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Virtual Model Control:
An Intuitive Approach
for Bipedal Locomotion

Abstract

Virtual model control is a motion control framework that uses virtual
components to create virtual forces generated when the virtual com-
ponents interact with a robot system. An algorithm derived based on
the virtual model control framework is applied to a physical planar
bipedal robot. It uses a simple set of virtual components that allows
the robot to walk successfully over level terrain. This paper also
describes how the algorithm can be augmented for rough terrain
walking based on geometric consideration. The resulting algorithm
is very simple and does not require the biped to have an extensive
sensory system. The robot does not know the slope gradients and
transition locations in advance. The ground is detected using foot
contact switches. Using the algorithm, we have successfully com-
pelled a simulated seven-link planar biped to walk blindly up and
down slopes and over rolling terrain.

KEY WORDS—biped, legged locomotion, virtual model
control, impedance control

1. Introduction

Dynamic bipedal robots are extremely difficult to control be-
cause they are nonlinear; interact with a semistructured, com-
plex environment; are nominally unstable; are multi-input,
multi-output (MIMO); and exhibit time variant and “nons-
mooth” dynamics (during support exchange).

In addition, the performance measures of such robots are
much different from typical notions of performance such as
command following and disturbance rejection. Performance
for these robots is usually defined in terms of efficiency, loco-
motion smoothness, maximum speed, and robustness to rough
terrain.
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In the bipedal walking research, most researchers usually
start by specifying the reference trajectories for the bipedal
robots. The trajectories are usually prescribed in joint space.
These trajectories are usually obtained by observing the walk-
ing patterns of humans (Vukobratovic et al. 1990; Furusho and
Sano 1990) or by some forms of pattern generator formulation
(Bay and Hemami 1987; Katoh and Mori 1984).

To realize the reference trajectories, a linearization ap-
proach is commonly adopted to reduce the nonlinear dynamic
equations into a linear one (Gubina, Hemami, and McGhee
1974; Golliday and Hemami 1977; Miura and Shimoyama
1984; Mita et al. 1984). This facilitates the application of
linear multivariable control methods. However, due to un-
deractuation in the bipedal system, error in the parameters of
the dynamic model, and significant deviation from the equilib-
rium states (about which the system is linearized), one usually
needs to modify the reference trajectories and the model pa-
rameters iteratively before a successful implementation can
be achieved. The problem is that most of these parameters
do not possess intuitive behaviors. Thus, it is difficult to tune
them.

In fact, most of the approaches in bipedal walking require
some forms of iterative tuning processes in the control archi-
tecture. The question is how one could formulate a solution
for the bipedal walking task so that the parameter tuning is
minimally needed and/or can be easily carried out (e.g., one
that possesses an intuitive tuning rule).

In this paper, we propose an intuitive control scheme called
virtual model control for legged locomotion. In this frame-
work, virtual components that have physical counterparts, for
example, mechanical spring, damper, and so on, are placed at
strategic locations within the robot or between the robot and
the environment. Physical intuition is needed to place these
virtual components. Once the placement is done, the interac-
tions between these components and the robots automatically
generate the desired torques or forces at the actuators. No
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Fig. 1. Photo of Spring Turkey. There are four actuators
attached to the body. Power is transmitted to the hips and
knees via cables. The unactuated feet consist of a U-shaped
strip of rubber. A boom is used to prevent motion in the
lateral, roll, and yaw directions. Note the spring packs used
to implement series elastic actuation.

dynamic model of the robot is necessary in the control algo-
rithm. This approach is applied to two planar bipeds (con-
strained to move in the sagittal plane). By selecting a proper
set of gait parameters, we demonstrate that a stable dynamic
walking can be achieved for the bipeds.

Section 2 describes the two planar bipedal walking robots
to which the control algorithm is applied. Section 3 provides
an overview of virtual model control. Section 4 presents the
mathematics required to transform the virtual forces (gener-
ated by the virtual components) into the desired joint torques
for both single-support and double-support phases. Section 5
describes the control algorithm and strategy for level ground
walking of the biped. Section 6 describes how the level ground
walking algorithm can be extended for rough terrain walking.

