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Abstract— This paper considers multiple mobile agents
moving in the space with point mass dynamics. We introduce
a set of coordination control laws that enable the group to
generate the desired stable flocking motion. The control laws
are a combination of attractive/repulsive and alignment forces,
and the control law acting on each agent relies on the state
information of its flockmates and the external reference signal.
By using the control laws, all agent velocities asymptotically
approach the desired velocity, collisions are avoided between
the agents, and the final tight formation minimizes all agent
global potentials. Moreover, we show that the velocity of
the center of mass either is equal to the desired velocity or
exponentially converges to it. Furthermore, when the velocity
damping is taken into account, we can properly modify the
control laws to generate the same stable flocking motion.
Finally, for the case that not all agents know the desired
common velocity, we show that the desired flocking motion
can still be guaranteed. Numerical simulations are worked
out to illustrate our theoretical results.

I. PROBLEM FORMULATION

We consider a group of N agents moving in an n-

dimensional Euclidean space, each has point mass dynamics

described by

ẋi = vi,
miv̇

i = ui, i = 1, · · · , N,
(1)

where xi ∈ R
n is the position vector of agent i, vi ∈ R

n

is its velocity vector, mi > 0 is its mass, and ui ∈ R
n is

the (force) control input acting on agent i.
Our objective is to make the entire group move at a

desired velocity and maintain constant distances between

the agents. We first consider the ideal case, that is, we ignore

the velocity damping. In this case, in order to achieve our

control objective, we try to regulate each agent velocity to

the desired velocity, reduce the velocity differences between

agents, and at the same time, regulate their distances such

that their global potentials become minimum. Hence, we

choose the control law ui for agent i to be

ui = αi + βi + γi, (2)

where αi is used to regulate the potentials among agents,

βi is used to regulate the velocity of agent i to the weighted

average of its flockmates, and γi is used to regulate the mo-

mentum of agent i to the desired final momentum (all to be
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designed later). αi is derived from the social potential fields

which is described by artificial social potential function V i,

a function of the relative distances between agent i and its

flockmates. Collision-free and cohesion in the group can be

guaranteed by this term. βi reflects the alignment or velocity

matching with neighbors among agents. γi is designed to

regulate the momentum among agents based on the external

signal (the desired velocity). By using such a of momentum

regulation, we can obtain the explicit convergence rate of

the center of mass (CoM) of the system.

Remark 1: The design of αi and βi indicates that, dur-

ing the course of motion, agent i is influenced only by

its “neighbors”, whereas γi reflects the influence of the

external signal on the agent motion.

Certainly, in some cases, the velocity damping can not

be ignored. For example, objects moving in viscous en-

vironment and mobile objects with high speeds such as

supersonic aerial vehicles, are subjected to the influence

of velocity damping. Then, in this case, the model in (1)

should be in the following form

ẋi = vi,
miv̇

i = ui − kiv
i,

(3)

where ki > 0 is the “velocity damping gain”, −kiv
i is the

velocity damping term, and ui is the control input for agent

i. Here we assume that the damping force is in proportion

to the magnitude of velocity and the damping gains ki, i =
1, · · · , N are not equal to each other. In order to achieve our

control objective, we need to compensate for the velocity

damping. Hence, we modify the control law ui to be

ui = αi + βi + γi + kiv
i. (4)

II. MAIN RESULTS

In this section, we investigate the stability properties of

multiple mobile agents with point mass dynamics described

in (1). We will present explicit control input in (2) for the

terms αi, βi, and γi. We will employ matrix analysis and

algebraic graph theory as basic tools for our discussion.

Some concepts and results can be found in [11]–[12].

Due to the complexity of the agent interactions, we

will define two kinds of structure topologies to describe

the information flows between the agents. Throughout this

paper, we assume that each agent is equipped with two

onboard sensors: the position sensor which is used to sense

the position information of the flockmates and the velocity

sensor which is used to sense the velocity information

of its neighbors, and assume that all sensors can sense
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instantaneously. In what follows, we will use an undirected

graph G to describe the position sensor information flow

and use a weighted directed graph D to describe the

velocity sensor information flow. Following [2], we make

the following definitions.

