
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA ‘07, June 9-13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-706-3/07/0006...$5.00.

1

Virtual Hierarchies to Support Server Consolidation
Michael R. Marty and Mark D. Hill

Computer Sciences Department
University of Wisconsin—Madison

{mikem, markhill}@cs.wisc.edu

ABSTRACT
Server consolidation is becoming an increasingly popular
technique to manage and utilize systems. This paper develops
CMP memory systems for server consolidation where most
sharing occurs within Virtual Machines (VMs). Our memory
systems maximize shared memory accesses serviced within a VM,
minimize interference among separate VMs, facilitate dynamic
reassignment of VMs to processors and memory, and support
content-based page sharing among VMs. We begin with a tiled
architecture where each of 64 tiles contains a processor, private L1
caches, and an L2 bank. First, we reveal why single-level directory
designs fail to meet workload consolidation goals. Second, we
develop the paper’s central idea of imposing a two-level virtual (or
logical) coherence hierarchy on a physically flat CMP that
harmonizes with VM assignment. Third, we show that the best of
our two virtual hierarchy (VH) variants performs 12-58% better
than the best alternative flat directory protocol when consolidating
Apache, OLTP, and Zeus commercial workloads on our simulated
64-core CMP.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—cache memories,
shared memory

General Terms
Management, Performance, Design, Experimentation

Keywords
Server consolidation, virtual machines, cache coherence, memory
hierarchies, chip multiprocessors (CMPs), multicore, partitioning

1. INTRODUCTION
Server consolidation is becoming an increasingly popular

technique to manage and utilize systems. In server consolidation
(also called workload consolidation), multiple server applications
are deployed onto Virtual Machines (VMs), which then run on a
single, more-powerful server. Manufacturers of high-end
commercial servers have long provided hardware support for
server consolidation such as logical partitions [22] and dynamic
domains [9]. VMware [43] brought server consolidation to
commodity x86-based systems without hardware support, while

AMD and Intel have recently introduced hardware virtualization
features [3, 20].

Virtualization technology’s goals include the following: First
and most important, VMs must isolate the function of applications
and operating systems (OSs) running under virtualization. This is
virtualization’s raison d'être. Second, VMs also should isolate the
performance of consolidated servers (e.g., to mitigate a
misbehaving VM from affecting others). Third, the system should
facilitate dynamic reassignment (or partitioning [37]) of a VM’s
resources (e.g., reassigning processor and memory resources to a
VM). Flexible server resource management reduces wasteful over-
provisioning and can even manage heat [19]. Fourth, the system
should support inter-VM sharing of memory to enable features like
content-based page sharing. This scheme, pioneered by Cellular
Disco [7] and currently used by VMware’s ESX server [44],
eliminates redundant copies of pages with identical contents across
VMs by mapping them to the same physical frame. Inter-VM page
sharing, especially for code pages, can reduce physical memory
demands by up to 60% [44].

Chip Multiprocessors (CMPs, multicores) provide excellent
opportunities to expand server and workload consolidation. Sun’s
“Niagara” T1 processor already offers 32 threads on a single die
with nominal power usage [25]. Intel’s Tera-scale project explores
using over a hundred identical processor/cache tiles on a single chip
[19]. Figure 1 illustrates our baseline 64-tile CMP architecture with
each tile consisting of a processor core, private L1 caches, and an
L2 bank.

Our thesis is that the memory systems for large CMPs should
be optimized for workload consolidation, as well as traditional
single-workload use. In our view, these memory systems should:

•minimize average memory access time by servicing misses
within a VM when possible;

•minimize interference among separate VMs to better isolate
consolidated server performance;

• facilitate dynamic reassignment of cores, caches, and memory to
VMs; and

• support inter-VM page sharing to reduce physical memory
demand.

Figure 2 shows how future CMPs may run many consolidated
workloads with space sharing. That is, different regions of cores
are assigned to different VMs. But memory systems proposed for
future CMPs appear not to target this kind of workload
consolidation. Use of global broadcast for all coherence across such
a large number of tiles is not viable. Use of a global directory in
DRAM or SRAM forces many memory accesses to unnecessarily
cross the chip, failing to minimize memory access time or isolate
VM performance. Statically distributing the directory among tiles
can do much better, provided that VM monitors (hypervisors)
carefully map virtual pages to physical frames within the VM’s

2

tiles. Requiring the hypervisor to manage cache layout complicates
memory allocation, VM reassignment and scheduling, and may
limit sharing opportunities.

This paper proposes supporting workload consolidation on
many-core CMPs by beginning with a straightforward idea and
then developing some of its subtle implications. We propose to
impose a two-level virtual (or logical) coherence hierarchy on a
physically flat CMP that harmonizes with VM assignment. We
seek to handle most misses within a VM (intra-VM) with a level-
one coherence protocol that minimizes both miss access time and
performance interference with other VMs. This first-level intra-
VM protocol is then augmented by a global level-two inter-VM
coherence protocol that obtains requested data in all cases. The
two protocols will operate like a two-level protocol on a physical
hierarchy, but with two key differences. First, the virtual hierarchy
(VH) is not tied to a physical hierarchy that may or may not match
VM assignment. Second, the VH can dynamically change when
VM assignment changes.

Our VH protocols use level-one directory protocols where
each block has a dynamic home tile within its VM. Home tile
assignment can change on VM reassignment. Memory requests
that are not completely satisfied at the home tile invoke the global
level-two coherence. This occurs when VM assignment
dynamically changes (without requiring the flushing of all caches)
and for inter-VM sharing.

We specify two VH protocol classes that differ in how they
perform level-two coherence. Protocol VHA uses a directory
logically at memory. It is a virtualized version of a two-level
directory protocol. Due to the dynamic nature of VM assignment,
however, global directory entries must either point to all subsets of
tiles (> 64 bits per block) or face additional complexity. Protocol
VHB reduces the in-memory directory to a single bit per block, but
sometimes uses broadcast. It reduces resource overheads,
facilitates optimizations, and only uses broadcast for rare events
like VM reassignment and for some inter-VM sharing.

Our VH protocols can also support workload consolidation
running on a single OS without virtualization. While we will refer
to hypervisors and virtual machines throughout the paper, the
reader can replace these terms with OS and process, respectively.

Our contributions regarding CMP memory systems for
workload consolidation are as follows:

•We show the value of imposing a virtual hierarchy (VH) on a
CMP.

•We specify two protocol classes, VHA and VHB, that address
the goals of minimizing memory access time, minimizing inter-
VM interference, facilitating VM reassignment, and supporting
inter-VM sharing. VHA uses pure directory-based techniques,
while VHB reduces global state and complexity.

•We find VHB performs 12-58% faster than the best alternative
flat directory protocol when consolidating Apache, OLTP, and
Zeus workloads on a 64-tile CMP.

The paper is organized as follows: Section 2 presents flat
coherence protocols for a tiled CMP architecture. Section 3
presents our protocols for imposing a virtual hierarchy on a flat
CMP. Section 4 discusses our evaluation methodology and
Section 5 shows our evaluation results. Section 6 touches upon
related work, and Section 7 concludes.

2. FLAT DIRECTORY COHERENCE
This section discusses some existing flat coherence protocol

options for many-core, tiled CMPs. We assume directory-based
coherence because CMPs with 64 or more tiles make frequent
broadcasts slow and power-hungry. When a memory access is not
satisfied within a tile, it seeks a directory, which provides
information regarding whether and where a block is cached.

