.1. Obtain the MLR fitting equation in-
volving the remaining n − 1 struc-
tures. Compute the correlation coef-
ficient against the experimental val-
ues (Rfit) and the statistical signific-
ance indicators (F -value, Student’s
t-values and significance for coeffi-
cients and independent term, etc.)

1.2. Final selected variables are those belong-
ing to the combination having the best Rfit
coefficient.

1.3. Apply the MLR model which involves the
variables selected in previous step to the
molecule excluded in step 1 and obtain the
property value prediction.

Algorithm B was run for the same set of molecules
as in the previous case (n = 64, m = 66 and k =
1, 2, . . ., 6 descriptors). An important feature of this
alternative procedure is that for each particular value
of k (denoting the number of parameters considered in
the QSAR model) that Algorithm B always resulted in
the generation of only one model for each molecule. In
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Table 5. Indices involved in all the models selected by MLR-ITS-L1O procedure. The
numerical coefficient sign was constant in all cases. See text for more details

Number of Cardinal Index Times of usage Percentage of Coefficient

descriptors in model intervention sign

in model in equations

1 1 9χS
c 64 100 +

2 1 4JC 64 100 –

2 7χC
c 35 54.7 +

3 9χS
c 29 45.3 +

3 1 7χC
c 60 93.7 +

2 4GC 58 90.6 –

3 6GC 53 82.8 +

4 8χC
ch 5 7.8 +

5 1JS 3 4.7 –

6 5JT 3 4.7 +

7 4JT 3 4.7 –

8 1GT 2 3.1 –

9 7χT
c 2 3.1 +

10 9χS
c 1 1.6 +

11 1JC 1 1.6 –

12 9χT
c 1 1.6 +

4 1 4GC 64 100 –

2 1GS 55 86.0 –

3 8χS
ch 55 86.0 +

4 7χT
c 35 54.7 +

5 9χT
c 20 31.2 +

6 1JS 9 14 –

7 7χC
c 9 14 +

8 8χT
ch 9 14 +

5 1 2GS 64 100 –

2 7GS 64 100 +

3 3χC
c 64 100 –

4 7χC
ch 64 100 +

5 9χC
ch 64 100 +

6 1 7GS 63 98.4 +

2 2χS
p 56 87.5 –

3 2JS 44 68.8 –

4 6χT
ch 37 57.8 –

5 7χC
c 36 56.3 +

6 2GS 20 31.3 –

7 9χT
c 19 29.7 –

8 7χT
c 15 23.4 –

9 5GS 14 21.9 –

10 5GT 13 20.3 +

11 8χS
pc 13 20.3 +

12 7χC
ch 12 18.8 +

13 3χC
p 10 15.6 +

14 9χS
ch 10 15.6 +

15 3χC
c 3 4.7 –

16 9χC
ch 3 4.7 +
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Table 5. (continued)

Number of Cardinal Index Times of usage Percentage of Coefficient

descriptors in model intervention sign

in model in equations

17 4χT
p 3 4.7 –

18 8χS
ch 2 3.1 +

19 4χS
pc 1 1.5 +

20 7JC 1 1.5 +

21 1JT 1 1.5 –

22 7χT
ch 1 1.5 +

23 5χC
p 1 1.5 +

24 1χS
p 1 1.5 –

25 3JS 1 1.5 +

26 2JT 1 1.5 +

27 9χS
c 1 1.5 +

28 8χC
ch 1 1.5 +

29 2GT 1 1.5 +

Figure 3. Molecule codes stand for predicted values against the experimental ones (see Table 6). Filled circles are fitted values in training
process. See text for more details.

this way only a single prediction is made for the mo-
lecule that was left out. In other words, predictions are

made at step 1.3 of Algorithm B without supervision.
The main technical difference between the standard
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Table 6. Predicted property values for the 18 molecules of groups
g, h and i. Correlation coefficient respect experimental values is
0.875 and –logP = 2.757, standard deviation is 0.306 logarithmic
units

