
6002 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 66, NO. 8, AUGUST 2019

Virtual Inductance for Stable Operation of
Grid-Interactive Voltage Source Inverters

Aswad Adib , Student Member, IEEE, and Behrooz Mirafzal , Senior Member, IEEE

Abstract—In this paper, a feedforward virtual inductance
control strategy is developed for the stability of voltage
source inverters (VSIs) in weak grids. A weak grid is
characterized by a low short-circuit ratio and a low inertia
constant, in which VSIs become susceptible to voltage dis-
tortions and instability. The proposed feedforward virtual
inductance term is integrated into the current control loops
of grid-tied VSIs. In this paper, the effectiveness of the vir-
tual inductance control strategy in weak grids is first proved
through closed-loop transfer function analysis and then
the system’s root locus analysis to determine the stability
region of the system versus the grid impedance. The devel-
oped virtual inductance controller is also verified through
laboratory experiments for different weak grid scenarios.

Index Terms—Control of grid-tied inverters, LCL filter, vir-
tual inductance, voltage source inverter (VSI), weak grid.

I. INTRODUCTION

V
OLTAGE source inverters (VSIs) act as a necessary in-

terface for grid integration of energy storage systems and

renewable energy resources. They are also capable of provid-

ing various ancillary services to the utility such as negative

sequence compensation, harmonic compensation, power factor

correction, and reactive power compensation [1]. However, the

operation of VSIs is sensitive to grid abnormalities. The situation

is particularly apparent in weak grids and islanded microgrids,

as the inverter may become unstable in the presence of large

grid impedances [2]–[6].

Weak grids are commonly defined as power grids with a low

short-circuit ratio (SCR), i.e., high impedance and a low inertia

constant (H) [7]. The varying impedance in weak grids leads

to undesirable resonance and stability issues for grid-tied VSIs

[2], [3]. Furthermore, the interaction between the control sys-

tems and grid distortions can cause instability in weak grids

[4], [5]. Specifically, the performance of the phase-locked loop

(PLL) starts to degrade with increasing grid impedances and

can negatively affect the stability of grid-tied systems. In ad-

dition, it has been reported in [6] that the positive feedback
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gain of anti-islanding methods, which is a mandatory feature

for sources like photovoltaic and battery, is restricted for stable

operation in weak grids. Therefore, it is apparent that weak grids

severely degrade grid-tied inverter stability, and as such, several

approaches have been proposed to improve the stability of VSIs

in weak grids. Filter and controller parameter design procedures

under weak grids were outlined in [2] and [8], striking a trade-

off between grid-tied VSI performance and stability. In [4] and

[6], stability analysis of grid-tied systems was performed focus-

ing only on the interaction between grid impedance and PLL.

The equivalent grid impedance associated with weak grids was

canceled through active damping in [3] and [5], with the use of

additional circuitry, e.g., full-bridge switching module and sen-

sors. Therefore, an autonomous control strategy to improve the

stability of grid-tied VSIs in weak grids without any hardware

compensator can be very useful. Delay and impedance phase

compensators inserted in the voltage feedforward path of the

control schemes were proposed in [9] and [10], respectively, to

improve VSI stability in weak grids. However, the compensators

affect the steady-state performance of the controllers [10]. To

minimize the steady-state error caused by the compensators,

current references and power factor angle must be adjusted as

described in [10], which complicate the operation and tuning

of the controllers under different grid conditions. In this paper,

the virtual inductance concept is developed to support stable

operation of grid-tied VSIs in weak grids.

Virtual impedance has primarily been employed for active

and reactive power sharing between paralleled inverters [11]–

[15], where the output impedance of the inverters is expected to

be equal. Instead of manipulating circuit parameters to match

the impedances, virtual impedance terms were added to match

the inverter output impedances and to achieve accurate power

sharing. The concept of virtual impedance has been extended to

other cases, such as in the stability of dc microgrids with constant

power loads [16]–[18], resonance mitigation and power quality

improvement through active damping [19], [20], and harmonic

compensation in grid-tied inverters and harmonic current shar-

ing in islanded microgrids [21]–[23]. In [24], an impedance-

based stability analysis for grid-tied inverters in weak grids

was presented through output impedance shaping of the inverter

using virtual impedance through a complicated series–parallel

structure built on the conventional current control loops of grid-

tied VSIs.

