
The fast pace in computing, graphics, and

networking technologies plus the

demands of real-life applications have impelled the

development of more realistic virtual environments

(VEs). Realism depends on a believable appearance and

simulation of the virtual world and also implies a nat-

ural representation of participants. This representation

includes

■ a visual embodiment of the user,

■ a means of interacting with the world, and

■ a means of feeling various attributes of the world

using the senses.

Realism in participant represen-

tation involves two elements: believ-

able appearance and realistic

movements. This becomes even

more important in multiuser net-

worked virtual environments (NVE),

since the participants’ representa-

tions are used for communication.

We can define an NVE as a single

environment shared by multiple

participants connected from differ-

ent hosts. The participants’ local

program typically stores the whole

or a subset of the scene description,

and they use their own avatars to

move around the scene. Rendering

takes place from their own view-

points. This avatar representation in

NVEs has crucial functions in addi-

tion to those of single-user virtual

environments:

■ Perception (to see if anyone is around)

■ Localization (to see where the other person is)

■ Identification (to recognize the person)

■ Visualization of others’ interest focus (to see where

the person’s attention is directed)

■ Visualization of others’ actions (to see what the other

person is doing and what she means through gestures)

■ Social representation of self through decoration of

the avatar (to know what the other participants’ task

or status is)

Using virtual human figures for avatar representation

fulfills these functions realistically, providing a direct

relationship between how we control our avatars in the

virtual world and how our avatars move in response to

this control. Even with limited sensor information, we

can construct a virtual human frame that reflects the

user’s activities in the virtual world. Slater and Usoh1

indicated that using even a simple virtual body increas-

es the sense of presence in the virtual world. (See the

sidebar “Definitions and Concepts” for explanations of

the terms used in this article.)

NVEs with virtual humans are emerging from two

threads of research with a bottom-up tendency. First,

over the past several years, many NVE systems have

been created using various types of network topologies

and computer architectures. The practice is to bring

together different, previously developed monolithic

applications within one standard interface, building

multiple logical or actual processes to handle separate

elements of the VE. Second, at the same time, virtual

human research has developed to the point of provid-

ing realistic-looking virtual humans that can be ani-

mated with believable behaviors in multiple levels of

control. Inserting virtual humans in the NVE is a com-

plex task. The main issues include

■ selecting a scalable architecture to combine these two

complex systems,

■ modeling the virtual human with a believable

appearance for interactive manipulation,

■ animating the virtual human with a minimal number

of sensors to achieve maximal behavioral realism, and

■ investigating different methods to decrease the net-

working requirements for exchanging complex vir-

tual human information.
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Using virtual humans to

represent participants

promotes realism in

networked VEs. Different

message types used to

animate the human body

and face impose varying

network requirements, as

analyzed here.

.



In this article we survey problems and solutions for

these points, taking the VLNet (Virtual Life Network)

system as a reference model. The VLNet system was

developed at MiraLab at the University of Geneva and

the Computer Graphics Laboratory at the Swiss Federal

Institute of Technology. In VLNet, we try to integrate

artificial life techniques with virtual reality techniques

to create truly virtual environments shared by real peo-

ple and autonomous living virtual humans with their

own behavior, able to perceive the environment and

interact with participants. Figure 1 shows example

applications of the system.

Mult iprocess client  architecture
Typically, the sheer complexity of VE simulation sys-

tems imposes a modular design on the software. It is

appropriate to design the runtime system as a collection

of cooperating processes, each responsible for its par-

ticular task. This also allows easier portability and bet-

ter performance of the overall system through the

decoupling of different tasks and their execution over a

network of workstations or different processors on a

multiprocessor machine. We use this multiprocess

approach in VLNet. Figure 2 (on the next page) shows

the architecture of the VLNet client, with separation of

the two types of processes: the core VLNet processes and

external driver processes.

Within the VLNet core, the main process executes the

main simulation and provides services for the VEs’ basic

elements to the external programs, called drivers. The

display, cull, and database processes—standard Iris
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Definit ions and Concepts
Agent A software process that has autonomous

behavior. It does not necessarily have to be

represented by a graphics entity.

Autonomy Quality or state of being self-governing.

Avatar A representation of a real person in a

networked virtual environment

Direct controlled 

virtual human A virtual human whose body and face

geometric representation is directly updated

by the user or program controlling it.

