
 
Abstract—This paper describes the formation structure of a 

dynamic virtual GRID system that is built on the basis of the 

minimum spanning tree algorithm which increase the 

efficiency of GRID-system by presenting it in a dynamic 

virtual GRID system. Moreover, we develop a distributed 

routing algorithm that produces routing tables based on the 

routing agents located at the nodes of virtual GRID-systems. 

In addition to a comparative analysis of the proposed 

formation of the GRID system, we propose a new algorithm 

for constructing spanning tree for the DV GRID that adapts to 

the dynamics of the changeable environment and forms the 

tree based on the vertex with maximum degree. Our results 

clearly show the superiorities of the proposed algorithm over 

available algorithms in terms of performance and resource 

allocation. To create routing tables and virtual GRID-systems 

forming, we have used GridSim simulator. 

 
Index Terms—GRID system, dynamic GRID, CFG-

computing Fabrics GRID, virtual private networks. 

 

 I. INTRODUCTION 

Grids are collections of heterogeneous computation and 
storage resources scattered along distinct network domains 
that provide tools that allow users to find, allocate and use 
available resources [1]. Grid computing joins computers that 
are distributed worldwide, allowing their computing power 
to be allocated and shared the world wide web permits 
access to information. Computer grids enable access to 
computing resources including data storage capacity, 
visualization tools, processing power, sensors etc. Therefore, 
grids can unify thousands of different computers’ resources 
to establish a enormously powerful computing resource, 
accessible from the effortlessness by personal computers 
benefitting many applications, in science or business for 
example. Grids permit the analysis of huge investment 
portfolio in shorter periods, obviously speed up drug use 
progress and minimize time needed for design. Grid 
computing became useful for many scientific research 
applications including genetic engineering, mathematical 
modeling, biophysics, biochemistry, aircraft design, fluid 
mechanics, drug design, tomography, data mining, nuclear 
simulations, atmospheric studies, climate studies, 
neuroscience/brain activity analysis and astrophysics [2].  

GRID-system includes hardware-and-software 
infrastructure that provide reliable, sustainable and 
inexpensive access to high-performance computer resources. 
As the computing environment, (CFG - Computing Fabrics 
GRID) uses a set of resources for various types of computer 
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systems and computer networks, CFG provides the virtual 
environment with possibility of dynamic reconfiguration that 
provide maximum computational capability to solve the 
most complex tasks.  

Typically, in Grid-systems, resources of different 
computers are combined together, which often are part of 
different computer networks managed by different 
administrators. The use of various protection techniques, 
such as a firewall, private IP address and safe shell (SSH) 
require special settings and maintenance by the 
administrator. For example, getting access to Dynamic Host 
Configuration Protocol (DHCP), the client must have 
database to store its address. The situation can be confusing 
when these addresses are local IP addresses, in this case, the 
overhead becomes a cumbersome process. With a small 
number of computers, the administrator can carry out the 
task manually. The user remembers the intermediate 
gateways to each host and keeps some specialized database 
to trace DHCP clients addresses. This substantially 
complicates the process of organizing the structure of CFG 
and its reconfiguration in the process of the functioning of 
GRID- system. To overcome this challenge we use the 
technology of virtual private networks (VPN) and on its 
base construct the virtual private Grid-systems (VPG) [3]-
[10]. 

 

 II. PROBLEM STATEMENT 

At structural level the CFG can be represented in non-
oriented loaded graph G (V, E, W), where V - set of nodes 
in the CFG; E - set of graph edges G (V, E, W), which 
correspond to communication channels in the CFG, W = 

{wi, ji, j=1,2 … n} - set of graph edges weight. Edges 
Weight describes the parameters of information 
transmission through the communication channels. Here 
VPG represents subgraph Gs (Vs, Es, Ws) of graph G (V, 

E, W), where: Vs  V; Es E; WsW.   

Generally Vs = V. As a rule, during organization of VPG 
the initial set E of graph edges G (V, E, W) is redundant. In 
this case, the task of forming a set of edges Es  subgraph Gs 
(V, Es, Ws) leads to the problem of constructing a spanning 
tree, matching the criteria of optimality and have the 
required performance for fault tolerance by changing the 
parameters and structure of the CFG. 

This is because the CFG consists of large number of 
nodes that dynamically change the structure of links. A 
large number of remote nods CFG defines the need for a 
decentralized spanning tree algorithm. In turn, dynamically 
changeable structure of links CFG predetermines the use of 
self-stabilized algorithms of spanning trees formation [11]. 
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The most known algorithms for constructing spanning 
tree are the various modifications of Prim's or Kruskal's 
algorithms [12]. 

The most common algorithm used to form the spanning 
tree is Prim’s algorithm that consists of N - 1 iterations, 
each of which adds only one vertex, that does not violate 
the properties of the tree, that is, one end of an edge belongs 
to a formed tree, and another to added vertex that has the 
minimal weight. It should be noted that the Prim's algorithm 
differs its complexity, i.e. the lack of sensitivity to the 
degree of graph connectedness. 