In this paper, a feedforward virtual inductance term is intro-

duced in the control scheme for grid-tied VSIs, which stabi-

lizes the grid-tied system without requiring system parameter
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Fig. 1. Schematic diagram of a PQ-controlled grid-tied VSI.

redesign while ensuring the system stability. First, it is shown

that for a grid-tied VSI employing grid current feedback, the sta-

bility can be improved by increasing the inductance of the LCL

filter. A virtual inductance term is then derived emulating addi-

tional inductance in the grid-side LCL filter. By introducing the

virtual inductance term in the control scheme, the same stabi-

lizing effect of the larger inductance is achieved while avoiding

a larger and costlier inverter unit. The proposed strategy can

ensure the stability of VSIs in weak grids without deteriorating

the steady-state performance of the system, as experimentally

demonstrated in this paper. Furthermore, the implementation of

the feedforward virtual inductance strategy does not require any

additional hardware components, which is an advantage over

existing active damping strategies. Therefore, the feedforward

virtual inductance control strategy proposed in this paper is well

suited for practical applications.

The rest of the paper is organized as follows. In Section II,

the impact of filter inductance on VSI stability in weak grids

is analytically discussed. In Section III, the virtual inductance

term is derived and a state-space model of the closed-loop sys-

tem including the virtual inductance term is developed. Root

locus studies are carried out in Section IV to demonstrate the

stabilizing effect of the virtual inductance method in weak

grids. The results from Section IV are experimentally verified in

Section V. Finally, outcomes are summarized and conclusions

are drawn in Section VI.

II. EFFECT OF FILTER INDUCTANCE ON STABILITY

In this section, the effect of filter inductance on VSI stability in

weak grids is discussed, where a more detailed analysis using a

full-order VSI model is provided in a later section. The inverter

under study is a two-level three-phase VSI equipped with an

LCL filter, as shown in Fig. 1. For the purposes of this section,

a more simplified schematic of the VSI is chosen, as shown in

Fig. 2, upon which the analysis is performed.

The inverter is represented by a controlled voltage source

in Fig. 2, where a current controller with a transfer function

of Gc(s) equipped with voltage feedforward is employed to

control the inverter voltage vi . The delay associated with the

control loop is represented by Gd(s). The inverter-side and

grid-side inductances of the LCL filter are denoted by L1 and

L2 , respectively, whereas the filter capacitance is denoted by

Fig. 2. Simplified schematic diagram of current-controlled VSIs.

Cf . The grid is represented by an equivalent grid inductance Lg

and a resistance Rg with a grid voltage of vg . Also present in

Fig. 2 are the point of common coupling (PCC) voltage vpcc ,

capacitor voltage vc , inverter current iinv , grid current ig , and

the desired grid current i∗g .

Applying KVL on the two loops on both sides of Cf , the

voltages can be written as

−vi + L1
d

dt
iinv + vc = 0, (1)

−vc + L2
d

dt
ig + vpcc = 0. (2)

Similarly, vpcc can be written in terms of vg as

vpcc = Rg ig + Lg
d

dt
ig + vg . (3)

Furthermore, applying KCL at the capacitor node, the capac-

itor voltage can be expressed as

d

dt
vc =

1

Cf
iinv − 1

Cf
ig . (4)

Transferring these differential equations into the s-domain

and replacing vpcc from (3) in (2) yield

s Ig =
Vc

L2 + Lg
− Vg

L2 + Lg
− RgIg

L2 + Lg
. (5)

The inverter voltage can also be expressed using the control

variables shown in Fig. 2 as follows:

Vi = Gd (s)
(

Vpcc + Gc (s)
(

I∗g − Ig

))

. (6)

Replacing Vpcc from (3) in (6) yields

Vi = Gd (s)

(

LgVc + L2Vg

L2 + Lg
+

(

RgL2

L2 + Lg
− Gc (s)

)

Ig

+ Gc (s) I∗g

)

. (7)

Replacing Vi from (7) in (1) in the s-domain gives

s Iinv = − L2 + Lg (1 − Gd)

L1 (L2 + Lg )
Vc

+

(

GdRgL2

L1 (L2 + Lg )
− GdGc

L1

)

Ig

+
GdL2

L1 (L2 + Lg )
Vg +

GdGc

L1
I∗g . (8)
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Fig. 3. Signal flow graph of the simplified schematic of the grid-tied VSI
shown in Fig. 2.