2. Bipedal Walking Robots

The control strategies presented in this paper are designated
for two bipedal walking robots. They are Spring Turkey (see
Fig. 1) and Spring Flamingo (see Fig. 2). Spring Turkey is a
five-link planar biped that has 4 actuated degrees of freedom.
It was designed and built by Peter Dilworth and Jerry Pratt in
1994. Spring Flamingo is a seven-link planar biped that has
6 actuated degrees of freedom. It was designed and built by
Jerry Pratt in 1996.

Fig. 2. Photo of Spring Flamingo. Its structure and mechanism
are very similar to spring turkey except that the series elastic
actuators are contained in the body, it has feet, and the legs
are less massive compared to the body’s mass.



Pratt et al. / Bipedal Locomotion 131

Both bipeds have an actuated hip and knee on each leg.
Spring Flamingo also has an actuated ankle, although it is
assumed to be limp in this paper. Unactuated booms are used
to constrain the biped’s roll, yaw, and lateral motion, thereby
reducing it to a planar robot. Potentiometers at the hips, knees,
and boom measure joint angles and body pitch.

Series elastic actuation (Pratt and Williamson 1995) is em-
ployed at each actuated degree of freedom, allowing for accu-
rate application of torques and a high degree of shock toler-
ance. In series elastic actuation, spring elements are inserted
between the gear transmission and the external load. By con-
trolling the deflection of the springs, net force acting on the
load can be indirectly controlled.

Spring Turkey weighs approximately 10 kg and stands
60 cm tall from toe to hip. Spring Flamingo weighs approxi-
mately 12 kg and stands 84 cm tall from toe to hip.

3. Virtual Model Control

Virtual model control is a motion control framework that uses
simulations of virtual components to generate desired joint
torques. These joint torques create the same effect that the vir-
tual components would have created, had they existed, thereby
creating the illusion that the simulated components are con-
nected to the real robot. Such components can include simple
springs, dampers, dashpots, masses, latches, bearings, non-
linear potential and dissipative fields, or any other imaginable
component. Virtual components can even contain adaptive
and learning elements (Pratt 1994; Chew and Pratt 1999).
Virtual model control borrows ideas from virtual reality, hy-
brid position-force control (Raibert and Craig 1981), stiffness
control (Salisbury 1980), impedance control (Hogan 1985),
and the operational space formulation (Khatib 1986).

Many complex tasks that are difficult to describe using tra-
ditional techniques can be readily characterized with a simple
set of virtual components. For example, consider a robot
wishing to impart an impact onto an unknown surface (e.g.,
knocking on a door). Ordinarily, this would be a very diffi-
cult task to specify. However, with virtual model control, we
merely need to attach a virtual mass with a given kinetic en-
ergy to the robot’s hand via a virtual spring and damper. The
robot’s hand will now move to strike out and, after imparting
the desired impact to the environment, bounce back due to
mass resonating with the virtual spring-damper.

Some benefits of virtual model control are that it is com-
pact, requires relatively small amounts of computation, and
can be implemented in a distributed manner (for informa-
tion on how to implement virtual components, see Pratt 1995;
Pratt et al. 1996). Furthermore, a high-level controller could
be implemented as a state machine that simply changes virtual
component connections or parameters at the state transitions.
Even though a discrete high-level controller is used, the over-
all motion can be smooth if the virtual components have a
low-pass filter effect.

Note that virtual model control does not use inverse dy-
namics to alter the behavior of the robot. We believe that the
inverse dynamics approach should only be used when high-
performance requirements or other extreme situations dictate.
This is because plant inversion adds computational complex-
ity, and fighting the natural dynamics of the robot can be
inefficient.

Also note that with virtual model control, we usually talk
in terms of spring set points, for example, and not commanded
positions. Except for actuator and computation nonidealities,
we can perfectly implement virtual components, whereas very
few control algorithms can perfectly track a commanded tra-
jectory. In this light, we believe that robots cannot be com-
manded to perform a task; they can only be given hints and
suggestions.

