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Virtual memory is a technique for
managing the resource of physical memory. It
gives an application the illusion of a very large
amount of memory, typically much larger than
what is actually available. It protects the code
and data of user-level applications from the
actions of other programs but also allows pro-
grams to share portions of their address spaces
if desired. It supports the execution of process-
es partially resident in memory. Only the most
recently used portions of a process’s address
space actually occupy physical memory—the
rest of the address space is stored on disk until
needed. For a primer on virtual memory, see
our companion article in Computer magazine.1

Most contemporary general-purpose proces-
sors support virtual memory through a hard-
ware memory management unit (MMU) that
translates virtual addresses to physical address-
es. Unfortunately, the various microarchitec-
tures define the virtual-memory interface
differently, and, as explained in the next sec-
tion, this is becoming a significant problem.

Here, we consider the memory management
designs of a sampling of six recent processors,
focusing primarily on their architectural dif-
ferences, and hint at optimizations that some-
one designing or porting system software
might want to consider. We selected examples

from the most popular commercial microar-
chitectures: the MIPS R10000, Alpha 21164,
PowerPC 604, PA-8000, UltraSPARC-I, and
Pentium II. Table 1 points out a few of their
similarities by comparing their support for
some core virtual-memory functions.

Memory management
The classic MMU, as in the DEC VAX, GE

645, and Intel Pentium architectures,2-4

includes a translation look-aside buffer that
translates addresses and a finite-state machine
that walks the page table. The TLB is an on-
chip memory structure that caches only page
table entries (PTEs). If the necessary transla-
tion information is in the TLB, the system can
translate a virtual address to a physical address
without accessing the page table. If the trans-
lation information is not found in the TLB
(called a TLB miss), one must search the page
table for the mapping and insert it into the TLB
before processing can continue. In early designs
a hardware state machine performed this activ-
ity; on a TLB miss, the state machine walked
the page table, loaded the mapping, refilled the
TLB, and restarted the computation.

TLBs usually have on the order of 100
entries, are often fully associative, and are typ-
ically accessed every clock cycle. They trans-
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late both instruction and data stream address-
es. They can constrain the chip’s clock cycle
as they tend to be fairly slow, and they are also
power-hungry—both are a consequence of
the TLB’s high degree of associativity. Today’s
systems require both high clock speeds and
low power; in response, two-way and four-
way set-associative TLB designs are popular,
as lower degrees of associativity have far less
impact on clock speed and power consump-
tion than fully associative designs. To provide
increased translation bandwidth, designers
often use split TLB designs.

The state machine is an efficient design as
it disturbs the processor pipeline only slightly.
During a TLB miss, the instruction pipeline
effectively freezes: in contrast to taking an
exception, the pipeline is not disturbed, and
the reorder buffer need not be flushed. The
instruction cache is not used, and the data
cache is used only if the page table is located in
cacheable space. At the worst, the execution of
the state machine will replace a few lines in the
data cache. Many designs do not even freeze
the pipeline; for instance, the Intel Pentium
Pro allows instructions that are independent
of the faulting instruction to continue pro-
cessing while the TLB miss is serviced. The

primary disadvantage of the state machine is
that the page table organization is effectively
etched in stone; the operating system (OS) has
little flexibility in tailoring a design.

In response, recent memory management
designs have used a software-managed TLB, in
which the OS handles TLB misses. MIPS was
one of the earliest commercial architectures to
offer a software-managed TLB,5 though the
Astronautics Corporation of America holds a
patent for a software-managed design.6 In a
software-managed TLB miss, the hardware
interrupts the OS and vectors to a software rou-
tine that walks the page table. The OS thus
defines the page table organization, since hard-
ware never directly manages the table. 

The flexibility of the software-managed
mechanism comes at a performance cost. The
TLB miss handler that walks the page table is
an OS primitive usually 10 to 100 instruc-
tions long. If the handler code is not in the
instruction cache at the time of the TLB miss,
the time to handle the miss can be much
longer than in the hardware-walked scheme.
In addition, the use of the interrupt mecha-
nism adds a number of cycles to the cost by
flushing the pipeline—possibly flushing a
large number of instructions from the reorder
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Table 1. Comparison of architectural support for virtual memory in six commercial MMUs.

Item MIPS Alpha PowerPC PA-RISC UltraSPARC IA-32

Address space  ASIDs ASIDs Segmentation Multiple ASIDs ASIDs Segmentation
protection
Shared memory GLOBAL bit GLOBAL bit Segmentation Multiple ASIDs; Indirect Segmentation

in TLB entry in TLB entry segmentation specification 
of ASIDs

Large address 64-bit 64-bit 52-/80-bit 96-bit  64-bit None
spaces addressing addressing segmented segmented addressing

addressing addressing
Fine-grained In TLB entry In TLB entry In TLB entry In TLB entry In TLB entry In TLB entry; 
protection per segment
Page table Software- Software- Hardware- Software- Software- Hardware- 
support managed managed managed managed managed managed

TLB TLB TLB; inverted TLB TLB TLB/hierarchical 
page table page table

Superpages Variable page   Groupings of   Block address  Variable page    Variable page   Segmentation/   
size set in TLB 8, 64, 512 translation: size set in TLB size set in variable page
entry: 4 Kbyte pages (set 128 Kbytes entry:4 Kbytes TLB entry: size set in TLB
to 16 Mbyte, by 4 in TLB entry) to 256 Mbytes, to 64 Mbytes, 8, 64, 512 entry: 4 Kbytes

by 2 by 4 Kbytes, and or 4 Mbytes
4 Mbytes



buffer. This can add hundreds of cycles to the
overhead of walking the page table. Nonethe-
less, the flexibility afforded by the software-
managed scheme can outweigh the potentially
higher per-miss cost of the design.7

Given the few details presented so far, one
can easily see that the use of different virtual-
memory interface definitions in every
microarchitecture is becoming a significant
problem. More often than not, the OS run-
ning on a microprocessor was not initially
designed for that processor: OSs often outlast
the hardware on which they were designed
and built, and the more popular OSs are port-
ed to many different architectures. Hardware
abstraction layers (for example, see Rashid et
al.8 and Custer9) hide hardware particulars
from most of the OS, and they can prevent
system designers from fully optimizing their
software. These types of mismatches between
OSs and microarchitectures cause significant
performance problems;10 an OS not tuned to
the hardware on which it operates is unlikely
to live up to its potential performance. 