Now, using (8), (5), and (4) in the s-domain, a lossless signal

flow graph of the grid-tied VSI system under study can be drawn,

as illustrated in Fig. 3. The output of the current-controlled

VSI unit is Ig , while the inputs to the system are I∗g and Vg .

Now, using Mason’s rule on the signal flow graph presented in

Fig. 3, a transfer function of the system can be derived, i.e.,

H (s) = Ig (s)/I∗g (s) = N(s)/D(s), where

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

N (s) = Gc (s) Gd (s)

D (s) = s3L1Cf (L2 + Lg ) + s2L1Cf Rg

+ s (L1 + L2 + Lg (1 − Gd (s)))

+Gc (s) Gd (s) + Rg (1 − Gd (s))

. (9)

The denominator can then be expressed in a form suitable for

continued-fraction-expansion as

D1

D2
=

s3L1Cf (L2 + Lg ) + s (L1 + L2 + Lg (1 − Gd (s)))

s2L1Cf Rg + Gc (s)Gd (s) + Rg (1 − Gd (s))
(10)

where D1 contains the highest power and the following

alternate power terms of the denominator, while D2 con-

tains the remaining terms. Notice, instead of the continued-

fraction-expansion method, one may apply the Routh Hurwitz

method. Hence, three criteria must be met for the stability

of this system, 1) (L2 + Lg ) > 0, 2) L1Cf Rg
2 > 0, and 3)

Rg (L1 + L2Gd(s)) − (L2 + Lg )Gd(s)Gc(s) > 0. Since the

circuit parameters are all physical parameters and therefore pos-

itive, only the third inequality can be applied to extract some

information on the system stability. For systems operating in

the continuous domain, the control delay can be expressed as

Gd (s) = e−sTd [25], which has a magnitude of |Gd(s)| = 1.

The third criterion for system stability can then be rewritten as

L1 + L2

Lg + L2
Rg > |Gc (jω)| . (11)

The mathematical expression derived in (11) is an indicator

to the effect of various parameters on the stability of the system,

whereas a detailed stability analysis through root locus studies

is demonstrated in a later section. It can be seen from (11) that

for a given control gain, i.e., |Gc(jω)|, a higher Lg value will

result in a lower stability margin. This observation has been

already reported by many investigators such as in [3]–[8]. One

can also conclude from (11) that an increase in L1 + L2 can

result in a higher stability margin. Apparently, this will be an

impractical hardware solution. For an acceptable voltage drop,

typically 0.02–0.05 p.u., the maximum boundary of L1 + L2

can be determined. By limiting the maximum current ripple

of the inverter-side inductor in one cycle, the lower and upper

boundaries of L1 can also be obtained [26]. The capacitor Cf

and pulsewidth modulation (PWM) frequency can be chosen to

avoid the inverter output circuit resonance frequency, i.e.,

fr =
1

2π

√

L1 + (L2 + Lg )

L1 (L2 + Lg ) Cf
. (12)

Moreover, a series resistor Rf with the capacitor Cf can

be implemented to further avoid occurrences of resonance at

fr . For the best LCL filter performance, L2 < L1 is selected

to satisfy the harmonic restriction standards such as IEEE Std.

1547. The grid-side inductor can also affect the stability of

VSIs. Herein, two extreme cases: 1) stiff grids when Lg ≪ L2 ,

and 2) weak grids when Lg ≫ L2 are assumed. In low-voltage

distribution grids, the R/X ratio is typically around 1 [27]. Line

impedances could become predominantly resistive, i.e., R/X >
5, in islanded microgrids [28]. However, the proposed technique

in this paper is valid for inductive and resistive–inductive weak

grids with (R/X) ≤ 1. The inequality expression in (11) can

then be written as

⎧

⎨

⎩

(

1 + L1

L2

)

Rg > |Gc (jω)| for stiff grids

(L1 + L2)
(

Rg

L g

)

> |Gc (jω)| for weak grids
. (13)

As one can see, only under weak grid conditions, an LCL filter

with a slightly higher value of L2 can improve the system sta-

bility. However, this paper offers a control (software) solution.

In the next section, it is demonstrated how a virtual inductance

emulating the LCL filter inductance can be integrated into the

control scheme.

III. STATE-SPACE MODEL OF GRID-TIED VSIS

In this section, the virtual inductance term emulating ad-

ditional inductance in the LCL filter is implemented into the

PQ-control scheme.