Virtual model control has been used to control dynamic
walking bipedal robots (described in the next section) and an
agile 3D hexapod in simulation (Torres 1996).

4. Virtual Model Implementation for Bipeds

In this section, we present the mathematics to transform vir-
tual forces into desired joint torques for the support leg in
single support or both legs in double support. We follow the
procedure described in Pratt et al. (1996).

4.1. Single-Leg Implementation

Figure 3 shows a simple 2D, four-link, three-joint serial robot
model that we use to represent a single leg of our walking
robots. We wish to connect a virtual component between
frame {A}, which is attached to the foot, and frame {B},
which is attached to the body. The angles θa , θk , and θh are
those of the ankle, knee, and hip, respectively. The lower link
(tibia) is of length L1, whereas the upper link (femur) is of
length L2. In this example, we assume that the foot is flat on
the ground so that OAR = I (OAR is the rotation matrix that
describes {A} relative to a reference frame {O}).

The forward kinematic map from frame {A} to frame {B}
of this example is as follows:

A
B

�X =




x

z

θ


 =




−L1 sa − L2 sa+k
L1 ca + L2 ca+k
−θh − θk − θa


 , (1)

where sa , sa+k , ca , and ca+k denote sin(θa), sin(θa+k),
cos(θa), and cos(θa + θk), respectively.

Partial differentiation produces the Jacobian,

A
BJ =




−L1 ca − L2 ca+k −L2 ca+k 0

−L1 sa − L2 sa+k −L2 sa+k 0

−1 −1 −1


 . (2)
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Fig. 3. Single-leg implementation. Reaction frame {A} is
assumed to be in the same orientation as reference frame
{O} so that OAR = I .

The Jacobian relates the virtual velocity A
B

�̇X between

frames A and B with the joint velocities �̇� = [θa θk θh]T

A
B

�̇X =A
B J �̇� (3)

and the virtual force �F = [fx fz fθ ]T to joint torque �τ =
[τa τk τh]T

�τ = (ABJ )
T (AB

�F). (4)

The Jacobian is of full rank, indicating that all virtual force
directions are admissible. Because the stance ankle is as-
sumed to be limp, we add the constraint of an unactuated
ankle, τa = 0. This will constrain the direction in which
virtual forces can be applied. With a limp ankle, eq. (4) is
constrained,




0

τk

τh


 =


 −L1 ca − L2 ca+k −L1 sa − L2 sa+k −1

−L2 ca+k −L2 sa+k −1

0 0 −1





 fx

fz

fθ


 .

(5)

For our walking robot, we are more concerned about ap-
plying forces in the vertical direction and torques about the
body then we are concerned about applying horizontal forces.
Therefore, we specify fz and fθ and solve for fx :

fx = −1

L1 ca + L2 ca+k
[
L1 sa + L2 sa+k 1

] [
fz

fθ

]
.

(6)

Substituting this equation into eq. (5), we get

[
τk

τh

]
=

[ −L1L2 sk
L1 ca+L2 ca+k

−L1 ca
L1 ca+L2 ca+k

0 −1

] [
fz

fθ

]
. (7)

We now have a simple set of equations for determining
joint torques given virtual forces. These equations will be
used in the subsequent sections in the control of the bipedal
walking robots during the single-support phase. Note that
the matrix in eq. (7) is of full rank for all values of �� except
for θk = 0. This corresponds to a fully extended knee, for
which the virtual forces in the z-direction can be arbitrary. If
the knee is not fully extended, the virtual forces are a unique
function of the joint torques at the hip and knee.

4.2. Dual-Leg Implementation

The previous example discussed a serial robot model cor-
responding to the robot body being supported by only one
leg. Here, we examine a parallel mechanism representing the
robot body being supported by both legs (see Fig. 4). That is,
this model consists of the previous single-leg example plus
another leg. We wish to connect a multiframe virtual com-
ponent between the reaction frames {Al} and {Ar}, which
are connected to the feet, and the action frame {B}, which
is connected to the body. The individual leg parameters and
joint angles are identical to those of the single-leg example,
with the l subscript denoting the left leg and the r subscript
denoting the right leg. Again, we assume that the feet are flat
on the ground so that OAlR =O

Ar
R = I .

