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VIRTUAL MODULI CYCLES AND GROMOV-WITTEN

INVARIANTS OF ALGEBRAIC VARIETIES

JUN LI AND GANG TIAN

Introduction

The study of moduli spaces plays a fundamental role in our understanding of
the geometry and topology of manifolds. One example is Donaldson theory (and
more recently the Seiberg-Witten invariants), which provides a set of differential
invariants of 4-manifolds [Do]. When the underlying manifolds are smooth alge-
braic surfaces, then they are the intersection theories on the moduli spaces of vector
bundles over these surfaces [Li], [Mo]. Another example is the mathematical the-
ory, inspired by the sigma model theory in mathematical physics ([W1], [W2]), of
quantum cohomology. The quantum cohomology uses the GW-invariants, which
are the intersection numbers of certain induced homology classes on the moduli
spaces of rational curves in a given symplectic manifold. This is a generalization
of the classical enumerative invariant which counts the number of algebraic curves
with appropriate constraints in a variety. The first mathematical foundation of
quantum cohomology was established by Ruan and the second named author in
[RT1] for semi-positive symplectic manifolds, which include all algebraic manifolds
of complex dimension less than 4, all Fano manifolds and Calabi-Yau spaces. In
[RT2], general GW-invariants of higher genus are constructed to establish a mathe-
matical theory of the sigma model theory coupled with gravity on any semi-positive
symplectic manifolds (also see [Ru] for the special cases). There are some related
works we would like to mention. In [KM], Kontsevich and Manin proposed an ax-
iomatic approach to GW-invariants, and in [Ko2], Kontsevich introduced the notion
of stable maps to study GW-invariants. There are also works dealing with special
classes of Fano varieties, such as homogeneous manifolds (cf. [BDW], [Ber], [Ci],
[CM], [LT]).

Now let us discuss the new issue in intersection theory raised from studying
GW-invariants, and more generally the Donaldson type invariants. The core of
an intersection theory is the fundamental class. For a manifold (or a variety), the
ordinary cup product with the fundamental class given by the underlying manifold
provides a satisfactory intersection theory. However, for the GW-invariants, which
should be an intersection theory on the moduli space of stable maps, we cannot
take the fundamental class of the whole moduli space directly. This is because
the relative moduli space (i.e., the family version) in general does not form a flat
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120 JUN LI AND GANG TIAN

family over the parameter space. One guiding principle of our search of a “good”
intersection theory is that such a theory should be invariant under deformation of
the underlying manifolds. In [Do], [RT1], [RT2], the authors employed analytic
methods to construct “good” intersection theory using generic moduli spaces (they
are almost always non-algebraic).

Abiding with algebraic methods, we don’t have the luxury of having a “generic
moduli space”. Instead, we will construct directly a cycle in the moduli space,
called the virtual moduli cycle, and define an intersection theory by using this
cycle as the fundamental class. Such a construction commutes with Gysin maps.
In this paper, we will construct such a cycle by first constructing a cone cycle
inside a vector bundle, which functions as a normal cone, and then intersecting this
cone cycle with the zero section of the vector bundle. To make this construction
sufficiently general, we shall carry it out based on the moduli functor solely. The
data we need is a choice of tangent-obstruction complex of the moduli functor,
which is a global obstruction theory of the moduli problem. The virtual moduli
cycle depends on the choice of such a complex, so does the virtual intersection theory
defined. The so-constructed intersection theory will have the following invariance
property. Given a family of moduli functors, namely, a relative moduli functor, if
we assume that the tangent-obstruction complex of the relative moduli functor and
that of the specialized moduli functor are compatible, then the specialization of the
virtual intersection theory on the relative moduli space is the same as the virtual
intersection theory of the specialized moduli space. Applying to the moduli space
of stable maps from n-pointed nodal curves into a smooth projective variety X , we
can define the GW-invariants of X purely algebraically.

We now describe briefly the key idea to our construction. When we are working
with a moduli space, usually we can compute its virtual dimension. However, the
virtual dimension may not coincide with the actual dimension of the moduli space.
One may view this as if the moduli space is a subspace of an “ambient” space cut
out by a set of “equations” whose vanishing loci do not meet properly. Such a
situation is well understood in the following setting: let

Z −−−−→ Xy yf
Y

g−−−−→ W

be a fiber square, where X , Y and W are smooth varieties and subvarieties. Then
[X ] · [Y ], the intersection of the cycle [X ] and [Y ], is a cycle in A∗W of dimension
dimX+dimY−dimW . When dimZ = dimX+dimY −dimW , then [Z] = [X ]·[Y ].
Otherwise, [Z] may not be [X ] · [Y ]. The excess intersection theory tells us that
we can find a cycle in A∗Z so that it is [X ] · [Y ]. We may view this cycle as the
virtual cycle of Z representing [X ] · [Y ]. Following Fulton-MacPherson’s normal
cone construction, this cycle is the image of the cycle of the normal cone to Z in X ,
denoted by CZ/X , under the Gysin homomorphism s∗ :A∗

(
CY/W ×Y Z

)
→ A∗Z,

where s :Z → CY/W ×Y Z is the zero section. This theory does not apply directly
to moduli schemes, since, except for some isolated cases, it is impossible to find
pairs X → W and Y → W so that X ×W Y is the moduli space and [X ] · [Y ] so
defined is the virtual moduli cycle we need.

The strategy to our approach is that rather than trying to find an embedding
of the moduli space into some ambient space, we will construct a cone in a vector
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VIRTUAL MODULI CYCLES AND GROMOV-WITTEN INVARIANTS 121

bundle directly, say C ⊂ V , over the moduli space and then define the virtual
moduli cycle to be s∗[C], where s is the zero section of V . The pair C ⊂ V will
be constructed based on a choice of the tangent-obstruction complex of the moduli
functor. (The definition of tangent-obstruction complex is given in section 1.)

Let M be a moduli space. We first construct its tangent-obstruction complex,
which usually comes from studying obstruction theory of the moduli problem. For
a large class of moduli problems, their tangent-obstruction complexes are the sheaf
cohomologies of complexes of locally free sheaves

E• = [E1 −→ E2].
Assume that M belongs to this class of moduli problems. Then at each closed
point w ∈ M,

T1 = h1(E• ⊗OM k(w))

is the tangent space TwM and

T2 = h2(E• ⊗OM k(w))

is the obstruction space to deformations of w in M. Here hi(E•) is the i-th sheaf
cohomology of the complex. There is an “intrinsic” set of defining equations of the
germ of M at w, namely, the Kuranishi map

f : ˆSym•(T∨2 ) −→ ˆSym•(T∨1 ) := lim←−⊕
n
l=0S

l(T∨1 ).

Note that if we denote by ŵ the formal completion ofM along w, then [La]

ŵ ∼= Spec ˆSym•(T∨1 )⊗ ˆSym•(T∨2 ) k.

The normal cone to ŵ in Spec ˆSym•(T∨1 ) is canonically a subcone in ŵ ×k T2. We
denote this cone by Cw. The virtual normal cone we seek will be a cycle [C] in
Z∗Vect(E2), where Vect(E2) is the vector bundle overM so that its sheaf of sections
is E2. Then [C] is uniquely determined by the following criterion. At each w ∈ M,
there is a surjective vector bundle homomorphism

Vect(E2)×M ŵ −→ Vect(T2)× ŵ,

where T2 = h2(E• ⊗OM k(w)), that extends the given homomorphism E2 →
h2(E• ⊗OM k(w)) such that the restriction of [C] to Vect(E2) ×M ŵ is the pull
back of Cw. In short, the virtual normal cone is the result of patching these lo-
cal normal cones defined by the Kuranishi maps of the moduli space. The virtual
moduli cycle [M]vir is then defined to be the image of [C] in A∗M via the Gysin
homomorphism

s∗ : A∗Vect(E2)→ A∗M.

The GW-invariants are defined by applying this construction to the moduli spaces
of stable morphisms from nodal curves to X .

Theorem. For any smooth projective variety X, and any choice of integers n and
g and α ∈ A1X/ ∼alg, there is a virtual moduli cycle [MX

α,g,n]vir ∈ AkX ⊗Z Q,

where k is the virtual dimension of MX
α,g,n. Using this cycle, we can define the

GW-invariants

ΨX
α,g,n : (A∗X)×n ×A∗Mg,n −→ A∗MX

α,g,n ⊗Z Q
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in the usual way. Let ψXα,g,n be the composite of ΨX
α,g,n with the degree homomor-

phism A∗MX
α,g,n → Q. Then ψXα,g,n are invariant under deformations of X and

satisfy all the expected properties of the GW-invariant, including the composition
law.

The construction of the virtual moduli cycle [MX
α,g,n]vir is the main purpose of

this paper. The proof of the composition law is almost straightforward, following a
similar process as in [RT1]. Since maps in MX

α,g,n may have non-trivial automor-
phisms, our classes may have rational coefficients. The approach to this problem is
the usual descent argument. In the end, we obtain a cycle supported on an effec-
tive cone over MX

α,g,n inside a Q-vector bundle. The virtual moduli cycle is then
the image of the Gysin map as described before. The resulting class is of rational
coefficients.

This construction of virtual cycles was finished in early 1995. During the AMS
summer meeting held at Santa Cruz, July, 1995, the first named author reported
this work. In his talk, he described the ideas of our construction of virtual moduli
cycles and the definition of GW-invariants. After the talk, S. Katz kindly informed
the first named author that he had studied the problem of constructing virtual
moduli cycles and obtained some partial results in special cases [Kz1]. During the
preparation of this paper, we learned that K. Behrend and B. Fantechi had given
an alternative construction of virtual moduli cycles [BF]. Also as an application, K.
Behrend defined GW-invariants and proved the basic property of these invariants
[Bh]. A similar idea can be applied to constructing symplectic invariants for general
symplectic manifolds.

The layout of this paper is as follows. In section one, we introduce the notion
of tangent-obstruction complexes of functors, which is a global obstruction theory
of the moduli functors. We then describe the tangent-obstruction complex of the
moduli functor of stable morphisms. The next two sections are devoted to the
construction and investigation of the virtual normal cone of any tangent-obstruction
complex. In sections 4 and 5, we will construct the GW-invariants and prove some
basic properties of these invariants, including their deformation invariance and the
composition laws.

The first named author thanks W. Fulton and D. Gieseker for many stimulating
discussions. Part of this work was done when the second named author visited the
Department of Mathematics, Stanford University, in the winter quarter of 1994.
He would like to thank his colleagues there for providing a stimulating atmosphere.
We thank the referee for many comments and suggestions.

1. Tangent–obstruction complex

In this section we will introduce the notion of tangent-obstruction complexes of
moduli functors. Such a notion was implicit in many earlier works and should be
viewed as another way of presenting deformation theory.

In this paper, we will fix an algebraically closed field k of characteristic 0 and
will only consider schemes over k.

We first define the functor of tangent spaces. Let S be the category of all schemes
and let F :S → (sets) be a (contravariant) moduli functor. Here we call F a moduli
functor if for any S ∈ S the object F(S) is the set of isomorphism classes of flat
families of objects (to be parameterized) over S. For our purpose, we will introduce
an associated functor, called the pre-moduli functor of F and denoted by Fpre. For
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any S ∈ S, Fpre(S) is the set of all flat families of objects (to be parameterized)
over S. Note that we do not take isomorphism classes in this case. Following the
convention, for ξ1, ξ2 ∈ F(S) we will denote by ξ1 ∼= ξ2 the case when ξ1 and ξ2
are isomorphic and denote by ∼ the equivalence relation induced by ∼=. Hence
F(S) = Fpre(S)/ ∼. In this paper, for S ∈ S we let ModS be the category of
sheaves of OS-modules. For N ∈ModS , we denote by SN the trivial extension of S
by the sheaf N , 1 and denote by πN :Fpre(SN )→ Fpre(S) the restriction morphism
induced by the obvious inclusions S ⊂ SN . Given η0 ∈ Fpre(S) and ζ1, ζ2 ∈ π−1

N (η0),
we say ζ1 ∼=η0 ζ2 if there is an isomorphism ρ : ζ1 ∼= ζ2 so that its restriction
πN (ρ) :η0 ∼= η0 is the identity isomorphism. Now we define the functor of tangent
spaces. For any affine S ∈ S and η0 ∈ Fpre(S), we let T F(η0) : ModS → (sets)0

be the functor that assigns N to the set π−1
N (η0) modulo the equivalence relation

induced by the isomorphism ∼=η0 . In short, T F(η0) consists of all isomorphism
classes of η̃ ∈ Fpre(SN ) whose restriction to S is η0. In case η0 ∼= η′0, then there
is a canonical isomorphism of sets T F(η0) and T F(η′0). This way, for η ∈ F(S)
we obtain an isomorphism class of functors FF(η0) : ModS → (sets)0. It is clear
that if ρ :S1 → S2 is a morphism between affine schemes and if N1 ∈ ModS1 and
N2 ∈ModS2 are two sheaves with OS1-homomorphismOS1⊗OS2

N2 → N1, then for
any η2 ∈ F(S) with η1 = F(ρ)(η2) the induced object in F(S1), there is a canonical
morphism

T F(η2)(N2) −→ T F(η1)(N1),

satisfying the base change property. Note that when F is represented by a scheme
Y and η ∈ F(S) is represented by a morphism f :S → Y , then

T F(η)(N ) = Γ(HomS(f∗ΩY ,N )).

In this case, T F(η) is a functor ModS →ModS .

Assumption. In this paper, we will only consider the moduli functor F such that
T F is induced by a sheaf-valued functor over fibered category of modules over
schemes over F. Namely, for any affine S ∈ ModS, η ∈ F(S) and N ∈ ModS
the set T F(η)(N ) is canonically isomorphic to the set of all sections of a sheaf of
OS-modules, denoted by T 1F(η)(N ), and the arrows (above) in the base change
property are induced by sheaf homomorphisms

T 1F(η2)(N2)⊗OS2
OS1 −→ T 1F(η1)(N1).

In the following, we will call T 1F the functor of tangent spaces. We remark
that we have not exhausted the literature to see how restrictive this assumption
is. Nevertheless, the moduli functors that will be discussed in this paper all satisfy
this condition.

Next, we recall the definition of an obstruction theory. An obstruction theory
to deformations of p ∈ F(Spec k) with values in a vector space O is an assignment
as follows. Given a pair (η ∈ F(SpecB/I), I ⊂ B), where B is an Artin ring
with the residue field k, I ⊂ B is an ideal annihilated by the maximal ideal of
B and η ⊗B/I k = p, the obstruction theory assigns a natural obstruction class
ob(η,B/I,B) ∈ O whose vanishing is the necessary and sufficient condition for η
to be extendible to η̃ ∈ F(SpecB). We now introduce its relative analogue.

1By this we mean SN = Spec(Γ(OS )∗Γ(N )), where Γ(OS)∗Γ(N ) is the trivial ring extension
of Γ(OS) by Γ(N ). Note that there is an inclusion S → SN and projection SN → S so that
S → SN → S is the identity. (See [Ma, p. 191].)
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124 JUN LI AND GANG TIAN

Definition 1.1. Let K = {Kη} be a collection of sheaves of OS-modules Kη in-
dexed by η for S ∈ S and η ∈ F(S). We say that K is a sheaf over F if for any
morphism f : T → S of schemes, there is an isomorphism f∗Kη ∼= Kf∗η canonical
under base change.

Definition 1.2. An obstruction theory of the moduli functor F with values in a
sheaf ob• over F consists of the following data: let S be any affine scheme, let
S → Y0 → Y be schemes and embedding morphisms over S. Namely, Y0 → Y is
an embedding and i :S → Y0 is a section of Y0 → S. Let m be the ideal sheaf of
S ⊂ Y and let I ⊂ OY be the ideal sheaf of Y0 ⊂ Y . Assume that I ·m = 0. Then
for any η ∈ F(Y0), there is an obstruction class

ob(η, Y0, Y ) ∈ ΓS(obη0 ⊗OSI),
where η0 = i∗(η) ∈ F(S), whose vanishing is the necessary and sufficient condition
for η to be extendible to η̃ ∈ F(Y ). We call ob(η, Y0, Y ) the obstruction class
to extending η to Y . The obstruction class is canonical under base change: let
σ : S′ → S be another morphism, Y ′ a scheme over S′ with a section i′ and
f :Y ′ → Y a morphism such that

Y ′
f−−−−→ Yy y

S′ −−−−→ S

and

Y ′
f−−−−→ Y

i′
x i

x
S′ σ−−−−→ S

are commutative. Let Y ′0 = Y0 ×Y Y ′ and let η′ ∈ F(S′) be the pull back of η. Let
g :σ∗(obη0 ⊗OSIY0⊂Y )→ obη′0 ⊗OS′IY ′0⊂Y ′ be the obvious homomorphism. Then

ob(η′, Y ′0 , Y
′) = g(ob(η, Y0, Y )).

Example. Let X ⊂ An be a subscheme defined by the ideal I = (f1, . . . , fm).
Let FX be the functor Mor(−, X) and let C• be the complex [OX(TAn)

σ−→O⊕mX ]
where σ = (df1, . . . , dfm). Then for any affine S, morphism η : S → X and sheaf
N ∈ModS , T 1FX(η)(N ) is the first sheaf cohomology of η∗C•⊗OSN . The defining
sections f1, . . . , fm define an obstruction theory of the functor FX with values in
coker(σ) (see section 2 for an explicit description).

Example ([Al]). This example concerns the moduli of stable sheaves E on a smooth
algebraic surface X of a fixed Poincaré polynomial χ. Here we implicitly fix an
ample divisor on X . We denote the corresponding moduli functor by Fχ. For any
affine S ∈ S and η ∈ Fχ(S) representing the sheaf E of OX×S-modules, then

T 1Fχ(η)(N ) = Ext1S×X/S(E , E ⊗ π∗SN )0,

where the superscript means the traceless part of the extension sheaf. The canonical
obstruction theory of Fχ takes values in the sheaf Ext2S×X/S(E , E)0.

Let ob• be the sheaf in Definition 1.2. For simplicity, we will use the convention
T 2F(η)(N ) = obη ⊗OS N and T •F = [T 1F → T 2F], where the arrow is the
zero homomorphism. By the assumption of this section, T 1F(η)(N ) is a two-term
complex of sheaves of OS-modules connected by the zero arrow.

Definition 1.3. Let F be as before. A tangent-obstruction complex of F is a
complex T •F = [T 1F→ T 2F], where the arrow is the zero arrow, such that T 1F is
the functor of the tangent spaces of F and that there is an obstruction theory of F
taking values in T 2F. The tangent-obstruction complex T •F is said to be a perfect

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



VIRTUAL MODULI CYCLES AND GROMOV-WITTEN INVARIANTS 125

tangent-obstruction complex if for any affine S and η ∈ F(S), there is an affine
covering {Sα} of S such that there are two-term complexes of locally free sheaves
E•α such that for any N ∈ ModSα , T iF(ηα)(N ) is the i-th sheaf cohomology of
E•ηα ⊗OSα N , where ηα ∈ F(Sα) is the induced object of η via Sα → S. In case the
complex E• is explicitly given, we will write T •F = h•(E•).

We emphasize that the obstruction theory is part of the data making up the
tangent-obstruction complex. This notion is a convenient way to group the data of
tangent spaces and obstruction theory. It will be clear later that when the tangent-
obstruction complex is perfect, then the classical construction of Kuranishi maps
can be adopted to construct the relative Kuranishi families, which is the heart of
the construction of virtual moduli cycles.

Remark. The assumption that F admits a perfect tangent-obstruction complex
is a strong requirement. For instance, moduli functors of stable vector bundles
over threefolds other than Calabi-Yau manifolds may not have perfect tangent-
obstruction complexes.

In this paper, our main interest is in the moduli spaces of stable morphisms from
marked curves to smooth projective varieties. Let X be a fixed smooth projective
variety. We first recall the notion of stable morphisms introduced by Kontsevich
[Ko1]. An n-pointed nodal curve is a nodal curve C and n ordered marked points
D ⊂ C away from the singular locus of C (we will use D to denote the n-ordered
marked points on C in this paper). A morphism f : D ⊂ C → X is said to be stable
if D ⊂ C is an n-pointed connected nodal curve and f :C → X is a morphism such
that

HomC(ΩC(D),OC)→ HomC(f∗ΩX ,OC)

is surjective, where f∗ΩX → ΩC(D) is induced by f∗ΩX → ΩC . We will call f
stable relative to D or simply stable if the marked points D ⊂ C are understood.