Definition 1: (Position neighboring graph) The position

neighboring graph, G = (V, E), is an undirected graph

consisting of a set of vertices, V = {n1, · · · , nN}, indexed

by the agents in the group, and a set of edges, E =
{(ni, nj) ∈ V × V | nj ∼ ni}, containing unordered pairs

of vertices that represent the position neighboring relations.

Definition 2: (Velocity neighboring graph) The velocity

neighboring graph, D = (V, E ,A), is a weighted directed

graph consisting of a set of vertices, V = {n1, · · · , nN},

indexed by the agents in the group, and a set of arcs, E =
{(ni, nj) ∈ V × V | nj ∼ ni}, containing ordered pairs

of vertices that represent the velocity neighboring relations.

A = [aij ] ∈ R
N×N is the weight matrix which consists of

the interaction coefficients between the agents.

Note that, in the velocity neighboring graph D, an arc

(ni, nj) represents an unidirectional velocity information

exchange link from ni to nj , which means that agent i can

obtain the velocity information of agent j.

In this paper, we consider a group of mobile agents with

fixed topology. In order to make the final potential of each

agent be global minimum and at the same time, ensure

collision-free in the group, we assume that the position

neighboring graph is complete. Let I = {1, 2, · · · , N}.

For the velocity neighboring graph, we denote the set

Ni = {j | aij > 0} ⊆ I\{i} which contains all neighbors

of agent i, where aij is the weight of arc (ni, nj).

Definition 3: [2] (Potential function) Potential V ij is

a differentiable, nonnegative, radially unbounded function

of the distance ‖xij‖ between agents i and j, such that

V ij(‖xij‖) → ∞ as ‖xij‖ → 0, and V ij attains its unique

minimum when agents i and j are located at a desired

distance, where xij = xi − xj denotes the relative position

vector between agents i and j.

Functions V ij , i, j = 1, · · · , N are the artificial so-

cial potential functions that govern the interindividual in-

teractions. One example of such potential functions is

V ij(‖xij‖) = a ln ‖xij‖2 + b
‖xij‖2 , where a and b are some

positive constants. It is easy to see that V ij attains its unique

minimum a(1 + ln(b/a)) when ‖xij‖ =
√

b/a.

Then, the total potential of agent i can be expressed as

V i =

N∑
j=1,j �=i

V ij(‖xij‖).

Note that, in this section, we assume that all agents can

detect the external signal, that is, they all know the desired

final velocity. In the case that not all agents know the

mission signal, we will discuss the flocking control problem

in a separate section. In what follows, we only present the

detailed analysis for the ideal case, since for the nonideal

case, we only need to add the terms ki (i = 1, · · · , N ) to

cancel the velocity damping.
In the ideal case, we take the control law ui to be

u
i = −

N∑
j=1,j �=i

∇xiV
ij
−

∑
j∈Ni

wij(v
i
− v

j)−mi(v
i
− v

0), (5)

where v0 ∈ R
n is the desired common velocity and is a

constant vector, wij ≥ 0, and wii = 0, i, j = 1, · · · , N
represent the interaction coefficients. wij > 0 if agent i
can obtain the velocity information of agent j, and is 0

otherwise. We denote W = [wij ] as the interaction coeffi-

cient matrix (coupling matrix) on agent velocity associated

with the velocity neighboring graph D. Thus, when D is

connected, W + W T is irreducible. The control law in (5)

implies that we adopt the local velocity regulation and the

global potential regulation to achieve our control objective.

Such a regulation is due to the complexity of the interactions

between agents (or particles) in nature.

Weight Balance Condition [8]: consider the weight matrix

W = [wij ] ∈ R
N×N , for all i = 1, · · · , N , we assume that∑N

j=1
wij =

∑N
j=1

wji.

Proposition 1: [3] Let D be a weighted directed graph

such that the weight balance condition is satisfied. Then D
is strongly connected if and only if it is weakly connected.

Throughout this paper, we assume that the coupling

matrix satisfies the weight balance condition. Hence, if D
is weakly connected, then it must be strongly connected.

A. Stability Analysis

Theorem 1: By taking the control law in (5), all agent

velocities in the group described in (1) asymptotically

approach the desired common velocity, collision avoidance

is ensured between the agents, and the group final configu-

ration minimizes all agent global potentials.

This theorem becomes apparently true after Theorem 2

is proved, so we proceed to present Theorem 2.

