

Abstract—This paper describes the formation structure of a

dynamic virtual GRID system that is built on the basis of the

minimum spanning tree algorithm which increase the

efficiency of GRID-system by presenting it in a dynamic

virtual GRID system. Moreover, we develop a distributed

routing algorithm that produces routing tables based on the

routing agents located at the nodes of virtual GRID-systems.

In addition to a comparative analysis of the proposed

formation of the GRID system, we propose a new algorithm

for constructing spanning tree for the DV GRID that adapts to

the dynamics of the changeable environment and forms the

tree based on the vertex with maximum degree. Our results

clearly show the superiorities of the proposed algorithm over

available algorithms in terms of performance and resource

allocation. To create routing tables and virtual GRID-systems

forming, we have used GridSim simulator.

Index Terms—GRID system, dynamic GRID, CFG-

computing Fabrics GRID, virtual private networks.

 I. INTRODUCTION

Grids are collections of heterogeneous computation and
storage resources scattered along distinct network domains
that provide tools that allow users to find, allocate and use
available resources [1]. Grid computing joins computers that
are distributed worldwide, allowing their computing power
to be allocated and shared the world wide web permits
access to information. Computer grids enable access to
computing resources including data storage capacity,
visualization tools, processing power, sensors etc. Therefore,
grids can unify thousands of different computers’ resources
to establish a enormously powerful computing resource,
accessible from the effortlessness by personal computers
benefitting many applications, in science or business for
example. Grids permit the analysis of huge investment
portfolio in shorter periods, obviously speed up drug use
progress and minimize time needed for design. Grid
computing became useful for many scientific research
applications including genetic engineering, mathematical
modeling, biophysics, biochemistry, aircraft design, fluid
mechanics, drug design, tomography, data mining, nuclear
simulations, atmospheric studies, climate studies,
neuroscience/brain activity analysis and astrophysics [2].

GRID-system includes hardware-and-software
infrastructure that provide reliable, sustainable and
inexpensive access to high-performance computer resources.
As the computing environment, (CFG - Computing Fabrics
GRID) uses a set of resources for various types of computer

Manuscript received March 9, 2013; revised April 30, 2013.
H. S. Al-Bdour is with the Department of Information Technology,

Mutah University, Karak, Jordan (e-mail: author@boulder.nist.gov).

systems and computer networks, CFG provides the virtual
environment with possibility of dynamic reconfiguration that
provide maximum computational capability to solve the
most complex tasks.

Typically, in Grid-systems, resources of different
computers are combined together, which often are part of
different computer networks managed by different
administrators. The use of various protection techniques,
such as a firewall, private IP address and safe shell (SSH)
require special settings and maintenance by the
administrator. For example, getting access to Dynamic Host
Configuration Protocol (DHCP), the client must have
database to store its address. The situation can be confusing
when these addresses are local IP addresses, in this case, the
overhead becomes a cumbersome process. With a small
number of computers, the administrator can carry out the
task manually. The user remembers the intermediate
gateways to each host and keeps some specialized database
to trace DHCP clients addresses. This substantially
complicates the process of organizing the structure of CFG
and its reconfiguration in the process of the functioning of
GRID- system. To overcome this challenge we use the
technology of virtual private networks (VPN) and on its
base construct the virtual private Grid-systems (VPG) [3]-
[10].

 II. PROBLEM STATEMENT

At structural level the CFG can be represented in non-
oriented loaded graph G (V, E, W), where V - set of nodes
in the CFG; E - set of graph edges G (V, E, W), which
correspond to communication channels in the CFG, W =

{wi, ji, j=1,2 … n} - set of graph edges weight. Edges
Weight describes the parameters of information
transmission through the communication channels. Here
VPG represents subgraph Gs (Vs, Es, Ws) of graph G (V,

E, W), where: Vs V; Es E; WsW.

Generally Vs = V. As a rule, during organization of VPG
the initial set E of graph edges G (V, E, W) is redundant. In
this case, the task of forming a set of edges Es subgraph Gs
(V, Es, Ws) leads to the problem of constructing a spanning
tree, matching the criteria of optimality and have the
required performance for fault tolerance by changing the
parameters and structure of the CFG.

This is because the CFG consists of large number of
nodes that dynamically change the structure of links. A
large number of remote nods CFG defines the need for a
decentralized spanning tree algorithm. In turn, dynamically
changeable structure of links CFG predetermines the use of
self-stabilized algorithms of spanning trees formation [11].