A. Virtual Inductance

As described in Section II, increasing the filter inductances

could enable stable operation of VSIs in weak grids. In this

paper, a virtual inductance term is derived emulating the impact

of the filter inductors. Since iinv , the current going through L1 ,

is not a measured quantity in the PQ-control scheme shown in

Fig. 1, the virtual inductance term Lvir is designed to represent

L2 . The impact of Lvir will be derived based on the measured

grid current ig . In the following formulas, the resistance Rvir ,

shown in Fig. 4, denotes the equivalent series resistance of

the inductors. Performing KVL in the two loops highlighted
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Fig. 4. Schematic diagram of a three-phase VSI focusing on the ef-
fect of additional filter inductance on the grid side, which will be added
virtually.

in Fig. 4, one can write the following equations:

−vC
ab + Lvir

d

dt
(iga − igb ) + Rvir (iga − igb )

+ vpcc
ab − Rf iCa = 0, (14)

−vC
bc + Lvir

d

dt
(iga + 2igb ) + Rvir (iga + 2igb )

+ vpcc
bc − Rf iCb = 0. (15)

The current igc in phase-C is replaced in (15) by iga and igb as the

system is balanced. By performing KCL in the three numbered

nodes shown in Fig. 4, the capacitor currents can be represented

with respect to the line currents as

ica =

(

iinv
a − iga − iinv

b + igb
)

3
, (16)

icb =

(

iinv
a − iga + 2iinv

b − 2igb
)

3
. (17)

Replacing the values found in (16) and (17) into (14) and

(15), respectively, and solving for the currents going through

the virtual inductances, the effect of the virtual inductances on

the line currents can be written as

ivir
a = iga =

1

3Rvir

(

2vC
ab + vC

bc − 2vpcc
ab − vpcc

bc + Rf iinv
a

− Rf iga − 3Lvir
d

dt
iga

)

, (18)

ivir
b = igb =

1

3Rvir

(

− vC
ab + vC

bc + vpcc
ab − vpcc

bc + Rf iinv
b

− Rf igb − 3Lvir
d

dt
igb

)

. (19)

Since, only the high-frequency current component flows

through the capacitor branch, it can be assumed that iga ≈
iinv
a , igb ≈ iinv

b by considering only the fundamental current

component. In addition, as the equivalent impedances of the

filter components are very small, it can be further assumed that

vC
ab ≈ vpcc

ab , vC
bc ≈ vpcc

bc . Following these simplifications, (18)

and (19) can be rewritten as

ivir
a = − Lvir

Rvir

d

dt
iga , (20)

ivir
b = − Lvir

Rvir

d

dt
igb . (21)

The virtual impedance terms should be converted to the dq
frame to be consistent with the controller, which is operating

at the dq frame of reference. The Park transformation for a

balanced system (xa + xb + xc = 0) can be expressed as

[

xq

xd

]

=
2√
3

[−sin (θ − 2π/3) sin (θ)

cos (θ − 2π/3) −cos (θ)

] [

xa

xb

]

. (22)

Using the dq transformation presented in (22), the virtual

impedance terms in (20) and (21) can now be expressed as

[

ivir
q

ivir
d

]

= −Lvir

Rvir

d

dt

[

igq

igd

]

− Lvir

Rvir

[

0 ω

−ω 0

] [

igq

igd

]

. (23)

Since the derivative terms have minimal impacts on steady-

state conditions, they can be neglected for simplification. The

virtual inductance terms in the dq frame of reference then comes

out to be as follows:

ivir
q = − ωLvir

Rvir
igd (24)

ivir
d =

ωLvir

Rvir
igq . (25)

From (24) and (25), it can be seen that the virtual inductance

terms can be expressed in terms of the measured grid currents.

As a result, the effect of virtual inductance can be implemented

without the need for any additional sensors.

B. PQ Controller Model

In the previous subsection, it was demonstrated through (24)

and (25) that the virtual inductance terms have an impact on

the grid currents. Hence, the virtual inductance terms should be

included in the inner current control loops of the PQ control

scheme. The complete PQ control scheme is shown in Fig. 5.

