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Abstract

Given a set X, we provide the algebraic counterpart of the (mixed) Reidemeister moves for

virtual knots and links, with semi-arcs labeled by X: we define (commutative and noncommu-

tative) invariants with values in groups, using “2-cocycles”, and we also introduce a universal

group U
fg
nc (X) and functions π f , πg : X×X → U

fg
nc (X) governing all 2-cocycles in X. We exhibit

examples of computations -of the group and their invariants- achieved using GAP [7].

Introduction and preliminaries

In [6] we constructed an invariant for knots and links using noncommutative 2-cocycles,

that is, for (X, σ) a special solution of the Yang-Baxter equation (see definitions of biquan-

dle below) and a map f : X × X → G, where G is a (eventually) non-abelian group, and f

satisfies certain equations that we call noncommutative 2-cocycle conditions. In this way

a noncommutative version of the state-sum invariant can be defined. In this work we gen-

eralize this construction for virtual knots and links. Since a (diagram of a) virtual link has

two types of crossings, for a given set X of possible labels for the semi arcs, we need two

rules for coloring semi arcs in a crossing, say (X, S ) and (X, β), and also we need two types

of weights. We consider pairs f , g : X × X → G that we call “noncommutative 2-cocycle

pairs”. The strategy consists in three steps:

• Ask invariance under generalized (i.e. classical, virtual or mixed) Reidemeister

moves for colorings using some label set X: this step was already done in [2], we

recall the notion in Definition 6.

• Ask invariance under generalized Reidemeister moves for products of weights in a

given order, for a given pair of weight functions f , g : X × X → G, where G is some

(maybe non commutative) group, the map f determines the weights for classical

crossings and g for the virtual ones.

• Find a target group G and 2-cocycles f , g with values in G. We solve this problem

in a universal way.

R 1. If the group is abelian and the map β in Definition 6 is of the form β(x, y) =

(a−1y, ax), this construction -assuming 2 is invertible- gives the “state-sum” considered

also in [2], but there are much more general solutions for “β” , and also there are gen-

uine non-commutative examples, in Section 3 we provide an example of a non-trivial non-
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commutative 2-cocycle whose abelianization is trivial.

R 2. After defining the group U
fg
nc (X) (see Definition 31 in Section 2) that has the

property of being the universal target of noncomutative 2-cocycle pairs for a given (X, S , β),

one can see that there is a canonical choice of 2-cocycles, so the invariant that a priori

depends on the set of colorings and a choice of a non-commutative 2-cocycle pair, it is

actually determined by intrinsic properties of the set of colorings.

Considering virtual pairs of the form (X,flip,β) we produce non-trivial and different ways

to generalize the linking number to virtual links or knots (see Example 24 and Remark 26),

including the “self linking number” introduced by Kauffman in [11].

The contents of this work are as follows: after recalling the combinatorial definition of

a virtual link or knot, we introduce, in Section 1, the notion of non-abelian 2-cocycle pair.

Using this notion we propose the noncommutative invariant in Definition 20, proving that

it is actually an invariant. In Section 2 we define a group together with a noncommutative

2-cocycle pair that has the universal property as target of noncommutative 2-cocycles. This

group is defined in terms of generators and relations, and it is actually computable for virtual

pairs of small cardinality. We end by computing invariants of some virtual knots and links

using this universal group.

D 3. A set theoretical solution of the Yang-Baxter equation is a pair (X, σ) where

σ : X × X → X × X is a bijection satisfying

(Id × σ)(σ × Id)(Id × σ) = (σ × Id)(Id × σ)(σ × Id)

Notation: σ(x, y) = (σ1(x, y), σ2(x, y)) and σ−1(x, y) = σ(x, y).

A solution (X, σ) is called non degenerated, or birack if in addition:

1. (left invertibility) for any x, z ∈ X there exists a unique y such that σ1(x, y) = z,

2. (right invertibility) for any y, t ∈ X there exists a unique x such that σ2(x, y) = t.

A birack is called biquandle if, given x0 ∈ X, there exists a unique y0 ∈ X such that

σ(x0, y0) = (x0, y0). In other words, if there exists a bijective map s : X → X such that

{(x, y) : σ(x, y) = (x, y)} = {(x, s(x)) : x ∈ X}

R 4. The biquandle condition, from the perspective of knots and links, is intro-

duced in order to have compatibility with first Reidemeister move when coloring with (X, σ).

From the algebraic point of view, it can be proven that (X, σ) is a biquandle if and only if its

derived rack is a quandle (see Lemma 0.3 in [6] for biquandle equivalent conditions).

Following Kauffman [10], a virtual link or knot can be defined using diagrams with two

types of crossings: classical and virtual ones; a virtual crossings will be a 4-valent ver-

tex with a small circle around it. Virtual links/knots may be considered to be equivalence

classes of planar virtual knot diagrams under the equivalence relation generated by the three

(classical) Reidemeister moves, the virtual moves and a mixed Reidemeister move.

All links and knots considered in this work will be oriented ones. A useful reduction is

proved in [2]:
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Classical Reidemeister moves:

RI, RII and RIII.

Virtual Reidemeister moves:

vRI, vRII, vRIII

Mixed Reidemeister move: mixed RIII

Lemma 5 (Lemma 2.4, [2]). The classical and virtual II moves, together with one ori-

ented mixed RIII or vRIII move, imply the other oriented mixed RIII and vRIII moves. That

is, we can reverse the direction of any strand in type mixed RIII or vRIII move using a

sequence of RII and vRII moves.

D 6. A pair of biquandles (X, S ), (X, β), (shortly (X, S , β)) is called a virtual pair

if β2 = 1 and (1 × β)(S × 1)(1 × β) = (β × 1)(1 × S )(β × 1). This notion is also called virtual

invariant in [1].

E 7. If (X, S ) is a biquandle and a ∈ Aut(X, S ), that is, a : X → X is a bijection

satisfying (a × a)S (a−1 × a−1) = S , then one can consider β(x, y) = (a−1y, ax). It is easy to

check that we get a virtual pair in that way.