From now on, we fix a class α ∈ A1X/ ∼alg and two integers n and g. We
let FXα,g,n : S → (sets)0 be the functor that assigns any S ∈ S to the set of all
isomorphism classes of flat families over S of stable morphisms

f : D ⊂ X −→ X

from n-pointed connected nodal curves D ⊂ X of arithmetic genus g to X such
that f sends the fundamental classes of closed fibers of X over S to α. Since X is
a smooth projective variety, by the work of [Al], FXα,g,n is coarsely represented by a

projective scheme. We denote this scheme byMX
α,g,n. It is also known that FXα,g,n

is represented by a Deligne-Mumford stack [FP].
In the following, we will determine the natural tangent-obstruction complex of

FXα,g,n. We fix an affine scheme S and a sheaf N ∈ ModS . Let ξ ∈ FXα,g,n(S) be

represented by f :X → X with marked sections D ⊂ X . Let XN be a flat family
of nodal curves over SN , where SN is the trivial extension of S by N , that extends
the family X . Then we have a commutative diagram of exact sequences

0 −−−−→ OX ⊗OS N −−−−→ ΩXN/S ⊗OXN OX −−−−→ ΩX/S −−−−→ 0∥∥∥ xdN xd
0 −−−−→ OX ⊗OS N −−−−→ OXN −−−−→ OX −−−−→ 0 ,
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where d and dN are the differentials. The upper sequence is exact because XN is
a family of nodal curves flat over SN , following Theorem 25.2 in [Ma]. Conversely,
given any exact sequence of sheaves of OX -modules

0 −−−−→ OX ⊗OS N −−−−→ C −−−−→ ΩX/S −−−−→ 0 ,

we obtain a pull-back from the S-homomorphism d : OX → ΩX/S:

0 −−−−→ OX ⊗S N −−−−→ C −−−−→ ΩX/S −−−−→ 0∥∥∥ x d

x
0 −−−−→ OX ⊗S N −−−−→ B −−−−→ OX −−−−→ 0 .

One checks that there is a canonical way to give B a sheaf structure ofOSN -algebras,
which is flat over SN automatically. Thus we obtain a flat family XN over SN . One
checks also that this correspondence is one-to-one and onto. This is the one-to-one
correspondence between the space of flat extensions of X → S to XN → SN and
the module

Ext1X/S
(
ΩX/S ,OX ⊗OS N

)
.

Next we investigate when such an extension XN admits a morphism fN :XN →
X extending f :X → X . We claim that such an fN comes from the existence of an
OX -linear lifting f∗ΩX → ΩXN/S⊗OXN OX of the obvious f∗ΩX → ΩX/S. Indeed,

given fN restricting to f , we certainly have such a lifting from

(fN )∗ΩX −→ ΩXN/S and (fN)∗ΩX ⊗OXN OX = f∗ΩX .

Conversely, given any diagram

f∗ΩX f∗ΩX

β

y y
0 −−−−→ OX ⊗S N −−−−→ B −−−−→ ΩX/S −−−−→ 0 ,

(1.1)

we first obtain a flat extension XN of X and an isomorphism B ∼= ΩXN/S⊗OXN OX
based on the bottom exact sequence. Observing that

OX
γ−−−−→ f∗(OX )yf∗(β)◦d

yf∗(d)
f∗(ΩXN/S ⊗OXN OX ) −−−−→ f∗(ΩX/S)

is commutative, we can factor f∗(β) ◦ d and γ through OX → f∗(OXN ), because

f∗(OXN ) −−−−→ f∗(OX )yf∗(dN )

yf∗(d)
f∗(ΩXN/S ⊗OXN OX ) −−−−→ f∗(ΩX/S)

is a pull-back diagram. One checks directly that OX → f∗(OXN ) is a homomor-
phism of sheaves of S-algebras. Therefore, it defines a morphism fN : XN → X
that is an extension of f :X → X .

In conclusion, we have shown that for any affine S ∈ S and ξ ∈ FXα,g,0(S) that

corresponds to the family f : X → X , the tangent T FXα,g,0 at ξ takes N ∈ ModS
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to the set of all commutative diagrams of OX -modules (1.1). This set is naturally
the first extension module

Ext1X
(
[f∗ΩX → ΩX/S],OX ⊗OS N

)
,

where [f∗ΩX → ΩX/S] is a complex indexed at −1 and 0. We should point out
that in [Ra], Z. Ran has identified the deformation space and the obstruction space
of this moduli problem to the above diagram and has expressed them in terms of
extension modules over non-commutative rings. He actually treated more general
cases. Based on [Ra] and the above reasoning, we only need to check that the set of
diagrams above is canonically isomorphic to the above extension module. This can
be checked by using hypercohomology of a double complex based on a covering of
XS and a locally free resolution of ΩXS , similar to the example in [GH]. We leave
the details to the readers.

Now we give the tangent of the functor FXα,g,n.

Proposition 1.4. Let S be any affine scheme and let ξ ∈ FXα,g,n(S) be represented
by f :X → X with marked points D ⊂ X . Then for any N ∈ModS,

T 1FXα,g,n(ξ)(N ) = Ext1X/S
(
[f∗ΩX → ΩX/S(D)],OX ⊗OS N

)
.

Proof. We will sketch the proof of one direction and leave the other to the readers.
Given any section in the above sheaf, we can associate to it a diagram

f∗ΩX f∗ΩXy y
0 −−−−→ OX ⊗OS N −−−−→ A −−−−→ ΩX/S(D) −−−−→ 0y y ∥∥∥
0 −−−−→ OX (D)⊗OS N −−−−→ B −−−−→ ΩX/S(D) −−−−→ 0 ,

where the lower left square is the push-forward of sheaves of OX -modules. The
last line (tensored by OX (−D)) defines an extension XN . Since f∗ΩX → ΩX/S(D)
factors through ΩX/S ⊂ ΩX/S(D), f∗ΩX → B factors through B(−D) ⊂ B, and

thus defines a morphism fN : XN → X . The immersion DN → XN extending
D → X is determined by the data coker{A → B}. In this way, we have constructed
an extension

fN : DN ⊂ XN −→ X of f : D ⊂ X −→ X.

It is routine to check that this correspondence is one-to-one and onto, and satisfies
the required base change property. This proves the proposition.

We now describe the standard choice of the obstruction theory of FXα,g,n.

Proposition 1.5. For any S ∈ S and η ∈ FXα,g,n(S) corresponding to the family
f :X → X over S with the marked sections D, we define obη to be the sheaf

Ext2X/S([f∗ΩX → ΩX/S(D)],OX ).

We let ob• be the collection {obη} indexed by η ∈ F(S) for S ∈ S. Then ob• forms
a sheaf over FXα,g,n. Furthermore, there is an obstruction theory of FXα,g,n taking
values in the sheaf ob•.
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Proof. It is clear that {obη} is a sheaf over FXα,g,n. Now we describe the obstruction
theory taking values in this sheaf. Let S be any affine scheme and let S → Y0 → Y
be a tuple of S-schemes described in Definition 1.2 (namely, S → Y0 → Y are
embeddings and the ideal sheaf of Y0 ⊂ Y is annihilated by the ideal sheaf of
S ⊂ Y ). Let η ∈ FXα,g,n(Y0) be any object corresponding to a family f0 :X0 → X

with marked points D0 ⊂ X0 understood. We let X̄ = X0 ×Y0 S, D̄ = D0 ×Y0 S
and f̄ = f0|X̄ . We let π̄ : X̄ → S be the projection. Since I := IY0⊂Y is annihilated
by the ideal sheaf IS⊂Y , I is a sheaf of OS-modules. Clearly, D0 ⊂ X0 can be
extended to a family over Y , say D ⊂ X . Since X → Y is a flat family of nodal
curves, we obtain an exact sequence

0 −→ IX0⊂X −→ ΩX/S ⊗OX OX0 −→ ΩX0/S −→ 0.(1.2)

Let τ(X ) ∈ Hom(f∗0 ΩX ,ΩX0/S) be the obvious homomorphism and let

τ̄ (X ) ∈ Ext1X̄0
(f̄∗ΩX , π̄

∗I)

be the image of τ(X ) under the connecting homomorphism

Hom(f∗0 ΩX ,ΩX0/S)
δ−→ Ext1X0

(f∗0 ΩX , IX0⊂X ) = Ext1X̄ (f̄∗ΩX , π̄
∗I).

Here the second identity holds because f∗0 ΩX is locally free. It follows that τ̄(X ) = 0
if and only if f∗0 ΩX → ΩX0/S lifts to f∗0 ΩX → ΩX/S ⊗OX OX0 . This can be shown

by similar arguments in studying T FXα,g,n(η) that it is the necessary and sufficient
condition for f0 :X0 → X to be extendible to f :X → X . We let

ob(η, Y0, Y ) ∈ Ext2X̄ ([f̄∗ΩX → ΩX̄/S(D̄)], π̄∗I)

be the image of τ̄ (X ) under the obvious homomorphism

Ext1X̄ (f̄∗ΩX , π̄
∗I)→ Ext2X̄ ([f̄∗ΩX → ΩX̄/S ], π̄∗I)

∼=→ Ext2X̄ ([f̄∗ΩX → ΩX̄/S(D̄)], π̄∗I).

To complete the proof, we need to check that the definition of ob(η0, Y0, Y ) is
independent of the choice of extension D ⊂ X , ob(η0, Y0, Y ) has the required base
change property and is the obstruction to extending f to Y . Since the choice of
the marked points of the nodal curve is irrelevant to extending f0 to f and since
the definition of ob(η0, Y0, Y ) is independent of the choice of the marked points, to
study the obstruction problem, it suffices to look at the situation where D = ∅.
We will assume this in the rest of this section. We now check that ob(η0, Y0, Y ) is
independent of the choice of the extension X . Indeed, let X ′ be another extension
over Y . Then by the deformation theory of nodal curves, there is an extension class
v ∈ Ext1X̄ (ΩX̄/S , π̄∗I) defining the exact sequence

0 −→ π̄∗I −→ A −→ ΩX̄/S −→ 0,(1.3)

of which the following holds. Let

0 −→ (π̄∗I)⊕2 −→ ΩX/S ⊗OX OX0 ⊕A′ −→ ΩX0/S −→ 0(1.4)
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be the exact sequence induced by (1.2), (1.3) and ΩX0/S → ΩX̄/S . Then the bottom
exact sequence in

0 −−−−→ (π̄∗I)⊕2 −−−−→ ΩX/S ⊗OX OX0 ⊕A′ −−−−→ ΩX0/S −−−−→ 0

(1,1)

y y ∥∥∥
0 −−−−→ π̄∗I −−−−→ B −−−−→ ΩX0/S −−−−→ 0,

(1.5)

where the left square is the push forward of sheaves, is isomorphic to the exact
sequence

0 −→ π̄∗I −→ ΩX ′/S ⊗OX′ OX0 −→ ΩX0/S −→ 0.(1.6)

Therefore, τ̄ (X ′) = τ̄(X ) + δ0(v), where

δ0 :Hom(f̄∗ΩX ,ΩX̄/S)→ Ext1(f̄∗ΩX , π̄
∗I)

is the obvious connecting homomorphism, and hence the images of τ̄(X ) and τ̄ (X ′)
in Ext2X̄ ([f̄∗ΩX → ΩX̄/S ], π̄∗I) coincide. This proves that ob(η0, Y0, Y ) is well-

defined. For the same reason, the class ob(·, ·, ·) satisfies the required base change
property.

It remains to show that ob(η0, Y0, Y ) is the obstruction to extending η to Y .
Obviously, if η0 can be extended to η ∈ FXα,g,n(Y ), say f :X → X , we can take X to
be the extension of X0 and then τ̄(X ) = 0 by construction. Hence ob(η0, Y0, Y ) = 0.
Now assume ob(η0, Y0, Y ) = 0. Because of the exact sequence

Ext1X̄ (ΩX̄/S , π̄
∗I) β−→ Ext1X̄ (f̄∗ΩX , π̄

∗I) −→ Ext2X̄ ([f̄∗ΩX → ΩX̄/S ], π̄∗I) −→ 0,

τ̄(X ) is β(−v) for some v ∈ Ext1X̄ (ΩX̄/S , π̄∗I). It follows from the deformation

theory of nodal curves that we can find an extension X ′ over Y (of X0) such that
the diagrams of exact sequence (1.3)-(1.6) hold. Hence τ̄ (X ′) = τ̄(X ) + β(v) = 0,
which implies that f extends to f ′ :X ′ → X . This proves that ob(η0, Y0, T ) is the
obstruction class to extending η0 to Y .

In section 4, we will show that T •FXα,g,n is a perfect tangent-obstruction complex

of FXα,g,n.

2. Relative Kuranishi families

In this section, we will construct the relative Kuranishi families of a perfect
tangent-obstruction complex. We will show that any two such families are equiva-
lent under an explicit transformation. This will be used to construct virtual normal
cones and cycles of moduli spaces in the next section.

We begin with the notion of relative tangent-obstruction complex and the obser-
vation on how defining an equation induces the relative tangent-obstruction com-
plex. In this section, we assume that S is an affine scheme and Z is a formal
S-scheme with a section i : S → Z so that as sets Supp(Z) = Supp(i(S)). We
further assume that there is a finite rank locally free sheaf F of OS-modules such
that Z is embedded in Spec ˆSym•(F). (Recall ˆSym•(F) = lim←⊕nl=0S

n(F).)

Definition 2.1. Let Z/S be as before. A perfect relative tangent-obstruction com-
plex is a two-term complex [E1 σ→E2] of locally free sheaves of OS-modules for which
the following hold.

(1) The cokernel of E∨2
σ∨→E∨1 is isomorphic to ΩZ/S ⊗OZ OS .
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(2) Let O = cokerσ. Then there is a relative obstruction theory to extending
S-morphisms to Z with values in O.

Here, an obstruction theory to extending S-morphisms to Z is an assignment that,
to each tuple of S-schemes S → Y0 → Y described in Definition 1.2 and any
S-morphism ϕ0 :Y0 → Z, assigns a canonical obstruction class

ob(ϕ0, Y0, Y ) ∈ ΓS(O ⊗OS IY0⊂Y )

to extending ϕ0 to Y → Z.

In this paper, for a scheme W , we often need to consider the formal completion
of W ×W along its diagonal. We denote this completion by Ŵ . We will view Ŵ
as a W -scheme where π :Ŵ →W is induced by the first projection of W ×W . We
will denote by pW : Ŵ → W the projection induced by the second projection of
W ×W . Note that there is a canonical section W → Ŵ of π :Ŵ → W induced by
the diagonal embedding W →W ×W .

Lemma 2.2. Let W be a quasi-projective scheme. Assume that W admits a per-
fect tangent-obstruction complex T •W = h•(E•). Let S ⊂ W be a locally closed sub-
scheme. Then T •W canonically induces a perfect relative tangent-obstruction complex

of Ŵ ×W S/S, denoted by T •
Ŵ×WS/S

.

Proof. Since Ŵ is the formal completion of W ×W along its diagonal,

ΩŴ×WS/S ⊗OŴ×WS
OS ∼= ΩW ⊗OW OS .

Now let S → Y0 → Y be a tuple of S-schemes as before. Assume that ϕ0 : Y0 →
Ŵ ×W S is an S-morphism. Then pW ◦ ϕ0 is a morphism from Y0 to W . Clearly,
ϕ0 extends to an S-morphism ϕ :Y → Ŵ ×W S if and only if pW ◦ ϕ0 extends to
Y →W , which is possible if and only if the obstruction

ob(pW ◦ ϕ0, Y0, Y ) ∈ ΓS(h2(E• ⊗OW OS)⊗OS IY0⊂Y )

vanishes. Hence ob(pW ◦ ϕ0, Y0, Y ) is the obstruction to extending ϕ0 to Y .

To relate a Kuranishi family to an obstruction theory, we need to investigate how
defining equations induce a perfect relative tangent-obstruction complex. Before we
proceed, let us introduce the convention that will be used throughout this section.
In this section, S will always be an affine scheme. Let E1 and E2 be two locally
free sheaves of OS-modules. We will assume throughout this section that Γ(Ei) are
free Γ(OS)-modules. We will denote by A the ring Γ(OS) and by Ei the free A-

module Γ(Ei). Given an A-module N , we will denote by ˆSym•(N) the inverse limit
lim←⊕nl=0S

l(N) of the direct sum of the symmetric products of N . In this section,

we will always use M to denote ˆSym•(E∨1 ). We denote by M1 ⊂ M the ideal
generated by E∨1 ⊂M and denote by Mk the ideal Mk

1 . For any A-homomorphism
F :E∨2 →M , sometimes denoted F ∈M ⊗AE2, we will use (F ) to denote the ideal
of M generated by the components of F . We now fix an F :E∨2 →M . We assume
(F ) ⊂ M1. Let σ :E1 → E2 be the dual of E∨2 → M1/M2 ≡ E∨1 which is induced
by F . We let O = coker(σ).

We now describe how F induces a relative tangent-obstruction complex to de-
formations of S-morphisms to Z. Let S → Y0 → Y be a tuple of S-schemes as
before and let ϕ0 :M/(F )→ Γ(OY0) be an A-homomorphism. Let g :M → Γ(OY )
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be a lift of M → M/(F ) → Γ(OY0). Clearly, E∨2
F→M

g→Γ(OY ) factors through
o :E∨2 → Γ(IY0⊂Y ). Let

ob(ϕ0, Y0, Y ) ∈ O ⊗A Γ(IY0⊂Y )

be the image of o under the obvious E2⊗A Γ(IY0⊂Y )→ O⊗A Γ(IY0⊂Y ). We claim
that this is the obstruction to extending Y0 → Z to Y → Z. Assume ob(ϕ0, Y0, Y ) =

0. Then o lifts to an h : E∨1 → Γ(IY0⊂Y ). Let ĥ : M → Γ(OY ) be the induced

homomorphism. It follows that g − ĥ : M → Γ(OY ) factors through M/(F ) →
Γ(OY ). Thus ϕ0 extends. The other direction is clear. We leave it to the readers to
check that such an assignment of obstruction class is canonical under base change.

Definition 2.3. Let Z/S be as before. Assume that T •Z/S = h•(E•) is a perfect

relative tangent-obstruction complex of Z/S. A relative Kuranishi family of T •Z/S =

h•(E•) is a pair (F,Φ), where

F : E∨2 −→M and Φ : SpecAM/(F ) −→ Z,

for which the following hold.

(1) Φ is an S-isomorphism.
(2) The complex E• is identical to the sheafification of the complex E1

σ−→E2

induced by F .
(3) The induced relative tangent-obstruction complex (from F ) is identical to the

relative tangent-obstruction complex T •Z/S = h•(E•).

If the choice of the complex T •Z/S = h•(E•) is understood from the context, we

will simply call (F,Φ) a Kuranishi family and call F a Kuranishi map.
The relative Kuranishi families of T •Z/S = h•(E•), if they exist, are not unique.

Let (ξ, η) ∈ AutA(M)×HomA(E2,M ⊗A E2) be a pair such that

ξ ≡ 1M mod M2 and η ≡ 1E2 mod M1.(2.1)

We will show momentarily that if (F,Φ) is a relative Kuranishi family, then the
pair (F ′,Φ′) defined by

F ′ = ((1M ⊗ η) ◦ (ξ ⊗ 1E2))(F ) and Φ′ = Φ ◦ ξ̄
is also a relative Kuranishi family. Here, ξ⊗1E2 and 1M⊗η are maps from M⊗AE2

to M ⊗A E2 and ξ̄ is the induced morphism

SpecAM/(F ′)
ξ̄−→ SpecAM/(η(F )) = SpecAM/(F ).

We will denote the pair (F ′,Φ′) above by (ξ, η)(F,Φ). We will call those (ξ, η)
satisfying (2.1) transformations. Given two transformations (ξ, η) and (ξ′, η′), we
define

(ξ, η) · (ξ′, η′) = (ξ ◦ ξ′, (1M ⊗ η) ◦ (ξ ⊗ 1E2) ◦ (1M ⊗ η′)).
It follows that (

(ξ, η) · (ξ′, η′)
)
(F,Φ) = (ξ, η)

(
(ξ′, η′)(F,Φ)

)
.

Let K be the set of all relative Kuranishi families and let H be the set of all
transformations. It follows that H is a group acting on K.

Proposition 2.4. Let Z/S be as before and let T •Z/S = h•(E•) be its perfect relative

tangent-obstruction complex. Then the set K of all relative Kuranishi families is
non-empty and the group H acts transitively on K.
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We let F1 : E∨2 → M be the map E∨2 → E∨1 ⊂ M induced by σ : E1 → E2 in
the complex E•. As before, we denote by (F1) the ideal in M generated by the
components of F1. Let J1 = (F1) + M2. Since coker{σ∨} ∼= ΩZ/S , there is a
canonical S-morphism

Φ1 : SpecAM/J1 −→ Z

such that the isomorphism between Ω(SpecM/J1)/S⊗OSpecM/J1
OS and ΩZ/S⊗OZOS

induced by Φ1 is the identity map.
The existence part of Proposition 2.4 follows from the following Lemma. Recall

O = coker{E1 → E2}.

Lemma 2.5. Let the notation be as before. Then there are sequences Fk ∈M⊗AE2

and Φk :SpecM/((Fk) +Mk)→ Z, where k = 1, · · · , for which the following hold.

(1) F1 ∈M ⊗A E2 and Φ1 :SpecAM/J1 → Z are given as before.
(2) Fk − Fk−1 ∈Mk ⊗ E2.
(3) Let Jk = (Fk)+Mk+1. Then the image of Fk in (Jk−1/(Mk+1+Jk−1 ·M1))⊗A

O (using quotient E2 → O) is the obstruction class

ok = ob(Φk−1,M/Jk−1,M/(Mk+1 + Jk−1 ·M1))

to extending Φk−1 to SpecM/(Mk+1 + Jk−1 ·M1)→ Z.

Proof. We prove the lemma by induction. Assume that we have constructed a
sequence F1, . . . , Fk−1 satisfying the property of the lemma. We let

Ik−1 = Mk+1 + Jk−1 ·M1 ⊂M.