Distinctive feature of Kruskal’s algorithm is the 
possibility to construct a tree simultaneously for several 
subtrees. In the process of the algorithm the separate 
subtrees are combined into a single spanning tree. The 
complete graph specified by the edges list. In the beginning 
of tree constructing the edges list is sorted according to 
weight in ascending order. In each step, the edges list is 
reviewed beginning from the edge, which has not yet 
processed. 

The edge, which does not form a cycle with the edges 
already included into solution, joins the formed connectivity 
component. Before the start of algorithm operation, the 
number of connectivity components is equal to the number 
of the vertexes in the graph and contains, appropriately, one 
vertex for each component. After algorithm operation 
termination there remains only single connectivity 
component and the required spanning tree is determined by 
the edges which were used to join all connectivity 
components in single component.  

The ability of Kruskal’s algorithm to form a tree from 
several subtrees simultaneously is the precondition for 
developing the decentralized algorithm construction of 
spanning tree. However, in initial form the given algorithm 
is centralized and assumes a number of operations, such as 
viewing the list of edges. 

In turn, the algorithm that forms the minimum spanning 
tree is oriented for dynamic environments, in particular to 
CFG and must have the following properties: 

 Each network node should construct the spanning tree 
asynchronously, without knowing the topology of the 
entire network. 

 The algorithm should be stable, to form spanning tree, 
even in frequently changing network topology. 
 The algorithm must perform spanning tree 

reconfiguration with minimum time complexity. 
In order to provide the maximum spanning tree stability 

and minimum time complexity of its reconfiguration, this 
paper proposes spanning tree formation relative to the 
vertexes with maximum degree. 

 

 III. THE CONSTRUCTION ALGORITHM AND DYNAMIC 

RECONFIGURATION OF SPANNING TREE CFG 

By analogy with Kruskal’s algorithm, initially, graph 

CFG is considered as spanning tree in which each vertex 
assumed as the root of the tree. During the operations of the 
algorithm, the vertexes are gradually combined in subtrees, 
which form a single spanning tree.  

Each vertex vi is characterized by its degree Di 
determined by the number of adjacent edges of a given 

vertex. Its current priority Pi corresponds to priority of the 
root vertex of subtree STj (Vj, Ej, Wj) which includes vertex 
vi. The root vertex v0

m of subtree STm (Vm, Em, Wm), assume 
it to be vertex vk, that have the highest degree among all 
vertexes vi of subtree STm (Vm, Em, Wm), i.e. v0

j = {vk | Dk ≥ 

Di  vi  Vm }. 

At the beginning of spanning tree formation, the current 

priority Pi of each vertex vi  V is equal to its degree Di. 

On the first step of forming the minimum spanning tree 

with edges ei, j E the vertex vi joins to adjacent vertex vj 

with maximum degree Dj (Fig. 1). In this case, current 
priority Pi of vertex vi becomes equal to Dj degree of vertex 

vj.  
This forms some set of subtrees {STm (Vm, Em, Wm) | m=1, 

2...l; l <n}. The first step of spanning tree formation is 
shown in Fig. 1. Dotted lines show the edges of the original 
graph, and solid lines show the edges of the formed 
subtrees. 
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Fig. 1. First step of spanning tree formation. 
 

On the second and subsequent steps of the spanning tree 
formation are formed individual subtrees of set {STm (Vm, 

Em, Wm) | m=1, 2…l; l <n}. Each node asynchronously 
queries its neighbors to determine the network topology, if 
the nodes belong to different trees, then these trees are 
combined (Fig. 2). 
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Fig. 2. Resulting spanning tree. 

 
Any change to the CFG topology leads to change in the 

degree of individual vertexes subgraph Gs (V, Es, Ws), that 
results in the formation of new spanning tree. As an 
example, Fig. 3 shows the spanning tree with removed edge 
e4,7. 
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Fig. 3. Spanning tree after removing the edge ei, j. 
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 IV. ANALYSIS OF THE SPANNING TREES FORMATION 

ALGORITHMS 

In order to analyze the temporal characteristics of the 
proposed algorithm and to compare it with well-known 
algorithms, we consider loosely-connected graphs with 
different number of nodes, which are the most typical for 
CFG environment structure. As shown in Fig. 4, the 
obtained dependences of time tree formation on the number 
of network nodes for the considered algorithms and the 
proposed algorithm compared with the well-known Prim 
and Kruskal algorithms has less time for the spanning tree 
formation, which suggests that is preferable to be used in a 

dynamically reconfigurable environment to which CFG is 
related. 

In addition, when comparing the algorithms take into 
consideration their ability to parallel and decentralized 
execution. This possibility may be realized because each 
node asynchronously queries only its neighbors, while Prim 
and Kruskal algorithms realize a centralized construction of 
tree links, starting from the root of the tree. 

 
 

 

 
Fig. 4. Results of modeling the algorithms of a tree links construction. 