User-guided 

virtual human A virtual human whose control is in the form of

tasks to perform (for example, go to a location,

sit) and which uses its motor skills to perform

this action by coordinated joint movements.

Participant A real person who participates in the

networked virtual environment and is

represented by an avatar.

Virtual human A graphics entity that is totally represented by

computer and looks like a real human.

1 Example

applications of

networked

virtual environ-

ments: (a) net-

worked games,

(b) virtual

meetings, 

(c) teleshop-

ping, and 

(d) medical

education.

(a) (b)

(c) (d)

.



Performer processes—allow asynchronous loading and

display of the scene with the main simulation.

The main process consists of four logical units, called

engines. The engine separates one main function in the

VE to an independent module and provides an orderly,

controlled allocation of VE elements. Moreover, the

engine manages this resource among various programs

competing for the same object. The communication

process receives and sends messages through the net-

work, and uses incoming and outgoing message queues

to implement asynchronous communication.

The object-behavior engine handles requests for chang-

ing or querying the object definition and behaviors in the

scene, and collision detection among them. The naviga-

tion engine connects the user input to navigation, object

selection, and manipulation. The input consists of rela-

tive and absolute matrices of the body’s global position

and requests for selecting or releasing an object.

Similarly, the face and body representation engines are

specialized for the virtual human figure. The face engine

connects VLNet and external face drivers. It obtains the

camera video images or face model parameters from the

external face driver and places them in VLNet’s internal

shared memory and outgoing message queue.

The body representation engine has an external inter-

face for body posture, including joint angles or global

positioning parameters, and high-level parameters to

animate the body. This engine permits defining multiple

levels of control for the human body and merging the

output of different external body drivers into a single

final posture.

Different data dependencies exist between the exter-

nal face and body process and other components of the

environment simulation system.

The virtual humans can have behav-

iors, which means they must have a

method for coding and using the

environment’s effects on their virtu-

al bodies. The virtual human should

be equipped with visual, tactile, and

auditory sensors. These sensors

serve as a basis for implementing

everyday human behavior such as

visually directed locomotion, han-

dling objects, and responding to

sounds and utterances. Similarly, we

want the virtual human to act on the

environment, for example by grasp-

ing and repositioning an object.

Next we discuss different human-

figure motion-control methods for

creating complex motion. This

requires sharing information

between the object and navigation

engines, and external human

processes using their external inter-

faces.

Virtual human modeling
Typically, control of body posture

requires an articulated structure

corresponding to the human skele-

ton. Structures representing body shape must be

attached to the skeleton, and clothes might be wrapped

around the body shape.

In VLNet, we use an articulated human body model

with 75 degrees of freedom, plus an additional 30

degrees of freedom for each hand. The skeleton is rep-

resented by a 3D articulated hierarchy of joints, each

with realistic maximum and minimum limits. The skele-

ton is encapsulated with geometrical, topological, and

inertial characteristics for different limbs. The body

structure has a fixed topology template for joints.

Different body instances are created by scaling limbs

globally as well as by applying frontal, high, and low lat-

eral scaling or specifying spine origin ratio between

lower and upper body parts.2

A second layer attached to the skeleton consists of

blobs (metaballs) to represent muscle and skin. The

main advantage lies in permitting us to cover the entire

human body with a small number of blobs.

From this point we divide the body into 17 parts: head,

neck, upper torso, lower torso, hip, and left and right

upper arm, lower arm, hand, upper leg, lower leg, and

foot. Because of their complexity, head, hands, and feet

are represented with triangle meshes instead of blobs.

The other parts use a cross-sectional table for deforma-

tion. This table is created only once for each body by divid-

ing each body part into a number of cross-sections and

computing the outermost intersection points with the

blobs. These points represent the skin contour and are

stored in the body description file. The skin contour is

attached to the skeleton during runtime and at each step

is interpolated around the link depending on the joint

angles. The deformation component creates the new
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tecture of the

VLNet system

and its interface

with external

processes.
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body triangle mesh from this interpolated skin contour.

Different parameter sets exist for defining virtual

human postures and faces:

■ Global positioning domain parameters. These para-

meters consist of the global position and orientation

values of particular observable points on the body

(top of head, back of neck, mid-clavicle, shoulders,

elbow, wrist, hip, knee, ankle, bottom of mid-toe) in

the body coordinate system.