Each controller has two cascaded loops consisting of outer

power and inner current control loops, which are equipped with

new virtual inductance blocks for stable operation of VSIs in

weak grids. The control scheme illustrated in Fig. 5 is based on

positive-sequence components for balanced grid voltages. Un-

der unbalanced grid voltages, an independent controller can be

added to the control scheme using negative-sequence compo-

nents of the measured signals. The output of the controllers can

then be added to generate the reference signals for PWM genera-

tion [29], [30]. As shown in Fig. 5, the PQ controller contributes

four state variables corresponding to the four integrators that are

present in the controller. Replacing P and Q in terms of voltages

at PCC and grid currents in their dq frame of reference values

as P = (1/2)(vpcc
q iLq + vpcc

d iLd ), Q = (1/2)(vpcc
q iLd − vpcc

d iLq )
and then linearizing them around a steady-state operating point,
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Fig. 5. Control block diagram of a PQ-controlled grid-tied VSI with the
virtual inductance block highlighted.

the integrator state equations can be written as

ẏP = − 1

2
ki1V

pcc
q iLq − 1

2
ki1I

L
q vpcc

q − 1

2
ki1I

L
d vpcc

d + ki1P
∗,

(26)

ẏQ = − 1

2
ki3V

pcc
q iLd − 1

2
ki3I

L
d vpcc

q +
1

2
ki3I

L
q vpcc

d + ki3Q
∗,

(27)

ẏiq = ki2 yP − ki2

(

1

2
kp1V

pcc
q + 1

)

iLq − ki2ω
Lvir

Rvir
iLd

+ ki2kp1P
∗ − 1

2
ki2kp1I

L
q vpcc

q − 1

2
ki2kp1I

L
d vpcc

d , (28)

ẏid = ki4 yQ + ki4ω
Lvir

Rvir
iLq − ki4

(

1

2
kp3V

pcc
q + 1

)

iLd

+ ki4kp3Q
∗ − 1

2
ki4kp3I

L
d vpcc

q +
1

2
ki4kp3I

L
q vpcc

d .

(29)

Notice that two input variables P ∗ and Q∗ are also introduced

to the model associated with the controller, which represent the

desired active and reactive power, respectively.

Furthermore, the delay associated with the controllers can

have significant impacts on the stability of the grid-tied sys-

tem [25]. As shown in Fig. 5, a delay term can be added for

continuous time controllers as

v̇inv
q =

1

Td

(

vr
q − vinv

q

)

, (30)

v̇inv
d =

1

Td

(

vr
d − vinv

d

)

. (31)

Hence, two new state equations are added to the controller

model in (30) and (31), where according to the control scheme

shown in Fig. 5

vr
q = vpcc

q + kp2

(

yP + kp1 (P ∗ − P ) − iLq − ωLvir

Rvir
iLd

)

+ ωLiLd + yiq , (32)

vr
d = vpcc

d + kp4

(

yQ + kp3 (Q∗ − Q) − iLd +
ωLvir

Rvir
iLq

)

− ωLiLq + yid . (33)

The state equations with respect to the controller have now

been derived. While the developed controller can be connected

to any open-loop model for a VSI, a small-signal open-loop

circuit model of the VSI is given in the Appendix. The cir-

cuit model is averaged over the switching cycle where the

typical PWM frequency for grid-tied VSIs is 4–10 kHz. No-

tice that dominant eigenvalues have frequencies below 750 Hz

(∼5000 rad/s) [8], [9], [31]; therefore, the averaging effect on

the analysis of the system stability is insignificant. While small

signal (linearized) models are commonly employed for stability

analysis of VSIs, nonlinear techniques, e.g., Lyapunov stability

criterion, can also be applied for the stability analysis; however,

selection of a suitable Lyapunov function could significantly

complicate the analysis [31], [32]. Therefore, any analysis car-

ried out from a simplified model should be experimentally con-

firmed in the laboratory.

To integrate the controller model including the virtual in-

ductance block into the circuit model, the control inputs of the

open-loop circuit model m and ϕ have to be replaced with the

controller outputs vinv
q and vinv

d . By definition of the inverter

voltage

vinv
q = mvdc cos (ϕ) , (34)

vinv
d = −mvdc sin (ψ) . (35)

Linearizing (34) and (35), m and ϕ can be written in terms

of vinv
q and vinv

d as

[

m

ϕ

]

=

[

Vdc cos (Φ) −MVdc sin (Φ)

−Vdc sin (Φ) −MVdc cos (Φ)

]−1 [

vinv
q

vinv
d

]

.