We computed the Jacobian for each serial chain of this par-
allel mechanism in the previous example. We now combine
them in the following manner:
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Fig. 4. Dual-leg example. Reaction frames {Al} and {Ar}
are assumed to be in the same orientation as reference frame
{O} so that OAlR =O

Ar
R = I .

[ �τl
�τr

]
=

[ Al
B J

T 0

0 Ar
B J T

] [ �Fl
�Fr

]
. (8)

This expands to


τla

τlk

τlh

τra

τrk

τrh




=




A B −1 0 0 0

Q R −1 0 0 0

0 0 −1 0 0 0

0 0 0 C D −1

0 0 0 S T −1

0 0 0 0 0 −1







fxl

fzl

fθl

fxr

fzr

fθr



,

(9)

where

A = −L1 cos(θla)− L2 cos(θla + θlk)

B = −L1 sin(θla)− L2 sin(θla + θlk)

C = −L1 cos(θra)− L2 cos(θra + θrk)

D = −L1 sin(θra)− L2 sin(θra + θrk)

Q = −L2 cos(θla + θlk), R = −L2 sin(θla + θlk)

S = −L2 cos(θra + θrk), T = −L2 sin(θra + θrk).

Equation (9) maps the virtual forces for each leg to the
required joint torques. Because the action frame {B} is co-
incidental, we have the compatibility relation that the force
vector must equal the vector sum of the forces produced by
each serial chain,


fx

fz

fθ


 =




fxl

fzl

fθl


 +




fxr

fzr

fθr


 . (10)

In fact, we are interested in generating the three virtual
forces, fx , fz, and fθ , which are effective forces acting on
the robot body due to the joint torques. Because we have six
joints and wish to control these three forces, we require three
constraints. Unactuated ankles provide two constraints,

τla = 0, τra = 0. (11)

The third constraint provides us with a design degree of
freedom. We could choose it to maximize a performance
criterion, for example. Here, we simply choose to match the
hip torques,

τlh = τrh �⇒ fθl = fθr . (12)

Putting the above constraints in vector form, we have


fx

fz

fθ

0

0

0




=




1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

A B −1 0 0 0

0 0 0 C D −1

0 0 1 0 0 −1







fxl

fzl

fθl

fxr

fzr

fθr



.

(13)

We must now perform a 6×6 matrix inversion to solve for
the individual leg forces. We drop the terms that are multiplied
by zero. This results in a 6 × 3 matrix relating the single
vector of virtual forces to the individual leg virtual forces.
This matrix is then substituted into eq. (9) and simplified,
resulting in the virtual force to joint torque relation


τlk

τlh

τrk

τrh


 =




C V
E

D V
E

−V−QD+RC
2E − 1

2

0 0 −1/2

−AW
E

−B W
E

W+SB−TA
2E − 1

2

0 0 −1/2






fx

fz

fθ


 ,

(14)
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where

E = CB − AD

V = QB − RA = −L1 L2 sin(θlk)

W = SD − T C = −L1 L2 sin(θrk).

Once again, we have a simple set of equations for relating
virtual forces to joint torques. These equations will be used in
the subsequent sections in the control of the bipedal walking
robots during the double-support phase. Intuitively, the ma-
trix in eq. (14) should be of full rank for all joint angles except
when the two feet are colinear. In all other configurations, all
virtual forces are admissible.

5. Level-Ground Walking

Virtual model control is applied to Spring Turkey to allow it
to perform simple walking on level ground. The algorithm
(called turkey walking) is summarized as follows:

• Attempt to maintain a constant height and pitch (in both
the double-support and single-support phases).

• Attempt to correct for velocity disturbances (in the
double-support phase).

• Attempt to swing the nonstance leg so that the foot is
placed a nominal stride length away from the support
foot when transitioning to double support (in the single-
support phase).

The following intuitive rules are used for the state transi-
tions between the single-support phase and the double-support
phase:

• Transition from double support to single support if the
body’s x position becomes close to the point where a
foot contacts the ground.