Note that M/Jk−1 is a quotient ring of M/Ik−1 and its kernel Jk−1/Ik−1 is
annihilated by the ideal M1. We let fk−1 be the residue class of Fk−1 in
(Jk−1/(Mk + Ik−1))⊗A E2. We claim that the sequence

(Jk−1/Ik−1)⊗A E2
(h1,h2)−→ (Jk−1/(Mk + Ik−1))⊗A E2 ⊕ (Jk−1/Ik−1)⊗A O

−→ (Jk−1/(Mk + Ik−1))⊗A O −→ 0(2.2)

is exact. Indeed, since h2 is surjective and has kernel (Jk−1/Ik−1)⊗A Im{E1 → E2},
the cokernel of (h1, h2) is the cokernel of

(Jk−1/Ik−1)⊗A Im{E1 → E2} −→ (Jk−1/(Mk + Ik−1))⊗A E2,

which is the last non-zero term in (2.2). Now we consider (fk−1, ok) in the middle
group of the above exact sequence. By the induction hypothesis and the base change
property of obstruction class, the images of fk−1 and ok in (Jk−1/(Mk+Ik−1))⊗AO
are the obstruction class

ob(Φk−1,M/Jk−1,M/(Mk + Ik−1)),

hence they coincide. It follows that there is an f̄k ∈ (Jk−1/Ik−1) ⊗A E2 such
that its image under (h1, h2) is (fk−1, ok). Now we choose Fk. We first select an
F ′k ∈ Jk−1 ⊗A E2 so that its residue class is f̄k. Since f̄k ≡ fk−1 mod Mk, which
by definition is the residue of Fk−1 in (M/(Mk + Ik−1))⊗A E2, it follows that

F ′k − Fk−1 ∈Mk + Jk−1 ·M1.

Therefore, we can find an Fk so that Fk − Fk−1 ∈Mk and Fk − F ′k ∈ Jk−1 · Ik−1.
Let Jk = (Fk)+Mk+1. It remains to show that Φk−1 extends to an S-morphism

Φk : SpecAM/Jk −→ Z.
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Because of the obstruction theory, it suffices to show that under h2 the residue class
of Fk in (Jk−1/Ik−1) ⊗A E2 is mapped to the obstruction class ok, because then
the obstruction class

ob(Φk−1,M/Jk−1,M/Jk)

will be the image of Fk in (Jk−1/Jk)⊗A O, which will be zero. But this is exactly
the condition imposed on Fk in our selection. This proves that Φk−1 lifts to Φk as
desired. Finally, it follows from Fk+1−Fk ∈Mk that limFk = F ∈M ⊗AE2 exists
and F − Fk ∈ Mk. Also, since Φk+1 is an extension of Φk, the limit lim Φk = Φ :
SpecAM/(F )→ Z is an S-morphism. This proves the lemma.

To complete the existence part of Proposition 2.4, it remains to show that Φ is
an isomorphism and the induced perfect tangent-obstruction complex from (F,Φ)
is identical to T •Z/S = h•(E•). We now show that Φ is an isomorphism. By our

technical assumption, Z embeds in Spec ˆSym•(H) for some finitely generated free
A-module H . Without loss of generality, we can assume that rankH = rankE1.
Let N = Spec ˆSym•(H), let N1 ⊂ N be the ideal generated by H ⊂ N and let
Nk = Nk

1 . We let K ⊂ N be the ideal of Z ⊂ SpecN . Let Φ∗ :N/K → M/(F ) be
the ring homomorphism induced by Φ. Because Φ induces an isomorphism between
ΩM/(F ) ⊗M/(F ) A and ΩN/K ⊗N/K A, Φ∗ induces an isomorphism N/(K +N2) ∼=
M/((F )+M2). It follows that we can find an A-isomorphism φ :N →M such that
φ(K) ⊂ (F ) and φ/K :N/K →M/(F ) is Φ∗. We now show that φ(K) = (F ). Let k
be the least integer so that φ(K)+Mk+1 6= (F )+Mk+1. Clearly, k must be at least 2.
Let J = φ(K)+Mk+1. Since J+Mk = (F )+Mk, ((F )+Mk)/J is annihilated byM1.
Now let o be the obstruction class to extending Γ(OZ) = N/K −→M/((F ) +Mk)
to Γ(OZ) → M/J . Because such an extension does exist, we have o = 0. On the
other hand, since J ⊂ (F ) ·M1 +Mk+1, by the definition of F the obstruction o is
the residue of F in

(
((F ) +Mk)/J

)
⊗A O. Hence

F ∈
(
(F ) +Mk

)
⊗A Im{E1 → E2}+ J ⊂

(
(F ) ·M1 +Mk+1

)
+ J = J.

This implies that (F ) +Mk+1 = J , contradicting our assumption that J 6= (F ) +
Mk+1. This proves that φ(K) + Mk = (F ) + Mk for all k, and hence Φ is an
isomorphism. The proof that the tangent-obstruction complex of (F,Φ) is T •Z/S =

h•(E•) is straightforward, and will be omitted. The existence part of Proposition
2.4 is proved.

Now we study the group action on K. We first check that if T = (ξ, η) ∈ H
and (F,Φ) ∈ K, then T (F,Φ) ∈ K. Let (F ′,Φ′) = T (F,Φ). Because of the
base change property of the obstruction class, it suffices to show that the sequence
(F ′k,Φ

′
k) := (F ′,Φ′) satisfies the three properties listed in Lemma 2.5. Indeed,

in case T = (ξ, 1E2), properties 1, 2 and 3 in Lemma 2.5 are obviously satisfied.
Property 3 also holds because ξ :M →M induces an isomorphism between (F )+Mk

and (F ′) + Mk for all k. This shows that (ξ, 1E2)(F,Φ) ∈ K. Now we consider
(1M , η) ∈ H. Let F ′ = η(F ). Then since (F ) = (F ′) ⊂ M , properties 1 to 3 in
Lemma 2.5 hold for (F ′,Φ′) as well. This proves that (ξ, η) = (1, η) · (ξ, 1) acts on
K.

Lemma 2.6. H acts transitively on K.

Proof. Let (F,Φ) and (G,Ψ) be any two elements in K. By definition, we know that
(F,Φ) ≡ (G,Ψ) mod M2. Now assume that there is a k ≥ 2 so that (F,Φ) ≡ (G,Ψ)
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mod Mk. We will show that there is a transformation (ξ, η) ∈ H satisfying ξ ≡ 1M
mod Mk such that (ξ, η)(F,Φ) ≡ (G,Ψ) mod Mk+1.

Let Jk−1 = (F )+Mk, which is (G)+Mk by the assumption. Let Ik−1 = Mk+1 +
Jk−1 ·M1 and let fk and gk be the residue classes of F and G in (Jk−1/Ik−1)⊗AE2

respectively. Let

β : (Jk−1/Ik−1)⊗A E2 → (Jk−1/Ik−1)⊗A O

be the obvious homomorphism. By definition, β(fk) and β(gk) are the obstruction
classes to extending Φk−1 = Ψk−1 : SpecAM/Jk−1 → Z to SpecAM/Ik−1. It
follows that β(fk) = β(gk), and hence

fk − gk ∈ (Jk−1/Ik−1)⊗A Im{E1 → E2}.

Let t ∈ M ⊗A E2 be a lift of fk − gk. Then Fk − Gk − t ∈ Ik−1 ⊗A E2. On the
other hand, since M ⊗A Im{E1 → E2} ⊂ J1 ⊗A E2 ⊂M1 ⊗A E2,

t ∈ (J1 · Jk−1)⊗A E2 ⊂ Ik−1 ⊗A E2.

Therefore fk−gk ∈ Ik−1⊗AE2. This implies that for some η ∈ HomA(E2,M⊗AE2)
satisfying property (2.1), we have G − η(F ) ≡ 0 mod Mk+1. Hence Jk = (F ) +
Mk+1 = (G) +Mk+1.

Next we analyze Φk and Ψk. Let ϕk, ψk : Γ(OZ) −→ M/Jk be the homo-
morphisms of rings induced by Φk and Ψk respectively. Then since ϕk ≡ ψk
mod Mk, there is a D ∈ DerA(Γ(OZ), Jk−1/Jk) such that ψk = ϕk + D (see
[Ma, p. 191]). Since (Jk−1/Jk) ·M1 = 0 and since Φk induces an isomorphism
between ΩZ/S ⊗OZ OS and ΩY/S ⊗OY OS , where Y = SpecAM/Jk, there is a
D0 ∈ DerA(M/Jk, Jk−1/Jk) so that ψk = (id + D0) ◦ φk. Since id + D0 is an
isomorphism of M/Jk that is the identity modulo Mk, there is an isomorphism
ξ :M →M so that ξ ≡ 1M mod Mk, ξ(Jk) = Jk and the induced homomorphism
M/Jk →M/Jk is exactly id +D0.

The transformation (ξ, η) is not quite what we want, since it satisfies the relations

G ≡ η(F ) mod Mk+1 and Ψ ≡ Φ ◦ ξ̄ mod Mk+1.

To obtain η so that G =
(
(1M ⊗ η) ◦ (ξ ⊗ 1E2)

)
(F ), we instead look at the relative

Kuranishi family (F ′,Φ′) = (ξ, 1E2)(F,Φ). Then since

(F ′,Φ′) ≡ (F,Φ) ≡ (G,Ψ) mod Mk,

by the previous argument we can find an η ∈ HomA(E2,M ⊗A E2) satisfying (2.1)
so that G ≡ η(F ′) mod Mk+1.

Now we apply induction on k. The previous argument shows that there is a
sequence of transformations Tk ∈ K so that if we let Sk = Tk ◦ · · · ◦ T2, then
Sk(F,Φ) ≡ (G,Ψ) mod Mk+1. Let Tk be (ξk, ηk). Since ξk ≡ 1M mod Mk,
ξk ◦ · · · ◦ ξ2 converges to an automorphism ξ∞ :M →M . ξ∞ satisfies the property
(2.1). Now let (F ′,Φ′) = (ξ∞, 1E2)(F,Φ). For the same reason, there is a sequence
ηk ∈ HomA(E2,M1 ⊗A E2) so that if we let H1 = F ′ and Hk+1 = (1E2 + ηk)(Hk),
then G ≡ Hk+1 mod Mk+1. Applying the Artin-Rees lemma to the ideal L =
(F ′) ⊂M , we can find an integer c so that

LM1 ∩Mn
1 = Mn−c

1 (LM1 ∩M c
1)
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for any n > c. Let Lk = (Hk). Since L is isomorphic to Lk under an isomorphism
of M , the same identity holds with L replaced by Lk. Then since

ηk(Hk) = Hk+1 −Hk ∈ HomA(E2, E2)⊗A (LkM1 ∩Mk
1 ),

for k ≥ c, we can assume that the ηk have already been chosen so that

ηk ∈ HomA(E2, E2)⊗AMk−c
1 .

With this choice of ηk, the composite (1E2 + ηk) · · · (1E2 + η1) will converge to
an η∞ ∈ HomA(E2,M ⊗A E2) such that η∞ ≡ 1E2 mod M1 and G = η∞(F ′).
Therefore, (ξ∞, η∞)(F,Φ) = (G,Ψ). This proves Lemma 2.6 and Proposition 2.4.

Corollary 2.7. Let Z/S and T •Z/S = h•(E•) be as in the situation of Proposition

2.4. Let T ⊂ S be a closed subscheme. Let W = Z ×S T and B = Γ(OT ). Then
T •Z/S canonically induces a relative perfect tangent-obstruction complex T •W/T =

h•(E• ⊗OS OT ). Further, if (F,Φ) is a relative Kuranishi family of T •Z/S , then

F ′ = F ⊗A B and the restriction of Φ to SpecN/(F ′), where N = M ⊗A B, is a
relative Kuranishi family of T •W/S = h•(E• ⊗OS OT ).

Proof. This is obvious from the proof of Lemma 2.5.

Before we close this section, we will point out the relation between the relative
Kuranishi families and the Kuranishi families in the usual sense. Let S and T •S =
h•(E•) be an affine scheme and a perfect tangent-obstruction complex of S. Let
Z be the formal completion of S × S along its diagonal and let T •Z/S = h•(E•) be

its induced perfect relative tangent-obstruction complex. Let (F,Φ) be a relative
Kuranishi family of this complex. In the following, we will localize (F,Φ) and
compare it with the usual Kuranishi maps.

Let q ∈ S be any closed point and let m ⊂ A be the maximal ideal of q ∈ S. Let
Â = limA/mn, let Êi = Ei ⊗A Â and let M̂ = M ⊗A Â be their respective formal

completions. We denote by Ẑ the formal completion of Z along Z ×S {q} and by

Ŝ the formal completion of S along q. Then T •Z/S = h•(E•) canonically induces

a perfect relative tangent-obstruction complex T •
Ẑ/Ŝ

= h•(Ê•). Obviously, (F,Φ)

induces a Kuranishi family

F̂ ∈ M̂ ⊗Â Ê2 and Φ̂ : Spec M̂/(F̂ )
∼=−→ Ẑ

of T •
Ẑ/Ŝ

= h•(Ê•).
Now we turn to the usual Kuranishi families. For simplicity, we assume E2 ⊗OS

k(q) is isomorphic to h2(E•)⊗OS k(q). Let Ti = Ei⊗OS k(q). Then T1 is the tangent
space TqS. The complex T •S induces an obstruction theory to deformations of q in

S taking values in T2. Now let B = ˆSym•(T∨1 ) and let

f ∈ B ⊗k T∨2 and ϕ : SpecB/(f)
∼=−→ Ŝ

be a Kuranishi family (cf. [La]). In the following, we will construct a pair (f̂ , ϕ̂)

from (f, ϕ) analogous to (F̂ , Φ̂). Let I ⊂ B⊗kB be the ideal generated by a⊗1−1⊗a
and let B̂ = limB ⊗k B/In. Let p1, p2 :B → B̂ be the homomorphisms defined by
p1(a) = a⊗1 and p2(a) = 1⊗a. For f ∈ B⊗kT2 given before, we denote by p1(f) the

image of f under p1⊗1T2 :B⊗T2 → B̂⊗k T2. As before, we denote by (p1(f)) ⊂ B̂
the ideal generated by the components of p1(f). We let C = B̂/(p1(f)). C is an
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Â-algebra via Â = B/(f) → C induced by p1. Let f̂ = p2(f). It follows that

SpecC/(f̂) is the formal completion of Ŝ × Ŝ along its diagonal. Because Ẑ is the

formal completion of Ŝ× Ŝ along its diagonal, we obtain a canonical Ŝ-isomorphism

ϕ̂ : SpecC/(f̂)
∼=−→ Ẑ.(2.3)

Now let IC ⊂ C be the ideal generated by the images of I ⊂ B ⊗k B. Note that
C/IC ∼= Â. We consider the complex of Â-modules

F̂ • = [(IC/I
2
C)∨−→T2 ⊗k Â]

indexed at 1 and 2, where the arrow is the dual of df̂ : T∨2 ⊗ Â → IC/I
2
C . Since

H−1(HomÂ(F̂ •, Â)) = ΩB/(f), there is an isomorphism of complexes

HomÂ(Ê•, Â)
∼=−→ HomÂ(F̂ •, Â)(2.4)

so that their induced isomorphism on H−1 is the canonical isomorphism between
ΩŜ and ΩB/(f). Namely, we have the commutative diagram

H−1(HomÂ(Ê•, Â)) ΩŜ

∼=
y y∼=

H−1(HomÂ(F̂ •, Â)) −−−−→ ΩB/(f).

Let (r1, r2) : Ê• → F̂ •, where ri : Êi → F̂i are the corresponding isomorphisms.

Since F̂ • ⊗Â k and Ê• ⊗Â k are T1
×0→ T2, we can choose r2 so that its tensoring

with k is the identity of T2. We now compare the pairs (f̂ , ϕ̂) and (F̂ , Φ̂). Let

ξ1 :C → M̂ be the Â-isomorphism induced by the dual of r1 : Ê1 → (IC/I
2
C)∨ and

let η1 :T2 ⊗k Â→ Ê2 be r−1
2 . Then our choice of r1 and r2 guarantees that

(
(1M̂ ⊗ η1) ◦ (ξ1 ⊗ 1T2)

)
(f̂) ≡ F̂ mod M̂2 and ϕ̂ ◦ ξ̄1 ≡ Φ̂ mod M̂2,

where ξ̄1 :Spec M̂/(F̂ )→ SpecC/(f̂) is the isomorphism induced by ξ1.

Lemma 2.8. There is an Â-isomorphism ξ :C → M̂ and

η ∈ HomÂ(T2 ⊗k Â, M̂ ⊗Â Ê2)

satisfying

ξ ≡ ξ1 mod M̂2 and η ≡ η1 mod M̂1(2.5)

such that

((1M̂ ⊗ η) ◦ (ξ ⊗ 1T2))(f̂) = F̂ and ϕ̂ ◦ ξ̄ = Φ̂,

where, as usual, ξ̄ is the isomorphism induced by ξ.

Proof. The proof is parallel to that of Lemma 2.6. The difference is that in this
case we can only compare the obstruction classes when they lie in h2(Ê• ⊗Â k) or

in h2(F̂ • ⊗Â k), because the identification (2.4) is canonical only after tensoring

k. We proceed as follows. Let m0 ⊂ C and m′0 ⊂ M̂ be their maximal ideals,

and let Jk = I2
C · mk−1

0 ⊂ C and J ′k = M̂2 · m′0
k−1 ⊂ M̂ . Assume that there are

ξk−1 :C → M̂ and ηk−1 ∈ HomÂ(T2 ⊗k Â, M̂ ⊗Â Ê2) satisfying (2.5) such that

((1M̂ ⊗ ηk−1) ◦ (ξk−1 ⊗ 1T2))(f̂) ≡ F̂ mod J ′k and ϕ̂ ◦ ξ̄k−1 ≡ Φ̂ mod J ′k.
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We consider the residue classes

ok = residue of f̂ in
(
((f̂) + Jk)/((f̂) ·m0 + Jk+1)

)
⊗k T2;

o′k = residue of F̂ in
(
((F̂ ) + J ′k)/((F̂ ) ·m′0 + J ′k+1)

)
⊗k T2.

Because f and F are the (relative) Kuranishi maps, they are the obstruction class
to lifting

Â
p2−→OẐ −→ C/((f̂) + Jk) to Â→ C/((f̂) ·m0 + Jk+1)

and the obstruction class to lifting

Â
p2−→OẐ −→ M̂/((F̂ ) + J ′k) to Â→ M̂/((F̂ ) ·m′0 + J ′k+1),

where p2 is induced by Z → S × S pr2−→S. It follows that they must coincide under
the isomorphism(

((f̂) + Jk)/((f̂) ·m0 + Jk+1)
)
⊗k T2

∼=
(
((F̂ ) + J ′k)/((F̂ ) ·m′0 + J ′k+1)

)
⊗k T2

induced by ξk−1. The remainder argument is a repetition of the proof of Lemma
2.6, and will be omitted. This proves the lemma.

3. Virtual normal cones

In the first part of this section, for any quasi-projective scheme W and a perfect
tangent-obstruction complex T •W = h•(E•), we will construct a virtual normal cone

CE
• ⊂ Vect(E2). Here Vect(E2) is the vector bundle on W so that its sheaf of

sections is E2. By abuse of notation, we will not distinguish a vector bundle with
the scheme of its total space. The cone CE

•
will be the restriction to W of the

normal cone to the zero locus of a relative Kuranishi map in its graph. Based on
the property of the relative Kuranishi families, we will show that CE

•
is unique (as

a scheme). Because of this, this construction can be applied to the moduli functors
represented by Deligne-Mumford moduli stacks.

We begin with an affine scheme S and a perfect tangent-obstruction complex
T •S = h•(E•). Let Z be the formal completion of S × S along its diagonal. We
continue to use the convention adopted in the previous section. Namely, A = Γ(OS),

Ei = Γ(Ei), which are assumed to be free A-modules, and M = ˆSym•(E∨1 ). We let

N = ˆSym•(E∨2 ). Let (F,Φ), where F ∈ M ⊗A E2, be a relative Kuranishi family
of T •Z/S = h•(E•). It is clear that F extends to an A-homomorphism N → M of

A-algebras. We let ΓF ⊂ SpecN ⊗AM be its graph. We let j :S → SpecN be the
obvious section and let

ι = j ×S 1 : SpecM = S ×S SpecM → SpecN ⊗AM.

We view ι as the 0-section of SpecN ⊗A M → SpecM . In the following, we will
view Z as a subscheme of SpecM via the isomorphism SpecM/(F ) ∼= Z. It follows
that

ι(Z) = ΓF ×SpecN⊗AM ι(SpecM).

We let NF be the normal cone to ι(Z) in ΓF . NF is canonically embedded as
a closed subcone in Vect(E2) ×S Z, which is the normal bundle to ι(SpecM) in

SpecN ⊗AM . Finally, we let CE
•

be the restriction of NF to S:

CE
•

= NF ×Z S.
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Remark. The cone NF is the normal cone to Z in SpecM , denoted CZ/ SpecM , and

CE
•

= CZ/ SpecM ×Z S. However, using the graph description it is clear how these
cones are canonically embedded in the vector bundles Vect(E2)×S Z and Vect(E2),
respectively.