Not every virtual pair arise as in the above construction, if S is involutive (i.e. S 2 = Id)

with S (x, y) � (a−1y, ax), then (X, S , S ) is a virtual pair. But there are also different examples

with non-involutive S , already with |X| = 3. The following is an example with cardinal 4:

E 8. X = Z/4Z, S (x, y) = (−y, x + 2y)

β(x, y) =

{
(y, x) if x or y is odd

(y + 2, x + 2) if x and y are even
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1. Non-abelian 2-cocycle pair

1. Non-abelian 2-cocycle pair
1.1. Cocycle equations.
1.1. Cocycle equations. We begin this section by introducing the notion of noncommu-

tative 2-cocycle pair. If one analyzes the properties that a general weight (see subsection

1.2) must satisfy in order to generalize the construction given in [6] to the virtual case, then

one ends with the following definition:

D 9. Let H be a (not necessarily abelian) group and (X, S , β) a virtual pair. A

pair of functions f , g : X × X → H is a noncommutative 2-cocycle pair if:

• the pair f , S satisfies:

f1) f
(
x, y
)
f
(
S 2(x, y), z

)
= f
(
x, S 1(y, z)

)
f
(
S 2(x, S 1(y, z)), S 2(y, z)

)
,

f2) f
(
S 1(x, y), S 1(S 2(x, y), z)

)
= f
(
y, z
)
,

f3) f (x, s(x)) = 1 (recall the map s : X → X from Definition 3),

• the pair g, β satisfies:

g1) g(x, sβ(x)) = 1 (notice that β involutive implies that (X, β) is a biquandle, hence,

there is an associated map sβ : X → X),

g2) g(x, y)g
(
β(x, y)

)
= 1,

g3) g
(
x, y
)
g
(
β2(x, y), z

)
= g
(
x, β1(y, z)

)
g
(
β2(x, β1(y, z)), β2(y, z)

)
,

g4) g
(
y, z
)
g
(
β2(x, β1(y, z)), β2(y, z)

)
= g
(
x, y
)
g
(
β1(x, y), β1(β2(x, y), z)

)
,

g5) g
(
y, z
)
g
(
x, β1(y, z)

)
= g
(
β2(x, y), z

)
g
(
β1(x, y), β1(β2(x, y), z)

)
,

• and compatibility conditions between f , g, β, S :

m1) g
(
y, z
)
= g
(
S 1(x, y), β1(S 2(x, y), z)

)
,

m2) g(y, z)g
(
x, β1(y, z)

)
= g
(
S 2(x, y), z

)
g
(
S 1(x, y), β1(S 2(x, y), z

)
,

m3) g
(
x, β1(y, z)

)
f
(
β2(x, β1(y, z)), β2(y, z)

)
= f (x, y)g

(
S 2(x, y), z

)

are satisfied for any x, y, z ∈ X.

E 10. Let (X, S , β) be as in Example 8, let H be the group with generators {a, b, c, d,

h} and relations

bc = cb, c2 = 1, [h, a] = [h, b] = [h, c] = [h, d] = 1,

define f , g : X × X → H by the tables

f 0 1 2 3

0 1 a 1 a

1 b c bc 1

2 1 d 1 d

3 b 1 bc c

g 0 1 2 3

0 1 h 1 h

1 h−1 1 h−1 1

2 1 h 1 h

3 h−1 1 h−1 1

One can check by hand that the pair ( f , g) is a 2-cocycle pair, and after Theorem 32 we will

see that any other 2-cocycle pair ( f̃ , g̃) : X × X → H̃ necessarily factorizes through this pair

and a group homomorphism ρ : H → H̃.

E 11. If X = {1, 2} and S=β=flip, then the cocycle conditions f3, g1 and g2 are

f (1, 1) = f (2, 2) = g(1, 1) = g(2, 2) = 1

g(1, 2) =: h, g(2, 1) = h−1
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Call a = f (1, 2) and b = f (2, 1), conditions f1, f2, g3-g5 and m1 m2 are trivially satisfied

and condition m3 is

ah = ha, bh = hb.

So, if one takes H the group freely generated by {a, b, h} with relations ah = ha and bh = hb,

then the pair f , g defined by g(1, 2) = h = g(2, 1)−1, f (1, 2) = a, f (2, 1) = b and f (1, 1) =

f (2, 2) = g(1, 1) = g(2, 2) = 1 is a 2-cocycle pair.

Next we consider some special cases and analyze the general equations for each case.

Some special cases

If (X, S ) is a biquandle, a ∈ Aut(X, S ) and β(x, y) = (a−1y, ax), then equations f1,f2,f3

remain the same. An easy computation shows that g3 together with the choice of y =

ax gives g(x, z) = g(ax, az) for all x, z. Using this condition, the other equations may be

simplified giving the following (equivalent) set:

g0) g(x, z) = g(ax, az)

g1) g(x, ax) = 1,

g2) g(x, y)g
(
a−1y, ax

)
= 1,

g3) g
(
x, y
)
g
(
x, z
)
= g
(
x, z
)
g
(
x, y
)
,

g4) g
(
y, z
)
g
(
x, y
)
= g
(
x, y
)
g
(
y, z
)
,

g5) g
(
y, z
)
g
(
x, z
)
= g
(
x, z
)
g
(
y, z
)
,

m1) g
(
y, z
)
= g
(
S 1(x, y), a−1z

)
,

m2) g
(
S 2(x, y), z

)
g
(
y, z
)
= g(y, z)g

(
x, a−1z

)
,

m3) g
(
x, a−1z

)
f
(
ax, ay

)
= f (x, y)g

(
S 2(x, y), z

)
.

Notice that g3, g4, g5 are automatic if the group is abelian. Actually, when the group is

abelian, the equations m1, m2 and m3 can be replaced by

m1)’ g
(
y, z
)
= g
(
S 1(x, y), a−1z

)
,

m2)’ g
(
x, z
)
= g
(
S 2(x, y), az

)
,

m3)’ f
(
ax, ay

)
= f (x, y).