• Transition from single support to double support if the
body’s x position becomes far away from the support
foot’s ground contact point.

To implement turkey walking, we use simple sets of virtual
components and a state machine. The state machine (see
Fig. 5) is used to determine the state of the system. Table 1 lists
the trigger and branch events and the virtual components that
are used in each state. During both the double-support phase
and the single-support phase, a virtual granny walker with
spring-damper mechanisms (see Fig. 6) maintains a constant
height and regulates the pitch angle to zero.

During the double-support phase, a virtual dogtrack bunny
with a damper mechanism (see Fig. 7) applies a virtual force

in the forward horizontal (x) direction to help maintain a de-
sired velocity. Unlike many speed control algorithms, which
operate by modulating foot placement, we chose to leave foot
placement a free variable (so that the robot could choose to
avoid stepping in certain areas). Instead, we maintain the
walking speed by use of the virtual dogtrack bunny.

The swing leg is controlled via a virtual linkage with
springs and dampers that compel the swing leg to mirror the
stance leg while clearing the ground and to set down at the
nominal stride length before transitioning back to the double-
support phase. States Left Support 2 and Right Support 2 are
used as buffer states between the single- and double-support
phases. Because Spring Turkey has no foot switches to detect
ground contact, in these states the swing leg is simply made
limp (zero torque applied to the joints) for a set delay time,
allowing for the swing leg to fall to the ground before the large
forces, which the double-support phase requires, are applied.

The various virtual spring, damper, and force variables and
walking parameters were chosen using physical insight and
a manual search. The virtual granny walker spring-damper
constants were experimentally varied while physically exam-
ining their effects (resistance to being pushed on, decay rate,
etc.) until the desired effects were achieved; the walking pa-
rameters and virtual dogtrack bunny damper were changed
through trial and error until the robot successfully walked.
These walking parameters consisted of nominal stride length
and percentage of stride length spent in the single support.

Walking was initiated in the single-support phase. A slight
push was applied to the robot to propel it forward. After the
push, no external intervention was required.

Figure 9 shows experimental data from Spring Turkey
while performing turkey walking. The upper left graphs show
the body’s horizontal position (x), vertical position (z), and
pitch (θ ), and the corresponding spring set points (dotted).
The upper right graphs show the virtual forces applied to the
body due to the virtual components. The horizontal veloc-
ity, along with the virtual dogtrack bunny velocity (dotted),
is plotted in the lower left-hand graph. The state of the state
machine is plotted in the lower right-hand graph.

The data in Figure 9 are plotted in graphical form in Fig-
ure 8. The snapshots in Figure 8 are approximately 0.5 s apart.
Lines are drawn to show the path of the tips of the feet and
the center of the body.

Spring Turkey walked continuously at approximately
0.5 m/s (1.125 mph). The data show approximately six steps
in 4 s, for a step time of about 0.5 s. It deviated a maximum
of 3 cm from the nominal height of 54 cm, and pitch was
confined to ±0.10 radians (±5.2 degrees).

6. Sloped-Terrain Implementation

This section describes how the level-ground walking algo-
rithm described earlier can be extended for the biped to
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Fig. 5. State machine used in the turkey-walking algorithm.

Table 1. Details of Turkey-Walking State Machine and the Corresponding Virtual Components

State Trigger Event Virtual Components

1 Double Delay after Granny walker
Support left or right Dogtrack bunny

support2

2 Left Body nearly Granny walker
Support over left foot Swing leg linkage

3 Left Body away Granny walker
Support 2 from left foot

4 Right Body nearly Granny walker
Support over right foot Swing leg linkage

5 Right Body away Granny walker
Support 2 from right foot

Fig. 6. Spring Turkey with virtual granny walker mechanism.
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Fig. 7. Spring Turkey with virtual dogtrack bunny mechanism.