Lemma 3.1. Let (F,Φ) and (G,Ψ) be two relative Kuranishi families of T •Z/S =

h•(E•). Then as subschemes of Vect(E2)×S Z,

NF ×Z S = NG ×Z S.

In particular, the cone CE
• ⊂ Vect(E2) does not depend on the choice of the relative

Kuranishi families.

Proof. By Proposition 2.4, there is a transformation (ξ, η) ∈ H so that (ξ, η)(F,Φ) =
(G,Ψ). Let θ be the automorphism of N ⊗AM defined by

a⊗ 1 7→ ηinv(a) and 1⊗ b 7→ 1⊗ ξ(b).

Here, ηinv :N → N ⊗AM is the homomorphism induced by

η−1 ∈ HomA(E2,M ⊗A E2)

such that η−1 ◦ η = 1E2 . Let θ̄ : SpecN ⊗A M → SpecN ⊗A M be the induced
isomorphism. Clearly, θ̄ preserves ι(SpecM) and induces an isomorphism between
ΓF and ΓG. Hence θ̄ induces an isomorphism, denoted θ̄∗, of the normal bundle to
ι(SpecM) in SpecN ⊗AM with itself. It follows that θ̄∗ induces an isomorphism
between NF and NG. Finally, because η ≡ 1E2 mod M1 and ξ ≡ 1M mod M2,
the restriction of θ̄∗ to Vect(E2) ⊂ Vect(E2) ×S Z is the identity homomorphism.
Therefore, NF ×Z S = NG ×Z S. This proves the lemma.

We will call CE
• ⊂ Vect(E2) the virtual normal cone of the tangent-obstruction

complex T •S = h•(E•).

Lemma 3.2. Let the notation be as before. Assume F• = [F1 → F2] is another
complex of locally free sheaves so that T •S = h•(F•). Assume further that there is a
surjective homomorphism of complexes F• → E• such that the induced isomorphism
of their sheaf cohomologies h•(F•) ∼= h•(E•) is the identity, using the isomorphisms
h•(F•) = T •S = h•(E•). Let ϕ2 : F2 → E2 be one of the homomorphisms and let
C(ϕ2) :Vect(F2)→ Vect(E2) be the induced submersive morphism. Then

C(ϕ2)
−1(CE

•
) = CF

•
.

Here by C(ϕ2)
−1(CE

•
) we mean CE

• ×Vect(E2) Vect(F2).

Proof. This is a local problem. By shrinking S if necessary, we can assume that
there is an isomorphism F• ∼= E• ⊕ [O⊕aS

id→O⊕aS ] so that the given F• → E•
is the obvious projection. Let F1 : E∨2 → M be a relative Kuranishi family of

T •Z/S = h•(E•). Let M ′ = ˆSym•(A⊕a) and let F2 : A⊕a → M ′ be induced by

id:A⊕a → A⊕a. Then

F1 ⊗ 1 + 1⊗ F2 : E∨2 ⊕A⊕a −→M ⊗M ′

is a relative Kuranishi family of T •Z/S = h•(F•). A direct computation on nor-

mal cones shows that CF
•

is the pull back of CE
•

under the obvious projection
Vect(F2)→ Vect(E2). This proves that C(ϕ2)

−1(CE
•
) = CF

•
.
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Let q ∈ S be any closed point, let T1 = TqS and T2 = h2(E•) ⊗OS k(q). Then
T •S provides an obstruction theory to deformations of q in S. As in section 2, we

let Ŝ be the formal completion of S at q, let f :T∨2 → B, where B = ˆSym•(T∨1 ), be
a Kuranishi map. Let Cf be the normal cone to SpecB/(f) in SpecB. It follows

from the above Remark that Cf is canonically embedded in Vect(T2)×k Ŝ.

Lemma 3.3. Let the notation be as above. Then there is a quotient vector bundle
map j :Vect(E2)×S Ŝ → Vect(T2)× Ŝ extending the given quotient map

Vect(E2)×S {q} = Vect(E2 ⊗OS k(q))→ Vect(T2)

so that as subschemes in Vect(E2)×S Ŝ,

(Vect(E2)×S Ŝ)×Vect(T2)×Ŝ C
f = Ŝ ×S CE

•
.

Proof. We first consider the case where dimT2 = rank E2. Then we are in the
situation of Lemma 2.8 and its proof. We continue to use the notations introduced
there. Let R1 = Spec M̂ , let i1 : Ŝ → R1 be the obvious section induced by
S → SpecM and let F̂ ∈ M̂ ⊗Â Ê2 be the image of F under M ⊗AE2 → M̂ ⊗Â Ê2.

We let R2 = SpecC ⊂ Spec B̂, i2 : Ŝ → R2 be the section induced by a ⊗ b 7→ ab

and let f̂ ∈ C ⊗k T2 be the image of the Kuranishi map f :T∨2 → B under

B ⊗k T2

p2×1T2−→ B ⊗k B ⊗k T2 −→ C ⊗k T2,

where p2(a) = 1 ⊗ a. Let V1 = Spec
(

ˆSym•(Ê∨2 )
)

and V2 = Spec
(

ˆSym•(T∨2 ⊗ Â)
)
.

Let 0Vi be the 0-section of Vi → Ŝ. In the proof of Lemma 2.8, we have shown that
there is an isomorphism

K : V1 ×Ŝ R1 −→ V2 ×Ŝ R2

for which the following holds. First, it induces an isomorphism between 0V1 ×Ŝ R1

and 0V2×ŜR2, and induces an isomorphism between the graphs ΓF̂ and Γf̂ . Second,

let

ϕ : (Vect(E2)×S Ŝ)×Ŝ R1 −→ Vect(T2)×R2

be the induced isomorphism between the normal bundle to 0V1×ŜR1 in V1×ŜR1 and
the normal bundle to 0V2 ×Ŝ R2 in V2 ×Ŝ R2. Then the restriction of ϕ to the fiber
over the closed point ofR1 is the identity homomorphism between Vect(E2)×S{q} =
Vect(E2 ⊗OS k(q)) and Vect(T2).

Now let N1 be the normal cone to Spec M̂/(F̂ ) in R1 and let N2 be the normal

cone to SpecC/(f̂) in R2. Note that N1 and N2 are canonically embedded in V1×Ŝ
Spec M̂/(F̂ ) and in V2×Ŝ SpecC/(f̂), respectively. Let ϕ̄ be the restriction of ϕ to

Vect(E2)×SSpec M̂/(F̂ ). ϕ̄ is an isomorphism between Vect(E2)×ŜSpec M̂/(F̂ ) and

Vect(T2)× SpecC/(f̂). Since K preserves the 0-sections and the graphs, ϕ̄(N1) =
N2 and hence

ϕ̄
(
N1 ×Spec M̂ Ŝ

)
= N2 ×SpecC Ŝ.

Since the term inside the parentheses on the left hand side is CE
•×S Ŝ, to prove the

lemma, it suffices to show that the right hand side is Cf . Let π :SpecC → SpecB
be the morphism induced by a 7→ 1⊗ a. Clearly, π is flat and

SpecC ×SpecB SpecB/(f) = SpecC/(f̂).
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It follows from [Vi, p. 639] that Cf ×SpecB SpecC = N2. Therefore

N2 ×SpecC Ŝ = Cf ×SpecB SpecC ×SpecC Ŝ = Cf .

This proves the lemma in case rankE2 = dimT2. In general, by shrinking S if
necessary we can find a complex F• and an isomorphism of complexes E• ∼= F• ⊕
[Â⊕a id→ Â⊕a] such that a = rank E2 − dimT2. Then the general case follows from
Lemma 3.2 and the situation just proved. This proves the lemma.

Since dim Γf = rank E1, we have dimCf = rank E1. This proves

Corollary 3.4. The cone CE
•

is equidimensional and has dimension rank E1.

Corollary 3.5. Assume that we have two complexes E• and F• so that h•(E•) =
T •S and h•(F•) = T •S . Assume further that there is a surjective homomorphism
ϕ :F2 → E2 so that the following diagram is commutative:

F2 −−−−→ T 2
S (OS)

ϕ

y ∥∥∥
E2 −−−−→ T 2

S (OS).

Then as cycles, we have

C(ϕ)∗([CE
•
]) = [CF

•
] ∈ Z∗(Vect(F2)).

Here C(ϕ) :Vect(F2)→ Vect(E2) is the induced morphism on vector bundles.

Proof. Let q ∈ S be any closed point. Lemma 3.3 says that there are quotient
vector bundle homomorphisms

j1 : Vect(E2)×S Ŝ −→ Vect(T2)× Ŝ and j2 : Vect(F2)×S Ŝ −→ Vect(T2)× Ŝ,
extending the given Vect(E2)×S{q} → Vect(T2) and Vect(F2)×S{q} → Vect(T2) re-

spectively, such that j−1
1 (Cf ) = CE

•×S Ŝ and j−1
2 (Cf ) = CF

•×S Ŝ. It follows that

there is a vector bundle quotient homomorphism j :Vect(F2)×S Ŝ → Vect(E2)×S Ŝ
extending Vect(F2)×S {q} → Vect(E2)×S {q} such that j−1(CE

•×S Ŝ) = CF
•×S Ŝ.

This implies that cycles [CF
•
] and C(ϕ)∗([CE

•
]) have the same support along the

fiber over q and that the multiplicities of their respective components near the fiber
over q coincide. Since q is arbitrary, we must have C(ϕ)∗([CE

•
]) = [CF

•
]. This

proves the corollary.

Remark. The proof shows that the cycle [CE
•
] can be characterized as follows. At

each q ∈ S, there is a quotient vector bundle homomorphism

j : Vect(E2)×S Ŝ → Vect(T2)× Ŝ,

extending Vect(E2) ×S {q} → Vect(T2), such that j∗([Cf ]) = r∗[CE
•
], where r :

Vect(E2)×S Ŝ → Vect(E2) is the induced morphism and is flat. Clearly, this criterion

determines [CE
•
] completely, if it exists. The reason we need to use the relative

Kuranishi families is to ensure that [CE
•
] does exist as a cycle.

Let S0 ⊂ S be a closed subscheme. Then T •Z/S = h•(E•) induces canonically a

relative tangent-obstruction complex T •Z×SS0/S0
= h•(F•), where F• = E•⊗OSOS0 .

Let (F,Φ) be a Kuranishi family of T •Z/S = h•(E•). Let A0 = Γ(OS0), M0 =

M ⊗A A0 and Fi = Ei ⊗A A0. The pair F0 ∈M0 ⊗A0 F2 and Φ0 :SpecM0/(F0)→
Z ×S S0 defined by F0 = F ⊗A A0 and Φ0 = Φ|SpecM0/(F0) is a relative Kuranishi
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family of T •Z×SS0/S0
= h•(F•). We let C = C(SpecM0/(F0))/SpecM0

and set CF
•

=

C ×SpecM0 S0, which is canonically embedded in Vect(F2). Note that Vect(F2) =
Vect(E2)×S S0.

Corollary 3.6. CF
•

= CE
• ×S S0 as subschemes of Vect(F2).

Proof. The proof is similar to the proof of Corollary 3.5. We continue to use the
notations introduced there. Let q ∈ S0 be any closed point and let Ŝ0 be the
formal completion of S0 along q. It follows that Ŝ0 = Ŝ ×S S0. Let j1 be the
map constructed in the proof of Corollary 3.5 and let j2 be the restriction of j1 to
Vect(E2) ×S Ŝ0. Hence, j2 : Vect(F2) ×S0 Ŝ0 → Vect(T2) × Ŝ0. Then Lemma 3.3

shows that j−1
1 (Cf ) = CE

• ×S Ŝ. We claim that j−1
2 (Cf ) = CF

• ×S0 Ŝ0. Indeed,
by the proof of Lemma 3.3, it suffices to check that if we let C0 be the formal
completion of M0 along the maximal ideal m0 of q ∈ S0, then C0 is flat over B via
the homomorphism B → C0 induced by p2. But this is obvious. This proves the
claim. Therefore,

CE
• ×S Ŝ0 = j−1

1 (Cf )×Ŝ Ŝ0 = j−1
2 (Cf ) = CF

• ×S0 Ŝ0.

This proves that CF
•

= CE
• ×S S0.

In the remainder of this section, we will construct the virtual normal cone and
the virtual cycle of a perfect tangent-obstruction complex. We will show in the end
that this construction commutes with the refined Gysin maps.

Let Z be a quasi-projective scheme and let T •Z be a tangent-obstruction complex
of Z. We assume that E• = [E1 → E2] is a complex of locally free sheaves of OZ -
modules so that T •Z = h•(E•). We cover Z by affine open Sα such that ΓSα(Ei) are
free Γ(OSα)-modules for i = 1, 2. It follows from Lemma 3.2 that we have canonical

cones CE
•

α ⊂ Vect(E2)×Z Sα of the tangent-obstruction complex

T •Sα = h•(E• ⊗OX OSα).

By Lemma 3.3, Sα ×Z CE
•

β = Sβ ×Z CE
•

α as subcones in Vect(E2) ×Z (Sα ∩ Sβ).

Therefore CE
•

α patch together to form a global cone scheme CE
• ⊂ Vect(E2).

We remark that a global resolution T •Z = h•(E•) allows us to construct a global
cone as a subscheme in Vect(E2). However, if we only have a locally free sheaf V
making T 2

Z (OZ) its quotient sheaf, then we can canonically construct a cone cycle
as follows. Since T •Z is perfect, we can find an open covering Sα of Z and complexes
E•α of sheaves of OSα-modules such that h•(E•α) = T •Sα and that there are quotient
homomorphisms ϕα :V ⊗OZ OSα → E2,α such that

V ⊗OZ OSα −−−−→ T 2
Sα

(OSα)

ϕα

y ∥∥∥
E2,α −−−−→ T 2

Sα
(OSα)

is commutative. Because of Corollary 3.5, the flat pull backs C(ϕα)∗([CE
•
α ]) and

C(ϕβ)∗([CE
•
β ]) coincide over Sα∩Sβ . Therefore they patch together to form a cycle

[CV ] ∈ Z∗Vect(V). Because of Corollary 3.5 again, [CV ] is unique.
Now we construct the virtual cycle of a perfect tangent-obstruction complex T •Z .

We first present T 2
Z (OZ) as a quotient sheaf of a locally free sheaf V , which is

possible since Z is quasi-projective. Let iV :Z → Vect(V) be the zero section and
let i∗V :A∗(Vect(V))→ A∗Z be the Gysin homomorphism.
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Definition 3.7. Let the notation be as before. Then we define the virtual cycle
[Z]vir of T •Z to be

[Z]vir = i∗V [CV ] ∈ A∗Z.

In order to show that [Z]vir is well-defined, we need to check that it is independent
of the choice of quotient homomorphism V → T 2

Z (OZ). Assume that W is another
locally free sheaf of OZ -modules and W → T 2

Z (OZ) is a quotient homomorphism.
We let M′ be the pull back defined by the square

M′ −−−−→ Vy y
W −−−−→ T 2

Z (OZ).

Then by making M′ a quotient sheaf of a locally free sheaf, say M, we obtain
φ1 :M→ V and φ2 :M→W . It follows from Corollary 3.5 that

C(φ1)
∗([CV ]) = [CM] = C(φ2)

∗([CW ]).

This implies that i∗V [CV ] = i∗M [CM] = i∗W [CW ] ∈ A∗Z as required. So [Z]vir is
well-defined.

Refined Gysin maps play an important role in intersection theory. Given a fiber
product square of schemes

W0 −−−−→ Wyi0 yi
X0

ξ−−−−→ X ,

(3.1)

where ξ is a regular embedding of codimension d, then the refined Gysin map

ξ! : A∗W −→ A∗−dW0

sendsD ∈ A∗W to the intersection of [CD×XX0/D] with the zero section of i∗0NX0/X .
In this section, we will show that the refined Gysin map is compatible to our virtual
cycle construction.

Let W be a quasi-projective scheme over X and let X0 ⊂ X be a regular embed-
ding. We define W0 by the Cartesian square (3.1). We assume that W (resp. W0)
admits a perfect tangent-obstruction complex T •W (resp. T •W0

). Let L be the sheaf
of normal bundle to X0 in X . For any affine S, η :S → W0 ⊂ W and F ∈ModS ,
there is a canonical sheaf homomorphism

T 1
W (η)(F) = HomOS(η∗ΩW ,F) −→ (i0 ◦ η)∗L⊗OS F ,

induced by i∗IX0⊂X → IW0⊂W , that fits into the exact sequence

0 −→ T 1
W0

(η)(F) −→ T 1
W (η)(F) −→ (i0 ◦ η)∗L⊗OS F .(3.2)

Definition 3.8. We say that T •W and T •W0
are compatible with the Cartesian square

(3.1) if (3.2) extends to a long exact sequence

T 1
W (η)(F) −→ (i0 ◦ η)∗L ⊗OS F

δ−→T 2
W0

(η)(F)
r−→T 2

W (η)(F) −→ 0

for which the following holds. Let S → Y0 → Y be a tuple of S-schemes described
in Definition 1.2 and let I = IY0⊂Y . Let η0 : Y0 → W0 be any morphism and let
o ∈ T 2

W0
(η0)(I) be the obstruction class to extending η0 to Y → W0. Then r(o) ∈

T 2
W (η0)(I) is the obstruction class to extending η0 to Y → W . Secondly, assume
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that r(o) = 0. Then we have an extension, say η :Y →W . Let β ∈ (i0◦η0)∗L⊗OS I
be the canonical homomorphism (i0◦η0)∗(IX0⊂X/I2

X0⊂X)→ I induced by η. Then
o = δ(β).

We make one technical assumption, which usually can be checked explicitly in ap-
plications. Let Sα be an open covering of W0. We assume that there are complexes
of locally free sheaves E•α and F•α of OSα-modules fitting into the exact sequence

0 −→ [0→ i∗0L ⊗W0 OSα ] −→ E•α −→ F•α −→ 0

such that T •Sα = h•(E•α), T •Sα = h•(F•α) and the long exact sequence of sheaf coho-
mologies

hj([0→ i∗0L ⊗W0 OSα ]) −→ hj(E•α) −→ hj(F•α) −→ hj+1([0→ i∗0L ⊗W0 OSα ])

is the exact sequence given in the above definition. We assume that there are
sheaves E2 and F2 of OW0 -modules so that Eα,2 and Fα,2 are restrictions of E2 and
F2 to Sα respectively. Also, over Sα ∩ Sβ , there are isomorphisms of E•α and E•β
and isomorphisms of F•α and F•β so that the induced isomorphisms on their sheaf
cohomologies are the identity maps. Finally, we assume that F2 can be extended
to a sheaf of OW -modules, say F̃2, so that F2 → T 2

W0
(OW0) extends to a quotient

homomorphism F̃2 → T 2
W (OW ).

Proposition 3.9. Let W0 ⊂ W be defined by the square (3.1) such that their
tangent-obstruction complexes T •W0

and T •W are compatible. Assume further that

the technical conditions stated above are satisfied. Let [W0]
vir and [W ]vir be the

virtual cycles of T •W0
and T •W respectively. Then

ξ![W ]vir = [W0]
vir.

This identity is essentially a statement about associativity of refined Gysin maps.
As usual, we will transform this problem to a problem about the commutativity of
Gysin maps and then apply the basic Lemma in [Vi] to conclude the proof of the
proposition. We now provide the details of the proof, which will occupy the rest of
this section.

We first introduce some notations. Let Ŵ0 (resp. Ŵ ) be the formal completion
of W0 ×W0 (resp. W ×W ) along its diagonal, considered as a scheme over W0

(resp. W ) via the first projection of the product. We denote by pW0 : Ŵ0 → W0

(resp. pW : Ŵ → W ) the morphism induced by the second projection. We begin
with a locally closed affine subscheme S ⊂ Sα. We fix the complexes E•α and F•α
given before. We let A = Γ(OS), Fi = Γ(Fα,i ⊗OW0

OS), Ei = Γ(Eα,i ⊗OW0
OS)

and L = Γ(i∗0L ⊗OW0
OS). By shrinking Sα if necessary, we can assume that all

modules Fi, Ei and L are free A-modules. As before, we let M = ˆSym•(E∨1 ),

which is canonically isomorphic to ˆSym•(F∨i ) using Eα,1 ∼= Fα,1. We pick a relative
Kuranishi family (f, ϕ) of T •

Ŵ×WS/S
, where f ∈M⊗AF2 and ϕ is an S-isomorphism

SpecM/(f)→ Ŵ ×W S. We now pick a relative Kuranishi family of T •
Ŵ0×W0S/S

.

We first pick a splitting σ : F2 → E2 of the exact sequence L → E2 → F2.
Let g1 = (1M ⊗ σ)(f). Note that (g1) = (f), hence SpecM/(g1) is isomorphic to

Ŵ ×W S. We denote this isomorphism by ϕ. Let l = codim(X0, X). Without loss
of generality, we can assume that near i(S) ⊂ X the sheaf IX0⊂X is generated by
l sections, say s1, · · · , sl. We let s̄1, . . . , s̄l ∈M/(g1) be the pull backs of s1, · · · , sl
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via

SpecM/(g1) −→ Ŵ ×W S
pr1−→ Ŵ

pW−→W
i−→X.

