
0018-9162/05/$20.00 © 2005 IEEE May 2005 39

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Virtual Machine
Monitors: Current
Technology and
Future Trends

A
t the end of the 1960s, the virtual machine
monitor (VMM) came into being as a soft-
ware-abstraction layer that partitions a
hardware platform into one or more virtual
machines.1 Each of these virtual machines

was sufficiently similar to the underlying physical
machine to run existing software unmodified.

At the time, general-purpose computing was the
domain of large, expensive mainframe hardware,
and users found that VMMs provided a compelling
way to multiplex such a scarce resource among mul-
tiple applications. Thus, for a brief period, this tech-
nology flourished both in industry and in academic
research.

The 1980s and 1990s, however, brought modern
multitasking operating systems and a simultaneous
drop in hardware cost, which eroded the value of
VMMs. As mainframes gave way to minicomput-
ers and then PCs, VMMs disappeared to the extent
that computer architectures no longer provided the
necessary hardware to implement them efficiently.
By the late 1980s, neither academics nor industry
practitioners viewed VMMs as much more than a
historical curiosity.

Fast forwarding to 2005, VMMs are again a hot
topic in academia and industry: Venture capital
firms are competing to fund startup companies tout-
ing their virtual-machine-based technologies. Intel,

AMD, Sun Microsystems, and IBM are developing
virtualization strategies that target markets with
revenues in the billions and growing. In research
labs and universities, researchers are developing
approaches based on virtual machines to solve
mobility, security, and manageability problems.

What happened between the VMM’s essential
retirement and its current resurgence?

In the 1990s, Stanford University researchers
began to look at the potential of virtual machines
to overcome difficulties that hardware and operat-
ing system limitations imposed: This time the prob-
lems stemmed from massively parallel processing
(MPP) machines that were difficult to program and
could not run existing operating systems. With vir-
tual machines, researchers found they could make
these unwieldy architectures look sufficiently sim-
ilar to existing platforms to leverage the current
operating systems. From this project came the peo-
ple and ideas that underpinned VMware Inc.
(www.vmware.com), the original supplier of
VMMs for commodity computing hardware. The
implications of having a VMM for commodity plat-
forms intrigued both researchers and entrepreneurs.

WHY THE REVIVAL?
Ironically, the capabilities of modern operating

systems and the drop in hardware cost—the very

Developed more than 30 years ago to address mainframe computing
problems, virtual machine monitors have resurfaced on commodity
platforms, offering novel solutions to challenges in security, reliability,
and administration.

Mendel
Rosenblum
VMware Inc.

Tal Garfinkel
Stanford University

Authorized licensed use limited to: Iowa State University. Downloaded on March 01,2010 at 14:16:27 EST from IEEE Xplore. Restrictions apply.

40 Computer

Hardware

Operating
system

App App

Virtual machine monitor

App App App

Operating
system

Operating
system

Figure 1. Classic
VMM. The VMM is a
thin software layer
that exports a virtual
machine
abstraction. The
abstraction looks
enough like the
hardware that any
software written for
that hardware will
run in the virtual
machine. combination that had obviated the use of VMMs

during the 1980s—began to cause problems that
researchers thought VMMs might solve. Less
expensive hardware had led to a proliferation of
machines, but these machines were often under-
used and incurred significant space and manage-
ment overhead. And the increased functionality
that had made operating systems more capable had
also made them fragile and vulnerable.

To reduce the effects of system crashes and break-
ins, system administrators again resorted to a com-
puting model with one application running per
machine. This in turn increased hardware require-
ments, imposing significant cost and management
overhead. Moving applications that once ran on
many physical machines into virtual machines and
consolidating those virtual machines onto just a
few physical platforms increased use efficiency and
reduced space and management costs. Thus, the
VMM’s ability to serve as a means of multiplexing
hardware—this time in the name of server consol-
idation and utility computing—again led it to
prominence.

Moving forward, a VMM will be less a vehicle
for multitasking, as it was originally, and more a
solution for security and reliability. In many ways
VMMs give operating systems developers another
opportunity to develop functionality no longer
practical in today’s complex and ossified operating
systems, where innovation moves at a geologic
pace. Functions like migration and security that
have proved difficult to achieve in modern operat-
ing systems seem much better suited to implemen-
tation at the VMM layer. In this context, VMMs
provide a backward-capability path for deploying
innovative operating system solutions, while pro-
viding the ability to safely pull along the existing
software base.