We define the error vectors: ei
p = xi − v0t, and ei

v =
vi − v0, where t is time variable and v0 is the desired

common velocity. Then ei
v represents the velocity difference

vector between the actual velocity and the desired velocity

of agent i. It is easy to see that ėi
p = ei

v , and ėi
v = v̇i.

Hence, the error dynamics is given by

ėi
p = ei

v,

ėi
v = 1

mi
ui, i = 1, · · · , N.

(6)

By the definition of V ij , it follows that V ij(‖xij‖) =
V ij(‖eij

p ‖) := Ṽ ij , where eij
p = ei

p − ej
p, and hence

Ṽ i = V i and ∇ei
p
Ṽ ij = ∇xiV ij . Thus, the control input

for agent i in the error system has the following form

u
i = −

N∑
j=1,j �=i

∇ei
p
Ṽ

ij
−

∑
j∈Ni

wij(e
i
v − e

j
v) − mie

i
v. (7)

Consider the following positive semi-definite function

J =
1

2

N∑
i=1

(
Ṽ i + mie

iT
v ei

v

)
. (8)
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It is easy to see that J is the sum of the total artificial

potential energy and the total kinetic energy of all agents in

the error system. Define the level set of J in the space of

agent velocities and relative distances in the error system

Ω = {(ei
v, eij

p ) | J ≤ c, c > 0}. In what follows, we will

prove that the set Ω is compact. In fact, the set {ei
v, eij

p } with

J ≤ c is closed by continuity. Moreover, boundedness can

be proved by the connectivity of the position neighboring

graph. More specifically, from J ≤ c, we have Ṽ ij ≤ c. On

the other hand, since the potential function V ij is radially

unbounded, Ṽ ij is also radially unbounded, and there is

a positive constant d such that ‖eij
p ‖ ≤ d for all i, j =

1, · · · , N . By similar analysis, we have eiT
v ei

v ≤ 2c/mi,

thus ‖ei
v‖ ≤

√
2c/mi.

By the symmetry of Ṽ ij with respect to eij
p and by eij

p =

−eji
p , it follows that ∂ ˜V ij

∂e
ij
p

= ∂ ˜V ij

∂ei
p

= −∂ ˜V ij

∂e
j
p

, and therefore

d

dt

N∑
i=1

1

2
Ṽ

i =

N∑
i=1

∇ei
p
Ṽ

i
· e

i
v.

Theorem 2: By taking the control law in (7), all agent

velocities in the system described in (6) asymptotically

approach zero, collision avoidance is ensured between the

agents, and the group final configuration minimizes all agent

global potentials.
Proof: Choosing the positive semi-definite function J

defined as in (8) and calculating the time derivative of J
along the solution of the error system (6), we have

J̇ = −
1

2
eT
v

(
(L + LT ) ⊗ In

)
ev − eT

v (M ⊗ In)ev, (9)

where ev = (e1T
v , · · · , eNT

v )T is the stack vector of all agent

velocity vectors in the error system; L = [lij ] with

lij =

{
−wij ,∑N

k=1,k �=i wik,
i �= j,
i = j,

is the Laplacian matrix of the weighted velocity neighboring

graph if we set the corresponding edge weight of the graph

to be wij ; M = diag(m1, · · · ,mN ); In is the identity

matrix of order n and ⊗ stands for the Kronecker product.
By the definition of matrix L and the weight balance

condition, it is easy to see that L + LT is symmetric, each

row sum is equal to 0, the diagonal entries are positive, and

all the other entries are nonpositive. By matrix theory [12],

all eigenvalues of L + LT are nonnegative. Hence, matrix

L + LT is positive semi-definite. Furthermore, it is easy to

see that matrix M is positive definite. Thus J̇ ≤ 0, and

J̇ = 0 implies that e1

v = e2

v = · · · = eN
v and they all must

equal zero. This occurs only when v1 = · · · = vN = v0.

Thus ėi
v = v̇i = 0 for all i = 1, · · · , N . Based on LaSalle’s

invariance principle [13], the system trajectories converge

to the largest positively invariant subset of the set defined

by E = {ev|J̇ = 0}. In E, the agent velocity dynamics in

the error system is

ėi
v = −

1

mi

N∑
j=1,j �=i

∇ei
p
Ṽ ij = −

1

mi

∇ei
p
Ṽ i. (10)

Thus, in steady state, all agent velocities in the error system

no longer change and equal zero, and moreover, from (10),

the potential Ṽ i of each agent i is globally minimized.