Note that (s1, · · · , sl) form a basis of IX0⊂X/I2
X0⊂X near i(S). Then (s̄1, · · · , s̄l)

defines a homomorphism ḡ2 :L∨ → M/(g1). Let φ : SpecM/(g1, ḡ2) → Ŵ0 ×W0 S

be the morphism induced by ϕ :SpecM/(g1)→ Ŵ ×W S.

Lemma 3.10. Let τ : M ⊗A L → M ⊗A E2 be the homomorphism induced by
L→ E2. Then there is a lift g2 ∈M ⊗A L of ḡ2 ∈ (M/(g1))⊗A L such that

g := g1 + τ(g2) ∈M ⊗A E2 and φ : SpecM/(g) −→ Ŵ0 ×W0 S

form a relative Kuranishi family of T •
Ŵ0×W0S/S

= h•(E•α ⊗OW0
OS).

Proof. Assume that we have found a lift h ∈ M ⊗A L of ḡ2 such that g1 + τ(h)
mod Mk and the above φ satisfy the property in Lemma 2.5. Let J = (g1 +τ(h)) ⊂
M , Jk−1 = J + Mk and Ik−1 = J ·M1 + Mk+1. We consider the epimorphism
M/Jk−1 → M/Ik−1 and its kernel Jk−1/Ik−1. Now let O = T 2

W (OS), let O0 =
T 2
W0

(OS) and let r :O0 → O be the homomorphism given in Definition 3.8. Let o
(resp. o0) be the obstruction class to extending

ϕk = ϕ|SpecM/Jk−1
: SpecM/Jk−1 −→ Ŵ ×W S

to SpecM/Ik−1 → Ŵ ×W S (resp. to SpecM/Ik−1 → Ŵ0 ×W0 S). Since the
obstructions are compatible, we have that r(o0) = o. Now let ḡ1 and τ̄ (h) be the
residue classes of g1 and τ(h) in (Jk−1/Ik−1) ⊗A O0, respectively. Since f is a
relative Kuranishi map, we have that r(ḡ1) = o. On the other hand, we know that

ϕk extends to SpecM/(Ik−1 + (f)) → Ŵ ×W S. It follows that the residue class
of τ(h) in

(
Jk−1/(Ik−1 + (f))

)
⊗A O0, which also is the residue class of ḡ2, is the

obstruction class to extending ϕk to

SpecM/(Ik−1 + (f)) −→ Ŵ0 ×W0 S.

Therefore
(
ḡ1 + σ̄(h)

)
− o0 belongs to

Ker
{
(Jk−1/Ik−1)⊗A O0 −→ (Jk−1/Ik−1)⊗A O ⊕

(
Jk−1/(Ik−1 + (f))

)
⊗A O0

}
.

This proves that there is an εk ∈ (f)⊗AL so that g1+τ(h+εk) mod Mk+1 satisfies
the property in Lemma 2.5. It follows from the proof of Lemma 2.5 that we can
choose εk to be in

(
(f) ∩Mk

)
⊗A L. Hence an induction on k shows that there is

a lift g2 ∈M ⊗A L such that g := g1 + τ(g2) ∈M ⊗A E2 and φ = ϕ|SpecM/(g) is a
relative Kuranishi family of T •

Ŵ0×W0S/S
= h•(E• ⊗OW0

OS).

Now let Z = SpecM and let Z(g) = SpecM/(g) ⊂ Z. Then Z is a scheme over
S, thus a scheme over W0. Let V1 = Vect(L) ×W0 Z, V = Vect(E2) ×W0 Z and
V2 = Vect(F2) ×W0 Z. Then V1 is a subbundle of V and V2 is the quotient vector
bundle V/V1. Let CZ(g)/Z be the normal cone to Z(g) in Z. The cone CZ(g)/Z is
canonically embedded in V ×Z Z(g). We let

D1(S) = CZ/(g)/Z ×Z S ⊂ V ×Z S.
It follows from Lemma 3.1 that for the affine covering Sα of W0, the collection
{D1(Sα)} patches together to form a cone D1 in V . By Definition 3.7, if we let
η1 :W0 → V be the zero section,

[W0]
vir = η∗1 [D1].
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Next, we consider the subscheme Z(f) = SpecM/(f) ⊂ Z and the normal cone
C2 = CZ(f)/Z , which is naturally a subcone of V2 ×Z Z(f). We let C2 → X be the
morphism induced by

V2 ×Z Z(f)
pr2−→Z(f) = Ŵ ×W S

pr1−→ Ŵ
pW−→W

i−→X.

The normal cone CC2×XX0/C2
is canonically a subcone in(

V2 ×Z (Ŵ ×W S)
)
×Z

(
V1 ×Z (Ŵ0 ×W0 S)

)
= (V1 ×Z V2)×Z (Ŵ0 ×W0 S).

We set

D2(S) = CC2×XX0/C2
×Ŵ0×W0S

S.

For the same reason, the collection {D2(Sα)} patch together to form a cone D2 ⊂
Vect(L)×W0 Vect(F2). We claim that

ξ![W ]vir = η∗2 [D2],

where η2 : W0 → V1 ×W0 V2 is the zero section. By our technical assumption,

F2 extends to F̃2 so that F2 → T 2FW0(OW0) extends to F̃2 → T 2
W (OW ). Let

N ∈ Z∗Vect(F̃2) be the virtual cone cycle of T •W provided by Lemma 3.1 and Corol-
lary 3.5. Then the normal cone cycle [CN×XX0/N ] is canonically a cone cycle in

Vect(L)×W0 Vect(F2). It follows from [Vi, p. 643] that ξ∗[W ]vir = η∗2 [CN×XX0/N ].
However, by using Lemma 3.1 and Corollary 3.6, we have that [CN×XX0/N ] = [D2].

Therefore, ξ![W ]vir = η∗2 [D2].
It remains to show that η∗1 [D1] ∼rat η

∗
2 [D2]. Our strategy is to transform it into

a problem about commutativity of Gysin maps and then apply work in [Vi]. Let
ρ1 : V1 → V and ρ2 : V → V2 be the embedding and the quotient vector bundle
morphisms, and let 1V1 × ρ :V1 → V1×Z V be the product morphism. Let Γ be the
graph of the relative Kuranishi map g ∈M ⊗A E2 and let 0Vi be the scheme of the
0-section of Vi. We set

Y = V1 ×Z Γ, X1 = (1V1 × ρ1)(V1)×V1×ZV Y, X2 = (0V1 ×Z V )×V1×ZV Y.

The scheme Y is a subscheme of V1 ×Z V and X1 and X2 are subschemes of Y .
Clearly, X1

∼= Ŵ ×W S, X2
∼= Γ and X1×V1×ZV X2

∼= Γ×V 0V . It follows that the
normal cone CX2/Y is V1 ×Z Γ, a cone over X2. Now let B1(S) be the normal cone
to CX2/Y ×Y X1 in CX2/Y . Since CX2/Y ×Y X1 is V1 ×Z (Γ ×V 0V ), the scheme
B1(S) is the pull back of CΓ×V 0V /Γ ⊂ V under

(V1 ×Z V )×Z (Ŵ0 ×W0 S)
pr2−→V ×Z (Ŵ0 ×W0 S).

Let B1(S) = B1(S)×Z S. Then B1(Sα) patch together to form a cone

B1 ⊂ Vect(L) ×W0 Vect(E2).

The cone B1 is the pull back of D1 ⊂ Vect(E2) via

Vect(L) ×W0 Vect(E2)
pr2−→Vect(E2).

Hence if we let η0 be the zero section of Vect(L)×W0Vect(E2), then η∗0 [B1] = η∗1 [D1].
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Next, we let B2(S) be the normal cone to CX1/Y ×Y X2 in CX1/Y . The cone

B2(S) is canonically a subcone of (V1 ×Z V )×Z (Ŵ0 ×W0 S). We claim that

B2(S) −−−−→ CC2×XX0/C2y y
(V1 ×Z V )×Z (Ŵ0 ×W0 S)

1V1×ρ2−−−−−→ (V1 ×Z V2)×Z (Ŵ0 ×W0 S)

is a fiber square. We first look at CX1/Y . Let h :V1 ×Z V → V1 ×Z V be the iso-
morphism defined by h(a, b) = (a, b−ρ1(a)). Then h|(1V1×ρ1)(V1) is an isomorphism

between (1V1×ρ1)(V1) and V1×Z 0V . Further, under 1V1×ρ2 :V1×Z V → V1×Z V2,
h(Y ) is isomorphic to V1 ×Z (0V2 ×V2 Γf ). Therefore, the subcone CX1/Y of

C(1V1×ρ1)(V1)/V1×ZV ×V1×ZV2 X1 = V ×Z X1

fits into the Cartesian square

CX1/Y −−−−→ C2y y
V ×Z X1 −−−−→ V2 ×Z (Ŵ ×W S).

(Note that X1 is canonically isomorphic to Ŵ ×W S.) From this description, we
immediately see that CX1/Y ×Y X2 fits into the Cartesian square

CX1/Y ×Y X2 −−−−→ CC2×XX0/C2
×Z (Ŵ0 ×W0 S)y y

(V1 ×Z V )×Z (Ŵ0 ×W0 S) −−−−→ (V1 ×Z V2)×Z (Ŵ0 ×W0 S).

This proves the claim. Finally, we let B2(S) = B2(S) ×Z S. For the same reason,
B2(Sα) patch together to form a cone B2 ⊂ Vect(L)×W0 Vect(E2). From the local
description, we see that [B2] is the pull back of [D2] ∈ Z∗

(
Vect(L)×W0 Vect(F2)

)
.

Therefore ξ![W ]vir = η∗0 [B2].
It remains to show that [B1] ∼rat [B2]. We will apply the basic Lemma in [Vi]

to construct a cycle [R] ∈ Z∗
(
A1 ×Vect(L)×W0 Vect(E2)

)
such that

[R] ∩ [π−1
A1(0)]− [R] ∩ [π−1

A1(1)] = [B1]− [B2].(3.3)

The main conclusion of the basic Lemma in [Vi] is as follows. Let Y be any reduced
and equidimensional scheme and let X1, X2 ⊂ Y be closed subschemes. Let D1

be the normal cone to CX1/Y ×Y X2 in CX1/Y and let D2 be the normal cone to
CX2/Y ×Y X1 in CX2/Y , both are canonically embedded in CX1/Y ×Y CX2/Y . Then

there is a cycle [R] ∈ Z∗(A1 × CX1/Y ×Y CX2/Y ) such that

[R] ∩ [π−1
A1(0)]− [R] ∩ [π−1

A1(1)] = [D1]− [D2].

Further, R is canonical under étale base change. The reason that we cannot apply
this result directly to our choice of X1, X2 ⊂ Y is that the ambient scheme Y in
our situation, which is V ×Z Γ, may not be equidimensional. However, because of
Lemma 3.3, we will argue that the basic Lemma still applies.

We let S = Sα be one of the open sets in the covering of W0 and let T1, · · · , Tl
be the irreducible components of S (with reduced scheme structure). We fix one of
these components, denoted by T . T ⊂W0 is a locally closed affine subscheme. We
then form cycles B1(T ) and B2(T ). Because the corresponding Y in constructing
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Bi(T ), which is (V ×Z Γ)×Z (Z ×S T ), is reduced and equidimensional, the basic
Lemma provides a cycle

R(T ) ∈ Z∗(A1 × (V1 ×Z V )×Z T
)

such that

[R(T )] ∩ [π−1
A1(0)]− [R(T )] ∩ [π−1

A1(1)] = [B1(T )]− [B2(T )].

We need to show that the collection {R(Tα)} provides a global cycle [R] as
required. For this, we need a comparison Lemma similar to Lemma 3.3. Let q ∈ S
be any closed point, let Zq be Z ×S {q}, let Ẑ be the formal completion of Z along
Zq and let q̂ be the formal completion of S along q. Note that q̂ is canonically a

subscheme of Zq. For i = 1, 2 or ∅, we let V̂i be the formal completion of Vi ×Z Ẑ
along its zero section 0Vi ×Z Ẑ.

Sublemma. There is a morphism ϕ : Ẑ → Zq and there are isomorphisms φi : V̂i →
(V̂i ×Ẑ Zq)×Zq Ẑ, where i = 1, 2 and ∅, for which the following hold.

(1) Let ι : q̂ → Ẑ be the inclusion induced by q̂ → S → Z. Then the restriction of
ϕ to ι(q̂) factors through the subscheme q̂ → Zq and the factored morphism
ι(q̂)→ q̂ is the identity map between q̂ = ι(q̂) and q̂ ⊂ Zq.

(2) For i = 1, 2 and ∅, φi(0V̂i) = (0V̂i ×Ẑ Zq)×Zq Ẑ and the restrictions of φi to

V̂i ×Ẑ Zq are the identity morphisms of V̂i ×Ẑ Zq.
(3) We have the commutative diagram

V̂1 −−−−→ V̂ −−−−→ V̂2yφ1

yφ yφ2

(V̂1 ×Ẑ Zq)×Zq Ẑ −−−−→ (V̂ ×Ẑ Zq)×Zq Ẑ −−−−→ (V̂2 ×Ẑ Zq)×Zq Ẑ,

where the lower sequence is induced by V̂1
ρ̂1−→ V̂

ρ̂2−→ V̂2.
(4) φ(Γg ×Z Ẑ) = (Γg ×Z Zq)×Zq Ẑ and φ2(Γf ×Z Ẑ) = (Γf ×Z Zq)×Zq Ẑ.

Proof. The proof is similar to the proof of Lemma 3.3. The only modification
is to make sure that the morphisms ρ1 and ρ2 and the schemes Γg and Γf are
compatible. This can be done easily following the argument used to construct the
relative Kuranishi families of T •W0

from T •W . We will omit the details.

Now if we view q ∈W0 as an affine subscheme, we obtain the schemes B1(q) and

B2(q), and the cycle R(q). Assume that q ∈ Ti. Let T̂i be the formal completion
of Ti along q. Then the flat morphism

(V̂1 ×Ẑ V̂ )×S T̂i −→ (V̂1 ×Ẑ V̂ )
φ1×φ−→

(
(V̂1 ×Ẑ V̂ )×Ẑ Zq

)
×Zq Ẑ
pr1−→ (̂V1 ×Ẑ V̂ )×Ẑ Zq

induces isomorphisms between respective X1, X2 and Y in the construction of

Bj(T̂i) and Bj(q). Let

h1 : A1 × (V1 ×Z V )×S T̂i → A1 × (V1 ×Z V )×Z Zq,

where h1 is induced by T̂i ⊂ Ẑ
ϕ−→Zq, and let

h2 : A1 × (V1 ×Z V )×S T̂i → A1 × (V1 ×Z V )×S Ti
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be the obvious morphism. Note that both are flat. We claim that

h∗1(R(q)) = h∗2(R(Ti)).(3.4)

This is not exactly what was proved in [Vi], since

H : (V̂1 ×Ẑ V̂ )×S T̂i → (V̂1 ×Ẑ V̂ )×S Ẑ−→ (V̂1 ×Ẑ V̂ )×Ẑ Zq

is not étale. However, it is clear that H is of the form Û → U1 × U2
pr1−→U1, where

U1 and U2 are two reduced, irreducible formal complete schemes each supported
at a single closed point and Û is the formal completion of U1 × U2 along its closed
point. A step by step check of the proof of the basic Lemma in [Vi] shows that the
isomorphism (3.4) does hold.

It is clear now how to construct the cycle R(S) ∈ Z∗(A1 × (V1 ×Z V ) ×Z S).
We let the support of R(S) be the union of Supp(R(Tj)). Because of the identity
(3.4), R(S) with reduced scheme structure is an equidimensional closed subscheme.
Now we assign multiplicity to each irreducible component of R(S). Let p ∈ R(S)
be a general point of one of its irreducible components, say C. Let q ∈ S be the
closed point under p. We assume q ∈ Tj . The component C corresponds to a
unique irreducible component C′ in R(Tj) and a unique irreducible component C0

in R(q), by (3.4). Let mC be the multiplicity of C0 in R(q). Since Tj is reduced
and irreducible, mC is also the multiplicity of C′ in R(Tj). We assign mC to be
the multiplicity of C in R(S). Such an assignment is well-defined.

Remark. The cycle R(S) has the property that for any closed point q ∈ S, the flat
pull back h∗3(R(S)) is isomorphic to the flat pull back h∗1(R(q)), where

h3 :
(
A1 ×Vect(L)×W0 Vect(E2)

)
×W0 q̂ −→ A1 ×Vect(L) ×W0 Vect(E2).

Of course, if such an R(S) exists, it is unique. The construction using the relative
Kuranishi families is to ensure that R(S) exists.

Finally, it follows from the étale base change property that R(Sα) patch together
to form a cycle

[R] ∈ Z∗
(
A1 ×k Vect(L) ×W0 Vect(E2)

)
.

Because R(q) provides a rational equivalence of [B1(q)] and [B2(q)], R provides a
rational equivalence of [B1] and [B2]. Therefore, ξ∗[W ]vir = [W0]

vir. This completes
the proof of the proposition.

4. Gromov-Witten invariants of smooth varieties

Let X be a smooth projective variety, n, g integers, and α ∈ A1X/ ∼alg. The
GW-invariants are defined by taking intersections on the moduli space of stable
maps from n-pointed genus g curves to X such that their image cycles are in α. We
denote this moduli space by MX

α,g,n. When MX
α,g,n has the expected dimension,

then the GW-invariants can be defined as usual. However, this rarely happens.
Thus we need to use the virtual moduli cycles to define these invariants.

Let S be an affine scheme and let η ∈ FXα,g,n(S) be an element represented by
the morphism f :X → X , where X is a curve over S with marked sections D ⊂ X
understood. Then the standard choice of the tangent-obstruction complex of FXα,g,n
is

T •FXα,g,n(η)(F) =
[
Ext•X/S

(
[f∗ΩX → ΩX/S(D)], π∗SF

)]
,
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where F ∈ ModS and πS :X → S is the projection. We now show that there are
complexes of locally free sheaves over FXα,g,n so that their sheaf cohomologies are

T •FXα,g,n.
We fix a sufficiently ample invertible sheaf L on X and then form the exact

sequence

0 −−−−→ W2 −−−−→ W1 −−−−→ f∗ΩX −−−−→ 0 ,

where W1 → f∗SΩX is the natural surjective homomorphism

π∗SπS∗
(
ωX/S(D)⊗5 ⊗ f∗(L ⊗ ΩX)

)
⊗
(
ωX/S(D)⊗5 ⊗ f∗L

)−1 −→ f∗ΩX .

We then form complexes

A•η = [W2 → 0] and B•η = [W1 → ΩX/S(D)]

indexed at −1 and 0 withW1 → ΩX/S(D) the compositeW1 → f∗ΩX → ΩX/S(D).
Let C•η = [f∗ΩX → ΩX/S(D)]. Then we have an exact sequence of complexes

0 −−−−→ A•η −−−−→ B•η −−−−→ C•η −−−−→ 0 ,

and hence a long exact sequence of sheaf cohomologies

Ext1X/S
(
C•η ,OX

)
→ Ext1X/S

(
B•η,OX

)
→ Ext1X/S

(
A•η,OX

)
→ Ext2X/S

(
C•η ,OX

)
.

Since L is sufficiently ample, ExtiX/S(B•η,OX ) and ExtiX/S(A•η,OX ) vanish for i 6= 1.

Hence

Eη,1 = Ext1X/S(B•η,OX ) and Eη,2 = Ext1X/S(A•η,OX )(4.1)

are locally free and the sheaf cohomology of E•η = [Eη,1 → Eη,2] is T •FXα,g,n(η). It is
straightforward to check that the collection {E•η} satisfies the base change property

in Definition 1.1, hence it forms a complex of sheaves over FXα,g,n.

To construct the virtual moduli cycle [MX
α,g,n]vir, we need to address one techni-

cal issue, namely, MX
α,g,n does not admit universal families due to the presence of

non-trivial automorphisms. An automorphism of a morphism f from C to X is an
automorphism ϕ :C → C fixing its marked points such that ϕ◦f = ϕ. Because f is
stable, Aut(f) is finite. There are two approaches to get around this difficulty. One
is to realize the moduli space as a quotient by a reductive group, say G. The other
is to use the intersection theory on stacks developed in [Vi]. The former relies on
constructing G-equivariant data and then descending them to the quotient space.
This can be done directly if the quotient is a good quotient. Otherwise, the étale
slice of the group action can be used to study the descent problem. This approach
allows one to work with Fulton’s operational cohomology theory ofMX

α,g,n, rather

than the parallel theory on the moduli stack of FXα,g,n.
From [Al], there is a quasi-projective scheme Q and a reductive group G acting

on Q such that MX
α,g,n is the categorical quotient of Q by G. Over Q, there is a

universal family

{F : D ⊂ X −→ X} = ξ ∈ FXα,g,n(Q)

acted on by G. For any closed point w ∈ Q, the stabilizer Gw ⊂ G of w is naturally
the automorphism group of Fw : Dw ⊂ Xw → X . Now by using this family we can
construct the complex E• := E•ξ in (4.1), after fixing a very ample invertible sheaf

L. By our construction, T •FXα,g,n(ξ) = h•(E•). Further, both E• and T •FXα,g,n(ξ)
are canonically G-linearized and the identity is G-equivariant.
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We now construct the virtual cycle [MX
α,g,n]vir with the complex E• provided.