The following sections describe the differ-
ent commercial virtual memory interfaces.
First is the MIPS organization, which has the
most in common with the others. Then, we

concentrate on those mecha-
nisms that are unique to each
architecture.

MIPS
MIPS (Figure 1) defines

one of the simplest memory
management architectures
among recent microproces-
sors. The OS handles TLB
misses entirely in software:
the software fills in the TLB,
and the OS defines the TLB
replacement policy.

Address space
The R2000/R3000 virtual

address is 32 bits wide; the
R10000 virtual address is 64
bits wide, though not all 64
bits are translated in the
R10000. The top “region”
bits divide the virtual space
into areas of different behav-
ior. The top two bits distin-

guish between user, supervisor, and kernel
spaces (the R10000 offers three levels of exe-
cution/access privileges). Further bits divide
the kernel and supervisor regions into areas of
different memory behavior (that is, cached/
uncached, mapped/unmapped).

In the R2000/R3000, the top bit divides
the 4-Gbyte address space into user and ker-
nel regions, and the next two bits further
divide the kernel’s space into cached/uncached
and mapped/unmapped regions. In both
architectures, virtual addresses are extended
with an address space identifier (ASID) to dis-
tinguish between contexts. The 6-bit-wide
ASID on the R2000/R3000 uniquely identi-
fies 64 processes; the 8-bit-wide ASID on the
R10000 uniquely identifies 256. 

Since it is simpler, we describe the 32-bit
address space of the R2000/R3000. User space,
called kuseg, occupies the bottom 2 Gbytes of
the address space. All kuseg references are
mapped through the TLB and considered
cacheable by the hardware unless otherwise
noted in a TLB entry. The top half of the virtual
address space belongs to the kernel: an address
generated with the top bit set while in user
mode causes an exception. Kernel space is divid-
ed into three regions: the 1-Gbyte kseg2 region

62

VIRTUAL MEMORY

IEEE MICRO

32-bit virtual page number

64-bit virtual address
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Figure 1. MIPS R10000 address translation mechanism. The split instruction and data
caches are virtually indexed, both requiring an index larger than the page offset. The TLB
lookup proceeds in parallel with the cache lookup. The earliest MIPS designs had physically
indexed caches, and if the cache was larger than the page size, the cache was accessed in
series with the TLB. ASID: address space identifier.



is cacheable and mapped through the TLB like
kuseg. The other two 512-Mbyte regions (kseg0
and kseg1) are mapped directly onto physical
memory; the hardware zeroes out the top three
bits to generate the physical address directly.
The hardware then caches references to kseg0,
but not the references to kseg1.

TLB
The MIPS TLB is a unified 64-entry, fully

associative cache. The OS loads page table
entries (PTEs) into the TLB, using either ran-
dom replacement (the hardware chooses a TLB
slot randomly) or specified placement (the OS
tells the hardware which slot to choose). The
TLB’s 64 entries are partitioned between
“wired” and “random” entries. While the
R2000/R3000 has eight wired entries, the par-
tition between wired and random entries is set
by the R10000 software. The hardware pro-
vides a mechanism to choose one of the ran-
dom slots. On request, it produces a random
number between index values of 8 and 63,
inclusive (the R10000 produces values between
N and 63, inclusive, where N is set by software).
This random number references only the TLB’s
random entries; by not returning values corre-
sponding to wired entries, it effectively protects
those entries. The TLBWR (TLB write ran-
dom) instruction uses this mechanism to insert
a mapping randomly into the TLB, and the
TLBWI (TLB write indexed) instruction
inserts mappings at any specified location.
Most OSs use the wired partition to store root-
level PTEs and kernel mappings in the pro-
tected slots, keeping user mappings in the
random slots and using a low-cost random
replacement policy to manage them. 

The OS interacts with the TLB through the
EntryHi and EntryLo registers, pictured in
Figure 2. EntryHi contains a virtual page
number and an ASID; EntryLo corresponds
to a PTE and contains a page frame number
and status bits. A TLB entry is equivalent to
the concatenation of these structures.

The R10000 structure is similar but larger.
It also has two separate EntryLo registers—
one for each of two paired virtual page num-
bers. This allows the R10000 to effectively
double the reach of the TLB without adding
more entries. A single TLB entry maps every
two contiguous even-odd virtual pages, though
each receives its own page frame number

(PFN) and status bits. The design saves die
area and power. It is nearly as flexible as a 128-
entry TLB but requires half the tag area—
because two mappings share each virtual page
number (VPN)—and half the comparators.

In the MIPS R2000/R3000, the status
fields in EntryLo are

• N, noncacheable. If this bit is set for a
TLB entry, the page it maps is not
cached; the processor sends the address
out to main memory without accessing
the cache.

• D, dirty. If this bit is set, the page is
writable. The bit can be set by software,
so it is effectively a write-enable bit. A
store to a page with the dirty bit cleared
causes a protection violation.

• V, valid. If this bit is set, the entry con-
tains a valid mapping.

• G, global. If this bit is set, the TLB
ignores the ASID match requirement for
a TLB hit on this page. This feature sup-
ports shared memory and allows the ker-
nel to access its own code and data while
operating on behalf of a user process
without having to save or restore ASIDs.

The R10000 inherits this organization and
adds more powerful control-status bits that
support features such as more complex
caching behavior and specification for
coherency protocols. Also, if the G bit is set
for either page in a paired entry, the ASID
check is disabled for both pages.

When the OS reads an entry from the TLB,
the hardware places the information into
EntryHi and EntryLo. When the OS inserts
a mapping into the TLB, it first loads the
desired values into these registers. It then exe-
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Figure 2. MIPS R2000/3000 TLB entry format: EntryHi (a) and EntryLo (b). 



cutes a TLBWR instruction, or it loads a slot
number into the index register and executes a
TLBWI instruction. Thus, the OS has the
tools to implement a wide range of replace-
ment policies.