Directory protocols differ in the location and contents of
directory entries. We discuss and will later evaluate three
alternative directory implementations that have been advocated in
the literature: (1) DRAM directory with on-chip directory cache;
(2) duplicate tag directory; and (3) static cache bank directory.
When applied to server consolidation, however, we will find that
all these directory implementations fail to minimize average
memory access time and do not isolate VM performance, but do
facilitate VM resource reassignment and inter-VM sharing.

2.1 DRAM Directory w/ Directory Cache (DRAM-DIR)
Like many previous directory-based systems [26, 27], a CMP

can use a protocol that stores directory information in DRAM. A
straightforward approach stores a bit-vector for every memory
block to indicate the sharers. The bit-vector, in the simplest form,
uses one bit for every possible sharer. If the coherence protocol
implements the Owner state (O), then the directory must also

Figure 1: Tiled CMP architecture

Figure 2: CMP running consolidated servers

VM 0: database

VM 3: database

VM 1: web server

VM 2: web server

VM 4: middleware

VM 5: middleware

VM 6: middleware

VM 7: middleware

3

contain a pointer to the current owner. The state size can be
reduced at a cost of precision and complexity (e.g., a coarse-
grained bit vector [14] where each bit corresponds to a cluster of
possible sharers).

A DRAM-based directory implementation for the CMP
shown in Figure 3 treats each tile as a potential sharer of the data.
Any miss in the tile’s caches then issues a request to the
appropriate directory controller. Directory state is logically stored
in DRAM, but performance requirements may dictate that it be
cached in on-chip RAM at the memory controller(s).

Figure 3 illustrates a sharing miss between two tiles in the
same VM. The request fails to exploit distance locality. That is, the
request may incur significant latency to reach the directory even
though the data is located nearby. This process does not minimize
memory access time and allows the performance of one VM to
affect others (due to additional interconnect and directory
contention). Since memory is globally shared, however, this design
does facilitate VM resource reassignment and inter-VM sharing.

2.2 Duplicate Tag Directory (TAG-DIR)
An alternative approach for implementing a CMP directory

protocol uses an exact duplicate tag store instead of storing
directory state in DRAM [4, 8, 18]. Similar to shadow tags,
directory state for a block can be determined by examining a copy
of the tags of every possible cache that can hold the block. The
protocol keeps the copied tags up-to-date with explicit or
piggybacked messages. A primary advantage of a complete
duplicate tag store is that it eliminates the need to store and access
directory state in DRAM. A block not found in a duplicate tag is
known to be idle (uncached).

As illustrated in Figure 4, a sharing miss still fails to exploit
distance locality because of the indirection at the directory, which
is now in SRAM and may be centrally located. Therefore this
approach also fails to minimize average memory access time and
to isolate VM performance from each other. Contention at the
centralized directory can especially become problematic because
of the cost in increasing the lookup bandwidth.

Furthermore, implementing a duplicate tag store can become
challenging as the number of cores increases. For example, with a
tiled 64-core CMP, the duplicate tag store will contain the tags for
all 64 possible caching locations. If each tile implements 16-way
associative L2 caches, then the aggregate associativity of all tiles
is 1024 ways. Therefore, to check the tags to locate and invalidate

sharers, a large power-hungry 1024-way content addressable
memory may be required.

2.3 Static Cache Bank Directory (STATIC-BANK-DIR)
A directory can be distributed among all the tiles by mapping

a block address to a tile called the home tile (node) [23, 45]. Tags
in the cache bank of the tile can then be augmented with directory
entry state (e.g., a sharing bit vector). If a request reaches the home
tile and fails to find a matching tag, it allocates a new tag and
obtains the data from memory. The retrieved data is placed in the
home tile’s cache and a copy returned to the requesting core.
Before victimizing a cache block with active directory state, the
protocol must first invalidate sharers and write back dirty copies to
memory.

This scheme integrates directory state with the cache tags
thereby avoiding a separate directory either in DRAM or on-chip
SRAM. However the tag overhead can become substantial in a
many-core CMP with a bit for each sharer, and the invalidations
and writebacks required to victimize a block with active directory
state can hurt performance.

Home tiles are usually selected by a simple interleaving on
low-order block or page frame numbers. As illustrated in Figure 5,
the home tile locations are often sub-optimal because the block
used by a processor may map to a tile located across the chip. If
home tile mappings interleave by page frame number, hypervisor
or operating system software can attempt to remap pages to page
frames with better static homes [12] at a cost of exposing more
information and complexity to the hypervisor or OS. Dynamic VM
reassignment would then further complicate the hypervisor’s
responsibility for using optimal mappings. Thus, a distributed
static cache bank directory also fails to meet our goals of
minimizing memory access time and VM isolation. In fact, VM
isolation especially suffers because a large working set of one VM
may evict many cache lines of other VMs.

3. VIRTUAL HIERARCHIES
This section develops the paper’s key idea for supporting

server consolidation, namely, imposing a two-level virtual
coherence hierarchy on a physically flat CMP that harmonizes
with VM assignment. The next three sub-sections develop our
virtual hierarchy (VH) ideas. We first specify a level-one directory
protocol for intra-VM coherence. By locating directories within a
VM, the level-one protocol minimizes memory access time and

d
ir

e
c
to

ry
/m

e
m

o
ry

c
o

n
tr

o
ll
e
r

A

getM A

12

fwd

data3

A

getM A

1fwd data3

duplicate tag

directory

2

Figure 3: DRAM-DIR directory protocol with its global
indirection for local intra-VM sharing (Section 2.1)

Figure 4: TAG-DIR with its centralized duplicate tag
directory (Section 2.2)

4

isolates performance. We then develop two alternative global level-
two protocols for inter-VM coherence (VHA and VHB).

3.1 Level-One Intra-VM Directory Protocol
We first develop an intra-VM directory protocol to minimize

average memory access time and interference between VMs.
When a memory reference misses in a tile, it is directed to a home
tile which either contains a directory entry (in an L2 tag)
pertaining to the block or has no information. The latter case
implies the block is not present in this VM. When a block is not
present or the directory entry contains insufficient coherence
permissions (e.g., only a shared copy when the new request seeks
to modify the block), the request is issued to the directory at the
second level.

A surprising challenge for an intra-VM protocol is finding the
home tile (that is local to the VM). For a system with a physical
hierarchy, the home tile is usually determined by a simple
interleaving of fixed power-of-two tiles in the local part of the
hierarchy. For an intra-VM protocol, the home tile is a function of
two properties: which tiles belong to a VM, and how many tiles
belong to a VM. Moreover, dynamic VM reassignment can change
both. It is also not desirable to require all VM sizes to be a power-
of-two.

To this end, we support dynamic home tiles in VMs of
arbitrary sizes using a simple table lookup that must be performed
before a miss leaves a tile (but may be overlapped with L2 cache
access). As illustrated in Figure 6, each of the 64 tiles includes a
table with 64 six-bit entries indexed by the six least-significant bits
of the block number. The figure further shows table values set to
distribute requests approximately evenly among the three home
tiles in this VM (p12, p13, and p14).1 Tables would be set by a
hypervisor (or OS) at VM (or process) reassignment. We also
consider other approaches for setting the tables using hardware
predictors, even on a per-page basis, but we do not explore them
further in this paper.