Another interesting situation is when the biquandle is given by a quandle, that is S (x, y) =

(y, x ⊳ y). In this case f2 is automatic, and one can make explicit S 1 and S 2 giving the

following:

Proposition 12. If X = (Q, ⊳) is a quandle and a ∈ Aut(Q), then ( f , g) is a non-abelian

2-cocycle pair for β(x, y) = (a−1y, ax) and S (x, y) = (y, x ⊳ y) if and only if they verify the

following equations

f1) f
(
x, y
)
f
(
x ⊳ y, z

)
= f
(
x, z
)
f
(
x ⊳ z, y ⊳ z

)
,

f3) f (x, x) = 1,

g0-m1-m2) g(x, z) = g(ax, z) = g(x, az) = g(x ⊳ y, z),

g1) g(x, x) = 1,

g2) g(x, y)g
(
y, x
)
= 1,

g3) g
(
x, y
)
g
(
x, z
)
= g
(
x, z
)
g
(
x, y
)
,

g4) g
(
y, z
)
g
(
x, y
)
= g
(
x, y
)
g
(
y, z
)
,

g5) g
(
y, z
)
g
(
x, z
)
= g
(
x, z
)
g
(
y, z
)
,

m3) g
(
x, z
)
f
(
ax, ay

)
= f (x, y)g

(
x ⊳ y, z

)
.
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Proof. All of them are simple specializations to this particular case, except

g(x, z) = g(x ⊳ y, z),

(We thank the referee for pointing out this part.) that is the combination of

g5) g
(
x, z
)
g
(
y, z
)
= g
(
y, z
)
g
(
x, z
)
,

m2) g
(
x ⊳ y, z

)
g
(
y, z
)
= g(y, z)g

(
x, a−1z

)
, and

m1) g
(
x, z
)
= g
(
x, a−1z

)
.

�

Corollary 13. Let (Q, ⊳) be a quandle, a ∈ Aut(Q, ⊳), denote Inn(Q) the subgroup gen-

erated by maps of the form − ⊳ y, and consider G = 〈Inn(Q), a〉 the subgroup generated by

Inn(Q) and a. If G acts transitively on X then g ≡ 1.

Proof. Given x, z ∈ X, the equality

g(x ⊳ y, z) = g(x, z) = g(ax, z)

says that

g(τ(x), z) = g(x, z) ∀τ ∈ G,

but if G acts transitively on X, then there exist τ such that τ(x) = z, and so

g(x, z) = g(τ(x), z) = g(z, z) = 1, ∀x, z ∈ X.

�

Notice that in Proposition 12, condition m3 is nontrivial even if g ≡ 1. We mention

another special case:

Corollary 14. Let X = {1, . . . , n} and a(x) = x + 1 Mod n, then ( f , g) is a non-abelian

2-cocycle pair for S=flip and β(x, y) = (a−1y, ax) if and only if g ≡ 1,

f (x, y) = f (ax, ay), f (x, x) = 1

and

f
(
x, y
)
f
(
x, z
)
= f
(
x, z
)
f
(
x, y
)
.

In particular, for n = 2, f is fully (and freely) determined by f (1, 2).

Particular case β=flip and H an abelian group

The specialization in this case gives the equations f1, f2, f3 together with

g1) g(x, x) = 1,

g2) g(x, y)g
(
y, x
)
= 1.

m1) g
(
y, z
)
= g
(
S 1(x, y), z

)
,

m2) g
(
x, z
)
= g
(
S 2(x, y), z

)
.

Connected components

Let (Q, ⊳) be a quandle and consider the equivalence relation generated by x ⊳ y ∼

x, ∀x, y ∈ Q. Recall that Q is called connected if there is only one equivalence class.
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Generalizing this definition, one can consider, for a biquandle (X, S ), the equivalence

relation generated by

∀x, y ∈ X, x ∼ S 1(x, y) and y ∼ S 2(x, y),

that is, if S (x, y) = (y′, x′) then x ∼ x′ and y ∼ y′. The equivalence classes are called

connected components, and the biquandle (X, S ) is called connected if there is only one

class. Clearly if S is given by a quandle then this definition agrees with the previous one.

For a virtual pair (X, S , β) there is also a natural equivalence relation, the one generated

by

∀x, y ∈ X, x ∼ S 1(x, y) ∼ β1(x, y)

and

y ∼ S 2(x, y) ∼ β2(x, y).

That is, if S (x, y) = (y′, x′) and β(x, y) = (y′′, x′′) we are setting x ∼ x′ ∼ x′′, y ∼ y′ ∼ y′′.

D 15. For a virtual pair (X, S , β), equivalent classes of elements of X are called

connected components. The virtual pair (X, S , β) is called connected if there is only one

class.

R 16. If one is interested in knots, then it is clear that one can restrict the attention

to connected virtual pairs, because a coloring of a knot only uses elements of the same

connected component of X.

E 17. If the biquandle (X, S ) is already connected then (X, S , β) is obviously con-

nected, the same for the biquandle (X, β). With the help of a computer one can check that

for cardinal 2,3,5 these are the only cases. For cardinal 4 there are examples of connected

virtual pairs (X, S , β) with nonconnected (X, S ) and nonconnected (X, β). More precisely,

there are 167 (isomorphism classes of) connected virtual pairs of size 4, and 10 of them

have disconnected S and β. Similar thing happens in cardinal 6, see table in subsection 2.2.

A straightforward consequence of m1 and m2, in the same spirit of Corollary 13, is:

Corollary 18. If (X, S ) is a connected biquandle and β=flip then g ≡ 1.

On the opposite side, if the biquandle is trivial (i.e. S (x, y) = (y, x)) then m1) and m2) are

trivial, the conditions for g are only g(x, x) = 1 and g(x, y) = g(y, x)−1, as in Example 11.

Next we will construct an invariant for oriented knots or links from a virtual pair (X, S , β)

and a 2-cocycle pair ( f , g).

1.2. Weights.
1.2. Weights. Let (X, S , β) be a virtual pair, H a group and f , g : X×X → H a non-abelian

2-cocycle pair. Let L = K1 ∪ · · · ∪ Kr be a virtual oriented link diagram on the plane, where

K1, . . . ,Kr are connected components, for some positive integer r. A coloring of L by X is a

rule that assigns an element of X to each semi-arc of L, in such a way that for every regular

crossing (figure on the left corresponds to a positive crossing and figure on the right to a

negative one):
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where (z, t) = S (x, y) and in case of a virtual crossing:

x
⊗�

��

���
��

y

����
��

��
��

z t

where (z, t) = β(x, y).

R 19. The conditions for (X, S , β) to be a virtual pair are precisely the compatibility

of the set of colorings with the Reidemeister moves (RI, RII, RIII, vRI, vRII, vRIII and

mixed RIII), so given (X, S , β) a virtual pair, the number of colorings of a link (or a knot)

using (X, S , β) is an invariant of that link (or knot).