■ Joint-angle domain parameters. This category includes

the joint angles defined above that connect different

body parts.

■ Hand and finger parameters. The hand can perform

complicated motions and contains at least 15 joints,

not counting the carpal part. Since using hand joints

almost doubles the total number of degrees of free-

dom, we separate the hand parameters from those for

other body parts.

■ Face parameters. The face is generally represented as

a polygon mesh model with defined regions and free-

form deformations modeling the muscle actions.3 It

can be controlled on several levels. On the lowest

level, an extensive set of 65 minimal perceptible

actions (MPAs), closely related to muscle actions, can

be controlled directly. They can describe the facial

expression completely. Each MPA is a basic building

block facial motion parameter that allows moving a

separate visual facial feature (such as raising an eye-

brow or closing the eyes). On a higher level,

phonemes and/or facial expressions can be controlled

spatially and temporally. On the highest level, com-

plete animation scripts can be input, defining speech

and emotion over time. Algorithms exist to map tex-

ture on such a facial model.

Virtual human control
The participant should be able to animate his virtual

human representation in real time, but such control is

not straightforward: The complexity of virtual human

representation demands tracking of many degrees of

freedom. Interaction with the environment increases

this difficulty even more. Therefore, virtual human con-

trol should use higher level mechanisms to animate the

representation with maximal facility and minimal input.

We can divide virtual humans according to the methods

used to control them:

■ Directly controlled virtual humans. The joint and face

representation of the virtual human is modified

directly (for example, using sensors attached to the

body) by providing the geometry directly.

■ User-guided virtual humans. The external driver

guides the virtual human by defining tasks to per-

form. The virtual human uses its motor skills to per-

form actions through coordinated joint movements

(for example, walking or sitting).

■ Autonomous virtual humans. The virtual human is

assumed to have an internal state built from its goals

and sensor information. The participant modifies this

state by defining high-level motivations and state

changes (such as turning on vision behavior).

Directly controlled virtual humans

The virtual human must have a natural-looking body

and be animated with respect to the participant’s actu-

al body. This corresponds to a real-time form of tradi-

tional rotoscopy.

In animation, traditional rotoscopy consists of record-

ing motion with a specific device for each frame and using

this information to generate the image by computer. The

real-time rotoscopy method consists of recording input

data from a VR device in real time while applying the

same data at the same time to a graphics object on the

screen. For example, when the animator opens her fin-

gers 3 centimeters, the hand in the virtual scene opens

exactly 3 centimeters. In addition, playing previously

recorded keyframes requires real-time input of body pos-

ture geometry. The input geometry can be given as glob-

al positioning parameters or joint angle parameters.

For more immersive interaction, a complete repre-

sentation of the participant’s virtual body should have

the same movements as the real participant’s body. You

can best achieve this by using many sensors to track

every degree of freedom in the real body. Molet et al.4

wrote that a minimum of 14 sensors are required to man-

age a biomechanically correct posture, and Semwal et

al.5 presented a closed-form algorithm to approximate

the body using up to 10 sensors.

Many current VE systems use head and hand track-

ing. Therefore, the limited tracking information should

be connected with human model information and dif-

ferent motion generators in order to “extrapolate” the

joints of the body not tracked. This is more than a sim-

ple inverse kinematics problem, because you will gen-

erally find multiple solutions for the joint angles to reach

the same position and should select the most realistic

posture. The joint constraints also should be considered

in setting the joint angles.

The main lowest-level approaches to this extrapola-

tion problem are inverse kinematics using constraints,6

closed-form solutions,5 and table lookup solutions.7 The

inverse kinematics approach is based on an iterative

algorithm, where an end-effector coordinate frame (the

hand, for example) tries to reach a goal (the reach posi-

tion) coordinate frame using a set of joints that control

the end effector. This approach has the advantage that

any number of sensors can be attached to any body part,

and multiple constraints can be combined through

assigning weights. However, this might slow the simu-

lation significantly, as it requires excessive computation.