The complement of a tile naming the dynamic home is
allowing an intra-VM (level-one) directory entry to name the tiles
in its current VM (e.g., which tiles could share a block). In general,
the current VM could be as large as all 64 tiles, but may contain
any subset of the tiles. We use the simple solution of having each

intra-VM directory entry include a 64-bit vector for naming any of
the tiles as sharers. This solution can be wasteful if VMs are small,
since only bits for tiles in the current VM will ever be set. Of
course, more compact representations are possible at a cost of
additional bandwidth or complexity.

3.2 VIRTUAL-HIERARCHY-A (VHA) Protocol
VIRTUAL-HIERARCHY-A (VHA) implements global second-

level coherence with a directory in DRAM and an optional
directory cache at the memory controller(s). This second-level
protocol operates somewhat like the single-level DRAM directory
protocol described in Section 2.1, but with two key changes.

First, a level-two directory entry must name subsets of level-
one directories. This is straightforward with a fixed physical
hierarchy where the names and numbers of level-one directories
are hard-wired into the hardware. An entry for 16 hard-wired level-
one directories, for example, can name all subsets in 16 bits. In
creating a virtual hierarchy, the home tile for a block may change
with VM reassignment and the number of processors assigned to
the VM may not be a power-of-two. Thus any tile can act as the
level-one directory for any block. To name all the possible sub-
directories at the level-two directory, we adapt a solution from the
previous sub-section that allows an intra-VM directory entry to
name the tiles in its current VM. Specifically, each level-two (inter-
VM) directory contains a full 64-bit vector that can name any tile
as the home for an intra-VM directory entry.

Second, a key challenge in two-level directory protocols is
resolving races, a matter not well discussed in the literature. All
directory protocols handle a coherence request to block B with a
sequence of messages and state changes. A directory protocol is
called blocking if, while it is handling a current request for B, it
delays other requests for B (until a completion message for the
current request) [15]. For single-level directories, blocking
protocols are simpler (fewer transient states) than non-blocking
ones, but forgo some concurrency. Naively implementing blocking
in a two-level directory protocol, however, leads to deadlock
because of possible cyclic dependencies at level-one directories.

Our VHA two-level directory protocol resolves races as
follows:

1. Variants of the idea exist, e.g., the Cray T3E [36] translated node
identifiers and the IBM Power4 [40] used a hard-wired interleaving for its
three L2 cache banks.

A

getM A

1

2

fwd

data3

A

Figure 5: STATIC-BANK-DIR protocol with interleaved home
tiles (Section 2.3)

P12 P13

P14

Address

p12

p13

p14
……000101

Home Tile: p14

0

1

2

63

offset

VM Config Table

6

p12

p12

p13

p14

3

4

5

Figure 6: Tiles in a virtual machine use a configuration table
to select dynamic homes within the VM

5

1) A processor sends a coherence request to a level-one directory,
where it possibly waits before it either completes or reaches a
safe point from which it makes a level-two directory request.

2) Each level-two request is eventually handled by the blocking
level-two directory.

3) The level-two directory may forward requests to other level-
one directories which handle these requests when their current
request completes or reaches a safe point.

4) The coherence request completes at its initiating processor,
which sends completion messages to unblock appropriate
directories.

Any transient state can be considered a safe point if the
protocol can handle any second-level action at any time. To reduce
complexity and state-space explosion, we minimize the number of
safe points. For example, requests that require actions at both
protocol levels take no level-one actions until second-level actions
complete (e.g., we do not start invalidating local sharers in parallel
with issuing a second-level request).

Figure 7 illustrates how VHA’s intra-VM coherence enables
localized sharing within the VM to meet our goals of minimizing
average memory access time and mitigating the performance
impact of one VM on another. Specifically, (1) a processor issues a
request to the dynamic home tile that is local to the VM; (2) a
directory tag is found and the request redirects to the owning tile;
(3) the owner responds to the requestor. We omit the completion
message for brevity. The shared resources of cache capacity,
MSHR registers, directory entries, and interconnect links are
mostly utilized only by tiles within the VM.

Figure 8 shows how the second level of coherence allows for
inter-VM sharing due to VM migration, reconfiguration, or page
sharing between VMs. Specifically, (1) the request issues to the
home tile serving as the level-one directory and finds insufficient
permission within the VM; (2) a second-level request issues to the
global level-two directory; (3) coherence messages forward to
other level-one directories which then, in turn, (4) handle intra-VM
actions and (5) send an ack or data on behalf of the entire level-one
directory; (6) finally the level-one directory finishes the request on
behalf of the requestor (completion messages not shown).

We expect the intra-VM protocol to handle most of the
coherence actions. Since the level-two protocol will only be used
for inter-VM sharing and dynamic reconfiguration of VMs, we
now consider an alternative to VHA that aims to reduce the
complexity and state requirements of both protocol levels.

3.3 VIRTUAL-HIERARCHY-B (VHB) Protocol
VIRTUAL-HIERARCHY-B (VHB) implements global second

level coherence with a directory at DRAM with very small entries:
a single bit tracks whether a block has any cached copies. With
these small entries, VHB will have to fall back on broadcast, but
broadcasts only occur after dynamic reconfiguration and on misses
for inter-VM sharing.

Most sharing misses are satisfied within a VM via intra-VM
coherence. Those not satisfied within a VM are directed to the
memory (directory) controller. If the block is idle, it is returned to
the requestor and the bit set to non-idle. If the block was non-idle,
the pending request is remembered at the directory and the request
is broadcast to all tiles. Once the request succeeds, the requestor
sends a completion message to the memory controller.

VHB augments cached copies of blocks with a token count
[30] to achieve three advantages. First, tiles without copies of a
block do not need to acknowledge requests (one cache responds in
the common case [13]). Second, the single per-block bit in
memory can be thought of as representing either all or none tokens
[32]. Third, level-one directory protocols can eliminate many
transient states because it is no longer necessary to remember
precise information (e.g., collecting invalidate acknowledgements
for both local and global requests). This also makes it much easier
to reduce the level-one directory state in tags, for example, by
using limited or coarse-grained sharing vectors (the granularity
could even adapt to VM size) or no state at all (relying on a
broadcast within the VM).

To resolve races, VHB borrows some of VHA’s strategies
outlined in the previous section. Like VHA, requests block at both
protocol levels until receipt of completion messages. Thus an inter-
VM request that reaches a blocked inter-VM directory buffers and
waits until unblocked. If the block at memory is non-idle, the inter-
VM directory broadcasts the request to all tiles. Request messages
include a bit to distinguish between first-level and second-level
requests. Unlike VHA, second-level requests will reach both level-
one directories and level-one sharers. Level-one sharers could
ignore second-level requests and wait for the level-one directory to
take appropriate action. Doing so would essentially make the race-
handling algorithm identical to VHA.

Instead, we exploit the broadcast for two reasons. First,
exploiting the second-level broadcast reduces the complexity at the
level-one directory by obviating the need to generate and track
additional forward and invalidate messages. Second, the broadcast

A

getM A

1

2

data

A

d
ir

e
c
to

ry
/m

e
m

o
ry

c
o

n
tr

o
ll

e
r

3

getM A

1

2

3

A

A

Ad
ir

e
c
to

ry
/m

e
m

o
ry

c
o

n
tr

o
ll

e
r

getM A

Fwd

Fwd

data

data

data

4

5

6

Figure 7: VHA’s first level of coherence enables fast and isolated
intra-VM coherence.