Let  ∈ ColX(L) be a coloring of L by X and (b1, . . . , br) a set of base points on the

components (K1, . . . ,Kr). Let τ(i) = {τ
(i)

1
, . . . , τ

(i)

k(i)
}, for i = 1, . . . , r, be the ordered set of

regular crossings such that the under-arc belongs to component i or it is virtual crossing

involving component i. The order of the set τ(i) is given by the orientation of the component

starting at the base point.

At a positive crossing τ, let xτ, yτ be the color on the incoming arcs. The Boltzmann

weight at a positive crossing τ is B f ,g(τ,) = f (xτ, yτ). At a negative crossing τ, de-

note S (xτ, yτ) the colors on the incoming arcs. The Boltzmann weight at τ is B f ,g(τ,) =

f (xτ, yτ)
−1

At a virtual crossing τ, let xτ, yτ be the color on the incoming arcs. The Boltzmann weight

at τ is B f ,g(τ,) = g(xτ, yτ).

xτ

⊗�
��

��
�

����
��

�

yτ

����
��

��
��

��
��

�

� g(xτ, yτ)

β1(xτ, yτ) β2(xτ, yτ)

We will show that a convenient product of these weights is invariant under Reidemeister

moves. More precisely, take an oriented component, start at a base point, take the product

of Boltzmann weights associated to the crossing whenever it is a virtual crossing, or the

crossing is classical but one is going through the under arc.

For a group element h ∈ H, denote [h] the conjugacy class to which h belongs.
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D 20. The set of conjugacy classes

−→
Ψ(L, f , g) =

−→
Ψ(X, f .g)(L) = {[Ψi(L,, f , g)]} 1≤i≤r

∈ColX (L)

whereΨi(L,, f , g) =
∏k(i)

j=1
B fg(τ

(i)

j
,) (the order in this product is following the orientation

of the component) is called the conjugacy biquandle cocycle invariant of the link.

The following is our main theorem:

Theorem 21. The conjugacy biquandle cocycle Ψ is well defined and then define a

knot/link invariant.

R 22. This invariant clearly generalizes the one constructed in [6] by simply taking

β = flip and g ≡ 1. On the opposite side, if one chooses f ≡ 1 and general g, this invariant

will be trivial on classical links or knots, so a nontrivial g may detect virtuality.

E 23. Take the group H = 〈h〉, X = {1, 2}, S = β = flip, f ≡ 1, g(1, 1) = g(2, 2) =

1, g(1, 2) = g(2, 1)−1 = h. Here we show all possible colorings and the corresponding

invariants.

1

��

1

��
1

⊗
��

1

		

� {1, 1}

1





1

�� 1

��

2

��
2

⊗
��

1

��

� {h−1, h−1}

1





2

��

2

��

1

��
1

⊗
��

2

		

� {h, h}

2





1

�� 2

��

2

��
2

⊗
��

2

		

� {1, 1}

2





2

��

In particular, this link is nontrivial and non classical.

Proof of Theorem 21. We will check the product of weights is invariant under Reide-

meister moves. In [6] calculations due to regular crossings can be found, remains to consider

virtual and mixed Reidemeister moves. Following Lemma 5 we will check only one orien-

tation of arcs in each Reidemeister move (the rest will be equivalent).

• Virtual Reidemeister type I move:

β(x, sβ(x)) = (x, sβ(x))

x�� ��
⊕

�� sβ(x)�	
��

x

x x
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the condition (g1) g(x, sβ(x)) = 1, assures that the factor due to this crossing will not

change the product.

• Virtual Reidemeister type II move:

Take, for example, the following diagram:

Condition (g2) assures the product of weights due to these crossings will not

change the product.

• Virtual Reidemeister type III move:

Start by naming the incoming arcs x, y, z, then the outcoming arcs are respectively

equal as β is a solution of YBeq.

The product of the weights following the horizontal arc, in the first diagram, is:

A1 = g(x, y) g(β2(x, y), z)

and in the second diagram is:

B1 = g(x, β1(y, z)) g(β2(x, β1(y, z)), β2(y, z))

A1 = B1 is item (g3) in Definition 9.

The product of the weights following the arc labeled by y, in the first diagram, is:
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A2 = g(x, y) g(β1(x, y), β1(β2(x, y), z))

and in the second, is:

B2 = g(y, z) g(β2(x, β1(y, z)), β2(y, z))

A2 = B2 is item (g4) in Definition 9.

The product of the weights following the arc labeled by z, in the first diagram, is:

A3 = g(β
2(x, y), z) g(β1(x, y), β1(β2(x, y), z))

and in the second, is:

B3 = g(y, z) g(x, β1(y, z))

A3 = B3 is item (g5) in Definition 9.

• Mixed virtual Reidemeister type III move:

Start by naming, in both diagrams, x, y, z the incoming arcs. The outcoming arcs

are respectively equal as (X, S , β) is a virtual pair.

y

⊗�
��

��
��

��
��

��

���
��

��
��

��
��

�

z

����
��

��
��

��
��

��
��

��
��

��
��

��
�

x
⊗ �� β2(S 2(x,y),z)

β1(S 1(x,y),β1(S 2(x,y),z)) β2(S 1(x,y),β1(S 2(x,y),z))

The product of the weights following the arc labeled by x in the first diagram is:

A1 = f (x, y) g
(
S 2(x, y), z

)

and in the second diagram is:

B1 = g
(
x, β1(y, z)

)
f
(
β2(x, β1(y, z)), β2(y, z)

)

A1 = B1 is item (m3) in Definition 9.

The product of the weights following the arc labeled by y in the first diagram is:

A1 = g
(
S 1(x, y), β1(S 2(x, y), z)

)
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and in the second diagram is:

B1 = g(y, z)

A1 = B1 is item (m1) in Definition 9.

The product of the weights following the arc labeled by z in the first diagram is:

A1 = g
(
S 2(x, y), z

)
g
(
S 1(x, y), β1(S 2(x, y), z)

)

and in the second diagram is:

B1 = g(y, z) g
(
x, β1(y, z)

)

A1 = B1 is item (m2) in Definition 9.

This shows that the product of the weights does not change under generalized Reidemeis-

ter moves. A change of base points causes cyclic permutations of Boltzmann weights, and

hence the invariant is defined up to conjugacy. �

E 24. In [8] the authors mention that there are several ways to generalize the no-

tion of linking number to the virtual case. For 2-component links, they give two independent

versions of the linking number: the invariant lk 1
2

may be computed as a sum of signs of real

crossings where the first component passes over the second one. Similarly, lk 2
1

is defined by

exchanging the components in the definition of lk 1
2
.