Periodic TLB flushes are unavoidable in
these MIPS processors, as there are 64 unique
context identifiers in the R2000/R3000 and
256 in the R10000. Many systems have more
active processes than this, requiring ASID shar-
ing and periodic remapping. When an ASID
is temporarily reassigned from one process to
another, it is necessary to first flush TLB entries
with that ASID. It is possible to avoid flushing
the cache by flushing the TLB; since the caches
are physically tagged, the new process cannot
overwrite the old process’s data.

Address translation and TLB-miss handling
MIPS supports a simple bottom-up hierar-

chical page table organization,1 though an OS
is free to choose a different page table organi-
zation. We describe the R2000/3000 transla-
tion mechanism here; the R10000 mechanism
is similar. The VPN of any page in a user’s
address space is also an index into the user page
table. On a user-level TLB miss, one can use
the faulting VPN to create a virtual address for
the mapping PTE. Frequently, the OS will suc-
cessfully load the PTE with this address, re-
quiring only one memory reference to handle
a TLB miss. In the worst case, a PTE lookup
will require an additional memory reference
to look up the root-level PTE as well. 

MIPS offers a hardware assist for the soft-

ware TLB miss handler: the TLB context reg-
ister, as depicted in Figure 3. At the time of a
user-level TLB miss, the context register con-
tains the virtual address of the PTE that maps
the faulting page. The system software loads
the top bits of the TLB context register, called
PTEBase. PTEBase represents the virtual base
address of the current process’s user page table.
When a user address misses the TLB, hard-
ware fills in the next bits of the context regis-
ter with the VPN of the faulting address. The
bottom bits of the context register are defined
to be zero (the R2000/3000 PTE is 4 bytes,
the R10000 PTE is 8 bytes), so the faulting
VPN is an index into the linear user page table
structure and identifies the user PTE that
maps the faulting address.

The TLB miss handler can use the context
register immediately, and the handler looks
much like the following (those who know the
MIPS instruction set will notice that a few
NOPs have been omitted for clarity):

mfc0 k0,tlbcxt #move the contents of TLB

#context register into k0

mfc0 k1,epc #move PC of faulting load

#instruction into k1

lw k0,0(k0) #load thru address that was

#inTLB context register

mtc0 k0,entry_lo #move the loaded value

#into the EntryLo register

tlbwr #write entry into the TLB

#at a random slot number

j k1 #jump to PC of faulting

#load instruction to retry

rfe #RESTORE FROM

#EXCEPTION

The handler first moves the address out of
the TLB context register into general-purpose
register k0, through which it can use the
address as a load target. The program counter
of the instruction that caused the TLB miss is
found in exception register epc and is moved
into general-purpose register k1. The handler
loads the PTE into k0 then moves it directly
into EntryLo. EntryHi is already filled in by
the hardware; it contains the faulting VPN and
the ASID of the currently executing process
(the one that caused the TLB miss). The
TLBWR instruction writes the PTE into the
TLB at a randomly selected location.

At this point, the mapping for the faulting
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Figure 3. Using the TLB context register. The VPN of the
faulting virtual address (a) is placed into the context register
(b), creating the virtual address of the mapping PTE. This
PTE goes into EntryLo (c).



address is in the TLB, and the hardware can
retry the faulting instruction by jumping to
its address (previously moved from epc to k1).
MIPS uses delayed branches, so the instruc-
tion immediately after any branch instruction
executes with the branch. Thus, the Restore
From Exception instruction executes before
the target instruction of the jump. The
Restore returns the processor (which runs in
kernel mode during exceptions) to user mode.

Alpha 
Alpha (Figure 4) is a 64-bit architecture

with a memory management design similar
to MIPS. Applications generate 64-bit point-
ers, of which anywhere from 43 to 64 bits are
translated, depending on the processor imple-
mentation. Alpha implementations that sup-
port less than 64 bits of addressing must
ensure that the high-order bits of a virtual
address are sign-extended from the most sig-
nificant translated bit.

The Alpha architecture has split TLBs and
split caches, and, as in the MIPS architecture,
software manages the TLBs. However, the OS
does not have direct access to the TLB but
indirect access through the PALcode—the

privileged access library. For example, PAL-
code, not OS code, loads PTEs from a hard-
ware register (like EntryHi/EntryLo in MIPS)
into the TLB. Though software manages the
TLB, the TLB replacement policy in the
21164 is fixed at not-most-recently-used—
the OS does not define it. The 21164 sup-
ports a fixed 8-Kbyte page size, a 43-bit virtual
address, and a 40-bit physical address.

Virtual and physical address spaces
OSF/1, one of Alpha’s main OSs, divides

the virtual space into three regions: seg0 is the
bottom half, seg1 is the top quarter, and kseg
is the middle quarter. The regions are divid-
ed by the two most significant bits of the
translated address, as opposed to the MIPS
division, which is based on the high-order bits
of the 64-bit address, regardless of how many
bits the hardware translates.

Seg0 and seg1 comprise the user space and
are mapped through the TLBs. Kseg maps
directly onto the physical address space by zero-
ing the top two bits. Note that the kernel may
use seg0 and seg1 for its own virtual data struc-
tures (the page tables). While the MIPS archi-
tecture distinguishes between user-level virtual
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Figure 4. Alpha 21164 address translation mechanism. The virtual bits of the page offset effectively physically index each of
the 8-Kbyte split caches. The data cache is physically tagged and the instruction cache is virtually tagged. The instruction TLB
is accessed every reference to provide page protection.



access and kernel-level virtual access by the top
bit of the virtual address, the Alpha makes no
such distinction. The OS manages the division
of the virtual space through the page tables.

Unlike MIPS, which uses the top bits of the
virtual address to demarcate regions of differ-
ing memory behavior, Alpha’s physical mem-
ory is divided into regions of different behavior
to support features like cacheable and non-
cacheable memory. Physical space is divided
by the top two bits of the physical address into
four regions, each with potentially different
behavior. The behavior is left to the imple-
mentation to define; possibilities include “nor-
mal” memory, I/O space, and noncached
uncacheable memory, among others. 