The closed-form solution eliminates this problem by

attaching 10 sensors to the body and solving for the joint

angles analytically. The human skeleton is divided into

smaller chains, and each joint angle is computed with-

in the chain it belongs to. For example, the joint angle for

the elbow is computed using the sensors attached to the

upper arm and lower arm to determine the angle

between the sensor coordinate frames. However, this

approach still needs 10 sensors.

We proposed a solution that uses previously stored

experimental data. We took the arm chain as an exam-

ple and assumed that only the 6 degrees of freedom of

the right hand are obtained as sensor input. The body

driver controlling the arm should compute the joint
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angles within the right arm using this input. The arm

motion uses experimental data obtained using sensors

and stored in a precomputed table of arm joints. This

precomputed table divides the normalized volume

around the body into a discrete number of subvolumes

and stores a mapping from subvolumes to joint angles of

the right arm. Afterwards, the normal inverse kinemat-

ics computations are performed using this posture as

the starting state.

Guided virtual humans

Guided virtual humans are driven by the user but do

not correspond directly to user motion. They build on the

concept of the real-time direct metaphor, a method con-

sisting of recording input data from a VR device in real

time. This method lets us produce effects of different

natures but corresponding to the input data. No analysis

takes place as to the real meaning of the input data.

To understand the concept, consider an example of

traditional metaphor: puppet control. A puppet may be

defined as a doll with jointed limbs moved by wires or

strings. Glove-puppets are dolls whose body fits over

your hand like a glove, with the arms and head being

moved by your fingers. In both cases, human fingers

drive the puppet’s motion.

In VLNet, an example of virtual human guidance is

guided navigation. The participant uses the input

devices to update the transformation of the virtual

human’s eye position. This local control results from

computing the incremental change in the eye position

and estimating the rotation and velocity of the body cen-

ter. The walking motor uses the instantaneous velocity

of motion to compute the walking cycle length and time,

from which it computes the joint angles for the whole

body. The sensor information on walking can be

obtained from various types of input devices, such as

gesture with a DataGlove or SpaceBall, as well as other

input methods.

Autonomous virtual humans

An autonomous system can give itself its proper laws,

its conduct, as opposed to a heteronomous system,

which is driven from the outside. Guided virtual humans

are typically driven from the outside. Including

autonomous virtual humans that interact with partici-

pants increases the real-time interaction with the envi-

ronment and will likely increase the sense of presence

for the real participants.

The autonomous virtual humans connect to the

VLNet system in the same way as human participants.

They also improve use of the environment by providing

services such as replacing missing partners and helping

in navigation. Since these virtual humans are not guid-

ed by users, they should have sufficient behaviors to act

autonomously in accomplishing their tasks. This

requires building behaviors for motion and appropriate

mechanisms for interaction.

To have behaviors, our autonomous virtual humans

must have a manner of conducting themselves. Behavior

is not just reacting to the environment; it also includes

the flow of information by which the environment acts

on the living creature and how the creature codes and

uses this information. Behavior of autonomous virtual

humans arises from their perception of the environment.

Combining mot ions
The different motion generators output their results

as new joint angles between connecting limbs. As dis-

cussed, external driver programs can be attached to the

human driver engine. Normally, more than one exter-

nal driver can connect to the human posture interface,

and the engine resolves conflicts among the external

drivers. For example, while the walking motor updates

the lower body, the grasping program might control the

right arm branch of the body. The human posture engine

should convert these motions’ effects to a single virtual

body posture.

Combining motions requires that the human posture

interface contain parameters for each external driver in

addition to body control data. The external driver should

be able to define its range within the body parts and the

weight of its output on the final posture for this range.

For our initial implementation, we divided the virtu-

al body hierarchy into eight parts: torso, neck and head,

and left and right arms, legs (including feet), and hands.

Only one driver can modify each part.

To control a body part, the external driver should lock

the part by storing a lock identifier in the interface. At

each time frame the external processes update the body

parts that they have locked. This approach prevents us

from using multiple processes to update the same body

part and therefore is limiting. Our current development

incorporates a motion combination algorithm based on

weights and priorities of different external processes’

output.8

It becomes more complicated to combine different

motions if some of the external drivers contain goal-

directed motion, since the final posture should satisfy

the condition of reaching the goal. For example, when

the hand is tracked by an external posture driver while

another external driver plays a previously recorded

keyframe, the hand position in the posture should be

the same as the actual hand’s tracked position.