DECOUPLING HARDWARE AND SOFTWARE
As Figure 1 shows, the VMM decouples the soft-

ware from the hardware by forming a level of indi-

rection between the software running in the virtual
machine (layer above the VMM) and the hardware.
This level of indirection lets the VMM exert
tremendous control over how guest operating sys-
tems (GuestOSs)—operating systems running
inside a virtual machine—use hardware resources.

A VMM provides a uniform view of underlying
hardware, making machines from different vendors
with different I/O subsystems look the same, which
means that virtual machines can run on any avail-
able computer. Thus, instead of worrying about
individual machines with tightly coupled hardware
and software dependencies, administrators can
view hardware simply as a pool of resources that
can run arbitrary services on demand.

Because the VMM also offers complete encap-
sulation of a virtual machine’s software state, the
VMM layer can map and remap virtual machines
to available hardware resources at will and even
migrate virtual machines across machines. Load
balancing among a collection of machines thus
becomes trivial, and there is a robust model for
dealing with hardware failures or for scaling sys-
tems. When a computer fails and must go offline
or when a new machine comes online, the VMM
layer can simply remap virtual machines accord-
ingly. Virtual machines are also easy to replicate,
which lets administrators bring new services online
as needed.

Encapsulation also means that administrators
can suspend virtual machines and resume them at
arbitrary times or checkpoint them and roll them
back to a previous execution state. With this gen-
eral-purpose undo capability, systems can easily
recover from crashes or configuration errors.
Encapsulation also supports a very general mobil-
ity model, since users can copy a suspended virtual
machine over a network or store and transport it on
removable media.

The VMM can also provide total mediation of all
interactions between the virtual machine and under-
lying hardware, thus allowing strong isolation
between virtual machines and supporting the mul-
tiplexing of many virtual machines on a single hard-
ware platform. The VMM can then consolidate a
collection of virtual machines with low resources
onto a single computer, thereby lowering hardware
costs and space requirements.

Strong isolation is also valuable for reliability and
security. Applications that previously ran together
on one machine can now separate into different vir-
tual machines. If one application crashes the oper-
ating system because of a bug, the other appli-
cations are isolated from this fault and can con-

Authorized licensed use limited to: Iowa State University. Downloaded on March 01,2010 at 14:16:27 EST from IEEE Xplore. Restrictions apply.

May 2005 41

tinue running undisturbed. Further, if attackers
compromise a single application, the attack is con-
tained to just the compromised virtual machine.

Thus, VMMs are a tool for restructuring systems
to enhance robustness and security—without
imposing the space or management overhead that
would be required if applications executed on sep-
arate physical machines.

VMM IMPLEMENTATION ISSUES
The VMM must be able to export a hardware

interface to the software in a virtual machine that
is roughly equivalent to raw hardware and simul-
taneously maintain control of the machine and
retain the ability to interpose on hardware access.
Various techniques can help achieve this, each offer-
ing different design tradeoffs.

When evaluating these tradeoffs, the central
design goals for VMMs are compatibility, perfor-
mance, and simplicity. Compatibility is clearly
important, since the VMM’s chief benefit is its abil-
ity to run legacy software. The goal of performance,
a measure of virtualization overhead, is to run the
virtual machine at the same speed as the software
would run on the real machine. Simplicity is par-
ticularly important because a VMM failure is likely
to cause all the virtual machines running on the
computer to fail. In particular, providing secure iso-
lation requires that the VMM be free of bugs that
attackers could use to subvert the system.

CPU virtualization
A CPU architecture is virtualizable if it supports

the basic VMM technique of direct execution—
executing the virtual machine on the real machine,
while letting the VMM retain ultimate control of
the CPU.

Implementing basic direct execution requires
running the virtual machine’s privileged (operat-
ing-system kernel) and unprivileged code in the
CPU’s unprivileged mode, while the VMM runs in
privileged mode. Thus, when the virtual machine
attempts to perform a privileged operation, the
CPU traps into the VMM, which emulates the priv-
ileged operation on the virtual machine state that
the VMM manages.

The VMM handling of an instruction that dis-
ables interrupts provides a good example. Letting
a guest operating system disable interrupts would
not be safe since the VMM could not regain con-
trol of the CPU. Instead, the VMM would trap the
operation to disable interrupts and then record that
interrupts were disabled for that virtual machine.
The VMM would then postpone delivering subse-

quent interrupts to the virtual machine until
it reenables interrupts.

Consequently, the key to providing virtu-
alizable architecture is to provide trap seman-
tics that let a VMM safely, transparently, and
directly use the CPU to execute the virtual
machine. With these semantics, the VMM
can use direct execution to create the illusion
of a normal physical machine for the software
running inside the virtual machine.