(36)

Hence, m and ϕ can now be replaced in the model by con-

troller state variables. Finally, to include grid characteristics into

the model, vpcc is expressed in terms of the grid voltage vg in

the dq frame as
[

vpcc
q

vpcc
d

]

=

[

Rg ωLg

−ωLg Rg

] [

iLq

iLd

]

+ Lg
d

dt

[

iLq

iLd

]

+

[

vg
q

vg
d

]

.

(37)

By replacing vpcc by vg , the completed model of the grid-tied

VSI can be derived, which is used for the stability analysis of

the system in the next section.

IV. STABILITY ANALYSIS

In this section, the stability analysis of the grid-tied VSI is

performed through root locus studies of the system eigenvalues

using the model developed in the previous section. The rated
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TABLE I
SYSTEM PARAMETERS

Fig. 6. Root locus of the grid-tied VSI system eigenvalues as Lg is
increased from 1.5 mH (cross) to 6 mH without virtual impedance (left),
with a zoomed-in plot of the dominant eigenvalues (right).

voltage of the grid-tied system is 240 V with a rated power of

10 kW. The circuit and controller parameters used are presented

in Table I. The parameter values listed in Table I are also em-

ployed for experimental verification in the next section. Notice

that the LCL filter parameters are chosen to place the system

close to the stability border, and small values for the integrator

gains were chosen to avoid overshoots, which could potentially

harm the hardware components.

To study the stability of the grid-tied system under weak grids,

the root locus of eigenvalues is plotted in Fig. 6 as Lg is gradually

changed from 1.5 mH (SCR = 10.2) to 6 mH (SCR = 2.6).
The value of Rg is chosen to be 0.2 Ω. For this scenario, the

virtual inductance term is not considered and is set to zero. It

can be seen in Fig. 6 that as the grid inductance is increased

and the grid becomes weaker, the dominant eigenvalues move

toward the unstable region and eventually reach the right half-

plane, making the system unstable. A zoomed-in version of the

dominant eigenvalues is presented in Fig. 6 (right).

Additional inductance in the grid-side LCL filter can make

the system stable under weak grids. This scenario is illustrated

in Fig. 7, where the grid inductance is increased up to 6 mH

for a range of L2 values from 0.5 to 2.5 mH. As shown in

Fig. 7, for higher values of L2 , the dominant eigenvalues of

the system remain in the left half-plane for the same increase in

grid inductance. Hence, a higher L2 improves the stability of the

system in weak grids as expected from the analysis presented in

Fig. 7. Root locus of the dominant eigenvalues as Lg is increased from
1.5 to 6 mH for three values of L2 0.5, 1.5, and 2.5 mH.

Fig. 8. Root locus of the dominant eigenvalues as Lg is increased from
1.5 to 6 mH for three values of Lvir 0, 0.002, and 0.004.

Section II. It can also be seen in Fig. 7 that for smaller values

of Lg , the higher L2 values have a negative impact on stability.

Hence, the stabilizing behavior of L2 is only appropriate in

weak grids. However, a higher L2 will result in a larger and

more expensive inverter unit. Therefore, the effect of introducing

additional filter inductance will be emulated by the addition of

a virtual inductance instead.

In Fig. 8, the root locus of eigenvalues focusing only on the

dominant poles is plotted as Lg is increased up to 6 mH for three

different values of the virtual inductance Lvir ranging from 0

to 0.004. The term Rvir is set as Rvir = 1, as it just acts as

an inverse gain for the Lvir term as shown in (24) and (25).

It can be seen in Fig. 8 that for the larger values of Lvir , the

eigenvalues of the grid-tied system always remain in the stable

region similar to the case of L2 . Hence, a grid-tied VSI in weak

grids can be operated under stable conditions by introducing

a virtual inductance term in its control structure. It should be

noted that as the dominant pole of the system remains further
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Fig. 9. Stability regions of the grid-tied VSI under weak grids with virtual
inductance implemented.

Fig. 10. Experimental setup when the scope display shows the case
study demonstrated in Fig. 12.

into the left half-plane as Lvir is increased, another pole is seen

to be approaching the right half-plane, as illustrated in Fig. 8.

Therefore, from a stability perspective, Lvir cannot be increased

without bounds and there is a range of Lvir values for which

the system can be kept stable under weak grids. This property

of Lvir is further demonstrated in Fig. 9 where the stable region

is denoted by green and the unstable region is shown by red as

Lvir is increased, while SCR is decreased, i.e., Lg is increased.