Collision-free can be ensured between the agents since

otherwise it will result in Ṽ i → ∞.

From the proof of Theorem 2, it follows that, in steady

state, all agent actual velocities no longer change and are

equal to the desired velocity.

Remark 2: In the velocity neighboring graph, if the

nonzero interaction coefficients all equal 1, then the weight

balance condition implies that for each vertex, the number

of arcs starting at it is equal to the number of arcs ending on

it. The graphs satisfying such properties have been defined

as the balanced graphs [9].

B. The Motion of the CoM

In what follows, we will analyze the motion of the CoM

of system (1).

The position vector of the CoM in system (1) is defined

as x∗ = (
∑N

i=1
mix

i)/(
∑N

i=1
mi). Thus the velocity vector

of the CoM is v∗ = (
∑N

i=1
miv

i)/(
∑N

i=1
mi). By using

control law (5), and by the symmetry of function V ij with

respect to xij and the weight balance condition, we get

v̇∗ = −v∗ + v0. (11)

Suppose the initial time t0 = 0, and v∗(0) = v∗
0
. By solving

(11), we obtain v∗ = v0 + (v∗
0
− v0)e−t. Thus, it follows

that, if v∗
0

= v0, then the velocity of the CoM is invariant

and equals v0 for all the time; if v∗
0
�= v0, then the velocity

of the CoM exponentially converges to the desired velocity

v0 with a time constant of 1 s. Therefore, from the analysis

above, we have the following theorem.

Theorem 3: By taking the control law in (5), if the initial

velocity of the CoM is equal to the desired velocity, then it

is invariant for all the time; otherwise it will exponentially

converge to the desired velocity with a time constant of 1s.

Remark 3: Note that, by the calculation above, we can

see that, when the coupling matrix satisfies the weight

balance condition, the velocity variation of the CoM does

not rely on the neighboring relations or the magnitudes of

the interaction coefficients. It is obvious that, when there

is no external signal acting on the group and the motion

of each agent is only based on the state information of its

flockmates, under the weight balance condition, the velocity

of the CoM is invariant.

C. Convergence Rate Analysis

From (9), it is easy to see that the interaction coefficients

can influence the decaying rate of the total energy J , hence,

it can also influence the convergence rate of the system. In

what follows, we will present some qualitative analysis.

Let us again consider the dynamics of the error system.

From the analysis in Theorem 2, we know that J̇ ≤ 0, and

J̇ = 0 occurs only when e1

v = · · · = eN
v = 0, that is, only

when all agents have reached the desired velocity. In other

words, if there exists one agent whose velocity is different
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from the desired velocity, then the energy function J is

strictly monotone decreasing with time. Of course, before

the group forms the final tight configuration, there might be

the case that all agent velocities have reached the desired

value, but due to the regulation of the potentials among

agents, it instantly changes into the case that not all agents

have the desired velocity. Hence, the decaying rate of energy

is equivalent to the convergence rate of the system. From

(9), it follows that J̇ = − 1

2
eT
v

((
L + LT + 2M

)
⊗ In

)
ev.

By matrix theory [12], we have J̇ ≤ − 1

2
λ∗

min
eT
v ev ≤

−mmineT
v ev, where λ∗

min
> 0 denotes the smallest real

eigenvalue of matrix L + LT + 2M , and mmin :=
mini∈I{mi}. In the case that the velocity neighboring

graph D is connected and not all agents have reached the

common velocity, we have J̇ ≤ − 1

2
(λ2 + 2mmin)eT

v ev,
where λ2 > 0 denotes the second smallest real eigenvalue of

matrix L+LT . However, if the velocity neighboring graph

is not connected, without loss of generality, we assume that

L + LT = diag
((

L1 + LT
1

)
, · · · ,

(
Lr + LT

r

))
, and M =

diag(M1, · · · ,Mr) is the corresponding agent mass matrix,

where 1 < r ≤ N represents the number of the connected

velocity neighboring graphs, Li+LT
i is the Laplacian matrix

associated with the ith connected component Di. When not

all agents in the same connected subgroups have reached the

common velocity, we have J̇ ≤ − 1

2
mini∈I∗

{
λi

2
êiT
v êi

v

}
−

mmineT
v ev, where λi

2
denotes the second smallest real

eigenvalue of matrix Li + LT
i , êi

v is the stack vector of

all agent velocity vectors in the connected component Di,

and I∗ = {1, · · · , r}. Therefore, we have the following

conclusion: The convergence rate of the system relies on

the interaction coefficients as well as agent masses, and it

is always not faster than the convergence rate of the CoM.