Challenges. Unfortunately, most modern CPU
architectures were not designed to be virtualizable,
including the popular x86 architecture. For exam-
ple, x86 operating systems use the x86 POPF
instruction (pop CPU flags from stack) to set and
clear the interrupt-disable flag. When it runs in
unprivileged mode, POPF does not trap. Instead,
it simply ignores the changes to the interrupt flag,
so direct execution techniques will not work for
privileged-mode code that uses this instruction.

Another challenge of the x86 architecture is that
unprivileged instructions let the CPU access privi-
leged state. Software running in the virtual machine
can read the code segment register to determine the
processor’s current privilege level. A virtualizable
processor would trap this instruction, and the
VMM could then patch what the software running
in the virtual machine sees to reflect the virtual
machine’s privilege level. The x86, however, doesn’t
trap the instruction, so with direct execution, the
software would see the wrong privilege level in the
code segment register.

Techniques. Several techniques address how to
implement VMMs on CPUs that can’t be virtual-
ized, the most prevalent being paravirtualization2

and direct execution combined with fast binary
translation. With paravirtualization, the VMM
builder defines the virtual machine interface by
replacing nonvirtualizable portions of the original
instruction set with easily virtualized and more effi-
cient equivalents. Although operating systems
must be ported to run in a virtual machine, most
normal applications run unmodified.

Disco,3 a VMM for the nonvirtualizable MIPS
architecture, used paravirtualization. Disco design-
ers changed the MIPS interrupt flag to be simply a
special memory location in the virtual machine
rather than a privileged register in the processor.
They replaced the MIPS equivalent of the x86 POPF
instruction and the read access to the code segment
register with accesses to this special memory loca-
tion. This replacement also eliminated virtualiza-
tion overhead such as traps on privileged in-
structions, which resulted in increased performance.

The central design
goals for VMMs are

compatibility,
performance, and

simplicity.

Authorized licensed use limited to: Iowa State University. Downloaded on March 01,2010 at 14:16:27 EST from IEEE Xplore. Restrictions apply.

42 Computer

The designers then modified a version of the
Irix operating system to take advantage of
this paravirtualized version of the MIPS archi-
tecture.

The biggest drawback to paravirtualization
is incompatibility. Any operating system run
in a paravirtualized VMM must be ported to
that architecture. Operating system vendors
must cooperate, legacy operating systems
cannot run, and existing machines cannot
easily migrate into virtual machines. With
years of excellent backward-compatible x86
hardware, huge amounts of legacy software

are still in use, which means that giving up back-
ward compatibility is not trivial.

In spite of these drawbacks, academic research
projects have favored paravirtualization because
building a VMM that offers full compatibility and
high performance is a significant engineering chal-
lenge.

To provide fast, compatible virtualization of the
x86 architecture, VMware developed a new virtu-
alization technique that combines traditional direct
execution with fast, on-the-fly binary translation.
In most modern operating systems, the processor
modes that run normal application programs are
virtualizable and hence can run using direct execu-
tion. A binary translator can run privileged modes
that are nonvirtualizable, patching the nonvirtual-
izable x86 instructions. The result is a high-perfor-
mance virtual machine that matches the hardware
and thus maintains total software compatibility.

Others have developed binary translators4 that
translate code between CPUs with different instruc-
tion sets. VMware’s binary translation is much sim-
pler because the source and target instruction sets
are nearly identical. The VMM’s basic technique is
to run privileged mode code (kernel code) under
control of the binary translator. The translator
translates the privileged code into a similar block,
replacing the problematic instructions, which lets
the translated block run directly on the CPU. The
binary translation system caches the translated
block in a trace cache so that translation does not
occur on subsequent executions.

The translated code looks much like the results
from the paravirtualized approach: Normal instruc-
tions execute unchanged, while the translator
replaces instructions that need special treatment, like
POPF and reads from the code segment registers with
an instruction sequence similar to what a paravirtu-
alized virtual machine would need to run. There is
one important difference, however: Rather than
applying the changes to the source code of the oper-

ating system or applications, the binary translator
applies the changes when the code first executes.

While binary translation does incur some over-
head, it is negligible on most workloads. The trans-
lator runs only a fraction of the code, and execution
speeds are nearly indistinguishable from direct exe-
cution once the trace cache has warmed up.

Binary translation is also a way to optimize direct
execution. For example, privileged code that fre-
quently traps can incur significant additional over-
head when using direct execution since each trap
transfers control from the virtual machine to the
monitor and back. Binary translation can eliminate
many of these traps, which results in a lower overall
virtualization overhead. This is particularly true on
CPUs with deep instruction pipelines, such as the
modern x86 CPUs, where traps incur high overhead.