Let z ∈ MX
α,g,n be any closed point and w ∈ π−1(z), where π : Q → MX

α,g,n is
the quotient projection. Let Gw be the stabilizer of w. By combining an argument
in [Ko2] and the construction of [Al], we can find a Gw-invariant slice S ⊂ Q
containing w such that S/Gw is an étale neighborhood of z ∈ MX

α,g,n. Let ξS ∈
FXα,g,n(S) be the object associated to the restriction of F :X → X to fibers over S.

Clearly, T •FXα,g,n(ξS) is a tangent-obstruction complex of S and E•S = E•⊗OQOS is

the complex whose sheaf cohomology is T •FXα,g,n(ξS). Therefore, by applying the
construction in the previous sections, we obtain a canonical cone

CE
•
S ⊂ Vect(ES,2) = Vect(E2)×Q S.

Let CE
•
S/Gw ⊂ Vect(E2) ×Q S/Gw be their quotients. Assume that T is another

Gw-invariant slice passing through w′ ∈ Ow such that T/Gw is an étale neighbor-

hood of z; then we obtain the cones CE
•
T ⊂ Vect(E2) ×Q T and their quotients by

Gw. Since E• is G-linearized, by Lemma 3.2, the pull-back of these schemes to
S/Gw ×MX

α,g,n
T/Gw from S/Gw and T/Gw are naturally isomorphic. Hence the

collection Vect(E2)×QS/Gw descends to a scheme VectM(E2) overMX
α,g,n, and the

collection CE
•
S/Gw descends to a scheme CE

•
M which is a subscheme of VectM(E2).

Note that VectM(E2) is not necessarily a vector bundle. We will call VectM(E2)
the Q-descent of the vector bundle Vect(E2).

Similar to the ordinary case, we define the virtual moduli cycle [MX
α,g,n]vir to be

s∗[CE
•
M ] ∈ A∗

(
MX

α,g,n

)
⊗Z Q ,

where s :MX
α,g,n → VectM(E2) is the zero section and s∗ is the Gysin map. Note

that s∗ is well-defined. One way of seeing it is by using the description of Gysin
maps in terms of Chern classes [Fu, §6.1]. This way, to define s∗, it suffices to define
the Chern classes of Q-descents of vector bundles (i.e. V-vector bundles), which
are known to exist with rational coefficients.

Lemma 4.1. The cycle [MX
α,g,n]vir is independent of the choice of the complex E•

making T •FXα,g,n(ξ) = h•(E•).

Proof. We will apply Corollary 3.5 to prove the invariance. Clearly, by the proof of
Corollary 3.5 and the above construction, it suffices to show that if F• = [F1 → F2]
is another complex of G-linearized locally free sheaves such that T •FXα,g,n(ξ) =
h•(F•) and that the identity is G-equivariant, then there is a G-linearized locally
free sheaf of OQ-modules K and surjective G-linearized sheaf homomorphisms K →
E2 and K → F2 such that

K −−−−→ E2y yb
F2

a−−−−→ T •FXα,g,n(ξ)(OQ)

is commutative. We first let K0 be the pull-back of (a, b), where a and b are shown
in the above square. Then K0 is canonically G-linearized. It remains to find a
G-linearized locally free sheaf K so that K0 is a G-quotient sheaf of K. Let L be an
ample G-linearized line bundle on Q. Such an L exists following [Al]. Let w ∈ Q
be any closed point and Ow its G-orbit, which is closed. Using locally free sheaves
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E2 and F2, we can find a G-equivariant surjective homomorphism

ηw : E2 ⊕F2 −→ K0 ⊗OOw .

Since Gw is finite, for some power L⊗nw , the Gw-action on L⊗nw ⊗ k(w) is trivial.
Because Q is quasi-projective and L is ample, for some large m, the homomorphism

η′w : (E2 ⊕F2)⊗O(Lnwm) −→ K0 ⊗OOw
induced by ηw, which is still surjective and G-equivariant, lifts to a global homo-
morphism

η : (E2 ⊕F2)⊗O(Lnwm) −→ K0 .

Then applying the Reynolds operator, we can assume that η is also G-equivariant
and its restriction to Ow is η′w. Since Q is quasi-projective, a finite sum of sheaves
of this type gives us the desired G-equivariant surjective homomorphism K → K0.
Therefore, by Corollary 3.5, if we let VectM(K) be the Q-descent of the vector bun-
dle Vect(K) and let φ1 :VectM(K)→ VectM(E2) and φ2 :VectM(K)→ VectM(F2)

be the induced morphisms between the V -vector bundles, then φ∗1[CE
•
M ] = φ∗2[CF

•
M ].

Therefore, [MX
α,g,n]vir is independent of the choice of the complex E•.

In the remainder of this paper, we will define the GW-invariants of any smooth
projective variety and prove some of its basic properties. From now on, unless oth-
erwise mentioned we will only consider homology theory with rational coefficients.
We will denote the (operational) cohomology and homology by A∗ and A∗ respec-
tively. When the varieties are over complex numbers, sometimes we will use the
singular homology theory, which we will denote by H∗. We now give the definition
of GW-invariants of any smooth projective variety X . We fix the α ∈ A1X/ ∼alg

and the integers g and n as before so that 2g + n ≥ 3. Let

[MX
α,g,n]vir ∈ A∗(MX

α,g,n)

be the virtual moduli cycle. By using the Riemann-Roch theorem, it is a purely
(3 − dimX)(g − 1) + n + α · c1(X) dimensional cycle. Let παn : MX

α,g,n → Mg,n

be the stable contraction morphism. The k-th marked points in curves naturally
induce an evaluation morphism ek :MX

α,g,n → X . We let ev :MX
α,g,n → Xn be the

product e1×· · ·×en. Paired with the cycle [MX
α,g,n]vir, we obtain a homomorphism

ΨX
α,g,n : A∗(X)×n ×A∗(Mg,n) −→ A∗(MX

α,g,n)

defined by

ΨX
α,g,n(β, γ) =

(
ev∗(β) ∪ (παn )∗(γ)

)(
[MX

α,g,n]vir
)
.

Composing ΨX
α,g,n with the degree map A∗(MX

α,g,n)→ A0(MX
α,g,n)→ Q, we obtain

the GW-invariants

ψXα,g,n : A∗(X)×n ×A∗(Mg,n) −→ Q .

If we fix a polarization H of X and an integer d, we can define the GW-invariants

ψXd,g,n :A∗(X)×n ×A∗(Mg,n) −→ Q

as follows. We let FXd,g,n :S → (sets)0 be the moduli functor of stable morphisms

defined similar to FXα,g,n except that the condition f∗([C]) ∈ α is replaced by the

condition that the degree of c1(H)(f∗([C])) is d. Because of [Al], FXd,g,n is coarsely

represented by a projective scheme, denoted MX
d,g,n. The previous construction
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works for this moduli functor without any change. Consequently we have the virtual
moduli cycle [MX

d,g,n]vir which in turn defines the GW-invariants ψXd,g,n. When X
is a smooth complex projective variety, then we can use the ordinary homology
theory to define

ψXα,g,n : H∗(X)×n ×H∗(Mg,n) −→ Q ,

where α ∈ H2(X,Z), by using the image of [MX
α,g,n]vir in H∗(MX

α,g,n). Here since

α ∈ H2(X,Z), the moduli functor FXα,g,n parameterizes all stable morphisms f :
C → X with f∗([C]) = α understood as an identity in the singular homology
H2(X,Z). Note that if α 6∈ H2(X,Z) ∩H0,1(X,C)⊥, then ψXα,g,n ≡ 0.

The GW-invariants satisfy some basic properties. One of them is the invariance
under deformations ofX . Let π ::XT → T be a smooth family of relatively projective
varieties over T . For t ∈ T we let Xt = π−1(t) and for β ∈ A∗(XT )×n we let
βt ∈ A∗(Xt)

×n be the pull back of β under Xt → XT . We fix a relatively ample
line bundle of XT /T .

Theorem 4.2. Let XT /T be as before with T an irreducible smooth curve. Then
for any d ∈ Z and cohomology classes β ∈ A∗(XT )×n and γ ∈ A∗(Mg,n), the values
of the GW-invariants φXd,g,n(βt, γ) are independent of t ∈ T .

When XT /T is defined over C, we can use knowledge of H2(Xt,Z) to prove a
finer version of the invariance theorem. Consider the analytic curve

Λ := R2π∗ZXT ⊗T Rk1π∗ZXT ×T · · · ×T Rknπ∗ZXT

over T . Clearly any point w ∈ Λ corresponds to w = (αw , βw) ∈ H2(Xt,Z) ×
H∗(Xt,Z)×n for some t ∈ T . Hence for any γ ∈ H∗(Mg,n) we can define

Ψγ : Λ −→ Q

that assigns w to ψXtαw ,g,n(βw; γ).

Theorem 4.2′. Let XT be defined over C as before. Assume T is a smooth con-
nected curve. Then for any γ ∈ H∗(Mg,n) the function Φγ : Λ → Q is locally
constant.

Proof of Theorem 4.2. We first form the relative moduli functor. For simplicity,

we assume T is affine. Let SchT be the category of T -schemes and let F
XT /T
d,g,n :

SchT → (sets)0 be the functor that sends any S ∈ SchT to the subset of FXTd,g,n(S)
consisting of the isomorphism classes of f :X → XT such that

X f−−−−→ XTy y
S −−−−→ T

is commutative. F
XT /T
d,g,n is coarsely represented by a T -projective scheme MXT /T

d,g,n

[Al]. Let MXT /T
d,g,n → T be the obvious morphism. Then we have the Cartesian

square

MXt
d,g,n −−−−→ MXT /T

d,g,ny y
{t} η−−−−→ T.
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Following the principle of conservation of number [Fu, section 10.2], to prove the
theorem it suffices to show that

η![MXT /T
d,g,n ]vir = [MXt

d,g,n]
vir .

We first determine the tangent-obstruction complex of F
XT /T
d,g,n . Let S

c→T be any

affine scheme over T and ξ ∈ F
XT /T
d,g,n (S) be represented by f :X → X with marked

points D ⊂ X understood. From the discussion in section 1, the tangent of F
XT /T
d,g,n

at ξ is

T 1F
XT /T
d,g,n (ξ)(N ) = Ext1X/S

(
B•ξ ,OX ⊗OS N

)
,

where N ∈ModS and B•ξ =
[
f∗ΩXT → ΩX/S(D)

]
. We claim that the obstruction

to deformations of f lies in the kernel of

Ext2X/S
(
B•ξ ,OX ⊗OS N

) β−→Ext2X/S
(
C•ξ ,OX ⊗OS N

)
,

where C•ξ = [f∗π∗ΩT → 0] and π :XT → T . Here the homomorphism β is part of
the long exact sequence of cohomologies induced from the short exact sequence

0 −→ C•ξ −→ B•ξ −→ A•ξ −→ 0

induced by π∗ΩT → ΩXT → ΩXT /T . Here A•ξ is the complex
[
f∗ΩXT /T →

ΩX/S(D)
]
. Indeed, let S → Y0 → Y be a tuple of S-schemes described in Def-

inition 1.2 with IY0⊂Y ∼= N and let f0 :X0 → Xt with marked points D0 ⊂ X0 be
a family of stable morphisms over Y0. Let D ⊂ X be an extension of D0 ⊂ X0 and
let o be the obstruction to extending f0 to f over Y . Then using the description of
o in section 1 we see immediately that β(o) is the image of

{π∗ΩT → ΩX0/S} = 0 ∈ Hom(π∗ΩT ,ΩX/S)

in Ext2X (C•ξ , π∗SN ), which is zero. We denote the kernel of β by T 2F
XT /T
d,g,n (ξ)(N ).

T •FXT /Td,g,n is the tangent-obstruction complex of F
XT /T
d,g,n . Now assume S

c→T factors

through {t} ⊂ T . Then for N ∈ModS we have the exact sequence

0 −→ T 1FXtd,g,n(ξ)(N ) −→ T 1FXT /T,g,n (ξ)(N ) −→ N −→

−→ T 2FXtd,g,n(ξ)(N ) −→ T 2F
XT /T
d,g,n (ξ)(N ) −→ 0.(4.2)

Also, from the description of the obstruction classes in section 1, we see immediately
that the obstruction classes are compatible in the sense of Definition 3.8.

To prove the theorem, we need to choose complexes so that they satisfy the
technical condition of Proposition 3.9. We fix a sufficiently ample invertible sheaf
L on Xt. We first let H• (resp. K•) be the complex constructed in (4.1) with f∗ΩX

replaced by f∗ΩXt (resp. f∗ΩXT ). We let G• be the complex in (4.1) with f∗ΩX

replaced by f∗OXt and with ΩX (D) replaced by 0. Clear, they fit into the exact
sequence 0 → H• → K• → G• → 0. Now let E• = H• ⊕ [OS id→OS ] and let F•
be the kernel of K• → G•. Note that h1(G•) = OS . We pick a homomorphism
OS → F1 so that OS → F1 → h1(G•) is the identity homomorphism. The long
exact sequence of the sheaf cohomologies of the resulting exact sequence

0 −→ [0→ OS ] −→ E• −→ F• −→ 0

is exactly the sequence (4.2), and hence the tangent-obstruction complex of F
XT /T
d,g,n

satisfies the technical condition of Proposition 3.9.
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Lastly, we need to modify the proof of Proposition 3.9 to accommodate the

fact that MXT /T
d,g,n has no universal family, as we did in constructing the virtual

moduli cycle. We will omit the details here since it is a repetition of the previous
argument. Note thatMXT

d,g,n is a categorical quotient by a reductive group and the
cones constructed in the proof of Proposition 3.9 are all canonical under étale base
change. This completes the proof of Theorem 4.2.

Proof of Theorem 4.2 ′. We still assume T is affine. Let R be a connected compo-
nent of R2π∗ZXT . R is a smooth analytic curve étale over T . Let XR = XT ×T R
and let α :R → R2π∗ZXR be the section induced by the component R. Note that
α(s) ∈ H2(Xs,Z) for s ∈ R. Note also that under H2(Xs,Z)→ H2(XR,Z) all α(s)
have identical images. We let α0 ∈ H2(XR,Z) be their common images. Let HR be
the pull back of the relatively ample line bundle on XT /T . Then α(s) · c1(HR) ∈ Z
is independent of s. We denote it by d. Clearly, for any t ∈ T the disjoint union
ofMXs

α(s),g,n for all s ∈ R over t is an open and closed subscheme ofMXt
d,g,n. Since

MXt
d,g,n is projective, it is possible that either R→ S is finite or the set of s ∈ R of

which MXs
α(s),g,n 6= ∅ is discrete. We first look into the second situation. From the

construction of virtual cycle, it is clear that if V ⊂ MXt
d,g,n is a connected compo-

nent, then using the induced tangent-obstruction complex of V we can construct
the virtual cycle [V ]vir. It follows from the proof of Theorem 4.2 that for any con-

nected component V of MXT /T
d,g,n and immersion ηt : {t} → T we have the identity

[Vt]
vir = η!

t[V ]vir, where Vt = V ×T {t}. Since MXT /T
d,g,n consists of fibers over a

discrete point set of T , η!
t[V ]vir ∼rat 0 for all t ∈ T . Hence [MXs

α(s),g,n]vir = 0 for all

s ∈ R. As to the first situation, since R → S is finite, R is algebraic. Hence The-

orem 4.2 implies that for any s ∈ R, [MXs
α(s),g,n]vir = η!

s[M
XR/R
α0,g,n]vir. Theorem 4.2′

then follows from the principle of conservation of number. This proves Theorem
4.2′.

The Gromov-Witten invariants are expected to satisfy a set of relations, as ex-
plained in [KM], [RT1], [RT2]. We state these relations in terms of the virtual
moduli cycles. We will provide their proofs except for the composition law, which
will be proved in the next section.

We first recall the contraction transformation. For n ≥ 1 we let FXα,g,n → FXα,g,n−1

be the transformation that sends any family f :X → X over S in FXα,g,n(S) to the
family f ′ : X ′ → X , where X ′ is the curve over S obtained by forgetting the n-
th labeled section of X and then stable contracting the resulting (n − 1)-pointed
curve relative to f , and f ′ is the unique morphism so that X → X ′ f ′−→X is
X f−→X . We let πn :MX

α,g,n →MX
α,g,n−1 be the induced morphism. Similarly, we

let pn :Mg,n →Mg,n−1 be the morphism induced by forgetting the last sections.

Theorem 4.3. The virtual moduli cycle [MX
α,g,n]vir satisfies the following proper-

ties:

(1) [MX
α,g,n]vir ∈ AkMX

α,g,n where k = (3 − dimX)(g − 1) + n+ α · c1(X).

(2) Let σ ∈ Sn be any permutation of n elements and let φσ :MX
α,g,n →MX

α,g,n

be the morphism induced by permuting the n marked points of the domains of
f ∈MX

α,g,n. Then φσ is an isomorphism and φσ∗[MX
α,g,n]vir = [MX

α,g,n]vir.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



VIRTUAL MODULI CYCLES AND GROMOV-WITTEN INVARIANTS 155

(3) The morphism πn :MX
α,g,n →MX

α,g,n−1 is a flat morphism of relative dimen-
sion 1. Further

π∗n[MX
α,g,n−1]

vir = [MX
α,g,n]vir.

(4) Let β ∈ A1X and en :MX
α,g,n → X be the n-th evaluation morphism. Then

πn∗(e∗nβ · [MX
α,g,n]vir) = deg(α · β) · [MX

α,g,n−1]
vir.

(5) Composition law (see the statement and the proof in the next section).

We remark that what is known as the fundamental class axiom is a direct con-
sequence of (3) of the theorem. Let ξn ::MX

α,g,n → Xn ×Mg,n be the product of

ev :MX
α,g,n → Xn and the projection παn :MX

α,g,n → Mg,n. Then another way to
describe the GW-invariants is by the homomorphism

IXα,g,n : A∗(X)×n −→ A∗Mg,n

defined by IXα,g,n(β) = π2∗
(
π∗1(β)(ξ∗[MX

α,g,n]vir)
)
, where π1 and π2 are the first and

the second projections of Xn×Mg,n. The fundamental class axiom claims that for
n ≥ 1 and 2g + n ≥ 4, and for any β ∈ A∗(X)×n−1, we have

IXα,g,n(β × 1X) = p∗nI
X
α,g,n−1(β),(4.3)

where 1X ∈ A0(X) is the identity element. We now show that (3) implies (4.3).
Consider the commutative diagram

MX
α,g,n

ξ̃−−−−→ Xn−1 ×Mg,nyπn y1×pn

MX
α,g,n−1

ξn−1−−−−→ Xn−1 ×Mg,m

where 1 :Xn−1 → Xn−1 is the identity map and ξ̃ is the product of the first n− 1
evaluation morphisms and the projection MX

α,g,n → Mg,n. Using the projection
formula and the property of cohomology classes [Fu, Definition 17.1], it is direct to
check that (4.3) follows from the identity

(1× pn)∗ξn−1∗([MX
α,g,n−1]

vir) = ξ̃∗([MX
α,g,n]vir).(4.4)

In light of (3) of the theorem, to prove (4.4) it suffices to show that for any irre-
ducible variety Y ⊂MX

α,g,n−1,

ξ̃∗π∗n([Y ]) = (1× pn)∗ξn−1∗([Y ]) ∈ Z∗(Xn−1 ×Mg,n).(4.5)

Note that the above square is not necessarily a fiber square. We now prove (4.5).

Clearly, ξ̃(π−1
n (Y )) = (1 × pn)−1(ξn−1(Y )) as sets. Hence it suffices to show that

for any irreducible component W ⊂ π−1
n (Y ) such that dimW = dim ξ̃(W ), the

coefficient of [ξ̃(W )] in ξ̃∗π∗n([Y ]) is identical to its coefficient in (1×pn)∗ξn−1∗([Y ]).

Let W ⊂ π−1
n (Y ) be any irreducible component such that dimW = dim ξ̃(W ). Let

w ∈ W be a general point associated to the stable map f0 : C0 → X with the
marked points x1, · · · , xn ∈ C0. Let E0 be the irreducible component of C0 that
contains xn. Let (C̃0, x̃1, · · · , x̃n−1) be the stable contraction of (C0, x1, · · · , xn−1).

Let Ẽ0 ⊂ C̃0 be the image of E0. Since dimW = dim ξ̃(W ), the map E0 → Ẽ0 is

generically one-to-one. Let x̃n ∈ Ẽ0 be the image of xn.
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Now let w′ = πn(w), z = παn (w) and z′ = pn(z)(= παn−1(w
′)), and let G be the

automorphism group of (C̃0, x̃1, · · · , x̃n−1). We claim that there are G-schemes U ,
U ′, V and V ′ and a G-equivariant fiber square

U
l−−−−→ V

hU

y hV

y
U ′ l′−−−−→ V ′

(4.6)

such that their quotients by G are étale neighborhoods of w ∈ MX
α,g,n, w′ ∈

MX
α,g,n−1, z ∈ Mg,n and z′ ∈ Mg,n−1, respectively, and that the induced mor-

phisms shown in the following makes the square (4.6) compatible to the middle
square in

U
p−−−−→ MX

α,g,n

παn−−−−→ Mg,n
q←−−−− V

πn

y pn

y
U ′

p′−−−−→ MX
α,g,n−1

παn−1−−−−→ Mg,n−1
q′←−−−− V ′.