Fig. 8. Elapsed time snapshot of the bipedal walking data in Figure 9. The drawings of the robot are spaced approximately
0.5 s apart. The left leg is dotted, whereas the right leg is solid. Lines show the path of the tips of the foot and the center of
the body.

overcome sloped terrain of unknown slopes and transition
locations. The resulting algorithm is applied to a simulated
Spring Flamingo walking over a rolling terrain. We assume
that the terrain has no discontinuous vertical variation. The
minimum and maximum slope gradients are assumed to be
−20 degrees and +20 degrees, respectively. We also assume
that no slippage occurs.

The simulated biped has only discrete sensors at the toe
and heel to sense the foot’s contact with the ground. When
encountering a slope, the biped adjusts its gait accordingly to
continue stable locomotion on it. In the double-support phase,
when one or both of the biped’s feet are on a slope, the front
and rear supporting legs are resting on different elevations.
We call the virtual slope that is formed by joining the ankle
of the front and rear legs the global slope. The actual slope
that each foot is resting on is called the local slope. The local
and global slope gradients are computed based on the joint
position data at the beginning of the double-support phase.

6.1. Upslope and Downslope Walking

There are many possible postures and behaviors for the biped
to adopt while walking on an upslope or a downslope. In this
preliminary study, we choose to keep the desired horizontal
velocity unchanged and the body at the same upright posture
while the biped walks on the sloped terrain. We also choose to
fix the desired step length of the biped. For energy efficiency,

we want the biped to walk with a high posture, but without
causing the legs to reach singular configurations. The desired
hip height of the biped is computed based on geometric con-
siderations (considering the global slope, transition location
from double to single support, and the desired step length).
This results in a desired body height that varies with the slope
gradient.

For upslope walking, the height limit of the biped is com-
puted based on the desired step length, the distance from
the front ankle at which the double-support phase transits to
the single-support phase, and the singularity consideration of
the back supporting leg during the double-support phase (see
Fig. 10). We denote hlimit to be the hip height limit measured
along the direction of the gravitational field from a global
slope. By geometric consideration, the hip height limit hlimit
is computed by eq. (15):

hlimit =
√
(l1 + l2)2 − r2 − r tan β, (15)

where l1 + l2 is the total length of the leg (excluding the foot),
β is the slope gradient, and r is the horizontal distance of the
desired transition plane (where the biped transits from double-
to single-support phase) from the stance ankle.

A factor kheight is multiplied to the height limit hlimit to
give the desired height hd of the hip from a global slope.
kheight is typically chosen to be around 0.85. For larger slope
variations, it should be smaller to accommodate uncertainties.
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Fig. 9. Turkey-walking data. Upper left graphs display the x, z, and θ positions and virtual spring set points (dashed). Upper
right graphs display the resultant forces applied to the body due to the virtual components. The lower left-hand graph shows
the body velocity and the dogtrack bunny velocity (dotted). The lower right-hand graph shows the state machine transitions.
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r

Transition Plane

21 ll +

β

limith

Fig. 10. Geometric constraint to calculate hlimit : level and
upslope.

For the downslope, depending on the swing leg’s touch-
down location and slope gradient, both the back supporting
leg during the double-support phase and the swing leg during
the single-support phase may reach singular configuration as
shown in Figures 11a and 11b, respectively. In the algorithm,
we have set the swing leg to touch down when the vertical pro-
jection of the hip is between both legs. For such a strategy, the
case depicted in Figure 11b can occur and the corresponding
height limit hlimit is computed as in eq. (16):

hlimit =
√
(l1 + l2)2 − r2

1 − r1 tan β, (16)

where r1 is the expected horizontal distance of the swing leg
touch-down location measured from the hip.

The minimum of the computed hip height limit hlimit be-
tween eqs. (15) and (16) is used to compute the desired hip
height hd during the downslope walking. These equations
can also be used for level walking where β is zero.

6.2. Transition Cases

This subsection considers transitional walking from level to
slope ground and from slope to level ground, where the slope
can be either ascending or descending. We first discuss the
level-to-upslope and downslope-to-level transitions. Both re-
sult in premature landing of the swing leg.

For the level-to-upslope transition, we employ a strategy
similar to the one adopted by Zheng and Shen (1990). How-
ever, instead of using the force feedback approach, we set the

ankle torque of the swing leg to zero when the swing foot
touches the upslope surface. This allows the swing foot to
orient itself and adapt to the slope according to the natural
compliance (for details, see Chew 1998).