Figure 8: VHA’s second-level coherence (dashed lines)
facilitates VM reassignment and content-based page sharing.

6

actually allows the level-one directory to be inexact. An inexact
directory will enable optimizations discussed at the end of this
section. Thus in VHB, all tiles respond to both first-level and
second-level requests. To handle races, requestors always defer to
a second-level request. Furthermore, level-one directory tiles
immediately re-forward the request to any tiles that have pending
requests outstanding for the block. This forwarding may be
redundant, but it ensures that winning requests always succeed.

Figure 9 illustrates how VHB’s intra-VM sharing operates
similar to VHA. Figure 10 shows a request requiring second-level
coherence: (1) a processor’s request issues to the dynamic home,
(2) the request escalates to the memory controller because of
insufficient permissions, (3) the memory controller initiates a
broadcast because the bit indicates sharers exist, (4) the sharer
responds directly to the requestor. We omit completion messages
for brevity.

With a global broadcast as the second-level protocol, first-
level directories in VHB can be inexact, making subtle
optimizations more amenable. One optimization that we
implement recognizes private data and only allocates a cache tag in
the requestor’s local cache instead of also allocating a tag at the
home tile to store unneeded directory state. If data transitions from
private to shared, then the second level of coherence will locate the
block with the broadcast. Our results in Section 5 will show this
optimization improves performance. Another optimization we
implement allows the victimization of a tag with active sharers in
its directory without invalidating those sharers. Other possible
optimizations that we do not implement include directly accessing
memory (with prediction) without first checking the home tile, and
selecting home tiles by using (per-page) predictors instead of a
VM configuration table.

3.4 Virtual Hierarchy Discussion
Both VHA and VHB address our four goals for supporting

server consolidation on physically flat CMPs, namely, minimizing
memory access time, minimizing inter-VM performance
interference, facilitating VM reassignment, and supporting inter-
VM sharing.

VHA and VHB gracefully handle VM (or process)
reassignment and rescheduling without flushing caches. The
hypervisor (or OS) only needs to update the VM Config Tables on
each affected core to reflect the new assignments. As processors
request cache lines, the second coherence level will automatically
locate the lines, on demand, at their old dynamic homes.

Protocol VHA uses pure directory-based techniques. This
approach, however, must allow the level-one and level-two
directories to name any possible set of tiles, thus relying on exact
directory state. Attempts to reduce directory state may either limit
the flexibility of the virtual hierarchies or require additional
complexity. Moreover, correctly managing all transient coherence
states in a two-level directory approach is non-trivial [31].

Protocol VHB reduces level-two directory state at DRAM
from at least 64 bits down to a single bit per block. This is
significant, for example, saving 4GB of DRAM in a 32GB system
(assuming 64-byte blocks). It can also allow level-one directory
entries to be approximate, or even eliminate level-one directory
state by falling back on a broadcast to tiles within the VM (thereby
approximating a virtual bus per VM).

Protocol VHB reduces transient states that must be tracked
thereby easing complexity. These simplifications make it easier to
add optimizations that are theoretically orthogonal (e.g,
approaches to managing replication). As an example of how VHB
reduces transient states, level-one directories in VHB do not need
to handle inter-VM and intra-VM invalidations.

Designers might consider using VH’s first-level of coherence
without a backing second-level coherence protocol. This option—
VHnull—could still accomplish many of our goals with sufficient
hypervisor support. Nonetheless, we see many reasons why
VHA/VHB’s two coherence levels may be preferred.

First, VHnull impacts dynamic VM reassignment as each
reconfiguration or rescheduling of VM resources requires the
hypervisor to explicitly flush all the caches of the VMs affected.
VHA/VHB, on the other hand, avoids this complexity by implicitly
migrating blocks to their new homes on demand. Second, VHnull
supports read-only content-based page sharing among VMs, but,
on a miss, obtains the data from off-chip DRAM. VHA/VHB
improves the latency and reduces off-chip bandwidth demands of
these misses by often finding the data on-chip. Third, VHnull
precludes optimized workload consolidation at the OS/process
level unless the OS is rewritten to operate without global cache
coherence. VHA/VHB provides the cache coherence to support
virtual hierarchies for individual OS processes. Fourth, VHnull
adds complexity to the hypervisor, because some of its memory
accesses (e.g., for implementing copy-on-write) must either bypass
or explicitly flush caches. VHA/VHB, on the other hand, allows the
hypervisor to use caching transparently. Fifth, VHA/VHB’s second
level of coherence allows subtle optimizations at the first-level that

A

getM A

1

2

data

A

m
e
m

o
ry

c
o

n
tr

o
ll
e
r 3

getM A

1

2

3

A

A

m
e
m

o
ry

c
o

n
tr

o
ll
e
r

global getM A

getM A

Data+tokens

4

Figure 9: VHB’s first level of coherence, like VHA, enables fast
and isolated intra-VM coherence.

Figure 10: VHB’s second level of coherence (dashed lines) uses a
broadcast to reduce memory state memory to 1-bit per block.

7

are not easily done with VHnull, such as not allocating first-level
directory entries for unshared data.

4. EVALUATION METHODOLOGY
We evaluate our protocols with full-system simulation using

Virtutech Simics [42] extended with the GEMS toolset [29].
GEMS provides a detailed memory system timing model which
accounts for all protocol messages and state transitions.

4.1 Target System
We simulate a 64-core CMP similar to Figure 1 with

parameters given in Table 1. A tiled architecture was chosen
because it maximizes the opportunity to overlay a virtual hierarchy
on an otherwise flat system. Each core consists of a 2-issue in-
order SPARC processor with 64 KB L1 I&D caches. Each tile also
includes a 1 MB L2 bank used for both private and shared data
depending on the policy implemented by the protocol. The 2D 8x8
grid interconnect consists of 16-byte links. We model the total
latency per link as 5 cycles, which includes both the wire and
routing delay. Messages adaptively route in a virtual cut-through
packet switched interconnect. DRAM, with a modeled access
latency of 275 cycles, attaches directly to the CMP via eight
memory controllers along the edges of the CMP. The physical
memory size depends on the configuration simulated, ranging from
16 to 64 GB. We set the memory bandwidth artificially high to
isolate interference between VMs (actual systems can use memory
controllers with fair queueing [33]).

4.2 Approximating Virtualization
Beyond setting up and simulating commercial workloads, a

full-system simulation of virtual machines presents additional
difficulties. Our strategy approximates a virtualized environment
by concurrently simulating multiple functionally-independent

machine instances. We realistically map and interleave the
processors and memory accesses onto our CMP memory system
timing model. Therefore we capture the memory system effects of
server consolidation, though we do not model the execution of a
hypervisor. Furthermore, although we target a system that supports
inter-VM content-based page sharing and dynamic reassignment,
we do not simulate page sharing between VMs and resources are
never reassigned during our evaluation runs. Each VM maps onto
adjacent processors to maximize the space sharing opportunities of
our protocols.

4.3 Workloads
We consolidate commercial server workloads where each

workload is considered a virtual machine and runs its own instance
of Solaris 9. The workloads used are the following: an online
transaction processing workload (OLTP), static web-serving
workloads (Apache and Zeus), and a Java middleware workload
(SpecJBB). Alameldeen et al. [2] further describe all workload
configurations. To account for non-determinism in multithreaded
workloads, we pseudo-randomly perturb simulations and calculate
runtime error bars to 95% confidence [1].