Number Molecule Actual logMIC Predicted logMIC

1 g1 1.491 1.133

2 g2 1.204 0.756

3 g6 0.903 0.400

4 g7 0.602 0.294

5 g8 0.602 0.378

6 g9 0.602 0.700

7 h1 0.000 0.332

8 h2 –0.301 –0.026

9 h6 –0.301 –0.087

10 h7 –0.301 –0.246

11 h8 –0.301 –0.252

12 h9 –0.301 0.222

13 i1 0.000 0.127

14 i2 –0.301 –0.128

15 i6 0.000 –0.053

16 i7 –0.301 –0.121

17 i8 0.000 –0.090

18 i9 –0.301 0.285

L1O procedure (Algorithm A) and ITS-L1O one (Al-
gorithm B) is evident. The loop procedures over the
variable selection (generation of M subsets) and prop-
erty prediction (keep a left out molecule) are reversed.
This can be checked by looking at the respective al-
gorithmic steps 1 and 2.1 from Algorithm A and 1 and
1.1 from Algorithm B. In this way, in an ITS-L1O pro-
cedure the process of selection of subset variables is
performed without taking into account the information
about the excluded structure. In practice, Algorithm B
requires 64 independent calls of Regre program and,
once a model is selected, the prediction for the hid-
den structure is obtained. This process of data hiding
encompasses the recommendations of Hawkins [29]
and collaborators who raise in the recent article the
problem of real keeping the data in a cross-validation
study, especially when the molecular set is small.

It is important to understand the difference
between a standard linear L1O procedure and the
ITS-L1O counterpart. In general, a reliable cross-
validation procedure should deal with a successive
series of training and true predictions. As a con-
sequence, many QSAR studies deal with linear and
non linear methodologies (principal component ana-
lysis, partial least squares, discriminant analysis, sup-

port vector machines, neural networks, classification
techniques, etc., or combinations of them) imple-
mented in such a way that the variable selection and
the property prediction are performed in the same
order as in Algorithm B. As a consequence the MLR-
ITS-L1O linear procedure is the algorithm which
should be preferred whenever the comparison of L1O
cross-validated results with other methodologies is
considered.

In both algorithms, the most inner loops involve
the execution of MLR fittings. In order to see whether
the linear models constructed at this level using leave-
many-out procedures do indeed lead to improved res-
ults, the test calculations were performed. The result
was negative and this is the reason why all the mod-
els presented in this paper come from ordinary MLR
fitting procedures.

The statistical parameters obtained following the
ITS-L1O method can be read in Table 4. As it is pos-
sible to see, the statistical importance of considered
QSAR models (characterised by the value of –log P)
increases with the increasing number of parameters
only up to k = 5 but in contrast to the situation
depicted in Table 3, further increase of the number
of parameters leads to the decrease of the statistical
importance of the corresponding 6-parameter QSAR
models. So, the best models are the ones involving
5 descriptors. The predictions obtained from these
models are depicted in Figure 2.

In connection with this conclusion it is, however,
important to stress that straightforward comparison of
the data in Tables 3 and 4 can be misleading. Thus, for,
example, although some of the values of correlation
coefficients obtained using original L1O procedure
(Table 3) (not for k = 5) are higher than the ones
from the Table 4, the conclusion that also the stat-
istical importance of the results of the original L1O
procedure is correspondingly higher would be wrong.
This is due to the fact that tests of ITS-L1O procedure
are much more severe than for standard L1O process
and as each of 64 predictions presented in Figure 2
were obtained after a blind search, where the left out
molecule data are completely hidden for the process,
the true predictions are in fact performed only within
ITS-L1O protocol.

In general, ITS procedures can be interpreted as
being internal tests for assessing the true predictive
capabilities of the model. Using an ITS method, de-
tection of outliers is automatic [28], because only a
single prediction is made by molecule on the fly and
this prediction can differ considerably from the exper-
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Table 7. Probabilities and significance levels to select from 0 to 10 or 12 active molecules
(from a total of 12) when randomly selecting 10 or 20 compounds from the whole set of 64

Number of Selecting 10 molecules Selecting 20 molecules

active Probability Significance Probability Significance

molecules Q(p, 12; 10, 64) level Q(p, 12; 20, 64) level

(p) (%) (%) (%) (%)

0 10.44 100.0 0.6422 100.0

1 29.15 89.56 4.670 99.36

2 32.79 60.41 14.35 94.69

3 19.43 27.62 24.61 80.33

4 6.653 8.189 26.15 55.72

5 1.359 1.536 18.09 29.58

6 0.1651 0.1771 8.331 11.49

7 0.0116 0.0120 2.563 3.157

8 0.0004 0.0004 0.5207 0.5940

9 <0.0001 <0.0001 0.0677 0.0733

10 <0.0001 <0.0001 0.0053 0.0056

11 – – 0.0002 0.0002

12 – – <0.0001 <0.0001

imental value. On the other hand, in standard linear
L1O or leave-many-out processes, outliers are difficult
to detect due to possible over-fitting, resulting from the
excessive number, M , of supervised prediction series.