It can be seen in Fig. 9 that a virtual inductance term can be

designed to keep the system stable under various weak grid

conditions. However, as the grid starts to become very weak,

the range of Lvir values for which the system remains stable

becomes restricted. For the operating conditions defined in this

section, the virtual inductance can ensure stable operation of the

grid-tied VSI up to an SCR value of 2.2.

V. EXPERIMENTAL RESULTS

In this section, the efficacy of the virtual inductance method

is verified through experiments carried out on a three-phase

grid-tied inverter setup. The experimental setup is shown in

Fig. 10. The three-phase inverter used is the power board of an

Allen Bradley Powerflex 755. The voltage and current signals

were obtained through a measurement board designed in the

laboratory and fed to a dSpace CP1103 control board where the

PQ controller along with the virtual inductance block was built.

The PWM references generated through the controller were then

fed to an Altera Cyclone III FPGA, which generates the gate

signals for the inverter switching module. The system parame-

ters used in these experiments are presented in Table I. For all

the experiments carried out in this section, the active power was

set to 550 W at unity power factor. The PWM frequency was

5 kHz in these experiments. The current and voltage data were

collected using a Lecroy Waverunner 64 Xi-A oscilloscope with

CP030 current probes and ADP300 differential voltage probes

at a sampling frequency of 100 kHz. The waveforms were then

plotted in MATLAB and are presented in this section.

In the first scenario, the system was initially operated under

a stiff grid condition, as shown in Fig. 11. The system is stable

up to around 2.35 s, when a 5 mH (SCR = 3.1) inductance

was inserted between the grid and the PCC that was initially

bypassed through a three-phase circuit breaker. As expected,

with the introduction of a large grid inductance, the system

became unstable. To bring the grid-tied system back to the stable

region, a 0.0025 virtual inductance was enabled in the control

scheme through Control Desk, a real-time software interface

linked with dSpace. As shown in Fig. 11, the virtual inductance

term stabilizes the system under a weak grid with 5 mH grid

impedance. The test outcome is in agreement with the stability

analysis discussed in Section IV, while this scenario can be

verified in Fig. 9.

In the second scenario presented in Fig. 12, a grid inductance

of 5.5 mH (SCR = 2.8) is inserted into the circuit at 2.2 s, which

makes the system unstable. From the stability regions demon-

strated through eigenvalue analysis in Fig. 9, it is expected that

the grid-tied VSI will return to the stable region if a virtual

inductance of 0.0025 is applied to the control scheme. The sce-

nario is verified in Fig. 12, as it can be seen that with the injection

of a 0.0025 virtual inductance at 2.5 s the system returns to the

stable region of operation following which the controller slowly

brings the currents back to the desired operating point.

To validate the efficacy of the virtual inductance scheme un-

der various degrees of weak grid situations, a grid inductance

of 6 mH (SCR = 2.6) was inserted into the system at 2.28 s fol-

lowed by a 0.0025 virtual inductance enabled at 2.5 s, as shown

in Fig. 13. Similar to the previous scenarios, the virtual induc-

tance brings the system back to the stable region. This scenario

is also in agreement with the stability regions demonstrated in

Fig. 9. Notice that if the virtual inductance scheme is kept ac-

tive from the beginning, as it should be in practical applications,

the grid-tied VSI system should stay stable even under weak

grid conditions. To demonstrate the effect of the virtual induc-

tance scheme, the virtual inductance has been activated after the

system becomes unstable in these case studies.

In the previous scenarios depicted in Figs. 11–13, the efficacy

of the virtual inductance scheme in stabilizing VSI operation in

weak grids is validated. In the scenario presented in Fig. 14, the

output active and reactive power of the VSI are illustrated over

a large time period to demonstrate the dynamic and steady-state

performances of the system when employing virtual inductance

feedforward. In this scenario, a virtual inductance of 0.0003
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Fig. 11. Voltage at the PCC (top) and grid current (bottom) as Lg = 5 mH is inserted at 2.35 s followed by enabling Lvir of 0.0025 at 2.5 s.

Fig. 12. Voltage at PCC (top) and grid current (bottom) as Lg = 5.5 mH is inserted at 2.22 s followed by enabling Lvir of 0.0025 at 2.5 s.