 
The ability of a given algorithm for dynamic 

reconfiguration is the most important feature in dynamically 
changeable environment. This is because it functions 
completely decentralized, adapting to the changing CFG 
configuration, and does not require information about the 
network topology, and provides high performance and 
reliability. 

 

 V. ROUTING ALGORITHM 

Now we present a distributed dynamic routing algorithm 
in terms of channels state. This algorithm is based on the 
interaction process routing agents (demons) that reside in 
each node of virtual GRID-system. During the execution, 
the neighboring agents are exchange routing information. 

The process of routing algorithm can be described as 
follows:  

1) Domains of Virtual Private Grid-network run on all 
hosts that the user wants to use. These domains can 
be loaded in any order. 

2) Domains create and retain bidirectional (TCP) 
connections. They create the connections necessary 
to form a single graph through the exchange of 
information between neighbors. In this scheme, 
hosts with dynamic and/or private IP addresses 

become reachable, because they outside initiate 
bidirectional connections.    

3) Hosts of spanning tree construction and domains 
are terminating connection creation.  

4) The source node (home host) tracks the topology of 
entire network, determines the route to any 
participating node. Hosts and connections may fail 
or new hosts can become accessible. Whenever a 
network topology changes, domains construct new 
spanning tree by removing / adding connections and 
making all hosts accessible. 

Thus, when the task is specified, source node should 
calculate the shortest path to the destination node, and 
tracks the topology of entire network by obtaining 
information from domains in form of topology fragments 
and then connects it. Every time when network topology 
changes, domains send new data to shell that updates 
information about the topology.  

It should be noted that, in the beginning the domains do 
not know where the home host (source node), then each 
domain computes path to home host, using an additional 
variable ToHome. Essentially ToHomeu equal to v, where v 
is the neighbor of u in the tree and is by one hop closer to 
home host than u, only when u - home host

 
ToHomeu, 

equals u. If the host u has not computed path to home host 
yet, then  ToHomeu equals nil (ToHome is initialized as nil). 
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Node u computes the value ToHomeu, by repeating the 
algorithm with a certain interval note that the home host is 
considered as spanning tree root. Therefore, ToHomeu  
computation, leads to define the host u parent. 
 If host u is the home host, then  ToHomeu value 

becomes equal to u. Node u does not need to calculate 
path to itself. 

 If u is tree leaf, and has only one neighbor. Therefore, 
u should send messages to home host via neighbor 
node and consider it as parent. 

 If v is the neighbor of the node u and satisfies the 
conditions of  ToHomeu =u, then v is a child of u. If all 
nodes neighboring to u except v, are children to u, 
node v should be assumed as parent for u. host u sends 
messages to home host via v. If there are more than 
two neighbors who are not children to u, then u cannot 
determine exactly which node will ToHomeu be its 
parent, in this case

 
does not change. 

 If node v neighboring but it’s not a child to node u 

and v satisfies ToHomeu nil, v has already 
determined the route to home host which does not pass 
via the node u, Therefore, u can send messages to 
home host via the node v and u accepts v as parent 
node. 

 If u does not correspond to any of conditions above, u 
cannot determine the route to home host, and ToHomeu 
becomes equal to nil. 

 

 VI. SIMULATION 

In the research, there was implemented complex for 
simulation the considered routing algorithm and 
construction the minimum spanning tree as shown in Fig. 5. 

 

 
Fig. 5. Complex for simulation the virtual private grid network.  

This complexity allows to specify the nodes and links 
between them as a weighted graph, as well as to edit a given 
topology. To perform simulation it is necessary to specify 
tasks to the source and destination nodes, (Fig. 6). 

 

 
Fig. 6. Specifying the source node 

As a result, on the screen there are displayed the selected 
(dark color) arcs of the minimum spanning tree according to 
specified topology (Fig. 7). 

 

 
Fig. 7. Minimum spanning tree. 

As a result, the algorithm generated the routing tables 
(Fig. 8), which contain information about the structure of 
the minimum spanning tree. In the table of each node 
indicates the number (code) of the nearest node to the 
vertex of the tree and the distance to this node. At presented 
in (Fig. 7), vertex 2 is the minimum spanning tree for root 
vertex. In this case, for vertex 5, the nearest vertex in the 
direction to the root vertex is vertex 4 and the distance to it 
is equal 2. 

 

 
Fig. 8. Routing tables. 

 

 VII. CONCLUSIONS 

This paper presented a model of virtual dynamic Grid 
that can be effectively used in specialized mobile Grid, 
which operates on networks based on Ad Hoc class. These 
mobile Grids are characterized by its similar opportunity 
nodes, not require the administrator’s control, and allow 
fully dynamic distributed control mechanisms. 

It also presented a self-stabilize spanning tree algorithm, 
intended to construct communication tree nodes and fairly 
distributes tasks over Virtual Dynamic Grid nodes.  

The proposed algorithm meets the necessary 
requirements of a dynamic Grid environment, and has the 
properties of decentralized execution, that increases its 
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speed and reliability and the possibility of operation in a 
dynamically changing environment. 
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