Hamed Saqer Al-Bdour, Member, IACSIT

Virtual Grid System Based on a Minimum Spanning Tree
Algorithm

511

International Journal of Computer and Electrical Engineering, Vol. 5, No. 5, October 2013

DOI: 10.7763/IJCEE.2013.V5.763

The most known algorithms for constructing spanning
tree are the various modifications of Prim's or Kruskal's
algorithms [12].

The most common algorithm used to form the spanning
tree is Prim’s algorithm that consists of N - 1 iterations,
each of which adds only one vertex, that does not violate
the properties of the tree, that is, one end of an edge belongs
to a formed tree, and another to added vertex that has the
minimal weight. It should be noted that the Prim's algorithm
differs its complexity, i.e. the lack of sensitivity to the
degree of graph connectedness.

Distinctive feature of Kruskal’s algorithm is the
possibility to construct a tree simultaneously for several
subtrees. In the process of the algorithm the separate
subtrees are combined into a single spanning tree. The
complete graph specified by the edges list. In the beginning
of tree constructing the edges list is sorted according to
weight in ascending order. In each step, the edges list is
reviewed beginning from the edge, which has not yet
processed.

The edge, which does not form a cycle with the edges
already included into solution, joins the formed connectivity
component. Before the start of algorithm operation, the
number of connectivity components is equal to the number
of the vertexes in the graph and contains, appropriately, one
vertex for each component. After algorithm operation
termination there remains only single connectivity
component and the required spanning tree is determined by
the edges which were used to join all connectivity
components in single component.

The ability of Kruskal’s algorithm to form a tree from
several subtrees simultaneously is the precondition for
developing the decentralized algorithm construction of
spanning tree. However, in initial form the given algorithm
is centralized and assumes a number of operations, such as
viewing the list of edges.

In turn, the algorithm that forms the minimum spanning
tree is oriented for dynamic environments, in particular to
CFG and must have the following properties:

 Each network node should construct the spanning tree
asynchronously, without knowing the topology of the
entire network.

 The algorithm should be stable, to form spanning tree,
even in frequently changing network topology.
 The algorithm must perform spanning tree

reconfiguration with minimum time complexity.
In order to provide the maximum spanning tree stability

and minimum time complexity of its reconfiguration, this
paper proposes spanning tree formation relative to the
vertexes with maximum degree.

 III. THE CONSTRUCTION ALGORITHM AND DYNAMIC

RECONFIGURATION OF SPANNING TREE CFG

By analogy with Kruskal’s algorithm, initially, graph

CFG is considered as spanning tree in which each vertex
assumed as the root of the tree. During the operations of the
algorithm, the vertexes are gradually combined in subtrees,
which form a single spanning tree.

Each vertex vi is characterized by its degree Di
determined by the number of adjacent edges of a given

vertex. Its current priority Pi corresponds to priority of the
root vertex of subtree STj (Vj, Ej, Wj) which includes vertex
vi. The root vertex v0

m of subtree STm (Vm, Em, Wm), assume
it to be vertex vk, that have the highest degree among all
vertexes vi of subtree STm (Vm, Em, Wm), i.e. v0

j = {vk | Dk ≥

Di vi Vm }.

At the beginning of spanning tree formation, the current

priority Pi of each vertex vi V is equal to its degree Di.

On the first step of forming the minimum spanning tree

with edges ei, j E the vertex vi joins to adjacent vertex vj

with maximum degree Dj (Fig. 1). In this case, current
priority Pi of vertex vi becomes equal to Dj degree of vertex

vj.
This forms some set of subtrees {STm (Vm, Em, Wm) | m=1,

2...l; l <n}. The first step of spanning tree formation is
shown in Fig. 1. Dotted lines show the edges of the original
graph, and solid lines show the edges of the formed
subtrees.

v7

v1

v2

v3
v6

v5

v4

v8

v9

v11 v10
v12

Fig. 1. First step of spanning tree formation.

On the second and subsequent steps of the spanning tree
formation are formed individual subtrees of set {STm (Vm,

Em, Wm) | m=1, 2…l; l <n}. Each node asynchronously
queries its neighbors to determine the network topology, if
the nodes belong to different trees, then these trees are
combined (Fig. 2).

v7

v1

v2

v3
v6

v5

v4

v8

v9

v11 v10
v12

Fig. 2. Resulting spanning tree.

Any change to the CFG topology leads to change in the

degree of individual vertexes subgraph Gs (V, Es, Ws), that
results in the formation of new spanning tree. As an
example, Fig. 3 shows the spanning tree with removed edge
e4,7.

v7

v1

v2

v3
v6

v5

v4

v8

v9

v11 v10
v12

Fig. 3. Spanning tree after removing the edge ei, j.