Future support. In the near term, both Intel with
its Vanderpool technology and AMD with its
Pacifica technology have announced hardware sup-
port for x86 CPU VMMs. Rather than making
existing execution modes virtualizable, both the
Intel and AMD technologies add a new execution
mode to the processor that lets a VMM safely and
transparently use direct execution for running vir-
tual machines. To improve performance, the mode
attempts to reduce both the traps needed to imple-
ment virtual machines and the time it takes to per-
form the traps.

When these technologies become available,
direct-execution-only VMMs could be possible on
x86 processors, at least for operating system envi-
ronments that do not use these new execution
modes.

If this hardware support works as well as the
IBM mainframe virtualization support of the early
days, it should be possible to decrease performance
overhead even more, as well as simplifying the
implementation of virtualization techniques.

Lessons from the past indicate that adequate
hardware support can decrease overhead, even
without paravirtualization, to the point that the
value of having a fully compatible virtual machine
abstraction overrides any performance benefits
from breaking compatibility.

Memory virtualization
The traditional implementation technique for vir-

tualizing memory is to have the VMM maintain a
shadow of the virtual machine’s memory-manage-
ment data structure. This data structure, the shadow
page table, lets the VMM precisely control which
pages of the machine’s memory are available to a vir-
tual machine.

Building a VMM
that offers full

compatibility and
high performance

is a significant
engineering
challenge.

Authorized licensed use limited to: Iowa State University. Downloaded on March 01,2010 at 14:16:27 EST from IEEE Xplore. Restrictions apply.

When the operating system running in a virtual
machine establishes a mapping in its page table, the
VMM detects the changes and establishes a map-
ping in the corresponding shadow page table entry
that points to the actual page location in the hard-
ware memory. When the virtual machine is execut-
ing, the hardware uses the shadow page table for
memory translation so that the VMM can always
control what memory each virtual machine is using.

Like a traditional operating system’s virtual mem-
ory subsystems, the VMM can page the virtual
machine to a disk so that the memory allocated to
virtual machines can exceed the hardware’s physi-
cal memory size. Because this effectively lets the
VMM overcommit the machine memory, the virtual
machine workload requires less hardware. The
VMM can dynamically control how much memory
each virtual machine gets according to what it needs.

Challenges. The VMM’s virtual memory subsys-
tem constantly controls how much memory goes
to a virtual machine, and it must periodically
reclaim some of that memory by paging a portion
of the virtual machine out to disk. The operating
system running in the virtual machine (the
GuestOS), however, is likely to have much better
information than a VMM’s virtual memory system
about which pages are good candidates for paging
out. For example, a GuestOS might note that the
process that created a page has exited, which means
nothing will access the page again. The VMM oper-
ating at the hardware level does not see this and
might wastefully page out that page.

To address this problem, VMware’s ESX Server5

adopted a paravirtualization-like approach, in
which a balloon process running inside the
GuestOS can communicate with the VMM. When
the VMM wants to take memory away from a vir-
tual machine, it asks the balloon process to allo-
cate more memory, essentially “inflating” the
process. The GuestOS then uses its superior knowl-
edge about page replacement to select the pages to
give to the balloon process, which the process then
passes to the VMM for reallocation. The increased
memory pressure caused by inflating the balloon
process causes the GuestOS to intelligently page
memory to the virtual disk.

A second challenge for memory virtualization is
the size of modern operating systems and applica-
tions. Running multiple virtual machines can waste
considerable memory by storing redundant copies
of code and data that are identical across virtual
machines.

To address this challenge, VMware designers
developed content-based page sharing for their

server products. In this scheme, the VMM
tracks the contents of physical pages, noting
if they are identical. If so, the VMM modifies
the virtual machine’s shadow page tables to
point to only a single copy. The VMM can
then deallocate the redundant copy, thereby
freeing the memory for other uses.

As with a normal copy-on-write page-shar-
ing scheme, the VMM gives each virtual
machine its own copy of the page if the con-
tents later diverge. To give an idea of poten-
tial savings, an x86 computer might have 30 virtual
machines running Microsoft Windows 2000 but
only one copy of the Windows kernel in the com-
puter’s memory—a significant reduction in physi-
cal memory use.

Future support. Operating systems make frequent
changes to their page tables, so keeping shadow
copies up to date in software can incur undesirable
overhead. Hardware-managed shadow page tables
have long been present in mainframe virtualization
architectures and would prove a fruitful direction
for accelerating x86 CPU virtualization.

Resource management holds great promise as an
area for future research. Much work remains in
investigating ways for VMMs and guest operating
systems to make cooperative resource management
decisions. In addition, research must look at
resource management at the entire data center level,
and we expect significant strides will be made in
this area in the coming decade.