When both the heel and the toe of the swing foot are on
the slope, they trigger the transition from the single-support
phase to the double-support phase. The biped then computes
the gradient of the global slope based on the joint angles. Note
that the global slope gradient is not the same as the real slope
gradient, since both feet are not on the same slope yet (see
Fig. 12b). The global slope is an imaginary intermediate slope
whose gradient is between the level ground gradient (equal to
zero) and the actual upslope gradient. However, the biped
considers the global slope to be the actual terrain slope during
the double-support phase. It computes the desired walking
height based on the global slope.

When the biped switches to the single-support phase, it
continues to compute the desired walking height based on the
global slope. The swing leg trajectory of the single-support
phase is also planned using the global slope. However, when
the biped is in the double-support phase again, both its legs
are on the actual slope, and the global slope will have the same
gradient as the actual slope (see Fig. 12c).

Note that during transition walking, the actual step length
of the biped may vary significantly from the desired step
length. For the level-to-upslope transition, the variation in
the step length is due to the premature landing of the swing
foot. The biped will reach a steady walking gait as it continues
to walk on the same slope.

The usage of global slope instead of local slope to com-
pute the desired height of the biped is analogous to the use
of a low-pass filter to get rid of high-frequency noise. For
example, the biped may walk on a ground with many local
variations in elevation. Using global slope information will
reduce unnecessarily large variation in trajectory during lo-
comotion. The strategy for the level-to-upslope transition is
also applied to the downslope-to-level transition.

We now consider the level-to-downslope and upslope-
to-level transitions. During the level-to-downslope transi-
tion, the biped executes the usual walking control for single-
support phase until the swing time has expired. When the
swing time expires, if the swing foot has not touched down,
the biped will exert a preset downward force exerted at the
swing leg’s ankle so that the swing foot will continue on
its way down. The downward force will cause the swing
leg’s ankle to penetrate through a virtual surface (which is
the global slope) (see Fig. 13a). When the virtual surface is
penetrated, the biped recomputes the gradient of the global
slope based on the instantaneous position of the swing leg’s
ankle (see Fig. 13b) and adjusts the desired hip height ac-
cordingly. This is a continuous process. After the swing
leg has touched down, the state machine will switch to the
double-support phase, and the biped will compute the interme-
diate global slope (see Fig. 13c). In this phase, the biped will
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Fig. 11. Geometric constraint to calculate hlimit during downslope walking: (a) case 1, (b) case 2.

Fig. 12. Sequence for level-to-upslope transition. Note that in (b), global slope gradient is different from the actual slope
gradients underneath both feet. In (c), all the detected slopes are the same.

(a) (b)

Global slope

Trajectory of 
swing leg 

Global slope
Global slope

(c)

Swing leg

Fig. 13. Sequence for level-to-downslope transition.
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Fig. 14. Stick diagram of the biped walking over the sloped
terrain Profile One from left to right (spaced approximately
0.08 s apart and showing only the left leg).

compute the desired hip height based on the global slope. The
swing leg of the next single-support state will also follow this
global slope. The biped then goes through the whole sequence
again before both feet are on the same slope. The strategy for
the level-to-downslope transition can also be applied to the
upslope-to-level transition.

For both the level-to-downslope and upslope-to-level tran-
sitions, we have to control the swing leg so that it will not hit
the ground prematurely. To avoid such an event, the desired
lift height for the swing leg is set to a value that will enable it
to clear all the edges of the level-to-downslope and upslope-
to-level transitions. This is based on the assumption that we
know the maximum change in the gradients for each slope
transition.

Although these subsections only describe the strategies
used to handle four simple slope transition cases, they are
applicable to other transition cases as long as there is no dis-
continuous vertical variation.