Furthermore, if the initial velocity of the CoM is not equal

to the desired velocity, then the fastest convergence rate

of the system does not exceed the exponential convergence

rate with a time constant of 1 s.

Remark 4: Note that, when the group has achieved the

final steady state, the control input above equals zero.

III. DISCUSSIONS ON VARIOUS CONTROL LAWS

In the sections above, we introduced a set of control laws

that enable the group to generate the desired stable flocking

motion. However, it should be clear that control law (5) is

not the unique control law to produce the desired motion

for the group. In this section, we provide some other useful

control laws. For simplicity, we only present the control

laws for the group moving in the ideal case, since in the

nonideal case, we only need to add the terms kiv
i (i =

1, · · · , N) to cancel the velocity damping. The analysis and

proof are quite similar to the proof of Theorem 2, so we only

present the control laws and the corresponding Lyapunov

function.
Suppose that αi and βi rely on agent i’s mass, and take

the control law acting on agent i to be

u
i =−

N∑
j=1,j �=i

mi∇xiV
ij
−

∑
j∈Ni

miwij(v
i
−v

j)−mi(v
i
−v

0). (12)

We still consider the error system (6) and choose the

following Lyapunov function J = 1

2

∑N
i=1

(Ṽ i + eiT
v ei

v).
The rest analysis is similar to Theorem 2, thus is omitted.

Definition 4: Define the center of the system of agents

as x = (
∑N

i=1
xi)/N . The average velocity of all agents is

defined as v = (
∑N

i=1
vi)/N.

It is obvious that the velocity of the system center is just

the average velocity of all agents.

Using the control law in (12), we have v̇ = −v + v0.

Suppose the initial time t0 = 0, and v(0) = v0. We get

v = v0 + (v0 − v0)e−t. It is obvious that, if v0 = v0, then

the velocity of the system center is equal to the desired

velocity v0 for all the time, and if v0 �= v0, then the velocity

of the system center exponentially converges to the desired

velocity with a time constant of 1 s.

IV. EXTENSIONS AND DISCUSSIONS

In this section, we investigate the case that not all agents

know the desired velocity. We assume that the velocity

neighboring graph is weakly connected and there exists at

least one agent who knows the desired velocity. In the case

that there is no external signal acting on the group, the

collective dynamic behaviors of the agent group have been

analyzed in [3].
Without loss of generality, suppose that agent i (i =

1, · · · , N1) (1 ≤ N1 < N) can detect the external reference
signal, and agent j (j = N1 + 1, · · · , N) cannot detect the
reference signal. The control law acting on each agent i is
taken to be

u
i = −

N∑
j=1,j �=i

∇xiV
ij
−

∑
j∈Ni

wij(v
i
−v

j)−himi(v
i
−v

0) (13)

for all i = 1, · · · , N , where hi = 1 for all i = 1, · · · , N1

and hi = 0 for all i = N1 + 1, · · · , N .

We still consider the error system (6). Using control

law (13) and taking Lyapunov function (8), we have J̇ =
− 1

2
eT
v

(
(L + LT ) ⊗ In

)
ev − eT

v (M̂ ⊗ In)ev , where M̂ =
diag(h1m1, · · · , hNmN ). From the proof of Theorem 2, we

obtain that matrix L + LT is positive semi-definite. By the

connectivity of graph D, it follows that L+LT is irreducible

and the eigenvector associated with the single zero eigen-

value is 1 = [1, · · · , 1]T ∈ R
N . From the proof of Theorem

2 in [10], we obtain that eT
v

(
(L + LT ) ⊗ In

)
ev = 0 if and

only if e1

v = · · · = eN
v . On the other hand, by the definition

of hi and mi, it follows that matrix M̂ is positive semi-

definite, and eT
v (M̂ ⊗ In)ev = 0 if and only if ei

v = 0 for

all i = 1, · · · , N1. Hence, J̇ ≤ 0, and J̇ = 0 implies that

e1

v = · · · = eN
v = 0. Following similar analysis as in the

previous sections, we can conclude that the desired stable

flocking motion can be achieved. Due to space limitation,

we omit the detailed proof.