I/O virtualization
Thirty years ago, the I/O subsystems of IBM

mainframes used a channel-based architecture, in
which access to the I/O devices was through com-
munication with a separate channel processor. By
using a channel processor, the VMM could safely
export I/O device access directly to the virtual
machine. The result was a very low virtualization
overhead for I/O. Rather than communicating with
the device using traps into the VMM, the software
in the virtual machine could directly read and write
the device. This approach worked well for the I/O
devices of that time, such as text terminals, disks,
card readers, and card punches.

Challenges. Current computing environments,
with their richer and more diverse collection of I/O
devices, make virtualizing I/O much more difficult.
The x86-based computing environments support a
huge collection of I/O devices from different ven-
dors with different programming interfaces. Con-
sequently, the job of writing a VMM layer that talks
to these various devices becomes a huge effort. In

May 2005 43

Resource
management
holds great

promise as an
area for future

research.

Authorized licensed use limited to: Iowa State University. Downloaded on March 01,2010 at 14:16:27 EST from IEEE Xplore. Restrictions apply.

44 Computer

addition, some devices such as a modern PC’s
graphics subsystem or a modern server’s network
interface have extremely high performance require-
ments. This makes low-overhead virtualization an
even more critical prerequisite for widespread
acceptance.

Exporting a standard device interface means that
the virtualization layer must be able to communi-
cate with the computer’s I/O devices. To provide
this capability, VMware Workstation, a product
targeting desktop computers, developed the hosted
architecture6 shown in Figure 2. In this architec-
ture, the virtualization layer uses the device drivers
of a host operating system (HostOS) such as Win-
dows or Linux to access devices. Because most I/O
devices have drivers for these operating systems,
the virtualization layer can support any I/O device.

When the GuestOS gives the command to read or
write blocks from the virtual disk, the virtual layer
translates the command into a system call that reads
or writes a file in the HostOS’s file system. Similarly,
the I/O VMM renders the virtual machine’s virtual
display card in a window on the HostOS, which lets
the HostOS control, drive, and manage the virtual
machine’s I/O display devices regardless of what
devices the GuestOS thinks are present.

The hosted architecture has three important
advantages. First, the VMM is simple to install
because users can install it like an application on the
HostOS rather than on the raw hardware, as with
traditional VMMs. Second, the hosted architecture
fully accommodates the rich diversity of I/O devices
in the x86 PC marketplace. Third, the VMM can
use the scheduling, resource management, and other
services the HostOS environment offers.

The disadvantages of the hosted architecture
became material when VMware started to develop
products for the x86 server marketplace. The
hosted architecture greatly increases the perfor-
mance overhead for I/O device virtualization. Each
I/O request must transfer control to the HostOS

environment and then transition through the
HostOS’s software layers to talk to the I/O devices.
For server environments with high-performance
network and disk subsystems, the resulting over-
head was unacceptably high.

Another problem is that modern operating sys-
tems such as Windows and Linux do not have the
resource-management support to provide perfor-
mance isolation and service guarantees to the
virtual machines—a feature that many server envi-
ronments require.

ESX Server5 adopts a more traditional VMM
approach, running directly on the hardware with-
out a host operating system. In addition to sophis-
ticated scheduling and resource management, ESX
Server has a highly optimized I/O subsystem for
network and storage devices.

The ESX Server kernel can use device drivers
from the Linux kernel to talk directly to the device,
resulting in significantly lower virtualization over-
head for I/O devices. VMware could use this
approach because relatively few network and stor-
age I/O devices have passed certification to run in
major x86 vendor server machines. Limiting sup-
port to these I/O devices makes directly managing
the I/O devices feasible for servers.

Yet another performance optimization in
VMware’s products is the ability to export special
highly optimized virtual I/O devices that don’t cor-
respond to any existing I/O devices. Like the par-
avirtualization approach for CPUs, this use of
paravirtualization requires that GuestOS environ-
ments use a special device driver to access the I/O
devices. The result is a more virtualization-friendly
I/O device interface with lower overhead for com-
municating the I/O commands from the GuestOS
and thus higher performance.

Future support. Like CPU trends, industry trends
in I/O subsystems point toward hardware support
for high-performance I/O device virtualization.
Discrete I/O devices, such as the standard x86 PC
keyboard controller and IDE disk controllers that
date back to the original IBM PC, are giving way
to channel-like I/O devices, such as USB and SCSI.
Like the IBM mainframe I/O channels, these I/O
interfaces greatly ease implementation complex-
ity and reduce virtualization overhead.