Therefore, the motion combination should consider cor-

recting the directly updated posture to minimize the dif-

ference between the goal position and the effector.

Facial communicat ion
We discuss four methods of integrating facial expres-

sions in an NVE: video texturing of the face, model-based

coding of facial expressions, lip-movement synthesis

from speech, and predefined expressions or animations.

Video texturing of the face

This approach continuously texture maps the video

sequence of the user’s face onto the face of the virtual

human. The user must be in front of the camera, in such

a position that the camera captures her head and shoul-

ders and possibly the rest of her body.

A simple, fast image-analysis algorithm finds the

bounding box of the user’s face within the image. The

algorithm requires the head-and-shoulder view and a

static (though not necessarily uniform) background.

Thus the algorithm primarily compares each image with
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the background’s original image. Since the background

is static, any change in the image results from the user’s

presence, making it fairly easy to detect her position.

This permits the user reasonably free movement in front

of the camera without loss of the facial image.

A special facial expression driver performs the video

capture and analysis. The driver compresses each facial

image in the video sequence using Silicon Graphics’

Compression Library and passes the compressed images

to VLNet’s facial representation engine, which then redi-

rects them to the communication process. The commu-

nication process sends these images over the network

to remote participants. At the receiving sites, the com-

munication processes receive these images and pass

them to their facial representation engines. The facial

representation engines decompress and texture map the

images onto the face of the virtual human representing

the user.

Currently, for texture mapping we use a simple frontal

projection, a simplified 3D head model with attenuat-

ed features. This permits less precise texture mapping.

If we used a head model with all the facial features, any

misalignment of the topological features in the 3D

model and the features in the texture would produce

visibly unnatural artifacts. To avoid this, we need the

coordinates of characteristic feature points in the image.

We can use these coordinates to calculate the texture

coordinates so as to align the features in the image with

the topology in a process called texture fitting. However,

our current texture-fitting algorithm does not work in

real time.

Figure 3 illustrates video texturing of the face. It

shows the original images of the user and the corre-

sponding images of the virtual human representation.

M odel-based coding of facial expressions

Instead of transmitting whole facial images as in the

previous approach, this approach analyzes the images

and extracts a set of parameters describing the facial

expression. As in the previous approach, the user has to

be in front of the camera that is digitizing the head-and-

shoulders video images.

Accurate recognition and analysis of facial expres-

sions from video sequences requires detailed measure-

ments of facial features. Currently, it is computationally

expensive to perform these measurements precisely.

Since our primary concern has been to extract the fea-

tures in real time, we have focused on recognition and

analysis of only a few facial features. Our recognition

method relies on the “soft mask”—a set of points on the

image of the face adjusted interactively by the user.

Various characteristic measures of the face are calcu-

lated at the time of initialization. Color samples of the

skin, background, hair, and so forth are also registered.

Recognition of the facial features relies primarily on

color-sample identification and edge detection.

We use variations of these methods based on human

facial characteristics to find the optimal adaptation for

a particular case of each facial feature. Special care is

taken to make the recognition of one frame indepen-

dent of the recognition of the previous one, thus avoid-

ing the accumulation of error. The data extracted from

the previous frame is used only for the features that are

relatively easy to track (such as the edges of the neck).

The set of extracted parameters includes

■ Vertical head rotation (nod)

■ Horizontal head rotation (turn)

■ Head inclination (roll)

■ Aperture of the eyes

■ Horizontal position of the iris

■ Eyebrow elevation

■ Distance between the eyebrows (eyebrow squeeze)

■ Jaw rotation

■ Mouth aperture

■ Mouth stretch/squeeze

A special facial expression driver performs the analy-

sis in our implementation. The extracted parameters are

easily translated into minimal perceptible actions, which
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are passed to the facial representation engine, then to

the communication process, where they are packed into

a standard VLNet message packet and transmitted. The

facial representation engine receives messages con-

taining facial expressions described by MPAs and per-

forms the facial animation accordingly.

Figure 4 illustrates this method with a sequence of

original images of the user (with overlaid recognition

indicators) and the corresponding images of the syn-

thesized face.

Lip-movement synthesis from speech

The user might not always find it practical to be in front

of a camera (for example, if he doesn’t have one, or if he

wants to use an HMD). Nevertheless, we don’t need to

abandon facial communication. Lavagetto9 showed that

analyzing the audio signal of speech makes extracting

the visual parameters of lip movement possible.