Superpages and shared memory
The Alpha TLB entry

includes such fields as address-
space-match, similar to the
global bit in the MIPS TLB; if
the bit is set, the TLB entry
matches positively for all
ASIDs. The flags also include
granularity-hint (GH), a two-
bit field that supports super-
pages. GH indicates that the
entry maps a set of 8GH con-
tiguous pages, that is, a block
of 1, 8, 64, or 512 pages. 

The 21164 uses 7-bit ad-
dress space identifiers; this
scheme has the same need for
flushing as the MIPS archi-
tecture due to a small number
of contexts. The 21164 split-
cache sizes are 8 Kbytes each,
which is the processor’s page
size, making the caches effec-
tively indexed by the physical
address. Thus the caches have
the access time of a virtually
indexed cache but the cache-
consistency behavior of a
physically indexed cache.

PowerPC
The PowerPC (Figure 5)

features a hardware-defined
inverted page table structure,
a hardware-managed TLB
miss mechanism, block ad-
dress translation for super-

pages, and a 52-bit segmented virtual address
space for 32-bit implementations of the archi-
tecture. The 64-bit PowerPC implementa-
tions have an 80-bit segmented virtual address
space. The block address translation mecha-
nism is not shown in the figure—it is per-
formed in parallel with the pictured
translation mechanism. It is similar to TLB
translation, except that the effective address,
not the extended virtual address, references
the entries.

Segmented address translation 
PowerPC’s memory management uses

paged segmentation; the TLBs and page table
map an extended virtual address space, not
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cache uses the page offset as a cache index, effectively making the cache physically indexed. A
block address translation mechanism occurs in parallel with the TLB access, but is not shown.



the application’s effective address space. Pow-
erPC segments are 256-Mbyte continuous
regions of virtual space; 16 segments comprise
an application’s address space; and the global
space contains 224 segments.

Sixteen segment registers map the user
address space onto the segmented global space.
The top four bits of an effective address index
the segment registers to obtain a 24-bit segment
identifier. This segment ID replaces the top four
bits of the 32-bit effective address to form a 52-
bit virtual address. The 64-bit PowerPC imple-
mentations use the top 36 bits of the effective
address to index the segment registers. This cor-
responds to an enormous table that would never
fit in hardware. As a result, the segment map-
ping in 64-bit implementations uses a segment
look-aside buffer (a fully associative cache much
like a TLB) rather than a hardware table.

Figure 6 compares ASIDs with PowerPC-
like segmentation using fixed-length segments.
In Figure 6a, a 32-Gbyte space is organized
into eight 4-Gbyte regions, each of which cor-
responds to exactly one process determined by
the process’s ASID. In Figure 6b, the global
32-Gbyte segmented space is an array of 1-
Gbyte virtual segments. Each segment can
map into any number of process address spaces
at any location (or at multiple locations) with-
in each process address space. The size of the
ASID (in this case, eight processes) limits the
number of processes in the Figure 6a scenario,

while the number of processes in Figure 6b has
a combinatorial limit. 

The PowerPC does not provide explicit
ASIDs; address spaces are protected through
the segment registers, which only the OS can
modify. The OS enforces protection by con-
trolling the degree to which segment identi-
fiers may be overlapped and can even share a
segment safely between a small set of process-
es. This is in sharp contrast to most other shar-
ing schemes in which processes and pages have
but one access ID each, and in which the only
way to support hardware access to shared
pages with different access IDs is to mark the
pages visible to all processes.

The 24-bit-wide segment identifiers support
over a million unique processes on a system.
Therefore, required cache or TLB flushing
occurs very infrequently, assuming shared mem-
ory is implemented through segmentation.

Block address translation
To support superpages, the PowerPC defines

a block address translation (BAT) mechanism
that operates in parallel with the TLB. The
BAT takes precedence over the TLB whenever
the BAT mechanism signals a hit on any given
translation. Blocks can range in size from 128
Kbytes to 256 Mbytes. The mechanism uses a
fully associative lookup on four BAT registers,
each of which is similar to a TLB entry.

BAT registers contain information such as
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Figure 6. Difference between ASIDs and segmentation in two virtual addressing schemes. A 3-bit ASID extends the 32-bit
address space (a). A 35-bit segmented address space is divided into fixed-length, 1-Gbyte segments (b). In both schemes,
processes generate 32-bit virtual addresses, and the hardware translates a 35-bit virtual address.



fine-grained protection (whether the block is
readable and/or writable) and storage access
control (whether the block is write-through
and/or caching-inhibited, and/or needs to be
maintained as cache-coherent). A BAT regis-
ter provides no address-space protection
besides making a block available only to priv-
ileged (kernel) access. If a block is available to
a single user-level process, all user processes
share it. In this case, if sharing is not desired,
the BAT register contents need to be flushed
on a context switch. The PowerPC 604 has
two sets of BAT registers: one for the instruc-
tion stream and one for the data stream.

Hashed page table
The PowerPC architecture defines a hashed

page table, pictured in Figure 7. A variation
on the inverted page table, it is an eight-way
set-associative software cache for PTEs,11

walked by hardware. The organization scales
well to a 64-bit implementation—inverted
tables scale with the size of the physical address
space, not the virtual address space. However,
since the table is not guaranteed to hold all
active mappings, the OS must manage a back-
up page table as well.

The design is similar to the canonical
inverted page table, except that it eliminates
the hash anchor table (which reduces the
number of memory references by one), and
the fixed-length PTE group replaces the col-
lision chain. The table is eight PTEs wide. If
more than eight VPNs hash to the same PTE
group, any extra PTEs are simply left out or
placed into a secondary PTE group. On a

TLB miss, the hardware loads an entire PTE
group and performs a linear search for a
matching virtual address. If the PTE is not
found in the first PTE group, the hardware
performs a second lookup to a different PTE
group, based on a secondary hash value (the
one’s complement of the primary hash value). 

Since the location of a PTE in the table
bears no relation to either the VPN or the
PFN in the mapping, both VPN and PFN
must be stored in the PTE. Each PTE is there-
fore 8 bytes wide. In 64-bit implementations,
each PTE is 16 bytes wide.