With adequate hardware support, safely passing
these channel I/O devices directly to the software in
the virtual machine should be possible, effectively
eliminating all I/O virtualization overhead. For this
to work, I/O devices will need to know about vir-
tual machines and be able to support multiple vir-
tual interfaces so that the VMM can safely map the

Standard x86 PC hardware

HostOS VMM

GuestOS

App

App App I/O
VMM

Figure 2. VMware’s
hosted architecture.
Rather than running
as a layer below all
other software, the
hosted architecture
shares the hardware
with an existing
operating system
(HostOS).

Authorized licensed use limited to: Iowa State University. Downloaded on March 01,2010 at 14:16:27 EST from IEEE Xplore. Restrictions apply.

interface into the virtual machine. In this way, the
virtual machine’s device drivers will be able to com-
municate directly with the I/O device without the
overhead of trapping into the VMM.

I/O devices that perform direct memory access
will require address remapping. The remapping
ensures that the memory addresses that the device
driver running in the virtual machine specifies will
get mapped to the locations in the computer’s mem-
ory that the shadow page tables specify. For the iso-
lation property to hold, the device should be able
to access only memory belonging to the virtual
machine regardless of how the driver in the virtual
machine programs the device.

In a system with multiple virtual machines using
the same I/O device, the VMM will need an effi-
cient mechanism for routing device completion
interrupts to the correct virtual machine. Finally,
virtualizable I/O devices will need to interface to
the VMM to maintain isolation between hardware
and software and ensure that the VMM can con-
tinue to migrate and take a checkpoint of the vir-
tual machines. I/O devices that provide this kind of
support could minimize virtualization overhead,
allowing the use of virtual machines for even the
most I/O-intensive workloads. Besides perfor-
mance, a significant benefit is the improved secu-
rity and reliability gained from removing complex
device driver code from the VMM.

WHAT’S AHEAD?
An examination of current products and recent

research provides some interesting insights into the
future of VMMs and the demands they will place
on virtualization technology.

Server side
In the data center, administrators will be able to

quickly provision, monitor, and manage thousands
of virtual machines running on hundreds of phys-
ical boxes—all from a single console. Rather than
configuring individual computers, system admin-
istrators will create new servers by instantiating a
new virtual machine from an existing template and
mapping these virtual machines onto physical
resources according to specific administration poli-
cies. Rather than thinking of any computer as pro-
viding a particular fixed service, administrators will
view computers simply as part of a pool of generic
hardware resources. An example of this technol-
ogy is VMware’s Virtual Center.

This mapping of a virtual machine to hardware
resources will be highly dynamic. Hot migration
capabilities, such as those in VMware’s VMotion

technology, will let virtual machines move
rapidly between physical machines according
to the data center’s needs. The VMM can han-
dle traditional hardware-management prob-
lems, such as hardware failure, simply by
placing the virtual machines running on the
failed computer onto other correctly function-
ing hardware. The ability to move running vir-
tual machines also eases some hardware
challenges, such as scheduling preventive main-
tenance, dealing with equipment lease ends,
and deploying hardware upgrades. Administrators
can use hot migration to perform these tasks with-
out service interruptions.

Today, manual migration is the norm, but the
future should see a virtual machine infrastructure
that automatically performs load balancing, detects
impending hardware failures and migrates virtual
machines accordingly, and creates and destroys vir-
tual machines according to demand for particular
services.

Beyond the machine room
As the pervasive use of virtual machines moves

from the server room to the desktop, their effects on
computing will become even more profound.
Virtual machines provide a powerful unifying par-
adigm for restructuring desktop management.7 The
provisioning benefits that VMMs bring to the
machine room apply equally to the desktop and
help solve the management challenges that large
collections of desktop and laptop machines impose.

Solving problems in the VMM layer benefits all
software running in the virtual machine, regardless
of the software’s age (legacy or latest release) or its
vendor. This operating system independence also
reduces the need to buy and maintain redundant
infrastructure. Instead of n versions of help desk or
backup software, for example, only one version—
the one that operates at the VMM level—would
require support.

Virtual machines could also significantly change
how users think about computers. If ordinary users
can easily create, copy, and share virtual machines,
the use models could be vastly different from those
in computing environments with hardware avail-
ability constraints. Software developers, for exam-
ple, can use products like VMware Workstation to
easily set up a network of machines for testing, or
they can keep their own set of test machines for
every target platform.

The increased mobility of virtual machines will
also significantly change machine use. Projects such
as The Collective7 and Internet Suspend/Resume8

May 2005 45

Virtual machines
provide a powerful
unifying paradigm
for restructuring

desktop
management.