512

International Journal of Computer and Electrical Engineering, Vol. 5, No. 5, October 2013

 IV. ANALYSIS OF THE SPANNING TREES FORMATION

ALGORITHMS

In order to analyze the temporal characteristics of the
proposed algorithm and to compare it with well-known
algorithms, we consider loosely-connected graphs with
different number of nodes, which are the most typical for
CFG environment structure. As shown in Fig. 4, the
obtained dependences of time tree formation on the number
of network nodes for the considered algorithms and the
proposed algorithm compared with the well-known Prim
and Kruskal algorithms has less time for the spanning tree
formation, which suggests that is preferable to be used in a

dynamically reconfigurable environment to which CFG is
related.

In addition, when comparing the algorithms take into
consideration their ability to parallel and decentralized
execution. This possibility may be realized because each
node asynchronously queries only its neighbors, while Prim
and Kruskal algorithms realize a centralized construction of
tree links, starting from the root of the tree.

Fig. 4. Results of modeling the algorithms of a tree links construction.

The ability of a given algorithm for dynamic

reconfiguration is the most important feature in dynamically
changeable environment. This is because it functions
completely decentralized, adapting to the changing CFG
configuration, and does not require information about the
network topology, and provides high performance and
reliability.

 V. ROUTING ALGORITHM

Now we present a distributed dynamic routing algorithm
in terms of channels state. This algorithm is based on the
interaction process routing agents (demons) that reside in
each node of virtual GRID-system. During the execution,
the neighboring agents are exchange routing information.

The process of routing algorithm can be described as
follows:

1) Domains of Virtual Private Grid-network run on all
hosts that the user wants to use. These domains can
be loaded in any order.

2) Domains create and retain bidirectional (TCP)
connections. They create the connections necessary
to form a single graph through the exchange of
information between neighbors. In this scheme,
hosts with dynamic and/or private IP addresses

become reachable, because they outside initiate
bidirectional connections.

3) Hosts of spanning tree construction and domains
are terminating connection creation.

4) The source node (home host) tracks the topology of
entire network, determines the route to any
participating node. Hosts and connections may fail
or new hosts can become accessible. Whenever a
network topology changes, domains construct new
spanning tree by removing / adding connections and
making all hosts accessible.

Thus, when the task is specified, source node should
calculate the shortest path to the destination node, and
tracks the topology of entire network by obtaining
information from domains in form of topology fragments
and then connects it. Every time when network topology
changes, domains send new data to shell that updates
information about the topology.

It should be noted that, in the beginning the domains do
not know where the home host (source node), then each
domain computes path to home host, using an additional
variable ToHome. Essentially ToHomeu equal to v, where v
is the neighbor of u in the tree and is by one hop closer to
home host than u, only when u - home host

ToHomeu,

equals u. If the host u has not computed path to home host
yet, then ToHomeu equals nil (ToHome is initialized as nil).

513

International Journal of Computer and Electrical Engineering, Vol. 5, No. 5, October 2013

Node u computes the value ToHomeu, by repeating the
algorithm with a certain interval note that the home host is
considered as spanning tree root. Therefore, ToHomeu
computation, leads to define the host u parent.
 If host u is the home host, then ToHomeu value

becomes equal to u. Node u does not need to calculate
path to itself.

 If u is tree leaf, and has only one neighbor. Therefore,
u should send messages to home host via neighbor
node and consider it as parent.

 If v is the neighbor of the node u and satisfies the
conditions of ToHomeu =u, then v is a child of u. If all
nodes neighboring to u except v, are children to u,
node v should be assumed as parent for u. host u sends
messages to home host via v. If there are more than
two neighbors who are not children to u, then u cannot
determine exactly which node will ToHomeu be its
parent, in this case

does not change.

 If node v neighboring but it’s not a child to node u

and v satisfies ToHomeu nil, v has already
determined the route to home host which does not pass
via the node u, Therefore, u can send messages to
home host via the node v and u accepts v as parent
node.

 If u does not correspond to any of conditions above, u
cannot determine the route to home host, and ToHomeu
becomes equal to nil.

 VI. SIMULATION

In the research, there was implemented complex for
simulation the considered routing algorithm and
construction the minimum spanning tree as shown in Fig. 5.

Fig. 5. Complex for simulation the virtual private grid network.

This complexity allows to specify the nodes and links
between them as a weighted graph, as well as to edit a given
topology. To perform simulation it is necessary to specify
tasks to the source and destination nodes, (Fig. 6).

Fig. 6. Specifying the source node

As a result, on the screen there are displayed the selected
(dark color) arcs of the minimum spanning tree according to
specified topology (Fig. 7).