PA-RISC 2.0
The PA-RISC 2.0 (Figure 8) is a 64-bit

design with a segmentation mechanism sim-
ilar to a PowerPC’s. Processes generate 64-bit
addresses that are mapped through space reg-
isters to form 96-bit virtual addresses trans-
lated by the TLB and page table. The
architecture differs from the PowerPC by its
addition of two types of page-access keys: the
protection ID, which identifies a running
process, and the access ID, which identifies a
virtual page. The architecture allows user-level
processes to change the contents of the space
registers, enabling an application to extend its
address space at will. This user-level access to
the space registers creates the need for the
additional protection mechanism.

Spaces and space registers
Every 64-bit user address combines with a

64-bit space ID to create a 96-bit virtual
address that references the TLB and virtual
caches. The space IDs are held in eight space
registers that are selected by fields within the
instruction or by the top bits of the effective
address. As in the PowerPC, the space IDs are
concatenated with the user’s effective address,
but the mechanism is designed to allow a vari-
able-size segment.

Unlike the PowerPC segment identifier,
which replaces the top four bits, the space ID
in the PA-RISC replaces anything from the
top 2 bits to the top 32 bits. The top 34 bits
of the 96-bit virtual address come from the
space ID; the bottom 32 bits come from the
user’s effective address; and the middle 30 bits
are the logical OR of the 30-bit overlap of the
two. This allows the OS to define a segmen-
tation granularity. A logical OR suggests a
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simple and effective organization; one can
choose a partition (for example, half way, at
the 15-bit mark), and allow processes to gen-
erate only virtual addresses with the top 15
bits of this 30-bit field set to 0. Similarly, all
space IDs would have the bottom 15 bits set
to 0, so that the logical OR would effectively
yield a concatenation. This example gives us
a PowerPC segment-like concatenation of a
(34 + 15 = 49-bit) space ID with the (32 + 15
= 47-bit) user virtual address.

The top two bits of the effective address
select among four of the eight space registers.
The rest of the registers are accessed rarely and
only by the OS.

Naming, protection, and access keys
PA-RISC is unique in its address-space orga-

nization and protection. In most other archi-
tectures, address-space protection is guaranteed
through naming. That is, addresses are pro-
tected from a process by preventing that
process from generating the appropriate vir-
tual address. For instance, in Figure 6a,
processes in ASID-based systems are prevent-
ed from generating addresses outside of their

portion of the global space. The naming mech-
anism—appending an ASID to every virtual
address—prevents processes from generating
addresses corresponding to locations in other
address spaces. Even systems based on the seg-
mentation scheme in Figure 6b can use nam-
ing for protection. For example, the PowerPC
segmentation mechanism allows any process
to generate any address within the global space,
but only the OS can put specific values into
the segment registers. This effectively restricts
any given process from generating addresses
outside of its 32-bit space. The IA-32 seg-
mentation mechanism is very similar.

The PA-RISC mechanism differs from other
segmented architectures in a simple but impor-
tant way: it does not prevent a user-level appli-
cation from modifying the contents of the space
registers. Thus, a process can produce any vir-
tual address in the 96-bit global space without
requiring permission from the OS. The PA-
RISC, unlike the other schemes, does not use
naming to provide protection, and so it must
provide protection through other means. The
PA-RISC solution is to tag every page with a 31-
bit access identifier, roughly corresponding to

69JULY–AUGUST 1998

30-bit OR field

64-bit effective address

32-bit space offset

Space registers (8 IDs × 64 bits)

32-bit space offset34-bit space identifier

96-bit virtual
address

TLB
(for example, PA-8000

uses a four-entry instruction
micro-TLB and a

96-entry, fully associative
main TLB)

Protection identifiers
(8 IDs × 31 bits)

52-bit page frame number

User-modifiable
space registers

Not
user-modifiable

84-bit virtual page number

30-bit logical OR

2

OR

Figure 8. PA-RISC 2.0 address translation mechanism. The architecture uses large virtual caches located off chip.



an ASID in other architectures. Instead of assign-
ing a single ASID to every executing process, the
PA-RISC assigns eight IDs; each running
process has eight 31-bit protection identifiers
associated with it. A process may access a page if
any of its protection IDs match the page’s access
ID. As in the PowerPC, this allows a small set of
user-level processes to access a given page, which
differs markedly from the all-or-nothing shar-
ing approach found in most processors. 

Hashed page translation table
While the architecture does not define a

particular page table organization, PA-RISC
engineers have published a variant of the
inverted page table.12 The hashed page trans-
lation table is pictured in Figure 9. As in the
PowerPC, it dispenses with the hash anchor
table, eliminating one memory reference on
every PTE lookup; the table can hold more
entries than physical pages in the system. The
collision chain is held in the page table or in
a separate structure called the collision reso-
lution table. The PFN cannot be deduced
from an entry’s location in the page table, so
each PTE contains both the VPN and the
PFN for the mapped page.

This mechanism is implemented in hard-
ware in the PA-7200, which performs a single
probe of the table in hardware and defers to
software if the initial probe fails. Thus, the
hashed table can act as a software TLB11

fronting a main page table of any organiza-
tion, even a hierarchical table.12

UltraSPARC
The UltraSPARC (Figure 10) is another 64-

bit design. Like the MIPS and Alpha designs,
each implementation does not recognize all of
the 64 bits; in the UltraSPARC-I the top 20
bits must be sign-extended from the 44th bit.
The implementation sets the size of the phys-
ical address. The UltraSPARC memory man-
agement organization is notable for the way it
uses ASIDs, called ASIs in Sun terminology.

ASIs
These are essentially opcodes to the MMU.

The 8-bit ASI is not used to identify different
contexts directly, but to identify data formats
and privileges and to reference indirectly one
of a set of context identifiers. The following
are a few of the basic ASIs reserved and
defined by the UltraSPARC architecture; indi-
vidual implementations may add more.