Indeed, we can find a desired G-scheme V ′ such that there is a tautological family
{D′ ⊂ C′} ∈ Fg,n−1(V

′), where Fg,n−1 is the moduli functor of stable (n − 1)-
pointed curves of genus g. Then V can be chosen as an open subset of the total
space of C′ that contains x̃n ∈ C̃0. By shrinking V ′ and V if necessary, we can
assume that V → V ′ is smooth with connected fibers. As to U ′, we can choose it so
that in addition to U ′/G being an étale neighborhood of w′ there is a tautological
family {f :D ⊂ C → X} ∈ FXα,g,n−1(U

′) of which the following holds. First, there
is an isomorphism, denoted by ϕ, between the stable contraction of {D ⊂ C} with
the pull back of {D′ ⊂ C′} under U ′ → V ′. Second, for any point s ∈ V ′ we let
{D′s ⊂ C′s} be the fiber of {D′ ⊂ C′} over s and let As be the set of isomorphism
classes of pairs (a, b), where a = {ψ : D0 ⊂ C0 → X} ∈ FXα,g,n−1(Spec k) such
that the stable contraction of {D0 ⊂ C0} is isomorphic to {D′s ⊂ C′s} and b is
an isomorphism between the contraction of {D0 ⊂ C0} and the curve {D′s ⊂ C′s}.
Then the canonical map l′−1(s) → As induced by the isomorphism ϕ mentioned
in the previous condition is an isomorphism. Now let U = U ′ ×V ′ V and let
{f̃ : D̃ ⊂ C̃ → X} be the pull back of {f :D ⊂ C → X} under U → U ′. Because

E0 → Ẽ0 is generically one-to-one, by shrinking V ′, V and U ′ if necessary, there
is a unique section D̃n :U → C̃ such that {f̃ : D̃ ∪ D̃n → X} ∈ FXα,g,n(U) and the

stable contraction of {D̃∪D̃n ⊂ C̃} is isomorphic to the pull back of the tautological
family over V ′. It is direct to check that the induced map U/G →MX

α,g,n makes
it an étale neighborhood of w. Hence the choice of U ’s and V ’s satisfy the desired
property. With this choice of U ′ and V , we can take U = U ′ ×V ′ V which satisfies
the desired property. Now let W̃ be any irreducible component of (1× q)−1(ξ̃(W )).

Then with our choice of U , etc., it is clear that if we let µ[W̃ ]

(
(1 × q)∗ξ̃∗π∗n([Y ])

)
be the coefficient of [W̃ ] in (1× q)∗ξ̃∗π∗n([Y ]), then it is equal to

µ[W̃ ]

(
(ẽv × l)∗h∗Up′∗([Y ])

)
= µ[W̃ ]

(
(1× hV )∗(ev′ × l′)∗p′∗([Y ])

)
= µ[W̃ ]

(
(1× q)∗(1× pn)∗ξ̃∗([Y ])

)
,
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where ẽv :U → Xn−1 is the composite of U →MX
α,g,n with the product of the first

n− 1 evaluation morphisms, and ev′ :U ′ → Xn−1 is defined similarly. This proves
the identity (4.5), and hence (4.6)

Proof of Theorem 4.3. By the construction, the cycle [MX
α,g,n]vir is an equidimen-

sional cycle whose dimension is the virtual dimension of MX
α,g,n. Using the

Riemann-Roch theorem, one calculates that it is exactly the k given in the state-
ment. This proves (1). Also, it is clear that for any σ ∈ Sn, we have that
φσ :MX

α,g,n →MX
α,g,n is an isomorphism of schemes. Since the tangent-obstruction

complex of FXα,g,n does not depend on the ordering of the marked sections, the
virtual moduli cycle will be invariant under φσ∗. This proves (2). Next, we prove
statement (4) assuming property (3). Since X is smooth, β ∈ A1 is the Chern class
of a line bundle. By applying the projection formula to the flat morphism πn, we
obtain

πn∗(e∗nβ · [MX
α,g,n]vir) = πn∗(e∗nβ · π∗n[MX

α,g,n−1]
vir)

= πn∗(e∗nβ) · [MX
α,g,n−1]

vir.

Because πn is flat of relative dimension 1, πn∗(e∗nβ) = deg(α · β) · 1, where 1 ∈
A0MX

α,g,n−1 is the identity element. This proves (4).
Now we prove property (3). Let G be the reductive group andQ be the G-scheme

mentioned before so that MX
α,g,n−1 is the categorical quotient of Q. Let C be the

universal curve over Q. Then C → Q is flat of relative dimension 1. It follows
from the universal property of Q that G acts canonically on C and MX

α,g,n is the

categorical quotient of the total scheme of C, denoted P , by G. Let π′n :MX
α,g,n →

MX
α,g,n−1 be the induced morphism. π′n is the morphism described in the statement

(3) of the theorem. Now we argue that πn(= π′n) is flat of relative dimension 1. It
is obvious that πn has relative dimension 1. Now let w ∈ Q be any closed point and
let Gw ⊂ G be the stabilizer of w. Then there is a Gw-invariant slice U → Q such
that U/Gw →MX

α,g,n−1 is an étale neighborhood. It follows that C ×QU/Gw is an

étale neighborhoodMX
α,g,n and the projection C ×Q U/Gw → U/Gw is compatible

to the projection MX
α,g,n → MX

α,g,n−1. Therefore πn will be flat if we can show
that C ×Q U/Gw → U/Gw is flat, which follows from the flatness of C → Q and
that Gw is a finite group. This shows that πn is flat.

It remains to prove the identity in statement (3). Let f̃ : D̃ ⊂ C̃ → X be the

tautological family over P , where D̃ ⊂ C̃ is a family of n-pointed curves over P ,
characterized by the following property. There is a canonical morphism

π : C̃ −→ C ×Q P

such that the base change f ′ :C×QP → X of f with the marked divisors D×QP is
the stable contraction of D̃<n ⊂ C̃, where D̃<n is the first (n− 1)-marked sections

in D̃, relative to f̃ ; the restriction of π to D̃n is an isomorphism between D̃n and
C ×Q P . Let ξ ∈ FXα,g,n−1(Q) (resp. ξ̃ ∈ FXα,g,n(P)) be the object corresponding to

the family f (resp. f̃). Following the discussion after Corollary 3.6, to construct
[MX

α,g,n−1]
vir, it suffices to find a G-linearized locally free sheaf V of OQ-modules

such that

T 2FXα,g,n−1(ξ)(OQ) = Ext2C/Q
(
[f∗ΩX → ΩC/Q(D)],OC

)
(4.7)
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is a G-linearized quotient of V . As before, we pick a G-linearized locally free sheaf
W1 of OC-modules such that W−1

1 is sufficiently ample along fibers of C → Q. We
then pick a G-equivariant quotient homomorphism W−1

1 → f∗ΩX and let W2 =
ker{W1 → f∗ΩX}. W2 is also locally free. It follows that (4.7) is a G-equivariant
quotient sheaf of

V := Ext1C/Q
(
[W2 → 0],OC

)
= Ext0C/Q(W2,OC).

By the discussion after Corollary 3.6, there is a canonical cycle [CV ] ∈ Z∗Vect(V)
so that the image of its Q-descent overMX

α,g,n−1 under the obvious Gysin map is

[MX
α,g,n−1]

vir. Now we pick a similar vector bundle over P . We set W̃1 = p∗W1

and W̃2 = p∗W2, where p is the composite map pr2 ◦ π : C̃ → C ×Q P → C. Then

W2 →W1 → f∗ΩX pulls back to W̃2 → W̃1 → f̃∗ΩX . Let

Ṽ := Ext1C̃/P
(
[W̃2 → 0],OC̃

)
−→ T 2FXα,g,n(ξ̃)(OP)

= Ext2C̃/P
(
[f̃∗ΩX → ΩC̃/P(D̃)],OC̃

)
be the similar quotient homomorphism of sheaves. Because π contracts at most one
rational curve in each fiber of C̃ over P , Ṽ is canonically isomorphic to p∗nV , where
pn :P → Q is the projection. We claim that there is a canonical homomorphism φ
making the following diagram commutative:

ṽ −−−−→ T 2FXα,g,n(ξ̃)(OP )y∼= yφ
p∗nV −−−−→ p∗nT 2FXα,g,n−1(ξ)(OQ).

(4.8)

We consider the canonical exact sequences

Ext1C̃/P(ΩC̃/P(D̃),OC̃) −→ Ext1C̃/P(f̃∗ΩX ,OC̃) −→ Ext2C̃/P(A•,OC̃)
↓φ2 ↓φ1 ↓φ

π∗nExt1C/Q(ΩC/Q(D),OC) −→ π∗nExt1C/Q(f∗ΩX ,OC) −→ π∗nExt2C/Q(B•,OC)

where A• = [f̃∗ΩX → ΩC̃/P(D̃)] and B• = [f∗ΩX → ΩC/Q(D)]. Clearly, there are

canonical homomorphisms φ1 and φ2 as indicated in the above diagram making the
left square commutative. Because the two horizontal arrows on the right are surjec-
tive, there is a canonical homomorphism φ making the right square commutative.
The commutativity of the diagram (4.8) follows immediately.

Now let [CV ] ∈ Z∗Vect(V) (resp. [CṼ ] ∈ Z∗Vect(Ṽ)) be the virtual normal cone
cycle constructed in the beginning of section 4 associated to T •FXα,g,n−1(ξ) (resp.

T •FXα,g,n(ξ̃)), and the quotient homomorphism Ṽ → T 2FXα,g,n(ξ̃)(OP ). Let

Φ : Vect(Ṽ) = Vect(V)×Q P
pr1−→Vect(V)

be the projection. Φ is flat of relative dimension 1. Now assume that

Φ∗[CV ] = [CṼ ].(4.9)

Let [CVM] and [CṼM] be the Q-descents of [CV ] and [CṼ ] to MX
α,g,n−1 and MX

α,g,n

respectively, and let VectM(V) and VectM(Ṽ) be the Q-descents of Vect(V) and
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Vect(Ṽ) respectively. Then

[CṼM] −−−−→ VectM(Ṽ)y y
[CVM] −−−−→ VectM(V)

is a pull back diagram. Therefore,

[MX
α,g,n]vir = η∗

Ṽ
[CṼM] = π∗nη

∗
V [CVM] = [MX

α,g,n−1]
vir,

where ηṼ and ηV are the 0-sections of Vect(Ṽ) and Vect(V).
We now prove the identity (4.9). We first note that there is a largest subscheme

Σ ⊂ P characterized by the property that the restriction of the contraction mor-
phism

π|C̃×PΣ : C̃ ×P Σ −→ C ×Q Σ

contracts a P1-bundle over Σ. Since the image of any of these P1 in C must be
either one of the marked points or one of the singular points of the curves in this
family, the restriction of pn :P → Q to Σ is a finite morphism. Let w ∈ P be any
closed point over z ∈ Q. Let C̃ and C be the restriction of C̃ and C to w and z
respectively. We let ϕ̃ : C̃ → X and ϕ :C → X be the corresponding morphisms,
and D̃ ⊂ C̃ and D ⊂ C be the corresponding marked points, respectively. Then
(f, C,D) is the stable contraction of (f̃ , C̃, D̃<n) relative to f̃ . We first consider

the situation where C̃ is isomorphic to C. Namely, f̃ ∈ P − Σ. Clearly

φw := φ⊗ k(w) : Ext2
C̃

(
[ϕ̃∗ΩX → ΩC̃(D̃)],OC̃

) ∼= Ext2C
(
[ϕ∗ΩX → ΩC(D)],OC

)
is an isomorphism. We claim that the obstruction theory to deformations of ϕ̃ is
identical to the obstruction theory to deformations of ϕ. Indeed, let B be any Artin
ring with residue field k and let I ⊂ B be an ideal annihilated by the maximal ideal
of B. Let B0 = B/I and let ϕ̃0 :D̃0 ⊂ C̃0 → X be a flat family over SpecB0 whose
restriction to the fiber over Spec k is ϕ̃. Let õ be the obstruction to extending ϕ̃0 to
families over SpecB. Similarly, we let ϕ0 :D0 ⊂ C0 → X be the stable contraction
of ϕ̃0 : D̃0,<n ⊂ C̃0 → X and let o be the obstruction to extending ϕ0 to families
over SpecB. By our description of the obstruction theory of FXα,g,n in section 1,
φw(õ) = o. Now let

Ti,w = Exti
C̃

([ϕ̃∗ΩX → ΩC̃(D̃)],OC̃
)

and Ti,z = ExtiC([ϕ∗ΩX → ΩC(D)],OC
)
.

Note that in our situation, T2,z
∼= T2,w and T1,z is canonically a quotient vector

space of T1,w with dimT1,w = dimT1,z + 1. Let h :T1,w → T1,z be the projection.

Let fz ∈ ˆSym•(T∨1,z) ⊗k T2,z be a Kuranishi map of w. Then fw := h∗(fz) ∈
ˆSym•(T∨1,w)⊗k T2,w is a Kuranishi map of w. Now let

ẑ := Spec ˆSym•(T∨1,z)/(fz) ⊂ T̂ := Spec ˆSym•(T∨1,z)

and let

ŵ := Spec ˆSym•(T∨1,w)/(fw) ⊂ Ŝ := Spec ˆSym•(T∨1,w).

Because the normal cones are canonical under flat base change [Vi], the normal
cone

[Cfw ] := [Cŵ/Ŝ ] ∈ Z∗(Vect(T2,w)×k ŵ)
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is the pull back of

[Cfz ] := [Cẑ/T̂ ] ∈ Z∗(Vect(T2,z)×k ẑ)
under the canonical flat morphism ŵ → ẑ. Hence, if we let U = P − Σ, then

R∗U (Φ∗([CV ])) = R∗U ([CṼ ]) ∈ Z∗(Vect(Ṽ)×P U),

where RU : Vect(Ṽ) ×P U → Vect(Ṽ) is the open immersion. Since both Φ∗([CV ])
and [CṼ ] are cycles of identical dimensions, to show Φ∗[CV ] = [CṼ ], it suffices to

show that no irreducible components of [CṼ ] are contained in Vect(Ṽ)×P Σ.
Now we consider w ∈ Σ. Let T1,w and T2,w be as before, and let

fw ∈ ˆSym•(T∨1,w)⊗k T2,w

be a Kuranishi map of w. By the definition of Kuranishi families, there is an
associated family

F : X −→ X and D ⊂ X
of stable morphisms over ŵ. We let X ′ over ŵ be the resulting curve obtained
by stable contracting D<n ⊂ X relative to F . Let X → X ′ be the contraction

morphism and let Σ̂ ⊂ ŵ be g−1(Σ), where g : ŵ → P is a morphism such that F

is the pull back of the tautological family f̃ over P . It follows that [CṼ ] has no
components supported on Σ if and only if for any w ∈ Σ the cycle [Cŵ/Ŝ ] has no

components supported over Σ̂.
Now we prove this statement. Let z = πn(w) ∈ Q, let T1,z and T2,z be as before

and let fz ∈ ˆSym•(T∨1,z)⊗k T2,z be a Kuranishi map of z. Similarly, we let

G : Y −→ X and E ⊂ Y
be the associated family of stable morphisms over ẑ. It follows that there is a
canonical isomorphism X ′ ×ŵ {w} ∼= Y ×ẑ {z}. Now let r ∈ Y ×ẑ {z} be the image
of the P1 ⊂ X ×ŵ {w} that was contracted under X → X ′. Let r̂ be the formal
completion of the total scheme of Y along r. It follows that r̂ is isomorphic to ŵ.
Without loss of generality, we can assume that Y/ẑ can be extended to a family

of nodal curves, say Ỹ, over T̂ . In case the total space of Ỹ is smooth at r, we let
T̂ ′ = T̂ and let R̂ be the formal completion of Ỹ along r. Otherwise, because Ỹ → T̂
is a flat family of nodal curves, by embedding T̂ in T̂ ′ = Spec ˆSym•(T1,z ⊕ k), we

can assume that Ỹ/T̂ extends to an Ỹ ′ over T̂ ′ so that the total space of Ỹ ′ is

smooth at r. Then we let R̂ be the formal completion of Ỹ ′ along r. It follows that
ŵ ∼= r̂ and dim R̂ = dimT1,w. Let p : R̂→ T̂ ′ be the induced projection. Because p

is flat and r̂ = ẑ ×T̂ ′ R̂,

Cẑ/T̂ ′ ×ẑ r̂ ∼= Cr̂/R̂.

However, because r̂ ∼= ŵ and dim R̂ = dim Ŝ, r̂ ∼= ŵ extends to an isomorphism

R̂ ∼= Ŝ. Therefore, there is an isomorphism Cr̂/R̂
∼= Cŵ/Ŝ . Finally, because the

restriction of the composite ŵ ∼= r̂
p→ ẑ to Σ̂ ⊂ ŵ is finite, where Σ̂ is the formal

completion of Σ along w, Cr̂/R̂, and hence Cŵ/Ŝ , has no components supported

over Σ̂. This proves that [CṼ ] has no components supported over Σ and hence [CṼ ]
is isomorphic to the pull back of [CV ] as subcone cycles in Vect(Ṽ). This completes
the proof of the theorem.
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5. Composition laws of GW-invariants

The goal of this section is to prove the composition laws of the GW invariants.
Before we state and prove the theorem, let us introduce some conventions which

we will use. In [Kn], Knudsen described various clutching morphisms, of which two
are basic to the composition laws. We fix a partition g1 + g2 = g and a partition
n1 + n2 = n once and for all. We always assume that g1, g2, n1 and n2 are non-
negative. Let Fg,n be the moduli functor of stable n-pointed genus g curves and let
Mg,n be its coarse moduli scheme. Let S be any scheme, let ξ1 ∈ Fg1n1+1(S) be
represented by the family C1 and let ξ2 ∈ Fg2,n2+1(S) be represented by C2. We
let ξ ∈ Fg,n be the object represented by the family C obtained by identifying the
last marked section of C1 with the first marked section of C2, and set its n-marked
sections to be the first n1 sections of C1 followed by the last n2 sections of C2. In
this way, we obtain the so-called clutching transformation

τ̃g•n• : Fg1,n1+1(S)× Fg2,n1+1(S) −→ Fg,n(S).

If there is no confusion, we will write C = τ̃g•n•(C1, C2). We denote the induced
morphism on their moduli schemes by

τg•n• :Mg1,n1+1 ×Mg2,n2+1 −→Mg,n

and call it the clutching morphism. The other clutching morphism is defined as
follows. Given ξ ∈ Fg−1,n+2(S) represented by the curve C, we obtain a new curve
by identifying the last two marked sections of C and keep the initial n sections. The
resulting curve is in Fg,n(S). We denote this transformation by τ̃g−1,n+2 and denote
the morphism between their moduli schemes by τg−1,n+2 :Mg−1,n+2 −→Mg,n.

Theorem 5.1. Let X be any smooth projective variety. Assume that τi, τ̃i ∈
H∗(X) are elements so that [∆]∨ =

∑k
i=1 τi ⊗ τ̃i is the Künneth decomposition of

the Poincaré dual of the class [∆], where ∆ ⊂ X ×X is the diagonal. Then

(1) For any h1 ∈ H∗(Mg1,n1+1) and h2 ∈ H∗(Mg2,n2+1), we have

ψXα,g,n(ξ1, · · · , ξn, τg•n• ∗(h1 × h2)
∨)

=
∑

α1+α2=α

k∑
i=1

ψXα1,g1,n1+1(ξ1, · · · , ξn1 , τi, h
∨
1 ) · ψXα2,g2,n2+1(ξn1+1, · · · , ξn, τ̃i, h∨2 ) .

(2) For any h ∈ H∗(Mg−1,n+2), we have

ψXα,g,n(ξ1, · · · , ξn, τg−1,n+2∗(h)∨) =
k∑
i=1

ψXα,g−1,n+2(ξ1, · · · , ξn, τi, τ̃i, h∨) .

We now state the composition law at the level of cycles. The numerical version
above is a direct consequence of it. Let π̃αn : FXα,g,n → Fg,n be the transformation

that sends any map in FXα,g,n(S) to the curve obtained by first forgetting the map

and then stable contract the remaining n-pointed curve. Let παn :MX
α,g,n →Mg,n

be the morphism between the respective moduli schemes.
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Theorem 5.2. (1) Assume n1, n2 > 0. We form the fiber products

Zα1α2 −−−−→
∏2
i=1MX

αi,gi,ni+1y (en1+1,e1)

y
X

∆−−−−→ X ×X

and

Wα −−−−→ MX
α,g,ny παn

y∏2
i=1Mgi,ni+1

τg•n•−−−−→ Mg,n ,

where X
∆−→X × X is the diagonal and ek :MX

α,g,n → X is the k-th evaluation
morphism. Then there is a canonical morphism Ψ : ∪α1+α2=αZα1α2 → Wα that is
finite, unramified and dominant. Further,

Ψ∗
( ∑
α1+α2=α

∆!
[ 2∏
i=1

MX
αi,gi,ni+1

]vir)
= (τg•n•)

![MX
α,g,n]vir .