Table 2 shows the different configurations of server
consolidation we simulate. We first consider configurations that
consolidate multiple instances of the same type of workload into
virtual machines of the same size. These homogenous
configurations allow us to report overall runtime after completing
some number of transactions because all units of work are
equivalent (i.e., all VMs complete the same type of transaction).

We then simulate server consolidation configurations of
different workloads and of different virtual machine sizes. For
these mixed configurations, the simulator runs for a chosen
number of cycles and we count the number of transactions
completed for each virtual machine. We then report the cycles-per-
transaction (CPT) for each VM.

4.4 Protocols
We now discuss the implementation details of the protocols

simulated. All implementations use write-back, write-allocate L1
caching with the local L2 bank non-inclusive. An important
consideration for CMP memory systems is the number of replicas
of a cache block allowed to coexist [45, 11, 8, 5]. This paper
focuses on creating a virtual hierarchy to support server
consolidation, and we consider the replication policy an
independent issue that can be layered on top of our proposed
mechanisms. Our protocols attempt to limit replication in order to
maximize on-chip cache capacity. Nonetheless, in Section 5, we
also simulate protocols which maximize replication by always
allocating L1 replacements into the local L2 bank.

DRAM-DIR implements the protocol described in Section 2.1.
The directory considers the cache hierarchy in each tile as private.
To reduce replication, we implement a policy that uses a simple
heuristic based on the coherence state of the block. In our MOESI
implementation, an L1 victim in state M, O, or E will always
allocate in the local L2 bank. However a block in the S-state will
not allocate in the local bank because it is likely that another tile
holds the corresponding O-block. If the O-block replaces to the
directory, then the subsequent requestor will become the new
owner. The E-state in this protocol sends a non-data control
message to the directory upon replacement to eliminate a potential

Table 1: Simulation Parameters
Processors 64 in-order 2-way SPARC, 3 GHz

L1 Caches Split I&D, 64 KB 4-way set associative, 2-cycle access
time, 64-byte line

L2 Caches 1 MB per core. 10-cycle data array access, 64-byte line

Memory 16-64GB, 8 memory controllers, 275-cycle DRAM
access + on-chip delay

Interconnect 8x8 2D Grid. 16-byte links. 5-cycle total delay per link

Table 2: Server Consolidation Configurations

Configuration Description
oltp16x4p Sixteen 4-processor OLTP VMs

apache16x4p Sixteen 4-processor Apache VMs

zeus16x4p Sixteen 4-processor Zeus VMs

jbb16x4p Sixteen 4-processor SpecJBB VMs

oltp8x8p Eight 8-processor OLTP VMs

apache8x8p Eight 8-processor Apache VMs

zeus8x8p Eight 8-processor Zeus VMs

jbb8x8p Eight 8-processor SpecJBB VMs

oltp4x16p Four 16-processor OLTP VMs

apache4x16p Four 16-processor Apache VMs

zeus4x16p Four 16-processor Zeus VMs

jbb4x16p Four 16-processor SpecJBB VMs

mixed1 Two 16-processor OLTP VMs, two 8-processor
Zeus VMs, four 4-processor SpecJBB VMs

mixed2 Four 8-processor OLTP VMs, four 8-processor
Apache VMs

8

race. DRAM-DIR implements a one megabyte directory cache at
each memory controller totaling a generous 8 MB of on-chip
capacity. To further give DRAM-DIR the benefit of doubt, we fairly
partition the 8 MB directory cache between VMs for simulations
of homogenous workloads.

TAG-DIR implements the protocol described in Section 2.2
with full MOESI states. A centralized tag store, consisting of
copied tags from every tile’s caches, checks all tags on any request.
We charge a total of three cycles to access the 1024-way CAM (for
copied L2 tags) and to generate forward or invalidate messages.
Like DRAM-DIR, each tile is nominally private and replication is
controlled with the same heuristic based on the coherence state. To
ensure that the duplicate tags are kept up-to-date, tiles send explicit
control messages to the tag store when cleanly replacing data.

STATIC-BANK-DIR implements the protocol described in
Section 2.3 with MESI states (the home tile is the implicit Owner).
Home tiles interleave by the lowest six bits of the page frame
address. Each L2 tag contains a 64-bit vector to name tiles sharing
the block. The L2 controllers handle both indirections and fetches
from memory. L1 caches always replace to the home tile and clean
copies silently replace. In Section 5, we also describe the impact of
interleaving home tiles by block address rather than page frame
address.

VHA implements the two-level directory protocol as
described in Section 3.2 with MOESI states at both levels. To help
manage complexity, the L2 controller treats incoming L1 requests
the same regardless if the request is from the local L1 or another
L1 within the VM domain. Therefore L1 victims always replace to
the dynamic home tile. The L2 cache ensures exact level-one
directory state by enforcing strict inclusion amongst L1 sharers.

VHB implements the hybrid directory/broadcast protocol as
described in Section 3.3 with states equivalent to MOESI. We also
implement an optimization for private data. Private data does not
allocate a directory tag at the dynamic home and always replaces
to the core’s local L2 bank. To distinguish private from shared
data, we add a bit to the L1 cache tag that tracks if the block was
filled by memory (with all the tokens). Since VHB allows inexact
first-level directories, an L2 victim with active directory state does
not invalidate sharers.

5. EVALUATION RESULTS
Uncontended Sharing Latencies. Before we consider the
simulation of consolidated server workloads, we first verify
expected protocol behavior with a microbenchmark. The
microbenchmark repeatedly chooses random processor pairs in a
VM to modify (and therefore exchange) a random set of blocks.
Figure 11 shows the average sharing miss latencies as the number
of processors in the VM increases from 2 to 64. Generally the flat
directory protocols are not affected by VM size (as expected),
while the VHA and VHB protocols dramatically reduce sharing
latency for VM sizes much less than 64 (as expected by design).
As the number of processors per VM grows, the virtual hierarchy
flattens to eventually match the sharing performance of flat
protocols. Lines are not smooth due to implementation effects
(e.g., directory locations) and interactions among random blocks.

Runtime for Homogeneous Consolidation. Figure 12 shows the
normalized runtime for the consolidated server workloads running
multiple virtual machines of the same workload type (homogenous
consolidation). We point out the following highlights:

•VHB performs 12-58% faster than the best alternative flat
directory protocol, TAG-DIR, for the Apache, OLTP, and Zeus
configurations.

•VHA also outperforms or performs the same as the flat
alternatives for most configurations. However for some, notably
the 4x16p configurations, VHA is slower than VHB (and even
TAG-DIR for JBB 4x16p). This is due to VHA’s implementation
that currently allows no migration of private data in a tile’s local
L2 bank. For VHB, private data only allocates in the tile’s local
L2 bank rather than consuming a tag at the dynamic home for
unneeded directory state.

Memory Stall Cycles. To gain further insights into the
performance differences, Figure 13 shows the breakdown of
memory system stall cycles. The bars show the normalized amount
of cycles spent on servicing off-chip misses, hits in the local L2
bank, hits in remote L2 banks, and hits in remote L1 caches. The
figure indicates that off-chip misses contribute to the majority of
time spent in the memory system. Consequently, using a larger
backing L3 cache for future many-core CMPs, as suggested by
Intel [19], may be especially beneficial for supporting consolidated
workloads. Nonetheless, we also see a significant number of cycles
spent on misses serviced by remote L1 and L2 caches.