6.3. Simulation Results

The simulated biped was tested over several terrain profiles,
two of which we discuss below. Sloped terrain Profile One
(shown in the top graph of Fig. 15) was used in the simulation
to observe and compare the key output variables for the ups-
lope, downslope, and transition terrain walking of the biped.
Sloped terrain Profile Two (shown in the top graph of Fig. 16),
which is rougher than Profile One, was used to illustrate the
robustness of our approach for the biped to walk over a sloped
terrain that consisted of a series of unknown slopes.

The desired values of the key gaits’ variables and the virtual
components’ parameters were set as in Table 2. The desired
hip height of the biped was computed as discussed earlier.

6.3.1. Walking over Terrain Profile One

Figure 14 shows a stick diagram of the biped walking over
the sloped terrain Profile One from left to right. Figure 15
shows the profiles of the key variables. In Figure 15, the
vertical dash-dot and dotted lines represent the start of the
single-support phase and the double-support phase, respec-
tively. Note that the variables α and Mα correspond to θ and
fθ , respectively, introduced in Section 4.

The third graph from the top of Figure 15 shows the actual
hip height profile (solid line) of the biped measured from the
global slope. This graph shows that the biped was able to

Table 2. Desired Values of Some of the Gait Variables
and the Parameters of the Virtual Components Set in the
Simulation

Variable/Parameter Value

Gait variables
Desired pitch angle of the body, θd 0 rad
Desired horizontal velocity of the hip, ẋd 0.4 m/s
Desired step length, sl 0.28 m
Distance from the front ankle at which
double support phase transits to single
support phase, lt −0.03 m
Desired lift height of swing leg, hl 0.07 m

Virtual components’ parameters
Spring stiffness in z direction, kz 500 N/m
Damping coefficient in z direction, bz 200 Ns/m
Damping coefficient in x direction, bx 200 Ns/m
Spring stiffness in θ direction, kθ 50 Nm
Damping coefficient in θ direction, bθ 20 Nms

track the desired hip height (dashed line) within a tolerable
range. The ripple found in the actual hip height profile was
mainly due to the swing leg dynamics and the variation in the
effective mass of the biped as perceived at the hip.

We observe that when the global slope gradient was nega-
tive, the desired hip height (dashed line in the top third graph
of Fig. 15) of the biped was higher than when the global slope
gradient was positive. This was the result of the geometric
considerations when we computed the desired hip height of
the biped.

6.3.2. Walking over Terrain Profile Two

The results from the terrain Profile Two demonstrate the ro-
bustness of the algorithm developed for the sloped terrain
walking. Figure 16 shows the profiles of the key variables.
Note that the profile of the terrain was not known to the biped
in advance. The biped was required to feel its way through
the terrain. From Figure 16, we observe that the biped can
cope with this rougher terrain without much difficulty. The
actual hip height, hip horizontal velocity, and pitch angle of
the body were well behaved in the simulation.

7. Conclusions

This paper has demonstrated the successful application of vir-
tual model control to two bipeds for walking tasks. We stress
here that we augmented the natural dynamics of the robot with
simple virtual components rather than attempt to cancel the
natural dynamics. In no case did we assume linear dynamics.

This paper has also demonstrated the successful appli-
cation of virtual model control to a simulation of Spring
Flamingo walking dynamically and steadily over sloped ter-
rain with unknown slope gradients and transition locations.
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Fig. 15. Profiles of the key variables when the biped walked over the sloped terrain Profile One.
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Fig. 16. Profiles of the key variables when the biped walked over the sloped terrain Profile Two.
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It was assumed that the slope gradients were between −20
degrees and +20 degrees, and that the sloped terrain had max-
imum transitional gradient change of less than 20 degrees. In
the implementation, the global slope was used to compute the
desired hip height based on geometric considerations, which
resulted in a straight line trajectory parallel to the global slope.
It was very simple to implement and did not require an exten-
sive sensory system to achieve blind walking. The algorithms
can be extended to more abrupt terrain changes, such as stair
climbing, if properties such as the general location and layout
of the terrain are known or detected visually.

The ease of implementing virtual model control is promis-
ing. Although some intuition is needed to identify the types
and locations of virtual components in a virtual model con-
trol implementation, the resulting algorithm usually has low
computational requirement. One of our goals is to automate
the design process.
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