Non-restricted:

ASI_PRIMARY {_LITTLE}

ASI_PRIMARY_NOFAULT {_LITTLE}

ASI_SECONDARY {_LITTLE}

ASI_SECONDARY_NOFAULT {_LITTLE}

Restricted:

ASI_NUCLEUS {_LITTLE}

ASI_AS_IF_USER_PRIMARY {_LITTLE}

ASI_AS_IF_USER_SECONDARY {_LITTLE}

Only processes operating in privileged mode
may generate the restricted ASIs; user-level
processes can generate nonrestricted ASIs. Any
ASI labeled PRIMARY refers to the context
ID held in the primary context register; any
ASI labeled SECONDARY refers to the con-
text ID held in the secondary context register;
and any ASI labeled NUCLEUS refers to the
context ID held in the nucleus context regis-
ter. The {_LITTLE} suffixes indicate that the
target of the load or store should be interpret-
ed as a little-endian object; otherwise the
MMU treats the data as big-endian. The
NOFAULT directives tell the MMU to load
the data into the cache and to fail silently if the
data is not actually in memory. This function
can be used for speculative prefetching.

The default ASI is ASI_PRIMARY; it indi-
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cates to the MMU that the current user-level
process is executing. When the OS executes,
it runs as ASI_NUCLEUS and can peek into
the user’s address space by generating PRI-
MARY or SECONDARY ASIs (the
AS_IF_USER ASIs).

System software can move values in and out
of the MMU’s context registers that hold the
PRIMARY and SECONDARY context IDs.
This supports shared memory and resembles
the PA-RISC space IDs and protection IDs
in its ability to give applications simultaneous
access to multiple protection domains.

For instance, user-level OS servers that peek
into the address spaces of normal processes can
use the ASI_SECONDARY identifier. A user-
level dynamic linker or server implementing a
particular OS API, as in Mach or Windows
NT, must set up and manage the address spaces
of processes running under its environment. It
could run as PRIMARY and move the context
ID of the child process into the secondary con-
text register. It could then explicitly use SEC-
ONDARY ASIs to load and store data values to
the child’s address space, and use PRIMARY
ASIs to execute its own instructions and refer-

ence data in its own address space. 
Processes can generate ASIs either directly or

indirectly. Certain instructions, such as the
Load/Store From Alternate Space as well as
atomic memory-access instructions like Swap
Register Memory and Compare and Swap
Word, each contain an ASI in an immediate
field, or reference the ASI register. These instruc-
tions directly specify an ASI whenever an imme-
diate bit is zero, indicating that the ASI is to be
taken from another immediate field within the
instruction. When the bit is 1, the ASI is taken
from the ASI register. Other instructions can
only generate ASI_PRIMARY, the default ASI.

IA-32
The Intel architecture (Figure 11, next

page) is one of the older memory manage-
ment architectures manufactured today. It is
also one of the most widely used and one of
the most complex. Its design is an amalgam
of several techniques, making it difficult to
cover the entire organization briefly. We there-
fore complement the description of Intel’s sys-
tem call and protection mechanisms in
Hennessy and Patterson13 by describing the
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Pentium II’s address translation mechanism.
The Pentium II memory management

design features a segmented 32-bit address
space, split TLBs, and a hardware-managed
TLB miss mechanism. Processes generate 32-
bit near pointers and 48-bit far pointers that
are mapped by the segmentation mechanism
onto a 32-bit linear address space. The linear
address space is mapped onto the physical
space through the TLBs and hardware-defined
page table. The canonical two-tiered hierar-
chical page table uses a 4-Kbyte root-level
table, 4-Kbyte PTE pages, and 4-byte PTEs.

The processor supports 4-Kbyte and 4-
Mbyte page sizes, as well as 2-Mbyte super-
pages in some modes. Physical addresses in
the IA-32 are 32 bits wide, though the Pen-
tium II supports an even larger physical
address through its physical address extension
or 36-bit page-size extension modes. In either
of these modes, physical addresses produced
by the TLB are 36 bits wide.

Protection and shared memory
The Pentium II is another segmented archi-

tecture with no explicit ASIDs. For perfor-
mance reasons, its segmentation mechanism
is often unused by today’s operating systems,
which typically flush the TLBs on context
switch to provide protection. The caches are
physically indexed and tagged and therefore
need no flushing on context switch, provided
the TLBs are flushed.

The location of the root page table is loaded
into one of a set of control registers, CR3, and
on a TLB miss the hardware walks the table to
refill the TLB. If every process has its own
page table, the TLBs are guaranteed to con-
tain only entries belonging to the current
process—those from the current page table—
if the TLBs are flushed and the value in CR3
changes on context switch. Shared memory is
often implemented by aliasing—duplicating
mapping information across page tables.1

Writing to the CR3 control register flush-
es the entire TLB; during a context switch,
the hardware writes to CR3, so flushing the
TLB is part of the hardware-defined context-
switch protocol. Globally shared pages (pro-
tected kernel pages or library pages) can have
the global bit of their PTE set. This bit keeps
the entries from being flushed from the TLB;
an entry so marked remains indefinitely in the
TLB until it is intentionally removed.

Segmented addressing
The IA-32 segmentation mechanism sup-

ports variable-size (1-byte to 4-Gbyte) seg-
ments; the size is set by software and can differ
for every segment. Unlike other segmented
schemes, in which the global space is much
larger than each process’s virtual space, the IA-
32 global virtual space (the linear address space)
is the same size or, from one viewpoint, small-
er than an individual user-level address space.

Processes generate 32-bit addresses that are
extended by 16-bit segment selectors. Two
bits of the 16-bit selector contain protection
information, 13 bits select an entry within a
software descriptor table (similar to the Pow-
erPC segment registers or the PA-RISC space
registers), and the last bit chooses between two
different descriptor tables.

Conceptually, an application can access sev-
eral thousand segments, each of which can range
from 1 byte to 4 Gbytes. This may seem to
imply an enormous virtual space, but a process’s
address space is actually 4 Gbytes. During
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address generation, the segment’s base address is
added to the 32-bit address the process gener-
ates. A process actually has access to several
thousand segments, each of which ultimately
lies completely within the 4-Gbyte linear
address space. The processor cannot distinguish
more than four unique Gbytes of data at a time;
it is limited by the linear address space. 