An application doing such recognition and generat-

ing MPAs for controlling the face can be connected to

the VE program through the facial expression driver.

The facial representation engine can then synthesize

the face with the appropriate lip movements. A primitive

version of such a system would just open and close the

mouth during speech, letting participants know who is

speaking. A more sophisticated system would actually

synthesize realistic lip movement, which is an impor-

tant aid for understanding speech.

Predefined expressions or animations

In this approach the user can simply choose between

a set of predefined facial expressions or movements (ani-

mations). The choice can be done from the keyboard

through a set of “smileys” similar to the ones used in e-

mail messages. The facial expression driver in this case

stores a set of defined expressions and animations, and

feeds them to the facial representation engine as the

user selects them.

Networking
The face and articulated human body introduce a new

complexity in the use of network resources because the

size of a message needed to convey body posture

exceeds that needed for simple, unarticulated objects.

This might create significant overhead in communica-

tion, especially as the number of participants in the sim-

ulation increases. To reduce this overhead you could

communicate the postures in more compact forms,

accepting some loss of accuracy in the posture defini-

tion. However, this is not the only trade-off to consider

when choosing the optimal approach. Conversions

between different forms of posture definition require

potentially expensive computations, which might

induce more overhead in computation than was reduced

in communication. The choice will also depend on the

quality and quantity of raw data available from the input

devices, the posture accuracy required by the applica-

tion, and the projected number of participants in the

simulation.

For the network analysis, we separate the discussion

into body and face, as they use different control meth-

ods and different channels for communication. In any

case, we can decompose the communication into three

phases: coding, transmission, and decoding of the data.

The transmission lag for a message will equal the sum of

the lag of all these phases. In addition, each message

type contains an accuracy loss of data—a trade-off to

decrease the lag. In this section, we analyze different

message types with respect to the following:

■ Coding computation at the sender site. Evaluate the

amount of computation needed to convert the input

data into the message to be sent, at the sending site.

■ Bit-rate requirements. Evaluate the bandwidth

requirements for different parameters to describe the

motion. We assume a minimum limit for real-time

computation of 10 frames per second.

■ Decoding computation at the receiver site. Evaluate the

amount of computation needed to interpret the mes-

sage and obtain the body posture(s) for display at the

receiving site. The weight of this computation on the

simulation typically exceeds that at the sender site

because—contrary to coding, which is done only for

the locally controlled figure—the messages from a

potentially large number of participants have to be

processed.
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■ Accuracy loss. Evaluate the loss of accuracy of the body

posture with respect to the original input data. This is

typically the trade-off to consider against decreasing

coding and decoding computations and transmission

overhead.

We compare these issues for various types of human-

body motion control. We consider four types of message

packets to convey the body posture information:

■ Global positioning parameters. The global positioning

of 17 body parts can be sent as 3 rotation and 3 trans-

lation values. This data can be used directly to display

the body, bypassing the conversion to joint angles.

■ Joint angles. These values are the degrees of freedom

comprising the body, each represented by a floating-

point value. We evaluate three possibilities for the

message type: the actual floating-point representation

of the angle, and 2-byte integer and 1-byte angle infor-

mation, discretized between 0 and 360. This data has

to be transformed into global positioning for display.

■ End-effector matrices. A 4 × 4 floating-point matrix is

used to determine the position of the end effectors,

in this example the head and the right hand. An

inverse kinematics with two end effectors (head and

hand) has to be applied to the received message to

obtain the final posture.

■ State information. Only the high-level state informa-

tion is conveyed, which makes the messages small.

Moreover, the messages are sent only when state

changes. The computation complexity involved to

produce the posture(s) from the state information

can range from quite simple (for predefined static pos-

tures like sitting or standing) through medium (for

predefined dynamic states like walking or running)

to very complex (for more complex dynamic states

like searching for an object). In this evaluation, we

take the medium-level walking action as an example.

We analyze three typical situations with respect to dif-

ferent real-time control data: complete body posture

data is available, only head and hand end-effector data

is available, and walking motion guiding data is avail-

able from an external driver.

Figure 5 shows the bit-rate requirements, coding and

decoding computations per frame, and accuracy loss for

different message types. Figure 5a is calculated assum-

ing a minimum real-time speed of 10 frames per second.