In our context, previous definitions can be achieved in the following way: take a two

component (virtual) link. Take (X, S , β) the virtual pair with S = β = flip and f , g a 2-cocycle

pair with g = 1. Take two different elements 1, 2 ∈ X. Color “the first” component with color

1 and “the second” component with color 2. The invariant for the second component will

be f
lk 1

2 (2, 1). The invariant for the first component will be f
lk 2

1 (1, 2). Recall (see Example

11) that for X={1, 2}, S=β=flip , cocycle pairs can be obtained considering G = Free{a, b}×

Free{h} and f , g : X × X → G defined by

f (1, 1) = f (2, 2) = g(1, 1) = g(2, 2) = 1

g(1, 2) = h, g(2, 1) = h−1

f (1, 2) = a, f (2, 1) = b

E 25. Take X = {0, 1} = Z/2Z, S = flip and β given by

β(0, 0) = (1, 1), β(1, 1) = (0, 0),

β(0, 1) = (0, 1), β(1, 0) = (1, 0)

One can check that this rule can be written as β(x, y) = (y − 1, x + 1) so it is an involutive

biquandle, and also one can easily check that the coloring rule for (X, S , β) is the rule of

“changing the color when going trough a virtual crossing and not changing the color when

the crossing is classical”, just as in [11]. If one considers the 2-cocycle equations then (see

Corollary 14) we are lead to g ≡ 1 and a group H = 〈a〉 with f : X × X → H satisfying
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f (1, 0) = f (0, 1) = a, f (0, 0) = 1, f (1, 1) = 1.

If one uses this cocycle pair for a classical 2-component link, then exponent of a is the

linking number. So, if one uses this cocycle pair for virtual knots or links, one gets a different

generalization of the linking number to the virtual case (see [11] for the notion of “self-

linking number”).

R 26. Given (X, S = flip), the condition for an involutive β to be compatible with

S , in the sense that (X, S , β) is a virtual pair, is non-trivial. Nevertheless, there are plenty

of examples; for instance, if |X| = 7, there are 3456 involutive solutions, 1959 of them are

compatible with S = flip.

1.3. Cohomologous pairs.
1.3. Cohomologous pairs. From the following lemma we propose the notion of coho-

mologous 2-cocycle pair:

Lemma 27. Let f , g : X × X → G be a 2-cocycle pair and λ : X → G be a map. If one

defines

fλ(x, y) := λ(x) f (x, y)λ(S 2(x, y))−1

gλ(x, y) := λ(x)g(x, y)λ(β2(x, y))−1

then

• fλ always satisfies f1,

• fλ satisfies f2 ⇐⇒ λ(y) = λ(S 1(x, y)) for all x, y,

• fλ satisfies f3 ⇐⇒ λ(x) = λ(sS (x)) for all x,

• gλ satisfies g1 ⇐⇒ λ(y) = λ(sβ(y)) for all y,

• gλ always satisfies g3,

• λ(y) = λ(β1(x, y)) for all x, y ⇐⇒ λ(β2(x, y)) = λ(x) for all x, y.

• If g(x, y) ≡ 1, then 1λ verifies g2 ⇐⇒ λ(x)λ(β2(x, y))−1λ(β1(x, y))λ(y)−1 = 1 ∀x, y.

• If λ(y) = λ(β1(x, y)) ∀x, y, then gλ satisfies g2 ⇐⇒ [λ(x), g(x, y)][g(x, y), λ(y)] = 1

for all x, y, where the brackets denote the commutator. If also λ(x) commutes with

g(x, y) for all y then gλ = g.

D 28. Let H be a group, (X, S , β) be a virtual pair. Two 2-cocycle pairs ( f , g)

and ( f̃ , g̃) are called cohomologous if g = g̃ and there exists λ : X → H such that

f̃ (x, y) = λ(x) f (x, y)[λ(S 2(x, y))]−1

with λ satisfying

• λ(x) = λ(sS (x)),

• λ(y) = λ(S 1(x, y)),

• λ(y) = λ(β1(x, y)),

• for all x, and y, λ(x) commutes with g(x, y).

From Lemma 27 above one can easily prove the following:

Proposition 29. If ( f , g) is a 2-cocycle pair and a map λ : X → H satisfies the four

conditions given in Definition 28, then the pair ( fλ, g) is a two cocycle pair which is coho-
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mologous to ( f , g).

And one can also prove the expected result:

Proposition 30. If ( f , g), ( f̃ , g) are two cohomologous noncommutative 2-cocycle pairs

then

[Ψi(L,, f , g)] = [Ψi(L,, f̃ , g)].

Proof. Let us suppose f̃ (x, y) = γ(x) f (x, y)[γ(S 2(x, y))]−1. Take a link L, pick a connected

component K and a base point. If every crossing in K is virtual it is obvious. If every

crossing in K is classical see [6]. If K has both, virtual and classical crossings:

the product of weights for the horizontal line is:

f̃ (x, y)g(S 2(x, y), z) = λ(x) f (x, y)[λ(S 2(x, y))]−1g(S 2(x, y), z) =

λ(x) f (x, y)g(S 2(x, y), z)
[
λ((S 2(x, y))

]−1
= λ(x) f (x, y)g(S 2(x, y), z)

[
λ(β2(S 2(x, y), z))

]−1

the product of weights for the horizontal line is:

g(x, y) f̃ (β2(x, y), z) = g(x, y)λ(β2(x, y)) f (β2(x, y), z)
[
λ
(
S 2(β2(x, y), z)

)]−1

hence

g(x, y)λ(x) f (β2(x, y), z)
[
λ
(
S 2(β2(x, y), z)

)]−1

= λ(x)g(x, y) f (β2(x, y), z)
[
λ
(
S 2(β2(x, y), z)

)]−1

�
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2. Universal noncommutative 2-cocycle pair

2. Universal noncommutative 2-cocycle pair
2.1. Universal construction.
2.1. Universal construction. Given a virtual pair (X, S , β) we shall define a group to-

gether with a universal 2-cocycle pair in the following way:

D 31. Let U
fg
nc = U

fg
nc (X, S , β) be the group freely generated by symbols (x, y) f

and (x, y)g with relations

f1)
(
x, y
)

f

(
S 2(x, y), z

)
f =
(
x, S 1(y, z)

)
f

(
S 2(x, S 1(y, z)), S 2(y, z)

)
f

f2)
(
S 1(x, y), S 1(S 2(x, y), z)

)
f =
(
y, z
)

f

f3)
(
x, s(x)

)
f = 1

g1)
(
x, sβ(x)

)
g = 1

g2)
(
x, y
)
g

(
β(x, y)

)
g = 1

g3)
(
x, y
)
g

(
β2(x, y), z

)
g =
(
x, β1(y, z)

)
g

(
β2(x, β1(y, z)), β2(y, z)

)
g

g4)
(
y, z
)
g

(
β2(x, β1(y, z)), β2(y, z)

)
g =
(
x, y
)
g

(
β1(x, y), β1(β2(x, y), z)

)
g

g5)
(
y, z
)
g

(
x, β1(y, z)

)
g =
(
β2(x, y), z

)
g

(
β1(x, y), β1(β2(x, y), z)

)
g

m1)
(
y, z
)
g =
(
S 1(x, y), β1(S 2(x, y), z)

)
g

m2)
(
y, z
)
g

(
x, β1(y, z)

)
g =
(
S 2(x, y), z

)
g

(
S 1(x, y), β1(S 2(x, y), z

)
g

m3)
(
x, β1(y, z)

)
g

(
β2(x, β1(y, z)), β2(y, z)

)
f =
(
x, y
)

f

(
S 2(x, y), z

)
g.

Denote fxy and gxy the class in U
fg
nc of (x, y) f and (x, y)g respectively. We also define

π f , πg : X × X → U
fg
nc by

π f , πg : X × X → U
fg
nc

π f (x, y) := fxy,

πg(x, y) := gxy

The following is immediate from the definitions:

Theorem 32. Let (X, S , β) be virtual pair:

• The pair of maps π f , πg : X × X → U
fg
nc is a noncommutative 2-cocycle pair.

• Let H be a group and f , g : X × X → H a noncommutative 2-cocycle pair, then

there exists a unique group homomorphism ρ : U
fg
nc → H such that f = ρ ◦ π f and

g = ρ ◦ πg

X × X

π f

��

f
�� H

U
fg
nc

ρ

���
�

�
�

X × X

πg

��

g
�� H

U
fg
nc

ρ

���
�

�
�

R 33. U
fg
nc is functorial. That is, if φ : (X, S , β) → (Y, S ′, β′) is a morphism of

virtual pairs, namely φ satisfy

(φ × φ)S (x1, x2) = S ′(φx1, φx2), (φ × φ)β(x1, x2) = β′(φx1, φx2)

then, φ induces a (unique) group homomorphism U
fg
nc (X)→ U

fg
nc (Y) satisfying
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fx1 x2
�→ fφx1φx2

gx1 x2
�→ gφx1φx2

Proof. One needs to prove that the assignment fx1 x2
�→ fφx1φx2

and gx1 x2
�→ gφx1φx2

are

compatible with the relations defining U
fg
nc (X) and U

fg
nc (Y) respectively, and this is clear

since (φ × φ) ◦ S = S ◦ (φ × φ) and (φ × φ) ◦ β = β ◦ (φ × φ). �

R 34. In order to produce an invariant of a knot or link, given a solution (X, S , β),

we need to produce a coloring of the knot/link by X, and then find a noncommutative 2-

cocycle, but since U
fg
nc is functorial, given X we always have the universal 2-cocycle pair

f , g : X × X → U
fg
nc (X), and hence, the information given by the invariant was already

included in the combinatorics of the colorings.

Also, if φ : X → X is a bijection commuting with S and β, then, given a coloring and

its invariant calculated with the universal cocycle, we may apply φ to each color and get

another coloring, and this will produce the same invariant pushed by φ in U
fg
nc .

E 35. Computations of Example 11 show that for X = {1, 2} and S = β = flip,

U
fg
nc (X) � Free(a, b) × Free(h) where (1, 1) f = (2, 2) f = (1, 1)g = (2, 2)g = 1, (1, 2) f = a,

(2, 1) f = b, (1, 2)g = h, (2, 1)g = h−1.

E 36. If X = {1, 2}, S (x, y) = (y + 1, x + 1) (mod 2) and β = flip, then

U
fg
nc (X) � Free(c)

where c = (1, 1) f = (2, 2) f , 1 = (1, 2) f = (2, 1) f , and (x, y)g = 1 for all x, y ∈ X. This virtual

pair does not give the same information as the previous example (since for instance g ≡ 1),

but it gives a different way to generalize the linking number to virtual links.

2.2. Some examples of virtual pairs of small cardinality.
2.2. Some examples of virtual pairs of small cardinality. Using GAP, the list of bi-

quandles and involutive solutions, one can easily compute the list of (isomorphism classes

of) virtual pairs of small cardinality. We show the total amount of them in the following

table. The amount grows very fast, for cardinal 6 the computer takes too long to compute

all virtual pairs, so we put on the table only partial cases for n = 6. The notation (S , ia)

is for virtual pairs with biquandle S and involutive β of the form β(x, y) = (a−1y, ax), with

a ∈ Aut(X, S ). Notice that for each S there are as many isomorphism classes of pairs (S , ia)

as conjugacy classes of Aut(X, S ).

n 2 3 4 5 6

all virtual pairs 4 90 3517 46658

virtual pairs (S , ia) 4 38 325 41278 111151

connected virtual pairs 3 26 167 138 836

conn. virtual pairs with

non conn. S and non conn β 0 0 10 0 84

The complete list in each case can be found in http://mate.dm.uba.ar/˜mfarinat/

papers/GAP/virtual.
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3. Some virtual knots/links and their n.c. invariants

3. Some virtual knots/links and their n.c. invariants
3.1. Kishino’s knots.
3.1. Kishino’s knots. We begin with an example of colorings:

E 37. Let S be the dihedral quandle, that is X = {1, 2, 3} and S (x, y) = (y, x ⊳ y)

where x ⊳ y = 2y − x (mod 3). Aut(X, S ) can be identified with the dihedral group D3 =

S 3. There are three conjugacy classes in D3, a set of representatives is {Id, (2, 3), (1, 2, 3)}.