Fig. 7. Minimum spanning tree.

As a result, the algorithm generated the routing tables
(Fig. 8), which contain information about the structure of
the minimum spanning tree. In the table of each node
indicates the number (code) of the nearest node to the
vertex of the tree and the distance to this node. At presented
in (Fig. 7), vertex 2 is the minimum spanning tree for root
vertex. In this case, for vertex 5, the nearest vertex in the
direction to the root vertex is vertex 4 and the distance to it
is equal 2.

Fig. 8. Routing tables.

 VII. CONCLUSIONS

This paper presented a model of virtual dynamic Grid
that can be effectively used in specialized mobile Grid,
which operates on networks based on Ad Hoc class. These
mobile Grids are characterized by its similar opportunity
nodes, not require the administrator’s control, and allow
fully dynamic distributed control mechanisms.

It also presented a self-stabilize spanning tree algorithm,
intended to construct communication tree nodes and fairly
distributes tasks over Virtual Dynamic Grid nodes.

The proposed algorithm meets the necessary
requirements of a dynamic Grid environment, and has the
properties of decentralized execution, that increases its

514

International Journal of Computer and Electrical Engineering, Vol. 5, No. 5, October 2013

speed and reliability and the possibility of operation in a
dynamically changing environment.

REFERENCES

[1] S. Jarvis, N. Thomas, and A. van. Moorsel, “Open issues in grid
performability,” I. J. of Simulation, vol. 5, pp. 3–12, 2004.

[2] K. A. Manjula and P. Karthikeyan, “Distributed computing
Approaches for Scalability and High Performance,” International

Journal of Engineering Science and Technology, vol. 2, no. 6, pp.
2328-2336, 2010.

[3] M. Tsugawa and J. A. B. Fortes, "A Virtual Network (ViNe)
Architecture for Grid Computing," Presented at 20th Intl Parallel and
Distributed Processing Symposium (IPDPS-2006), 04/06.

[4] E. Harney, S. Goasguen, J. Martin, M. Murphy, and M. Westall,
“The efficacy of live virtual machine migrations over the Internet,”
Presented at the Second International Workshop on Virtualization
Technology in Distributed Computing, Reno, NV, November 2007.

[5] B. Sotomayor, K. Keahey, and I. Foster, “Combining batch execution
and leasing using virtual machines,” in Proc. the 17th international

symposium on High performance distributed computing, pp. 87–96,
New York, NY, USA, 2008. ACM.

[6] M. McNett, D. Gupta, A. Vahdat, and G. M. Voelker. Usher, “An
Extensible Framework for Managing Clusters of Virtual Machines,"
in Proc. the 21st conference on Large Installation System

Administration Conference, pp. 1–15, Berkeley, CA, USA, 2007.
USENIX Association.

[7] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes, I. Krsul,
A. Matsunaga, M. Tsugawa, J. Zhang, M. Zhao, L. Zhu, and X. Zhu,
“From Virtualized Resources to Virtual Computing Grids: The In-
VIGO System,” Future Generation Computer Systems, vol. 21, no. 6,
pp. 896-909, Jun. 2005.

[8] Foster. What is the Grid? A Three Point Checklist. [Online].
Available:
http://wwwfp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf, 2002

[9] S. Puri and Q. Abbas, “Grid Operating System: Making Dynamic
Virtual Services in Organizations,” International Journal of

Computer Theory and Engineering, vol. 2, no. 1, pp. 2328-2336,
February, 2010.

[10] F. Palmieri, “Introducing Virtual Private Overlay Network services in
large scale Grid infrastructures,” Journal of Computers, vol. 2, no. 2,
pp. 61-72, April 2007

[11] F. C. G¨artner and H. Pagnia, “Time-efficient self-stabilizing
algorithms through hierarchical structures,” in Proc. the 6th

Symposium on Self- Stabilizing Systems, Lecture Notes in Computer
Science, San Francisco, June 2003.

[12] C. G´enolini and S. Tixeuil, “A lower bound on dynamic k-
stabilization in asynchronous systems,” in Proc. 21st Symposium on

Reliable Distributed Systems, IEEE Computer Society Press, pp.
211–221, 2002.

Hamed Saqer Bdour is a professor at the
Department of Information Technology /Faculty of
Science at Mutah University / Jordan. He received
his Ph.D. in Computer Engineering from National
Technical University of Ukraine (Kiev Polytechnic
University) in 1997. Dr. Bdour published several
papers in the areas of Networks, Mobile networks
and Security. His research interests include Parallel

Computing, and Computer Network.

515

International Journal of Computer and Electrical Engineering, Vol. 5, No. 5, October 2013