We see that the bit-rate requirement varies between 4

Kbytes and 240 bytes per second for one human body.

Figures 5b and 5c show the coding and decoding results

on an SGI Indigo2 Impact workstation with a 250-MHz

processor. The results show a wide range of possibilities

to define and transmit human figure information with

respect to computation and bandwidth requirements.

The choice of the control and message type depends

on the particular application’s requirements. Applica-

tions needing high accuracy (in medical training, for

example) will require the transfer of body part matrices

or at least end-effector matrices. In a large-scale simu-

lation with numerous users we might achieve efficien-

cy by conveying small messages containing the state

information and reduce the computational overhead by

using filtering and level of detail techniques.
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We chose the joint angles transfer as the optimal solu-

tion covering a wide range of cases, since it offers fair or

good results on all criteria. This transfer balances the

computational overhead of the network, compres-

sion/decompression (the traversal of the human hier-

archy to convert joint values to transformation matrices

of body parts, to be rendered on display), and accuracy

loss. Using the state parameters for high-level motions

decreases the network bandwidth but requires a fast

decoding process at the receiving site. The example

walking motor showed the possibility of decreasing

bandwidth requirements for sending motion data.

Figure 5d shows the accuracy loss of posture data with

varying message types and input methods. We comput-

ed the results by averaging the Euclidean distance

between the corresponding body parts in the initial body

posture at the sender’s site and the decoded posture at

the receiver’s site.

Similarly, Figure 6 shows the bandwidth require-

ments and experimental results for coding and decod-

ing of the face. Figure 6a shows that using model-based

coding drastically decreases the network overhead,

while Figures 6b and 6c demonstrate that the overheads

of coding and decoding are insignificant.

Virtual tennis: an example applicat ion
As an example application, we selected a virtual tennis

game with an autonomous virtual human player and an

autonomous referee (see Figure 7). This application

involves the critical issues discussed above: interaction of

a real user with an autonomous virtual human over the

network, a real-time requirement for natural ball simula-

tion, synthetic vision for the autonomous virtual humans,

and multilevel control of the synthetic human figures.

L-system interpreter

We modeled a synthetic sensor-based tennis match

simulation for autonomous players and an autonomous

referee, implemented in an L-system-based animation

system. L-systems are timed production systems designed

to model the development and behavior of static objects,

plant-like objects, and autonomous creatures. They are

based on timed, parameterized, stochastic, conditional,

environmentally sensitive, and context-dependent pro-

duction systems, force fields, synthetic vision, and audi-

tion. We published parts of this system in Noser et al.12

Prusinkiewicz and Lindenmayer13 presented the

Lindenmayer systems (L-systems for short) as a mathe-

matical theory of plant development with a geometrical

interpretation based on turtle geometry. The authors

explained mathematical models of developmental

processes and structures of plants and illustrated them

with computer-generated images. Our behavioral L-sys-

tem builds on the general theory about L-grammars

described in their work.

An L-system is given by an axiom consisting of a string

of parametric and timed symbols plus some production

rules specifying how to replace corresponding symbols

in the axiom during the evolution of time. The L-system

interpreter associates to its symbols basic geometric

primitives, turtle control symbols, or special control

operations necessary for animation. Basic geometric

primitives include cubes, spheres, trunks, cylinders ter-

minated at their ends by half spheres, line segments,

pyramids, and imported triangulated surfaces.

We define the nongeneric environment—the ground,

the tennis court, and the walls—directly in the produc-

tion system’s axiom. The generic parts, such as growing

plants, are defined by production rules having only their

germ in the axiom. The virtual actors are also repre-

sented by a special symbol. Their geometric represen-

tation can vary from simple primitives like cubes and

spheres to a more complicated skeletal structure to a

fully deformed triangulated body surface.

Behavior control

In the tennis game simulation, automata controlled
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by a universal stack-based control system model the dif-

ferent behaviors of the autonomous virtual humans.

Because the behaviors are strictly based on synthetic

sensors—the main channels of information capture

from the virtual environment—we obtain natural

behavior mostly independent of the internal environ-

ment representation. Using a sensor-based concept

shrinks the distinction between an autonomous virtual

human and an interactive user merged into the virtual

world. They can easily be exchanged, as the interactive

game facility demonstrates.