Our results show server consolidation increases the pressure
on the CMP cache hierarchy. When running 16 instances of
Apache with DRAM-DIR, 76% of cycles are spent on off-chip
misses. But when running 4 instances of Apache, this number
drops to 59% of cycles, due to increased hits in the local L2 banks.

Figure 13 illustrates how VHA and VHB reduce runtime by
greatly decreasing the number of cycles spent servicing misses to
remote L1 and L2 cache banks. For OLTP 8x8p, VHB spent 49%
less memory cycles on remote L1 and L2 misses compared to
DRAM-DIR and 39% less compared to TAG-DIR. This is due to
VHB’s reduced sharing latency within virtual machines, averaging
49 cycles instead of the 95 and 130 cycles for TAG-DIR and DRAM-
DIR respectively. DRAM-DIR devotes the most cycles to these
remote misses because of the global indirection and misses to the
directory caches (85% overall directory cache hit rate for OLTP
8x8p when fairly partitioned).

TAG-DIR incurs slightly more cycles to off-chip misses
because the request must first check the centralized tag directory
before accessing the memory controller. The penalty averages 20
cycles for each DRAM access. Surprisingly, for some
configurations, VHA and VHB have fewer off-chip misses than
DRAM-DIR and TAG-DIR. We suspect that shared data with high

20 40 60
processors in VM

0

20

40

60

80

100

av
er

ag
e

sh
ar

in
g

la
te

nc
y

(c
yc

le
s)

DRAM-Dir
Static-Bank-Dir
Tag-Dir
VH_A
VH_B

Figure 11: Uncontended L1-to-L1 sharing latency as the
number of processors per virtual machines varies.

9

locality [5] and L1 miss rates is more likely to stay in the cache
hierarchy because of more opportunities to update the LRU at the
dynamic home (e.g., multiple cores access the same home tile).

STATIC-BANK-DIR incurs the most cycles for off-chip misses.
This is due to bank conflict because all VMs utilize all cache
banks. On the other hand, DRAM-DIR and TAG-DIR do not use
home tiles, and the dynamic homes for VHA and VHB are isolated
by virtual machine.

Effect of Interleaving. We also ran simulations where STATIC-
BANK-DIR chooses home tiles by interleaving on block address
instead of the page frame address (with no overlap). Interleaving
on block address substantially hurt performance, especially for the
massively consolidated configurations, because of increased set
conflict. For example, with no overlap between the block and page
frame address, hot OS blocks map to the same set in the same tile.
STATIC-BANK-DIR’s relative slowdown (not shown in figures) for
the 16x4p configurations is 26%, 37%, 40%, and 21% respectively
for Apache, OLTP, JBB, and Zeus. This slowdown is likely
exaggerated by the nature of our homogeneous simulations, but the
effects are still modestly present for mixed1 and mixed2
heterogeneous experiments.

Effect of Replication Policy. Table 3 shows the effect of
increasing replication by always replacing L1 data into the core’s
local L2 bank. As shown, this replication policy had a minor effect
on overall runtime for the 8x8p configurations (and is consistent
with data for other configurations not shown). This suggests that
compensating for non-local coherence through increased
replication is not effective for these workloads.

Cycles-per-Transaction for Mixed Consolidation. Figure 14
shows the cycles-per-transaction (CPT) of each virtual machine
running the mixed configurations. Comparisons are made within
each virtual machine because the units of work differ between
workload type and VM size.

VHB offered the best overall performance by showing the
lowest CPT for the majority of virtual machines. DRAM-DIR

performs poorly, because we did not fairly partition the directory
cache for the mixed configurations. This severely impacted the
effectiveness of the 8MB directory cache, resulting in a hit rate of
only 45-55%. STATIC-BANK-DIR slightly outperformed VHB for
the OLTP virtual machines in the mixed1 configuration. This is
because the working set of OLTP is very large and the STATIC-
BANK-DIR protocol allows one VM to utilize the cache resources
of other VMs. However where STATIC-BANK-DIR slightly
improved the performance of the OLTP VMs in mixed1, it made

0.0

0.5

1.0

no
rm

al
iz

ed
 r

un
tim

e

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
ag

-D
ir

V
H

_A
V

H
_B

Apache 16x4p

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
ag

-D
ir

V
H

_A
V

H
_B

Apache 8x8p

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
ag

-D
ir

V
H

_A
V

H
_B

Apache 4x16p

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
ag

-D
ir

V
H

_A
V

H
_B

OLTP 16x4p
D

R
A

M
-D

ir
St

at
ic

-B
an

k-
D

ir
T

ag
-D

ir
V

H
_A

V
H

_B

OLTP 8x8p

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
ag

-D
ir

V
H

_A
V

H
_B

OLTP 4x16p

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
ag

-D
ir

V
H

_A
V

H
_B

JBB 16x4p

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
ag

-D
ir

V
H

_A
V

H
_B

JBB 8x8p

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
ag

-D
ir

V
H

_A
V

H
_B

JBB 4x16p

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
ag

-D
ir

V
H

_A
V

H
_B

Zeus 16x4p

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
ag

-D
ir

V
H

_A
V

H
_B

Zeus 8x8p

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
ag

-D
ir

V
H

_A
V

H
_B

Zeus 4x16p

0.0

0.5

1.0

m
em

or
y

sy
st

em
 c

yc
le

s

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
ag

-D
ir

V
H

_A
V

H
_B

Apache 16x4p

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
ag

-D
ir

V
H

_A
V

H
_B

Apache 8x8p

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
ag

-D
ir

V
H

_A
V

H
_B

Apache 4x16p

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
ag

-D
ir

V
H

_A
V

H
_B

OLTP 16x4p

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
ag

-D
ir

V
H

_A
V

H
_B

OLTP 8x8p

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
ag

-D
ir

V
H

_A
V

H
_B

OLTP 4x16p

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
ag

-D
ir

V
H

_A
V

H
_B

JBB 16x4p

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
ag

-D
ir

V
H

_A
V

H
_B

JBB 8x8p

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
ag

-D
ir

V
H

_A
V

H
_B

JBB 4x16p
D

R
A

M
-D

ir
St

at
ic

-B
an

k-
D

ir
T

ag
-D

ir
V

H
_A

V
H

_B

Zeus 16x4p

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
ag

-D
ir

V
H

_A
V

H
_B

Zeus 8x8p

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
ag

-D
ir

V
H

_A
V

H
_B

Zeus 4x16p

Figure 12: Normalized runtime for homogenous consolidation

Figure 13: Memory stall cycles, by type, for homogenous consolidation
Remote L1Remote L2Local L2Off-chip

10

the JBB virtual machines perform more poorly because of the
interference. On the other hand, VHB isolates the cache resources
between virtual machines thereby offering good overall
performance. Further investigation of fairness is future work. 1

6. RELATED WORK
Our work creates a virtual hierarchy to help manage the vast

cache resources of a many-core CMP when running consolidated
workloads. An alternative approach minimizes hardware change
by relying on the OS or hypervisor to manage the cache hierarchy
through page allocation. The Cellular Disco [7] hypervisor
exploited the structure of the Origin2000 to increase performance
and performance isolation by using NUMA-aware memory
allocation to virtual machines. Cho et al. [12] explore even lower
level OS page mapping and allocation strategies in a system that
interleaves cache banks by frame number, like STATIC-BANK-DIR.
In contrast, our proposal frees the OS and hypervisor from
managing cache banks and offers greater opportunities for VM
scheduling and reassignment.