There is another feature related to the conclusion
that the best models are those involving 5 descriptors:
a statistical study over the involved indices entering in
all the models selected across the ITS-L1O involving
from one up to six descriptors was performed. The
frequency with which every index appears in models
selected by Algorithm B are given in the Table 5. The
interesting conclusion that can be deduced from the
Table 5 is that the best models are the ones involving
either one or five descriptors. These models are very
stable because always the same indices have been
selected in the step 1.2 of Algorithm B. In models in-
volving 2 descriptors, the index 4JC is selected always
while the pair of descriptors (7χC

c and 9χS
c ) appears

with a slightly lower frequency. Similar inspection of
the models involving 3 or 4 indices shows that there
is again the set of indices, which enter into successful
correlations very often. Moreover, the data in the table
also suggests the lack of robustness of some linear
models. This is especially true of the models involving
6 descriptors.

All in all, the above results allows us to conclude
that the best linear models resulting from the reported
search are those involving 5 descriptors. Moreover, the
data in the Table 5 reveal that every time an index

enters in a linear model, its numerical coefficient bears
always the same sign. This is a very desirable prop-
erty because this behaviour is suggesting for numerical
consistency.

In order to provide another independent support for
the above basic conclusion, an additional consistency
test was performed. As we are interested in designing
molecules having low value of logMIC, the following
numerical experiment was designed. Let us choose as
the working set the series of 46 test molecules (those
of series a, b, c, d, e and f) and let the remaining
18 molecules belonging to groups g, h represent the
validation set. The reason for the choice of this partic-
ular procedure is that 18 validation compounds taken
from reference [9] showed a remarkable activity. MLR
models involving from 1 up to 4 descriptors reason-
ably predicted the relative order of activities but all
the calculated numerical values were greater than the
actually observed ones (activity was underestimated).
On the other hand, the model including 6 descriptors
also gave a quite good sorting of the predicted activity,
but all the numerical predictions were overestimated.
The QSAR model which was able to predict the cor-
rect order of the activity of 18 test molecules and at the
same time to reproduce negative values of logMIC was
thus the above detected 5-parameter model. The ac-
tual form the ‘best’ 5-parameter QSAR model is given
below.
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Table 8. Ranking for the first molecules expected to have a notable activity against M.
tuberculosis. R1, R2 and R3 substitution places are those of Figure 1. Identification label
refers to boxes in Table 2. See text for more details

Cardinal –logMIC Congeneric R2 R3 Identification

(expected) series (R1)

1 –0.612 h -N(CH3)2 -NO(CH3)2

2 –0.536 h -N(CH3)2 -NO2

3 –0.476 h -Br -Br

4 –0.459 h -N(CH3)2 -H h12
5 –0.437 i -Br -Br

6 –0.426 h -NO2 -H h11
7 –0.397 g -N(CH3)2 -N(CH3)2

8 –0.393 h -Br -Cl

9 –0.372 i -NO2 -H i11
10 –0.371 i -Br -Cl

11 –0.369 h -Cl -Br

12 –0.332 h -Cl -Cl h8
13 –0.328 h -NO2 -NO2

14 –0.317 i -N(CH3)2 -H i12
15 –0.300 h -Br -H h9
16 –0.288 i -Cl -Br

17 –0.263 g -N(CH3)2 -NO2

18 –0.260 i -Cl -Cl i8
19 –0.237 i -H -Br

20 –0.185 i -H -Cl i6
21 –0.184 i -Br -H i9
22 –0.174 i -Cl -H i7
23 –0.154 h -Cl -H h7
24 –0.133 g -NO2 -NO2

25 –0.132 h -Br -CH3

logMIC = −(0.74352 ± 0.31810)2GS+
(3.1463 ± 0.9225)7GS − (2.0010 ± 0.3772)3χC

c

+(4.3308 ± 1.1686)7χC
ch + (4.5754 ± 0.9638)9χC

ch−
(14.962 ± 3.825)

n = 46, Rfitting = 0.887,

− log P = 11.73, F = 29.65 .

Coefficient and independent term intervals are given at
the 95% of confidence level.

Predicted activities presented in Table 6 summarise
the results of the application of this model on the test
set of 18 structures of series g, h and i.

The correlation of 18 predicted values (labelled
points) with the corresponding experimental data are

summarised in the Figure 3. For the sake of compar-
ison, the same dependence also displays the data for
46 fitted values from the training set (filled circles).

In order to estimate the quality of the predictions
obtained by the ITS methodology, another statistical
significance test was designed. Results represented
in Figure 2 were considered again and the set of 64
molecules was split into two subsets of molecules ac-
cording to their activities. One of the subsets involved
active and the other inactive molecules. A threshold
value was set as follows: a molecule was labelled as
active if the related MIC was lower than or equal to
1 µmol L−1 (logMIC≤0). In this way the set of 12 act-
ive molecules, from the series h and i (see Table 2) was
selected, the remaining molecules were considered as
inactive.