Fig. 13. Voltage at PCC (top) and grid current (bottom) as Lg = 6 mH is inserted at 2.28 s followed by enabling Lvir of 0.0025 at 2.5 s.



6010 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 66, NO. 8, AUGUST 2019

Fig. 14. Active power (top) and reactive power (bottom) supplied by
the VSI as a virtual inductance of 0.0003 is introduced at instant 8 s,
followed by disabling the virtual inductance term at instant 50 s.

was enabled at instant 8 s into the control scheme of the VSI,

which initially deviates the P and Q from their desired values.

As shown in Fig. 14, following this deviation, the PQ controllers

bring the P and Q back to their reference values, i.e., P ∗ and

Q∗. The virtual inductance term was then disabled at instant

50 s, following which the signals are again restored to their

original values. Therefore, the proposed scheme can improve the

stability of grid-tied VSIs in weak grids without compromising

the steady-state performance.

VI. CONCLUSION

In this paper, a virtual inductance control strategy was pre-

sented to ensure stable operation of grid-tied VSIs in weak

grids. A virtual inductance term was derived to emulate addi-

tional inductance at the grid-side filter inductance of the LCL

filter. Increasing the filter inductance could result in stable in-

verter operation at weak grids as demonstrated analytically in

this paper. Instead of physically inserting additional inductance

to the LCL filter, in this paper, the inductance was added virtually

in the control scheme, which allowed avoiding extra cost and

hardware modifications while also maintaining the steady-state

performance of the system. Furthermore, the virtual inductance

term was realized without any additional sensors. A state-space

model for a PQ-controlled grid-tied VSI including the virtual

inductance feedforward was developed for stability analysis un-

der weak grids. The root locus of eigenvalues indeed showed

that the virtual inductance feedforward control scheme can sta-

bilize the grid-tied system in weak grids. The results were ver-

ified for three different weak grid scenarios through hardware

experiments carried out on a three-phase grid-tied VSI.

APPENDIX

The open-loop state-space model of the three-phase grid-tied

two-level VSI is presented in this appendix only for duplicating

the results presented in Section IV. In this model, the states of

the circuit model are chosen to be the q and d components of the

current out of the inverter iinv
dq = [ iinv

q iinv
d ]T , the filter capacitor

voltage vc
dq = [ vc

q vc
d ]T , and the grid current igdq = [ igq igd ]T .

The voltages at the PCC vpcc
dq = [ vpcc

q vpcc
d ]T and the inputs

to the PWM generator z = [m ϕ ]T make up the inputs to the

circuit model. Here, m is the modulation index and ϕ is the

phase angle of the inverter voltage with respect to vpcc , which

is set as the reference. The state equations can then be written

as

d

dt

⎡

⎢

⎢

⎣

iinv
dq

vC
dq

igdq

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

iinv
dq

vC
dq

igdq

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

0 B12

0 0

B31 0

⎤

⎥

⎥

⎦

[

vpcc
dq

z

]

. (A1)

The A and B block matrices introduced in (A1) are provided

as follows:

A11 =

[ −3R1 −Rf

3L1
−ω

ω
−3R1 −Rf

3L1

]

A12 =

⎡

⎣

−1
2L1

√
3

6L1

−
√

3
6L1

−1
2L1

⎤

⎦

A13 =

⎡

⎣

Rf

3L1
0

0
Rf

3L1

⎤

⎦ A21 =

⎡

⎣

1
2Cf

√
3

6Cf

−
√

3
6Cf

1
2Cf

⎤

⎦

A22 =

[

0 −ω

ω 0

]

A23 =

⎡

⎣

−1
2Cf

−
√

3
6Cf

√
3

6Cf

−1
2Cf

⎤

⎦

A31 =

⎡

⎣

Rf

3L2
0

0
Rf

3L2

⎤

⎦ A32 =

⎡

⎣

1
2L2

−
√

3
6L2

√
3

6L2

1
2L2

⎤

⎦

A33 =

[ −3R2 −Rf

3L2
−ω

ω
−3R2 −Rf

3L2

]

B12 =

⎡

⎣

Vd c cos(Φ)√
3L1

−M Vd c sin(Φ)√
3L1

−Vd c sin(Φ)√
3L1

−M Vd c cos(Φ)√
3L1

⎤

⎦ B31 =

⎡

⎣

−1
2L2

√
3

6L2

−
√

3
6L2

−1
2L2

⎤

⎦ .
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