The segment selector indexes the global and
local descriptor tables. The entries in these
tables are called segment descriptors and con-
tain information including the segment’s
length, protection parameters, and location
in the linear address space. A 20-bit limit field
specifies the segment’s maximum legal length
from 1 byte to 4 Gbytes. A granularity bit
determines how the 20-bit limit field is to be
interpreted. If the granularity bit is clear, the
limit field specifies a maximum length from
1 byte to 1 Mbyte in increments of 1 byte. If
the granularity bit is set, the limit field speci-
fies a maximum length from 4 Kbytes to 4
Gbytes in increments of 4 Kbytes.

The segment descriptor also contains a 2-bit
field specifying one of four privilege levels
(highest is usually reserved for the OS kernel,
lowest for user-level processes, and intermedi-
ate levels are for OS services). Other bits indi-
cate fine-grained protection, whether the
segment is allowed to grow (for example, a stack
segment), and whether the descriptor allows
interprivilege-level transfers. These transfers
support special functions such as task switch-
ing, calling exception handlers, calling inter-
rupt handlers, and accessing shared libraries or
code within the OS from the user level.

Segment registers and pointers
For improved performance, the hardware

caches six of a process’s segment selectors and
descriptors in six segment registers. The IA-
32 divides each segment register into “visible”
and “hidden” parts. Software can modify the
visible part, the segment selector. The soft-
ware cannot modify the hidden part, the cor-
responding segment descriptor. Hardware
loads the corresponding segment descriptor
from the local or global descriptor table into
the hidden part of the segment register when-
ever a new selector is placed into the visible
part of the segment register.

The segment registers are similar to the seg-
ment registers of the PowerPC architecture in

that they hold the IDs of segments that com-
prise a process’s address space. They differ in
that they are referenced by context rather than
by a field in the virtual address. Instruction
fetches implicitly reference CS, the register
holding the code segment selector. Any stack
references (Push or Pop instructions) use SS,
the register holding the stack segment selec-
tor. Destinations of string instructions like
MOVS, CMPS, LODS, or STOS, implicitly
use ES, one of the four registers holding data
segment selectors. Other data references use
DS by default, but applications can override
this explicitly if desired, making available the
remaining data-segment registers FS and GS.

A near pointer references a location within
one of the currently active segments, that is,
the segments whose selectors are in the six seg-
ment registers. On the other hand, the appli-
cation may reference a location outside the
currently active segments by using a 48-bit far
pointer. This loads a selector and corre-
sponding descriptor into a segment register;
then, the segment is referenced. Near point-
ers are less flexible but incur less overhead than
far pointers (one fewer memory reference),
and so they tend to be more popular.

If used properly, the IA-32 segmentation
mechanism could provide address-space pro-
tection, obviating the need to flush the TLBs
on context switch. Protection is one of the
original intents of segmentation.3 The seg-
ments guarantee protection if the 4-Gbyte lin-
ear address space is divided among all
processes, in the way that the PowerPC divides
its 52-bit virtual space among all processes.
However, 4 Gbytes is an admittedly small
amount of space in which to work.

Superpages and large physical addresses
Note that an entry in the IA-32 root-level

table maps a 4-Kbyte PTE page, which in turn
maps 1,024 4-Kbyte user pages. Thus, a root-
level PTE effectively maps a 4-Mbyte region.
IA-32 supports a simple superpage mecha-
nism: a bit in each root-level PTE determines
whether the entry maps a 4-Kbyte PTE page
or a 4-Mbyte user-level superpage directly.
This reduces contention for TLB entries, and
when servicing a TLB miss for a superpage,
the hardware makes only one memory refer-
ence to obtain the mapping PTE, not two.

Normally, physical addresses in IA-32 are
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32 bits. P6 processors offer two modes in
which the physical address space is larger than
4 Gbytes: physical address extension and 36-
bit page size extension. In either of these
modes, physical addresses can be 36 bits wide.
The physical address extension mode requires
changes to the page table format. The PTEs
expand to 8 bytes when this mode is enabled
(double their normal size), and so the mode
requires the addition of another level in the
page table. On every TLB miss, the hardware
must make three memory references to find
the mapping PTE, not two. The mode also
changes the semantics of the IA-32 superpage
mechanism. In the reorganized IA-32 page
table, a root-level PTE only maps a 2-Mbyte
region; therefore superpages are 2 Mbytes
when the physical address extension mode is
enabled, not 4 Mbytes.

To limit confusion, designers added anoth-
er mode that requires no changes to the page
table or PTE size. The 36-bit page-size exten-
sion mode uses previously reserved bits in the
PTEs to extend physical addresses. Therefore,
with this mode the OS can support 4-Mbyte
superpages and 36-bit physical addressing at
the same time.

The use of one memory management
organization over another has not cata-

pulted any architecture to the top of the per-
formance ladder, nor has the lack of any
memory management function been the lead-
ing cause of an architecture’s downfall. So,
while it may seem refreshing to have so many
choices of VM interface, the diversity serves
little purpose other than to impede the port-
ing of system software.

Designers have recognized this and have
defined hardware abstraction layers8,9 to hide
hardware details from the OS; this simplifies
both the transition to new versions of hard-
ware platforms and the porting to entirely new
architectures. Primitives in a memory-
management abstraction layer include cre-
ate/destroy_map, protect_page/region,
wire_down_page/region, and so on. The types
of mechanisms hidden by this software layer
include TLB and data cache management
instructions. However, these mechanisms
cause little problem when porting system soft-
ware; there are other underlying models that
are so different from one another that they

cannot be masked with a software layer. It is
the hardware details that are most difficult to
encapsulate in a hardware abstraction layer
that cause most of the problems, for example,

• the use of virtual vs. physical caches
• protection methods (ASIDs, segments,

multiple IDs)
• address-space organization (segmented/

flat, page table support, superpage
support).