Many proposals partition or change the default allocation
policy of monolithic shared L2 caches. Some schemes partition the
cache based on the replacement policy [24, 38, 39], or partition at
the granularity of individual cache sets or ways [10, 35]. Other
approaches by Lie et al. [28] and Varadarajan et al. [41] partition a
cache into regions, but neither schemes address coherence between
regions. Rafique et al. [34] also propose support to allow the OS to
manage the shared cache. Our VH scheme works at a higher level
than managing a single shared cache.

Our work assigns the resources of a tile, including cache
banks and processor cores, to virtual machines (or OS processes).

Hsu et al. [17] studied optimality for cache sharing based on
various metrics. Other approaches explicitly manage Quality of
Service (QoS) in shared caches. Iyer examined QoS [21] with
mechanisms for thread priorities such as set partitioning, per-
thread cache line counts, and heterogeneous regions. Applying
additional policies to better balance resources within a virtual
machine domain is a topic of future work.

There has been much previous work in organizing CMP
caches to exploit distance locality through replication or migration.
D-NUCA was proposed to improve performance by dynamically
migrating data closer to the cores based on frequency of access.
While shown to be effective in uniprocessor caches [23], the
benefits in a CMP are less clear [6]. To our knowledge, there is no
complete, scalable solution for implementing D-NUCA cache
coherence in a multiprocessor. Huh et al. [18] also studied trade-
offs in L2 sharing by using a configurable NUCA substrate with
unspecified mapping functions. All of their results relied on a
centralized directory like our TAG-DIR. CMP-NuRapid [11]
exploited distance locality by decoupling the data and tag arrays
thereby allowing the flexible placement of data. However their
CMP implementation requires a non-scalable atomic bus. Other
recently proposed replication schemes include Victim Replication
[45], Cooperative Caching [8], and ASR [5]. In Section 5, we
showed how replication is an orthogonal issue to our work.

Finally, previous commercial systems have offered support
for multiprocessor virtualization and partitioning [9, 16, 22]. Smith
and Nair characterize these systems as either supporting physical
or logical partitioning [37]. Physical partitioning enforces the
assignment of resources to partitions based on rigid physical
boundaries. Logical partitioning relaxes the rigidity, even offering
the time-sharing of processors. VH offers a new way to space-
share the vast cache resources of future many-core CMPs and
applies to either physical or logical partitioning (e.g., time-sharing
can be supported by saving and restoring the VM Config Tables).

7. CONCLUSION
CMPs provide excellent new opportunities to expand server

and workload consolidation. Memory systems for future many-
core CMPs should be optimized for workload consolidation as
well as traditional single-workload use. These memory systems
should maximize shared memory accesses serviced within a VM,
minimize interference among separate VMs, facilitate dynamic

1. We did not implement an alternative replication policy for VHA because

of the additional complexity involved with an already complex protocol.

Table 3: Relative Performance improvement from low vs.
high replication

Apache 8x8p OLTP 8x8p Zeus 8x8p JBB 8x8p

DRAM-DIR -2.8% -2.1% 1.0% -0.2%

STATIC-BANK-DIR -1.3% 1.4% 5.7% -0.3%

TAG-DIR 2.2% 0.1% 1.2 -0.2%

VHA
1 n/a n/a n/a n/a

VHB -1.7% -2.6% -4.2% -0.1%

0.0

0.5

1.0

no
rm

al
iz

ed
 c

yc
le

s
pe

r
tr

an
sa

ct
io

n

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
A

G
-D

ir
V

H
_A

V
H

_B

VM0: Apache

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
A

G
-D

ir
V

H
_A

V
H

_B

VM1: Apache

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
A

G
-D

ir
V

H
_A

V
H

_B

VM2: OLTP

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
A

G
-D

ir
V

H
_A

V
H

_B

VM3: OLTP

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
A

G
-D

ir
V

H
_A

V
H

_B
VM4: JBB

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
A

G
-D

ir
V

H
_A

V
H

_B

VM5: JBB

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
A

G
-D

ir
V

H
_A

V
H

_B

VM6: JBB

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed
 c

yc
le

s
pe

r
tr

an
sa

ct
io

n

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
A

G
-D

ir
V

H
_A

V
H

_B

VM0: Apache

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
A

G
-D

ir
V

H
_A

V
H

_B

VM1: Apache

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
A

G
-D

ir
V

H
_A

V
H

_B

VM2: Apache

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
A

G
-D

ir
V

H
_A

V
H

_B

VM3: Apache

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
A

G
-D

ir
V

H
_A

V
H

_B

VM4: OLTP

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
A

G
-D

ir
V

H
_A

V
H

_B

VM5: OLTP

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
A

G
-D

ir
V

H
_A

V
H

_B

VM6: OLTP

D
R

A
M

-D
ir

St
at

ic
-B

an
k-

D
ir

T
A

G
-D

ir
V

H
_A

V
H

_B

VM7: OLTP

Figure 14: Cycles-per-transaction (CPT) for each virtual machine running the mixed1 and mixed2 configurations
(mixed1) (mixed2)

11

reassignment of cores, caches, and memory to VMs, and support
sharing among VMs.

This paper develops CMP memory systems for workload
consolidation by imposing a two-level virtual (or logical)
coherence hierarchy on a physically flat CMP that harmonizes with
VM assignment. In particular, we show that the best of our two
virtual hierarchy variants performs 12-58% better than the best
alternative flat directory protocol when consolidating Apache,
OLTP, and Zeus commercial workloads on a 64-tile CMP.

8. ACKNOWLEDGEMENTS
We thank Philip Wells for providing assistance with

simulating consolidated workloads. We also thank Yasuko
Watanabe, Dan Gibson, Andy Phelps, Min Xu, Milo Martin,
Benjamin Serebrin, Karin Strauss, Kathleen Marty, Kevin Moore,
Kathryn Minnick, the Wisconsin Multifacet group, and the
Wisconsin Computer Architecture Affiliates for their comments
and/or proofreading. Finally we thank the Wisconsin Condor
project, the UW CSL, and Virtutech for their assistance.

This work is supported in part by the National Science
Foundation (NSF), with grants EIA/CNS-0205286, CCR-
0324878, and CNS-0551401, as well as donations from Intel and
Sun Microsystems. Hill has significant financial interest in Sun
Microsystems. The views expressed herein are not necessarily
those of the NSF, Intel, or Sun Microsystems.

9. REFERENCES

[1] A. R. Alameldeen and D. A. Wood. Variability in Architectural Simulations of
Multi-threaded Workloads. In Proceedings of the Ninth IEEE Symposium on
High-Performance Computer Architecture, pages 7–18, Feb. 2003.

[2] A. R. Alameldeen and D. A. Wood. IPC Considered Harmful for
Multiprocessor Workloads. IEEE Micro, 26(4):8–17, Jul/Aug 2006.

[3] AMD. AMD64 Virtualization Codenamed Pacifica Technology: Secure Virtual
Machine Architecture Reference Manual, May 2005.

[4] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer,
B. Sano, S. Smith, R. Stets, and B. Verghese. Piranha: A Scalable Architecture
Based on Single-Chip Multiprocessing. In Proceedings of the 27th Annual
International Symposium on Computer Architecture, pages 282–293, June 2000.