For a ∈ Aut(X, S ) denote ia the involutive biquandle given by ia(x, y) = (a−1(y), a(x)).

In the following table we write the number of colorings of the Kishino’s knots using the

corresponding virtual pair, so we see that they are all different.

#colorings (S , iid) (S , i(2,3)) (S , i(1,2,3))

K1 9 3 9

K2 3 9 3

K3 3 3 3

Moreover, for X = {1, 2, 3, 4} with S given by

S (1, 1) = (1, 1) S (1, 2) = (2, 4) S (1, 3) = (4, 2) S (1, 4) = (3, 3)

S (2, 1) = (3, 4) S (2, 2) = (4, 1) S (2, 3) = (2, 3) S (2, 4) = (1, 2)

S (3, 1) = (4, 3) S (3, 2) = (3, 2) S (3, 3) = (1, 4) S (3, 4) = (2, 1)

S (4, 1) = (2, 2) S (4, 2) = (1, 3) S (4, 3) = (3, 1) S (4, 4) = (4, 4)

and β = flip, then the number of colorings of K3 is 16, so K3 is also nontrivial.

3.2. Links.
3.2. Links. It is worth to notice that [1] computes virtual pairs of small cardinality. In

that work, some classes of virtual pairs are considered, the so called essential pairs, and the

welded pairs. Recall that there are “forbidden” Reidemeister moves:

These moves are not allowed in virtual knots, and if one uses both forbidden moves, then

one can “unknot” every knot/link. Essential virtual pairs are pairs that do not satisfy those

forbidden moves, in welded pairs a forbidden move is allowed (see [1] for details). In this

work we consider all virtual pairs, that’s why we have more virtual pairs that in [1]. in

particular, for n=2, the trivial example (flip, flip) is not considered in [1], and one can easily

see that the number of colorings doesn’t give any interesting information, just if the link is
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connected or not, but the 2-cocycle invariant is highly nontrivial, as we show next.

From the list of 51 virtual links provided by A. Bartholomew (these are 2-component

links with 4, 5 or 6 crossings), coloring with (X = {1, 2}, S = β = flip) (see Example 35)

and computing the invariant (coloring will not distinguish these links), leaves 18 classes. To

refine this, color with (X = {1, 2}, S = antiflip, β = flip) (i.e. Example 36) and compute the

invariant. Using both invariants leaves 38 classes. Furthermore, color with X = {1, 2, 3, 4}

and all possible virtual pairs (without computing the invariant) and get 47 classes.

We exhibit three examples of links from this list, and their invariants:

E 38.

(X, S , β) U
fg
nc v2.2 v2.3 v3.4

({1, 2},flip,flip) 〈a, b〉 × 〈h〉 4{1, 1} 2{a−1, b−1}, 2{a−1, b−1},

2{1, 1} 2{1, 1}

({1, 2},a-flip,flip) 〈c〉 4{1, 1} 2{c−2, 1}, 2{c−1, c−1},

2{1, 1} 2{1, 1}

The content of the above table is the following:

Using X = {1, 2} with S = β = flip (see Example 35) and computing the invariant gives 4

colorings to each v2.2, v2.3 and v3.4. For every coloring the invariant of v2.3 and v3.4 gives

{a−1, b−1} twice and {1, 1} twice, but the same computation for v2.2 gives always {1, 1}.

To be able to distinguish v2.3 from v3.4, consider same set X but S = antiflip and β = flip

(see Example 36), again there are 4 possible colorings for each link. The invariant gives:

{c−1, c−1} twice and {1, 1} twice for v2.3 and {c−2, 1} twice and {c−1, c−1} twice for v3.4, and

always {1, 1} for v2.2.

R 39. The exponent of a (or b) is the first generalization of linking number to the

virtual case (in the sense that if the link is classical then it gives the linking number). Using

the second virtual pair, the exponent of c is a different generalization of the linking number.

A non-commutative example

Consider S given by the quandle {1, 2, 3, 4} with operation

− ⊳ 1 = − ⊳ 2 = (3, 4),

− ⊳ 3 = − ⊳ 4 = (1, 2)

that is, S (x, y) = (y, x ⊳ y), and β the involutive solution

β(x, y) = (lx(y), ry(x)) where
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l1 = l2 = (1, 2),

l3 = l4 = (1, 2)(3, 4),

and ri = li (i = 1, 2, 3, 4). This is the pair number 248 in the list vp4 in [5].

Using the relations of U
fg
nc = U

fg
nc (X, S , β) one can easily see that

1 = (1, 1) f = (2, 2) f = (3, 3) f = (4, 4) f = (1, 1)g = (1, 2)g

= (2, 1)g = (2, 2)g = (3, 3)g = (3, 4)g = (4, 3)g = (4, 4)g

a := (1, 2) f = (2, 1) f , b := (1, 3) f = (2, 3) f

c := (1, 4) f = (2, 4) f , d := (3, 1) f = (4, 2) f

e := (3, 2) f = (4, 1) f , f := (3, 4) f = (4, 3) f

h := (1, 3)g = (1, 4)g = (2, 3)g = (2, 4)g

h−1 = (3, 1)g = (3, 2)g = (4, 1)g = (4, 2)g

So, we have 7 generators, and if one (or a computer) writes the list of all relations in terms

of a, b, c, d, e, f , h, one gets

b = ac, b = ca, c = ab, c = ba,

ab = ba, ac = ca, ah = ha, bc = cb,

bh = hc, ch = hb,

d = e f , d = f e, e = d f , e = f d, dd = ee,

d f = f d, dh = he, e f = f e,

eh = hd, f h = h f .

If one solves b, and d in terms of a, c, e, f , h, equations above translate into

b = ac, d = e f ,

ac = ca, c = aac, c = aca, aac = aca,

ah = ha, acc = cac, ach = hc,

ch = hac, ch−1 = h−1ac,

e f = f e, e = e f f , e = f e f , e f e f = ee,

e f f = f e f , e f h = he,

eh = he f , f h = h f .

One can easily see that a2 = 1, f 2 = 1, a = [h, c] (=hch−1c−1), f = [e−1, h].

R 40. Let G be a group, a, c, h ∈ G and assume

a2 = 1, a = [h, c], [h, a] = [c, a] = 1,

then [h, c] = [c, h] = [c−1, h−1] = [c−1, h] = [c, h−1].