Remark 5: If there exists only one agent in the group

who can detect the external reference signal, the group can

still generate the desired stable flocking motion. This is of

practical interest in control of multi-agent systems.
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V. SIMULATIONS

In this section, we will present some numerical simula-

tions for the system described by (1) in order to illustrate

the theoretic results obtained in the previous sections.

These simulations are performed with ten agents moving

in the plane whose initial positions, velocities and the

velocity neighboring relations are set randomly, but they

satisfy: 1) all initial positions are set within a circle of radius

R = 15 m centered at the origin, 2) all initial velocities

are set with arbitrary directions and magnitudes within the

range of [0, 10] m/s, and 3) the velocity neighboring graph

is connected. All agents have different masses and they are

set randomly in the range of (0, 1] kg. Note that, because

the position neighboring graph is complete, we will not

describe it. In the following figures, we only present the

velocity neighboring relations.

The following simulations are all performed with the

same group having the same initial state. However, different

control laws are taken in the form of (13) with the explicit

potential function V ij = 1

2
ln ‖xij‖2 + 5

2‖xij‖2 , i, j =
1, · · · , 10. The interaction coefficient matrix W is generated

randomly such that
∑

10

j=1
wij =

∑
10

j=1
wji, wii = 0, and

the nonzero wij satisfy 0 < wij < 1 for all i, j = 1, · · · , 10.

We run all simulations for 200 seconds.

Fig. 1 presents the group initial state and the interaction

topology. Figs. 2 and 3 describe the group state in the

case that the motion of the group is not influenced by

any external signal. When we send a signal to the group

and try to make all agents move at a desired velocity

v0 = [0.1,−0.1]T , Figs. 4 and 5 show the results in our

simulation with the control laws taken in the form of (5),

whereas Figs. 6 and 7 show the simulation results with

the assumption that there are only two agents, labelled

by circles, who know the desired velocity. It can be seen

from them that the desired stable flocking motion can be

achieved. Fig. 8 shows the motion trajectories of the CoM

and Fig. 9 (d) depicts the corresponding curves of the errors

between the velocities of the CoM and the desired velocity,

where the star represents the initial position of the CoM,

and (a), (b), and (c) represent the corresponding states of

the CoM in three simulations, respectively. Figs. 9 (a)–(c)

are the velocity error plots to describe the errors between

the agent actual velocities and the desired velocity in three

simulations, and the dashed lines in Fig. 9 (c) depict the ve-

locity error curves of the agents who can detect the external

reference signal. Fig. 9 explicitly demonstrates that, when

there is no external signal acting on the group, all agent

velocities asymptotically approach a common velocity, and

the velocity of the CoM is invariant in time and is equal to

the final common velocity, otherwise, the velocities of all

agents and the CoM asymptotically approach the desired

velocity. Moreover, from Fig. 9, we can see an interesting

phenomenon that increasing the numbers of agents receiving

external signal do not necessarily imply a faster convergence

rate of the group to the desired velocity. This is consistent

with some real situations in nature.

Figs 2, 4, and 6 show that for a given initial condition,

a group of agents may exhibit different transient behavior,

depending on different choice of individuals for feeding in

external signal. This suggests the possibility for adjusting

the transient process by appropriately selecting the subgroup

of agents on which to apply the external signal. From Figs

3, 5 and 7, we can see that the final tight configuration of the

group is not unique, but in each case, the final potential of

each agent is globally minimum according to the theoretical

results.

Numerical simulations also indicate that the desired sta-

ble flocking can be achieved by using control law (13).
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Fig. 1. The group initial state (t=0 s)

Fig. 2. Final configuration and trajectories (t=200 s)
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Fig. 3. Final configuration and velocities (t=200 s)
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Fig. 4. Final configuration and trajectories (t=200 s)
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Fig. 6. Final configuration and trajectories (t=200 s)
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Fig. 7. Final configuration and velocities (t=200 s)
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Fig. 8. The trajectories and headings of the CoM (t=200 s)

Fig. 9. The velocity error plots
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