Authorized licensed use limited to: Iowa State University. Downloaded on March 01,2010 at 14:16:27 EST from IEEE Xplore. Restrictions apply.

46 Computer

demonstrate the feasibility of migrating a
user’s entire computing environment over the
local and wide area. The availability of large-
capacity, inexpensive removable media in the
form of USB hard drives might mean that
users can bring their computing environ-
ments with them wherever they go.

The increasingly dynamic character of vir-
tual machine-based environments will also
require more dynamic network topologies.
Virtual switches, virtual firewalls, and overlay

networks will be an integral part of a future in which
the logical computing environment is decoupled
from the physical location.

Security improvements
VMMs offer the potential to restructure existing

software systems to provide greater security, while
also facilitating new approaches to building secure
systems. Current operating systems provide poor
isolation, leaving host-based security mechanisms
subject to attack. Moving these capabilities outside
a virtual machine—so that they run alongside an
operating system but are isolated from it—offers
the same functionality but with much stronger resis-
tance to attack. Two research examples of such sys-
tems are Livewire,9 a system that uses a VMM for
advanced intrusion detection on the software in the
virtual machines, and ReVirt,10 which uses the
VMM layer to analyze the damage hackers might
have caused during the break-in. These systems not
only gain greater attack resistance from operating
outside the virtual machine, but also benefit from
the ability to interpose and monitor the system
inside the virtual machine at a hardware level.

Placing security outside a virtual machine pro-
vides an attractive way to quarantine the net-
work—limiting a virtual machine’s access to a
network to ensure that it is neither malicious nor
vulnerable to attack. By controlling network access
at the virtual machine layer and inspecting virtual
machines before permitting (or limiting) access, vir-
tual machines become a powerful tool for limiting
the spread of malicious code in networks.

Virtual machines are also particularly well suited
as a building block for constructing high-assurance
systems. The US National Security Administration’s
NetTop architecture, for example, uses VMware’s
VMM to isolate multiple environments, each of
which has access to separate networks with varying
security classifications. Applications like this illus-
trate the need to continue researching and develop-
ing support for building ever smaller VMMs with
increasingly higher assurance.

VMMs are particularly interesting in that they
support the ability to run multiple software stacks
with different security levels. Because they can spec-
ify the software stack from the hardware up, virtual
machines provide maximum flexibility in trading
off performance, backward compatibility, and
assurance. Further, specifying an application’s com-
plete software stack simplifies reasoning about its
security. In contrast, it is almost impossible to rea-
son about the security of a single application in
today’s operating systems because processes are
poorly isolated from one another. Thus, an appli-
cation’s security depends on the security of every
other application on the machine.

These capabilities make VMMs particularly well
suited for building trusted computing, as the Terra
system11 demonstrates. In Terra, the VMM can
authenticate software running inside a virtual
machine to remote parties, in a process called attes-
tation.

Suppose, for example, that a user’s desktop
machine is running multiple virtual machines simul-
taneously. The user might have a relatively low-secu-
rity Windows virtual machine for Web browsing, a
higher-security virtual machine with a hardened
Linux virtual machine for day-to-day work, and a
still higher-security virtual machine comprising a
special-purpose high-security operating system and
a dedicated mail client for sensitive internal mail.

A remote server could require attestation from
each virtual machine to confirm its contents; for
example, the company file server might allow only
the hardened Linux virtual machine to interact with
it, while the secure-mail virtual machine might be
able to connect only to a dedicated mail server. In
both scenarios the servers are also likely to be run-
ning in virtual machines, permitting mutual authen-
tication to take place.

Finally, the flexible resource management that
VMMs provide can make systems more resistant
to attack. The ability to rapidly replicate virtual
machines and dynamically adapt to large work-
loads can provide a powerful tool for dealing with
the scaling demands that flash crowds and distrib-
uted denial-of-service attacks can impose.

Software distribution
For the software industry, the ubiquitous deploy-

ment of VMMs has significant implications. The
VMM layer provides exciting possibilities for soft-
ware companies to distribute entire virtual machines
containing complex software environments. Oracle,
for example, has distributed more than 10,000 fully
functional copies of its latest database environment

VMMs offer the
potential to

restructure existing
software systems

to provide
greater security.

Authorized licensed use limited to: Iowa State University. Downloaded on March 01,2010 at 14:16:27 EST from IEEE Xplore. Restrictions apply.

May 2005 47

in virtual machines. Rather than having to install
the entire complex environment to test the software,
users simply boot the virtual machine.