Using this remark, it is an easy exercise to check the following characterization:
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Corollary 41. Denote a := [h, c] and f := [h, e], then

U
fg
nc (S , β) �

Free(h, c, e)
〈

a2 = [a, c] = [a, h] = 1,

f 2 = [ f , e] = [ f , h] = 1

〉 .

R 42. The element a is nontrivial in U
fg
nc .

Proof. If one adds the relation e = 1 then (recall a := [h, c])

G := U
fg
nc /〈e = 1〉 �

Free(h, c)〈
a2 = [a, c] = [a, h] = 1,

〉

G can be described as a central extension of Z2
� Free(h, c)/〈[h, c]〉 over Z/2Z � 〈a : a2 =

1〉, more precisely, consider the set of monomials

M := {hic jaǫ : i, j ∈ Z, ǫ = 0, 1}

then M is a group with multiplication given by

(hic jaǫ)(hkclaσ) = hi+kc j+la jk+ǫ+σMod 2

and clearly S � M, so a � 1 in G. �

R 43. A famous quotient of U
fg
nc is the quaternion group H = {±1,±i,± j,±k}where

e �→ 1, h �→ i, c �→ j. One can see that relations go to 1, so we have a well-defined group

homomorphism, and a �→ −1.

R 44. If one uses the abelianization of U
fg
nc , then one gets essentially a (Laurent)

polynomial in the variables h, c, e, and clearly the element a is trivial in (U
fg
nc )ab, since

a = [h, c]. But there are examples where the full non-commutative invariant gives a as

answer (see next example), so this non-commutative invariant refines the 2-cocycle one with

values only in commutative groups.

E 45. If one uses this virtual pair and the universal 2-cocycle, then the invariant

for the virtual link v2.3 is (a, a) twice, ( f , f ) twice, and 4 times (1, 1).

3.3. State sum.
3.3. State sum. If the target group (A, ·) is abelian, then one can perform the state-sum

for a pair of maps f , g : X × X → A, defining Boltzmann Weights in the same way. For a

given coloring, consider the product over all crossings of the corresponding weights, and

then sum over all colorings. If one asks for Reidemeister invariance in this construction, the

set of equations are:

ss-f1) f (x, s(x)) = 1,

ss-f2) f
(
x, y
)
f
(
S 2(x, y), z

)
f
(
S 1(x, y), S 1(S 2(x, y), z)

)

= f
(
x, S 1(y, z)

)
f
(
S 2(x, S 1(y, z)), S 2(y, z)

)
f
(
y, z
)
,

ss-g1) g(x, sβ(x)) = 1,

ss-g2) g(x, y) g
(
β(x, y)

)
= 1,

ss-g3) g
(
x, y
)
g
(
β2(x, y), z

)
g
(
β1(x, y), β1(β2(x, y), z)

)

= g
(
x, β1(y, z)

)
g
(
β2(x, β1(y, z)), β2(y, z)

)
g
(
y, z
)
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ss-m) g(y, z) g
(
x, β1(y, z)

)
f
(
β2(x, β1(y, z)), β2(y, z)

)

= g
(
S 1(x, y), β1(S 2(x, y), z)

)
g
(
S 2(x, y), z

)
f (x, y).

Conditions ss-f1 and ss-f2 are a consequence of f1, f3, f3. Also ss-m follows from m1, m2,

m3. We have ss-g1 and ss-g2 are the same as g1 and g2. But g3, g4, and g5 imply (ss-g3)2,

that is, assuming g3 g4 and g5 one can conclude

g
(
x, y
)2
g
(
β2(x, y), z

)2
g
(
β1(x, y), β1(β2(x, y), z)

)2

= g
(
x, β1(y, z)

)2
g
(
β2(x, β1(y, z)), β2(y, z)

)2
g
(
y, z
)2

If the abelian group A has no elements of order 2, then a non-commutative 2-cocycle pair

is also a commutative 2-cocycle. One can think of the group (U
fg
nc )ab as a nontrivial way of

producing cocycles for virtual state-sum invariants, at least when (U
fg
nc )ab has no elements

of order 2.

4. Final questions

4. Final questions
We end with some open questions:

1. When S = flip, the compatibility condition for (an involutive) β is non-trivial, but

nevertheless there are many solutions (see Remark 26). Is there a characterization in

“involutive” terms? e.g. in terms of the dot operation (cyclic set structure), or brace,

associated to involutive solutions as considered by Rump [12]?

2. Is it possible to classify connected virtual pairs in group theoretical terms, or at least,

the indecomposable ones? The situation is well-known for quandles: recall that if

G is a group, s ∈ Aut(G), H ⊆ G a subgroup such that s(h) = h for all h ∈ H, then

Hy ⊳ Hx := Hs(yx−1)x

is a quandle structure on the homogeneous set G/H. This family of quandles contain

all indecomposable quandles because of the following characterization:

Theorem 3.1 [13] (see also [4] and [9]). Let X be an indecomposable quandle of

n elements, x0 ∈ X, z := − ⊳ x0, G = Inn(X), H = {g ∈ G : g(x0) = x0}, then

• G is a transitive group of degree n,

• z is central in H,

• X is isomorphic to G/H as quandle with s= conjugation by z.

An analogous characterization for (indecomposable) biquandles is not known, nei-

ther for (indecomposable) virtual pairs. For a given virtual pair (X, S , β), it would be

interesting to discover properties of the action of the group generated by the permu-

tations {S 1(x,−), S 2(−, y), lx, ry : x, y ∈ X}.

3. Given a finite virtual pair (X, S , β), it is easy to produce an algorithm computing

generators and relations of U
fg
nc (X), but one needs to do case by case. Is there a

way to compute U
fg
nc (X) in general at least for a family of virtual pairs? e.g. for

S=biAlexander switch and β affine?

4. When β=flip and g ≡ 1, then the conditions on f are the same as the 2-cocycle

condition considered in [6], which is a generalization of the quandle case considered

in [3]. Also, in [3], the authors prove that the noncommutative 2-cocycle invariant

(in the quandle case, for classical knots/links) is a quantum invariant. It seems that
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the fact that this noncommutative invariant is a quantum one may be generalized to

the biquandle case (and still classical knots or links), but it is not clear at all how

to proceed when there are virtual crossings. It would be interesting to see what

should be the “quantum algebraic” categorical data corresponding to virtual pairs

and 2-cocycle pairs.
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