The autonomous referee, represented by virtual Elvis,

judges the game by following the ball with his vision sys-

tem. He updates the state of the match when he “hears”

a ball collision event (ball-ground, ball-net, ball-

racket) according to what he sees and his knowledge of

a tennis match. He communicates his decisions and the

state of the game by “spoken words” (sound events).

The autonomous player, represent-

ed by virtual Marilyn, can also hear

sound events and obeys the referee’s

decisions. Her game automata uses

synthetic vision to localize the ball’s

and her opponent’s positions, and

adaptively estimates the future ball-

racket impact point and position.

She uses her partner’s position to fix

her game strategy and to plan her

stroke and her path to the future

impact point.

VLNet-L-system interface

The L-system interpreter shares

with the participant client—

through VLNet clients and the

VLNet server—the important environment elements:

the tennis court, the tennis ball, an autonomous refer-

ee, the autonomous player, and the participant. Each

virtual human has its own VLNet client, and the L-sys-

tem interpreter program controls the referee and the

autonomous player through the external interfaces of

the VLNet system. Figure 8 shows the process configu-

ration for the game. The real participant’s representa-

tion in the L-system interpreter reduces to a simple

racket whose position is communicated through the net-

work and obtained from the local VLNet client’s object

behavior interface at each frame. The racket and head

positions and orientations of the autonomous virtual

human player are communicated at each frame to the

participant’s VLNet client, where they are mapped to an

articulated, guided virtual human. This guided human

is animated through inverse kinematics using the rack-

et position. The referee is also represented by a guided
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virtual human in the user client, getting his position at

each frame from the L-system animation process.

The ball movement, modeled according to physical

laws in the animation system, is represented as a parti-

cle in a force-field-based particle system. The force fields

of the ground, the net, the tennis rackets, and gravity

affect the ball’s movement. The external object behav-

ior interface sends its position to the VLNet client.

The architecture described here proved effective for

our interactive tennis application. The transmission

requirements for the virtual humans and the ball move-

ments seemed not to be excessive, especially with a local

area network. However, initial results show that remote

tests over the busy Internet might cause delays, making

the game difficult to play. On the other hand, our initial

tests over an ATM network indicate that our system

might well achieve real-time speed for play over the

network at remote sites once we have optimized com-

munication for the ATM configuration.

Conclusion
Representing the human figure in networked virtual

environments is not easy. Moreover, the human figure

information can put a heavy load on the computation-

al and networking resources. You should select the opti-

mal control, representation, and transmission forms

demanded by the application and permitted by the

resources available.

The tennis application allowed us to test different

aspects of our architecture, specifically for including

humans in networked virtual environments and for

combining two complex systems. The final speed of this

integration could conceivably meet the application’s

real-time requirement.

Virtual human representation and communication in

networked virtual environments remains in an early

stage. We plan further research on compression of vir-

tual human models, as well as networking techniques

to decrease communication requirements. The initial

results look promising, and we hope to achieve very low

bit-rate virtual human communication.

We also intend to work on human motion control for

direct, guided, and autonomous virtual humans. Our new

motion combination algorithm will let different external

processes update the same body limbs, while satisfying

the constraints imposed by the tracking information. ■
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Virtual Humans in MPEG-4
MPEG-4 addresses networked multimedia applications such as

video telephony, networked virtual environments and games,

distance learning, remote presentation, and other applications that

involve interaction, transmission, and combination of natural audio

and video streams with 2D and 3D computer graphics models.

Targets of standardization include mesh-segmented video coding,

compression of geometry, synchronization among audiovisual

objects, multiplexing of streamed objects, and spatial-temporal

integration of mixed media types.

A subgroup within MPEG-4 called SNHC (Synthetic Natural Hybrid

Coding) works on efficient coding of graphics models and

compressed transmission of their animation parameters specific to

the model type.1 Within this work, the group proposed a set of

parameters for standard representation of the human body and the
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Animation parameters permit defining facial expressions and body
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standardization process continues, and the international standard is

expected to be finished by November 1998.

Visit the MPEG-4 SNHC home page (http:/ /www.es.com/

mpeg4-snhc) for more information, to join MPEG-4 SNHC, and for

details on these parameters.
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