[5] B. M. Beckmann, M. R. Marty, and D. A. Wood. ASR: Adaptive Selective
Replication for CMP Caches. In Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, Dec. 2006.

[6] B. M. Beckmann and D. A. Wood. Managing Wire Delay in Large Chip-
Multiprocessor Caches. In Proceedings of the 37th Annual IEEE/ACM
International Symposium on Microarchitecture, Dec. 2004.

[7] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum. Disco: Running
Commodity Operating Systems on Scalable Multiprocessors. ACM
Transactions on Computer Systems, 15(4):319–349, 1997.

[8] J. Chang and G. S. Sohi. Cooperative Caching for Chip Multiprocessors. In
Proceedings of the 33nd Annual International Symposium on Computer
Architecture, June 2006.

[9] A. Charlesworth. Starfire: Extending the SMP Envelope. IEEE Micro,
18(1):39–49, Jan/Feb 1998.

[10] D. Chiou, P. Jain, S. Devadas, and L. Rudolph. Dynamic Cache Partitioning via
Columnization. In Proceedings of Design Automation Conference, 2000.

[11] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Optimizing Replication,
Communication, and Capacity Allocation in CMPs. In Proceedings of the 32nd
Annual International Symposium on Computer Architecture, June 2005.

[12] S. Cho and L. Jin. Managing Distributed, Shared L2 Caches through OS-Level
Page Allocation. In Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, Dec. 2006.

[13] A. Gupta and W.-D. Weber. Cache Invalidation Patterns in Shared-Memory
Multiprocessors. IEEE Transactions on Computers, 41(7):794–810, July 1992.

[14] A. Gupta, W.-D. Weber, and T. Mowry. Reducing Memory and Traffic
Requirements for Scalable Directory-Based Cache Coherence Schemes. In
International Conference on Parallel Processing (ICPP), volume I, pages 312–
321, 1990.

[15] E. Hagersten and M. Koster. WildFire: A Scalable Path for SMPs. In
Proceedings of the Fifth IEEE Symposium on High-Performance Computer
Architecture, pages 172–181, Jan. 1999.

[16] HP Partioning Continuum.
http://h30081.www3.hp.com/products/wlm/docs/HPPartitioningContinuum.pdf,
June 2000.

[17] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni. Communist, Utilitarian,
and Capitalist Cache Policies on CMPs: Caches as a Shared Resource. In
Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques, Sept. 2006.

[18] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler. A NUCA
Substrate for Flexible CMP Cache Sharing. In Proceedings of the 19th
International Conference on Supercomputing, June 2005.

[19] From a Few Cores to Many: A Tera-scale Computing Research Overview.
ftp://download.intel.com/research/platform/terascale/terascale_overview_paper.
pdf, 2006.

[20] Intel Corporation. Intel Virtualization Technology Specifications for the IA-32
Intel Architecture, 2005.

[21] R. Iyer. CQoS: A Framework for Enabling QoS in Shared Caches of CMP
Platforms. In Proceedings of the 18th International Conference on
Supercomputing, pages 257–266, 2004.

[22] J. Jann, L. M. Browning, and R. S. Burugula. Dynamic reconfiguration: Basic
building blocks for autonomic computing on IBM pSeries servers. IBM Systems
Journal, 42(1), 2003.

[23] C. Kim, D. Burger, and S. W. Keckler. An Adaptive, Non-Uniform Cache
Structure for Wire-Dominated On-Chip Caches. In Proceedings of the 10th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Oct. 2002.

[24] S. Kim, D. Chandra, and Y. Solihin. Fair Cache Sharing and Partitioning in a
Chip Multiprocessor Architecture. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques, Sept. 2004.

[25] P. Kongetira. A 32-way Multithreaded SPARC Processor. In Proceedings of the
16th HotChips Symposium, Aug. 2004.

[26] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable
Server. In Proceedings of the 24th Annual International Symposium on
Computer Architecture, pages 241–251, June 1997.

[27] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The
Directory-Based Cache Coherence Protocol for the DASH Multiprocessor. In
Proceedings of the 17th Annual International Symposium on Computer
Architecture, pages 148–159, May 1990.

[28] C. Liu, A. Savasubramaniam, and M. Kandemir. Organizing the Last Line of
Defense before Hitting the Memory Wall for CMPs. In Proceedings of the Tenth
IEEE Symposium on High-Performance Computer Architecture, Feb. 2004.

[29] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet’s General
Execution-driven Multiprocessor Simulator (GEMS) Toolset. Computer
Architecture News, pages 92–99, Sept. 2005.

[30] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token Coherence: Decoupling
Performance and Correctness. In Proceedings of the 30th Annual International
Symposium on Computer Architecture, pages 182–193, June 2003.

[31] M. R. Marty, J. D. Bingham, M. D. Hill, A. J. Hu, M. M. K. Martin, and D. A.
Wood. Improving Multiple-CMP Systems Using Token Coherence. In
Proceedings of the Eleventh IEEE Symposium on High-Performance Computer
Architecture, Feb. 2005.

[32] M. R. Marty and M. D. Hill. Coherence Ordering for Ring-based Chip
Multiprocessors. In Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, Dec. 2006.

[33] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair Queuing CMP
Memory Systems. In Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, Dec. 2006.

[34] N. Rafique, W.-T. Lim, and M. Thottethodi. Architectural Support for
Operating System-Driven CMP Cache Management. In Proceedings of the
International Conference on Parallel Architectures and Compilation
Techniques, Sept. 2006.

[35] P. Ranganathan, S. Adve, and N. P. Jouppi. Reconfigurable Caches and their
Application to Media Processing. In Proceedings of the 27th Annual
International Symposium on Computer Architecture, June 2000.

[36] S. L. Scott. Synchronization and Communication in the Cray T3E
Multiprocessor. In Proceedings of the Seventh International Conference on
Architectural Support for Programming Languages and Operating Systems,
pages 26–36, Oct. 1996.

[37] J. E. Smith and R. Nair. Virtual Machines. Morgan Kaufmann, 2005.
[38] G. E. Suh, S. Devadas, and L. Rudolph. A New Memory Monitoring Scheme

for Memory-Aware Scheduling and Partitioning. In Proceedings of the Eighth
IEEE Symposium on High-Performance Computer Architecture, Feb. 2002.

[39] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic Cache Partitioning for
CMP/SMT Systems. Journal of Supercomputing, pages 7–26, 2004.

[40] J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy. POWER4 System
Microarchitecture. IBM Journal of Research and Development, 46(1), 2002.

[41] K. Varadarajan, S. K. Nandy, V. Sharda, A. Bharadwaj, R. Iyer, S. Makineni,
and D. Newell. Molecular Caches: A Caching Structure for Dynamic Creation
of Application-Specific Heterogeneous Cache Regions. In Proceedings of the
39th Annual IEEE/ACM International Symposium on Microarchitecture, Dec.
2006.

[42] Virtutech AB. Simics Full System Simulator. http://www.simics.com/.
[43] VMware. http://www.vmware.com/.
[44] C. A. Waldspurger. Memory Resource Management in VMware ESX Server. In

Proceedings of the 2002 Symposium on Operating Systems Design and
Implementation, Dec. 2002.

[45] M. Zhang and K. Asanovic. Victim Replication: Maximizing Capacity while
Hiding Wire Delay in Tiled Chip Multiprocessors. In Proceedings of the 32nd
Annual International Symposium on Computer Architecture, June 2005.