Although the use of virtual machines as a distri-
bution mechanism is widespread for software
demonstration, the model could also work well for
production environments, creating a fundamentally
different way of distributing software. Admini-
strators using VMware’s ACE product can publish
virtual machines and control how these virtual
machines can be used. The Collective project
explored in depth the idea of bundling applications
into virtual appliances. The idea is to provide file
servers, desktop applications, and so on in a form
that lets users treat the virtual machines as a stand-
alone application. An appliance maintainer han-
dles issues like patch management, thus relieving
normal users of the maintenance burden.

The virtual machine-based distribution model
will require software vendors to update their license
agreements. Software that is licensed to run on a
particular CPU or physical machine will not trans-
late as well into this new environment, relative to
licenses based on use or to sitewide licenses. Users
and system administrators will tend to favor oper-
ating system environments that they can easily and
inexpensively distribute in virtual machines, rather
than more restrictive and expensive options.

T he VMM resurgence seems to be fundamen-
tally altering the way software and hardware
designers view, manage, and structure complex

software environments. VMMs also provide a back-
ward-capability path for deploying innovative oper-
ating system solutions that both meet current needs
and safely pull along the existing software base. This
capability will be key to meeting future computing
challenges.

Companies are increasingly abandoning the
strategy of procuring individual machines and
tightly bundling complex software environments.
VMMs are giving these fragile, difficult-to-manage
systems new freedom. In coming years, virtual
machines will move beyond their simple provi-
sioning capabilities and beyond the machine room
to provide a fundamental building block for mobil-
ity, security, and usability on the desktop. Indeed,
VMM capabilities should continue to be an impor-
tant part of the shift in the computing landscape. �

References
1. R.P. Goldberg, “Survey of Virtual Machine

Research,” Computer, June 1974, pp. 34-45.

2. A. Whitaker, M. Shaw, and S. Gribble, “Scale and
Performance in the Denali Isolation Kernel,” ACM
SIGOPS Operating Systems Rev., vol. 36, no. SI,
Winter 2002, pp. 195-209.

3. E. Bugnion et al., “Disco: Running Commodity
Operating Systems on Scalable Multiprocessors,”
ACM Trans. Computer Systems, vol. 15, no. 4, 1997,
pp. 412-447.

4. R. Sites et al., “Binary Translation,” Comm. ACM,
Feb. 1993, pp. 69-81.

5. C. Waldspurger, “Memory Resource Management in
VMware ESX Server,” ACM SIGOPS Operating Sys-
tems Rev., vol. 36, no. SI, Winter 2002, pp. 181-194.

6. J. Sugerman, G. Venkitachalam, and B. Lim, “Virtu-
alizing I/O Devices on VMware Workstation’s
Hosted Virtual Machine Monitor,” Proc. Usenix
Ann. Technical Conf., Usenix, 2002, pp. 1-14.

7. R. Chandra et al., “The Collective: A Cache-Based
Systems Management Architecture,” Proc. Symp.
Network Systems Design and Implementation,
Usenix, 2005, to appear.

8. M. Kozuch and M. Satyanarayanan, “Internet Sus-
pend/Resume,” Proc. IEEE Workshop Mobile Com-
puting Systems and Applications, IEEE Press, 2002,
pp. 40-46.

9. T. Garfinkel and M. Rosenblum, “A Virtual Machine
Introspection-Based Architecture for Intrusion Detec-
tion,” Proc. Network and Distributed Systems Secu-
rity Symp., The Internet Society, 2003, pp. 191-206.

10. G. Dunlap et al., “ReVirt: Enabling Intrusion Analy-
sis through Virtual-Machine Logging and Replay,”
ACM SIGOPS Operating Systems Rev., vol. 36, no.
SI, Winter 2002, pp. 211-224.

11. T. Garfinkel et al., “Terra: A Virtual-Machine-Based
Platform for Trusted Computing,” Proc. ACM Symp.
Operating Systems Principles, ACM Press, 2003, pp.
192-206.

Mendel Rosenblum is an associate professor of
computer science at Stanford University and a
cofounder and chief scientist at VMware Inc. His
research interests include system software, distrib-
uted systems, computer architecture, and security.
Rosenblum received a PhD in computer science
from the University of California, Berkeley. Con-
tact him at mendel@cs.stanford.edu.

Tal Garfinkel is a PhD candidate in computer sci-
ence at Stanford University. His research interests
include operating systems, distributed systems, com-
puter architecture, and security. He received a BA in
computer science from the University of California,
Berkeley. Contact him at talg@cs.stanford.edu.

Authorized licensed use limited to: Iowa State University. Downloaded on March 01,2010 at 14:16:27 EST from IEEE Xplore. Restrictions apply.