The above sets of molecules were subjected to the
following significance test. Let us imagine that we
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have a series of s molecules from which we randomly
select r molecules and we are asking what is the prob-
ability that p of the selected molecules out of q will be
active. This probability is:

Q(p, q : r, s) =

(
s − q

r − p

) (
q

p

)
(

s

r

) .

The results of this test are summarized in the Table 7,
which lists the probabilities of having from 0 up to 10
active molecules (from the subset of 12) when choos-
ing a random collection of 10 taken from the total of
64. The smaller is this value, the more effective is the
selection. Right part of Table 7 shows the analogous
data but calculated for the case of picking up form
0 up to 12 active compounds when selecting 20 mo-
lecules out of 64. Significance levels were obtained
from cumulated probabilities: for a fixed value of p,
they correspond to the probability to select p or more
than p active molecules.

Let us confront now these results with the predic-
tions summarised in Figure 2. Taking into account
that the most active compounds are the ones with low
MIC values and that the predicted activity is related
to the vertical axis of the Figure 2, the structures
with low predicted value on this axis can hopefully
be regarded as the best candidates for preferential tar-
gets. In Table 7, cases marked in italics correspond to
present results and, as it can be seen from the tabulated
data, they are statistically very significant. This is be-
cause all 12 active compounds are found in the set of
the first sorted 13 molecules.

Model for prediction

All the above reported tests clearly suggest that the
best description of the studied series of molecules can
be obtained by using a five parameter QSAR model.
As a consequence and also according to Occam’s razor
philosophy, we confine ourselves in further considera-
tions only to this particular model. The final proposed
linear model arises from the correlation equation con-
sidering 5 variables selected by the Algorithm B and
displayed in Table 5. This model was obtained by
fitting the data of all the 64 compounds with known
activity of Table 2:

logMIC = −(0.75713 ± 0.24380)2GS+

(2.9196 ± 0.6807)7GS − (2.0628 ± 0.2520)3χC
c +

(4.6406 ± 0.7733)7χC
ch + (4.8861 ± 0.5013)9χC

ch−
(16.299 ± 2.133)

n = 64, Rfitting = 0.949,

− log P = 27.10, F = 105.6 .

Coefficient and independent term intervals are given at
the 95% of confidence level.

As expected, this model does not differ very much
from the former one obtained by training 46 molecules
of the groups a, b, c, d, e and f. Now, as all the
64 molecules enter into the fitting equation and the
correlation coefficient increases, the statistical signi-
ficance is also improved. This is properly reflected
by the logarithmic Pecka-Ponec parameter (changing
from 11.73 to 27.10). Note that, in this case, this
statistical parameter is comparing models involving
different number of points.

The proposed linear model was applied to all the
576 molecules from the virtual database originally
generated by Combinator. This gave negative logMIC
values for 46 molecules. Among them, there are 25
with logMIC←0.10 and 14 with logMIC <– 0.30. The
first ranked molecules are listed in Table 8. All these
molecules are proposed as potentially actives. All of
them are variants of groups g and h (mainly) and i.
This correlates with the data of Table 2. In fact, from
the ranked sequence of predictions, the first molecule
not belonging to one of these three groups is placed at
position 53. It has to be taken into account that some
ranked molecules (numbers 12,15,18,20–23) are train-
ing structures (h8, h9, i8, i6, i9, i7, h7, respectively),
so the corresponding expected activities in Table 8
are fitted values. On the other hand, there are 4 com-
pounds which represent real predictions because they
correspond to empty boxes in Table 2, i.e. to molecules
which were not yet prepared. These molecules spe-
cified as h12, h11, i11, and i12 (ranking numbers 4, 6,
9, and 14), thus represent a real challenge for the syn-
thesis and further testing as potential active targets. It
is interesting that among the active structures proposed
by the model, a special importance belongs to the
molecules substituted by some groups from Table 2,
namely -N(CH3)2, -NO2, -Br, and -Cl. In some cases,
di-substitutions are also proposed.
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Conclusions

A QSAR study of a set of anti-tuberculosis agents has
been performed. Special emphasis has been devoted to
finely tuning the obtained linear model for prediction.
Statistical tests for numerical stability and reliability
of predictions have been pursuit. It has been shown
that the reliability of the resulting model is crucially
influenced by two factors. One of them is the stability
of the model. This requires avoiding the eventual over-
parametrisation or over-fitting of the model and one of
the main advantages of the Algorithm B is that it gives
account of this important factor. Another factor is the
flexibility of the model, that should allow both, satis-
factory description as well as reasonable extrapolation
and predictions. This flexibility is included into the
model via the limited number of parameters and the
resulting 5-parameter model was found to satisfy reas-
onably both the above criteria. The overall predictive
power was also evaluated by means of a statistical test
(Q probability).
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