These hardware features force designers to
make decisions about the high-level organiza-
tion of the OS. Designers must make these
decisions early on in the design process, and
the decisions are difficult to undo when the OS
has been implemented. For example, a virtual
cache forces the OS to be aware of data-con-
sistency issues. The hardware protection mech-
anism influences the OS’s implementations of
interprocess communication, memory-
mapped files, and shared memory. The address-
space organization mechanisms influence the
OS’s model of object allocation—how easy is it
to allocate and destroy large/small objects,
whether objects can have different characteris-
tics (such as protection, cache coherency) based
on the process accessing them, and how sparse-
ly populated the address space can be. Clearly,
it is very difficult to encapsulate these effects in
a transparent software layer.

We thus have two choices: to live with
diversity that serves no significant purpose or
to standardize on support for memory man-
agement. Within standardization, there are
further choices, including the elimination of
most hardware support for memory manage-
ment so that the software can define support,14

or decision by fiat such as the adoption of the
already de facto standard, the IA-32 (or a sub-
set thereof ). The advantage of adopting the
IA-32 interface is the large number of hard-
ware and software developers already familiar
with the interface, as well as its relatively good
performance. The disadvantage is that it
might not scale well to 64-bit architectures. If
one were starting with a clean slate, there is
evidence to recommend a hardware-walked
inverted page table,16 which would resemble
both IA-32 and PA-RISC, and would offer
good performance and scale well to 64-bit
address spaces and beyond. MICRO

74

VIRTUAL MEMORY

IEEE MICRO



Acknowledgments
We thank the many reviewers who helped

shape this article, especially Joel Emer, Jerry
Huck, Mike Upton, and Robert Yung for
their comments and insights into the work-
ings of the Alpha, PA-RISC, IA-32, and
SPARC architectures. The Defense Advanced
Research Projects Agency under DARPA/
ARO contract DAAH04-94-G-0327 partially
supported this work.

References
1. B.L. Jacob and T.N. Mudge, “Virtual Memo-

ry: Issues of Implementation,” Computer,
Vol. 31, No. 6, June 1998, pp. 33-43.

2. D.W. Clark and J.S. Emer, “Performance of
the VAX-11/780 Translation Buffer: Simula-
tion and Measurement,” ACM Trans. Com-
puter Systems, ACM, New York, Vol. 3, No.
1, Feb. 1985, pp. 31-62.

3. E.I. Organick, The Multics System: An Exam-
ination of Its Structure, MIT Press, Cam-
bridge, Mass., 1972.

4. Pentium Processor User’s Manual, Intel Cor-
poration, Mt. Prospect, Ill., 1993.

5. G. Kane and J. Heinrich, MIPS RISC Archi-
tecture, Prentice-Hall, Englewood Cliffs,
N.J., 1992.

6. J.E. Smith, G.E. Dermer, and M.A. Gold-
smith, Computer System Employing Virtual
Memory, patent 4,774,659, US Patent
Office, Wash., D.C., Sep. 1988.

7. D. Nagle et al., “Design Trade-Offs for Soft-
ware-Managed TLBs,” ACM Trans. Com-
puter Systems, Vol. 12, No. 3, Aug. 1994,
pp. 175-205.

8. R. Rashid et al., “Machine-Independent Vir-
tual Memory Management for Paged
Uniprocessor and Multiprocessor Architec-
tures,” IEEE Trans. Computers, Vol. 37, No.
8, Aug. 1988, pp. 896-908.

9. H. Custer, Inside Windows NT, Microsoft
Press, Redmond, Wash., 1993.

10. J. Liedtke, “On Micro-Kernel Construction,”
SOSP-15, ACM, Dec. 1995, pp. 237-250.

11. K. Bala, M.F. Kaashoek, and W.E. Weihl,
“Software Prefetching and Caching for
Translation Lookaside Buffers,” Proc. OSDI-
1, Usenix Corporation, Berkeley, Calif., Nov.
1994, pp. 243-253. 

12. J. Huck and J. Hays, “Architectural Support
for Translation Table Management in Large
Address Space Machines,” Proc. ISCA-20,

IEEE Computer Society, Los Alamitos, Calif.,
May 1993, pp. 39-50.

13. J.L. Hennessy and D.A. Patterson, Comput-
er Architecture: A Quantitative Approach,
2nd ed., Morgan Kaufmann Publishers, Inc.,
San Francisco, Calif., 1996.

14. B.L. Jacob and T.N. Mudge, “Software-Man-
aged Address Translation,” Proc. HPCA-3,
IEEE CS Press, Feb. 1997, pp. 156-167; http://
computer.org/conferen/hpca97/77640156.pdf.

15. B.L. Jacob and T.N. Mudge, “A Look at Sev-
eral Memory Management Units, TLB-Refill
Mechanisms, and Page Table Organizations,”
ASPLOS-8, ACM, Oct. 1998, to appear.

Bruce Jacob is an assistant professor of elec-
trical and computer engineering at the Uni-
versity of Maryland, College Park. His present
research includes the design of memory man-
agement organizations and hardware archi-
tectures for real-time and embedded systems.

Jacob received the AB degree in mathematics
from Harvard University, and the MS and PhD
degrees in computer science and engineering
from the University of Michigan, Ann Arbor.
He is a member of the IEEE and the ACM, and
has authored papers on computer architecture,
analytical modeling, distributed systems, astro-
physics, and algorithmic composition.

Trevor Mudge is a professor of electrical engi-
neering and computer science at the Univer-
sity of Michigan, Ann Arbor, and director of
the Advanced Computer Architecture Labo-
ratory, a group of eight faculty and 70 gradu-
ate research assistants. He also consults for
several computer companies. His research
interests include computer architecture, com-
puter-aided design, and compilers.

Mudge received the BSc degree in cyber-
netics from the University of Reading, Eng-
land, and the MS and PhD degrees in
computer science from the University of Illi-
nois, Urbana. He is an associate editor for
IEEE Transaction on Computers and ACM
Computing Surveys, a Fellow of the IEEE, and
a member of the ACM, the IEE, and the
British Computer Society.

Direct comments about this article to Bruce
Jacob, Dept. of Electrical and Computer
Engineering, University of Maryland, College
Park, MD 20742; blj@eng.umd.edu.

75JULY–AUGUST 1998


	Virtual memory.pdf
	micro18-4.pdf