(2) Let Z1 and Z2 be defined by the following fiber diagrams:

Z1 −−−−→ MX
α,g−1,n+2y (en+1,en+2)

y
X

∆−−−−→ X ×X

and

Z2 −−−−→ MX
α,g,ny ταn

y
Mg−1,n+2

τg−1,n+2−−−−−→ Mg,n .

Then the canonical morphism Φ : Z1 → Z2 is finite, unramified and dominant.
Further,

Φ∗
(
∆![MX

α,g−1,n+2]
vir
)

= (τg−1,n+2)
![MX

α,g,n]vir .

We will refer to them as the first composition law and the second composition
law.

We will give a detailed proof for the first composition law in this paper. The proof
for the second is almost identical The only difference with the proof of the second
law is that when n1, n2 > 0 the clutching morphism τg•n• is a closed immersion
while τg−1,n+2 are only locally closed embeddings. Some modifications are required
for these cases, which we will mention at the end of this section.

We first observe that by property (4) of Theorem 4.3, the first composition law
for MX

α,g,n can be obtained from that of MX
α,g,n+1. Therefore to prove the first

composition law it suffices to prove the case when n1, n2 > 0, which we will assume
from now on.

Before we explain the strategy of the proof, let us first recall the notion of Q-
schemes which is a straightforward generalization of Q-varieties in [Mu].

Definition 5.3. We define a Q-scheme to be a scheme Z with the following data.

(1) A finite atlas of charts Zβ
πβ→Zβ/Gβ

pβ→Z, where pβ are étale, Gβ is a finite
group acting faithfully on a quasi-projective scheme Zβ and Z = ∪(Im pβ).

(2) For any pair of indices α and β, there is a chart Zαβ with the group Gαβ =
Gα × Gβ such that there are equivariant finite étale Zαβ → Zα, Zαβ → Zβ
commuting with projection Zα, Zβ, Zαβ → X such that Im(pαβ) = Im(pα)∩
Im(pβ).

(3) For any triple α, β and γ, there is a chart Zαβγ with the group Gαβ = Gα ×
Gβ ×Gγ such that there are equivariant finite étale morphisms from Zαβγ to
Zα, Zβ and Zγ such that in addition to Im(pαβγ) = Im(pα)∩Im(pβ)∩Im(pγ),
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the diagram

Zαβγ −−−−→ Zαβy y
Zαγ −−−−→ Zα

and the other two obtained by permuting the indices are all commutative.

It is known thatMX
α,g,n is a projective Q-scheme. Let β ∈ MX

α,g,n be any point
associated to the morphism f : C → X and let Gβ be its automorphism group.
Then we can find an affine open Zβ acted on by Gβ , a Gβ-equivariant family ξβ ∈
FXα,g,n(Zβ) of stable morphisms so that the classifying morphism Zβ/Gβ →MX

α,g,n

induced by the family ξβ is an étale neighborhood of β ∈MX
α,g,n. For a pair β and

β′, we can take Zββ′ = IsoZβ×Zβ′ (π
∗
1ξβ , π

∗
2ξβ′) (see [DM, p. 84]). For a triple β, β′

and β′′, we can take Zββ′β′′ as a subscheme of Zβ × Zβ′ × Zβ′′ defined similarly.
One can introduce the notion of Q-sheaves of OMX

α,g,n
-modules, or Q-complex, in

the obvious way. A Q-sheaf is a collection of Gβ-equivariant sheaves Fβ on Zβ with
isomorphism Fβ⊗OZβ OZββ′ ∼= Fβ′⊗Zβ′OZββ′ , satisfying the cocycle condition over

the triple overlaps. Given a Q-locally free sheaf E on MX
α,g,n, we can define the

Chern class ci(E) as a cohomological class with rational coefficients, mimicking the
similar definition over Deligne-Mumford stacks. Lastly, if L is a Q-line bundle on
MX

α,g,n and s is a section of L, by which we mean a collection of sβ ∈ H0(Zβ , Lβ)
satisfying the obvious compatibility condition on double overlaps, we can define the
localized first Chern class, denoted c1([L, s]), using the normal cone construction,
mimicking the construction in [Fu, §14.1]. One key observation, which can be
checked directly, is the following. Assume that for some integer k, L⊗k is a line
bundle onMX

α,g,n. Then c1(L
⊗k) = k · c1([L, s]).

The strategy to prove the first composition law is quite simple, at least conceptu-
ally. For any partition α1 +α2 = α, we let τα1α2 :Zα1α2 →MX

α,g,n be the clutching
morphism that sends pairs f1 : C1 → X and f2 : C2 → X to f : C → X , where
C = τ̃g•n•(C1, C2) and f is the obvious induced morphism. Since n1, n2 > 0, τα1α2

is a closed immersion. We will first introduce a Q-line bundle Lα1α2 on MX
α,g,n

and a section fα1α2 such that the Q-subscheme defined by fα1α2 = 0 is the image

scheme of Wα1α2 , τα1α2(Zα1α2). We will construct a Q-line bundle Ln on Mg,n

and a section fn so that f−1
n (0) is the image scheme of the clutching morphism

τg•n• . The significance of these line bundles and sections are given in the following
lemma.

Lemma 5.4. There is an isomorphism of Q-line bundles⊗
α1+α2=α

Lα1α2
∼= (παn )∗Ln

so that under this isomorphism, we have∏
α1+α2=α

fα1α2 = (παn )∗fn.

It follows that τ !
g•n• [MX

α,g,n]vir is

c1((π
α
n )∗[Ln, fn])[MX

α,g,n]vir =
∑

α1+α2=α

c1([Lα1α2 , fα1α2 ])[MX
α,g,n]vir .
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In light of Proposition 3.9, the composition law will follow from

c1([Lα1α2 , fα1α2 ]) = [Zα1α2 ]
vir = ∆!([MX

α1,g1,n1+1 ×MX
α2,g2,n2+1]

vir),

which will follow from establishing the compatibility of the tangent-obstruction
complexes of the corresponding functors.

We now give the details of the proof. We first recall some known facts. In this
section, we will viewMX

α,g,n andMg,n as Q-moduli schemes. We let

{(Vβ , Vβ/Gβ, CVβ )}β∈Λn

be an atlas ofMg,n, where CVβ are the tautological families over Vβ , and let

{(Wβ,Wβ/Kβ, FWβ
, CWβ

)}β∈Λα

be an atlas ofMX
α,g,n, where FWβ

:CWβ
→ X are the tautological families over Wβ .

Assume that for some w ∈ Wβ and u ∈ Vβ′ , CVβ′ |u is isomorphic to the stable con-

traction (i.e. π̃αn ) of CWβ
|w; then there is an étale neighborhood (w̃, W̃β)

π→ (w,Wβ)

such that there is a morphism W̃β
φ−→Uβ′ induced by the transformation π̃αn , where

the family over W̃β is the pull back from Wβ . Similarly, let β1 and β2 be any two

indices and let ψ1 : W̃β1 → Vβ′1 and ψ2 : W̃β2 → Vβ′2 be the so-defined morphisms.

Then there is a canonical lifting ψ12 : W̃β1β2 → Vβ′1β′2 . This follows immediately
from the way the double overlaps are constructed. Another property we need is
the following. Let S be any scheme and X be a family in Fg,n(S). Assume that for
some s ∈ S and u ∈ Vβ , the restriction X|s is isomorphic to the restriction CVβ |u.
Then there is an étale neighborhood (s0, S0)

π→ (s, S) such that there is a morphism
ϕ : (s0, S0)→ Vβ such that ϕ∗CVβ ∼= π∗X and that their restriction to s0 is exactly
the isomorphism X|s ∼= CVβ |u given.

We first introduce Q-line bundles on Mg,m. We fix an integer k ≥ 0 and let
m = n+ k. For any

K = {h1, · · · , hk1} ⊂ Σ , {n+ 1, · · · ,m},
we let K ′ = {h′1, · · · , h′k2

} be the complement of K. Here we assume that both
hi and h′j are strictly increasing. We call K and K ′ a partition of Σ. Given any
K ⊂ Σ, there is an obvious clutching transformation

τ̃K : Fg1,m1+1 × Fg2,m2+1 −→ Fg,n,

where mi = ni + ki. Namely, given C1 ∈ Fg1,m1+1(S) and C2 ∈ Fg2,m2+1(S), we
let τ̃K(C1, C2) be the family obtained by identifying the last section in C1 with
the first section in C2, and set the m marked sections to be the union of all but
the last sections of C1 and all but the first sections of C2. They are ordered as
follows. The first n sections are s11, · · · , s1n1

, s22, · · · , s2n2+1, where {s1i } and {s2j} are

sections of C1 and C2 respectively. We then place s1n1+i in the hi-th place and place

s2n2+j+1 in the h′j-th place. We denote by d : S → C the section of nodal points
along which the gluing is taking place. We call such a nodal section a decomposable
nodal section, and say C is decomposable into families in Fg1,m1+1 and Fg2,m2+1

along the partition K ∪K ′ (or along the nodal section d).
Since n1, n2 > 0, τK is a closed immersion [Kn], the image scheme of τK is a

Q-Cartier divisor. Let {(Uβ, Uβ/Gβ , CUβ )}β∈Λm be an atlas of Mg,m. For each
β ∈ Λm, there is an fK,β ∈ OUβ such that TK,β = {fK,β = 0} is exactly the
subscheme such that the restriction of CUβ to it is decomposable into families in
Fg1,m1+1 and Fg2,m2+1 along the partition K ∪K ′ (see [DM, p. 83]). If TK,β = ∅,
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we will set fK,β ≡ 1. Note that in doing so, we might need to shrink Uβ if necessary.
(In the following, we shall feel free to shrink Uβ and make necessary adjustments
whenever necessary.) By the theory of deformation of nodal points, dfK,β |TK,β is
nowhere vanishing. Furthermore, over Uββ′, there is an fK,ββ′ ∈ O∗Uββ′ such that

fK,β ◦ πUβ = fK,ββ′ · (fK,β′ ◦ πUβ′ ) ,

where as usual we denote by πUβ : Uββ′ → Uβ the projection. Clearly, {fK,ββ′}
satisfies the cocycle condition over the triple overlaps. Hence {fK,ββ′} defines a
Q-line bundle, denoted by LK , and {fK,β} defines a section fK of LK . By our
choice of fK,β, the image Q-scheme Im(τK) is defined in each Uβ by the vanishing
of fK,β .

We now turn our attention to the contraction transformation π̃mn : Fg,m −→ Fg,n
that sends any curve to the curve obtained by first forgetting the last k sections of
the curve and then stable contracting the resulting family. We denote by πmn the
morphism between the corresponding moduli schemes. For each β ∈ Λm, there is
an étale covering πj :Aj → Uβ of Uβ and β′j ∈ Λn such that there is a morphism
πmn,β,j :Aj → Vβ′j induced by the transformation π̃mn . For simplicity, after replacing

Uβ by an étale covering of itself and rearranging the index, we can assume that

Λn = Λm , Λ and that the maps πmn,β,j just mentioned are from Uβ to Vβ , denoted

πmn,β (we allow some Uβ or Vβ to be empty sets). Clearly, πmn,β is Gβ-equivariant,
under the obvious group homomorphism Gβ → Hβ . Let fn,β ∈ OVβ be a section
whose vanishing locus defines the closed subscheme Tn,β ⊂ Vβ , where Tn,β is the
largest subscheme over which the family CVβ decomposes into families in Fg1,n1+1

and Fg2,n2+1. Let

fn,ββ′ = (fn,β ◦ πVβ )/(fn,β′ ◦ πVβ′ ),

where πVβ : Vββ′ → Vβ are the projections. {fn,ββ′} defines a Q-line bundle Ln
on Mg,n and {fn,β} is a global Q-section of Ln whose vanishing locus defines the
image Q-scheme of the clutching morphism

τg•n• :Mg1,n1+1 ×Mg2,n2+1 −→Mg,n .

By [DM, p. 83], there is a nowhere vanishing gβ ∈ O∗Uβ such that∏
K⊂Σ

fK,β = gβ · (fn,β ◦ πmn,β) .

By replacing one fK,β by fK,β/gβ, we can assume that gβ ≡ 1. Then⊗
K⊂Σ

LK = (πmn )∗Ln and
∏
K⊂Σ

fK = (πmn )∗(fn) .

In the next part, for any partition α1 + α2 = α we will construct the Q-line
bundle Lα1α2 on MX

α,g,n and a section fα1α2 of Lα1α2 such that fα1α2 = 0 defines
the image Q-scheme of the clutching morphism τα1α2 . We fix a sufficiently large
m. Let β ∈ Λα and let (Wβ , Kβ, FWβ

, CWβ
) be the chart in the atlas of MX

α,g,n.
Without loss of generality, we can assume that there are sections sn+1,β, · · · , sm,β :
Wβ → CWβ

such that CWβ
with these extra sections is a family of m-pointed stable

curves. We fix such a choice of new sections for each β once and for all. We denote
the resultingm-pointed curve by C̄Wβ

. As we did before, after rearrangement we can
assume that Λα = Λ and that for each β ∈ Λ there is a morphism παm,β :Wβ → Uβ

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



166 JUN LI AND GANG TIAN

such that the pull back of CUβ is isomorphic to C̄Wβ
. We fix such παm,β once and for

all.
Now let β ∈ Λ be an index. We assume that for some partition α1 + α2 = α,

p−1
β (Im(τα1α2)) 6= ∅, where pβ : Wβ → MX

α,g,n is the classifying map. Let w

be a point in this set. Then there is a unique partition K ∪ K ′ = Σ such that
the curve associated to w with the extra sections is in the image of the clutching
transformation τK . Without loss of generality, we can assume that the partitions
K∪K ′ associated to w ∈ p−1

β (Im(τα1α2)) are independent of w. Then the subscheme

Tα1α2,β = {fK,β ◦ παm,β = 0} ⊂Wβ(5.1)

is the closed subscheme such that the restriction of the family FWβ
to Tα1α2,β is in

the image of the clutching transformation

τ̃α1α2 : FXα1,g1,n1+1 × FXα2,g2,n2+1 −→ FXα,g,n.

(Here we might need to shrink Wβ so that any element in {fK,β ◦παm,β = 0} is over

the image of τα1α2 .) We let fα1α2,β = fK,β ◦ παm,β . In case p−1
β (Im(τα1α2)) = ∅, we

set fα1α2,β ≡ 1. Clearly, should there be a unique fα1α2,ββ′ ∈ O∗Wββ′
such that

fα1α2,β ◦ πWβ
= fα1α2,ββ′ · (fα1α2,β′ ◦ πWβ′ )

for all pairs {β, β′}, where πWβ
:Wββ′ → Wβ is the projection, then {fα1α2,ββ′}

would satisfy the desired cocycle condition and then define a Q-line bundle, and
{fα1α2,β} would define a global section whose vanishing locus is the image of τα1α2 ,
as desired. However, for our moduli space MX

α,g,n, it may happen that some
fα1α2,β ≡ 0. Thus the above direct argument needs to be modified. In the following,
we will first thicken the Wβ ’s so that the desired fα1α2,ββ′ are still well-defined.

We fix a two-term complex E• of locally free sheaves such that its sheaf cohomol-
ogy H•(E•) = T •FXα,g,n. Such complexes were constructed in section 4. Over each

Wβ , T •FXα,g,n is represented by a tangent-obstruction complex T •Wβ
of Wβ , and E•

is represented by a two-term complex of locally free sheaves of OWβ
-modules, de-

noted E•β = [Eβ,1 → Eβ,2], such that H•(E•β) = T •Wβ
. Let Eβ be the vector bundle on

Wβ such that OWβ
(Eβ) = Eβ,1. By abuse of notation, we will also use Eβ to denote

the total space of Eβ . Because of the way E• is constructed, there is a canonical
homomorphism of locally free sheaves

ϕβ : Eβ,1 −→ Ext1CWβ /Wβ
(ΩCWβ /Wβ

(DWβ
),OCWβ

)
,

where DWβ
is the divisor of n-marked sections of CWβ

. By the deformation theory,
if we let J ⊂ OEβ be the ideal sheaf of Wβ ⊂ Eβ , embedded via the zero section,

and let Fβ ⊂ Eβ be the subscheme defined by the ideal J2, then there is a family
of n-pointed curves CFβ over Fβ such that the homomorphism ϕβ above is the
Kodaira-Spencer map of the family CFβ along the normal bundle to Wβ in Fβ .
Here by the normal bundle to Wβ in Fβ we mean the subbundle of TFβ|Wβ

that
is the kernel of TFβ|Wβ

→ TWβ. Since the restriction of CFβ to Wβ ⊂ Fβ is CWβ

and C̄Wβ
is smooth over Wβ near its sections, we can extend the last k sections of

C̄Wβ
to sections in CFβ (over Fβ) and place them in the same order as C̄Wβ

has. We

denote the resulting m-pointed curve by C̄Fβ , which is a stable curve over Fβ . Let

π̄αm,β : Fβ → Uβ

be the morphism induced by the family C̄Fβ . Then π̄αm,β is an extension of παm,β :
Wβ → Uβ.
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Now we go back to the partition K ∪K ′ = Σ and the Tα1α2,β defined in (5.1).
We let f̄α1α2,β be fK,β ◦ π̄αm,β ∈ OFβ . Then T̄ = {f̄α1α2,β = 0} is exactly the

subscheme of Fβ such that the restriction of C̄Fβ to T̄ belongs to the image of the
clutching transformation

π̃K : FXα1,g1,m1+1 × FXα2,g2,m2+1 −→ FXα,g,n.

We fix such a C̄Fβ , and then π̄αm,β and f̄α1α2,β for each β ∈ Λ once and for all. Recall
that πWβ

:Wββ′ →Wβ is the projection. Since there is a canonical isomorphism

(πWβ
)∗Eβ ∼= (πWβ′ )

∗Eβ′ ,

Fβ ×Wβ
Wββ′ is canonically isomorphic to Fβ′ ×Wβ′ Wββ′ . We denote this scheme

by Fββ′ . We let πFβ :Fββ′ → Fβ be the projection.

Lemma 5.5. There are φ ∈ OFββ′ such that

f̄α1α2,β ◦ πFβ = φ · (f̄α1α2,β′ ◦ πFβ′ ).

Further, if we let ι :Wββ′ → Fββ′ be the inclusion, then φ◦ι is unique and is nowhere
vanishing. We denote φ ◦ ι by fα1α2,ββ′ . {fα1α2,ββ′} defines a Q-line bundle on
MX

α,g,n and {fα1α2,β} defines a section of this line bundle.

Proof. The existence of φ follows from the fact that the subscheme {f̄α1α2,β ◦πFβ =

0} is identical to the subscheme {f̄α1α2,β′ ◦ πFβ′ = 0}. This is true because both
define the subschemes over which the two families of curves, which are isomorphic
after discarding the last k sections, can be decomposed along the same nodal sec-
tions (see [DM, p. 83]). To show that φ ◦ ι is unique, it suffices to show that
at each w ∈ Wββ′ there is a tangent vector v ∈ TwFββ′ contained in the kernel
of TwFββ′ → TwWββ′ such that d(f̄α1α2,β)(v) 6= 0. Here TwFββ′ → TwWββ′ is
induced by the vector bundle projection Eβ →Wβ . This is true because

Eβ,1 ⊗ k(w) −→ Ext1Cw(ΩCw (Dw),OCw) −→ Ext1r̂(Ωr̂,Or̂)

is surjective. Here Cw is the fiber of CUβ over w, Dw ⊂ Cw is the divisor of n-marked
points, r ∈ Cw is the nodal point where the clutching τα1α2 is taking place and r̂ is
the formal completion of Cw along r. Because fα1α2,ββ′ are unique, the collection
{fα1α2,ββ′} satisfies the cocycle condition on triple overlaps. Therefore it defines
a Q-line bundle on MX

α,g,n, denoted by Lα1α2 . For the same reason, {fα1α2,β}
forms a global section, denoted by fα1α2 , of Lα1α2 such that the image scheme
Im(τα1α2) ⊂ MX

α,g,n is defined over each Wβ by {fα1α2,β = 0}. This proves the
lemma.

Now, we let παn :MX
α,g,n → Mg,n be the stable contraction morphism. Locally,

παn is represented by maps

παn,β = πmn,β ◦ παm,β : Wβ −→ Vβ .

Let παn,ββ′ :Wββ′ → Vββ′ be the lifting of the pair (παn,β , π
α
n,β′), which exists and is

unique. Let fα,β ∈ OWβ
be fn,β ◦ παn,β and let fα,ββ′ = fn,ββ′ ◦ παn,ββ′ ∈ O∗Wββ′

.

Then {fα,ββ′} defines a Q-line bundle, denoted by Lα, which is isomorphic to the
pull back (παn )∗Ln. For the same reason, {fα,β} is a section fα of Lα, which is the
pull back of fn of Ln.
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Lemma 5.6. There is a canonical isomorphism of Q-line bundles ⊗Lα1α2
∼= Lα

such that under this isomorphism, we have
∏
fα1α2 = fα, where the product is over

all possible α1 + α2 = α.

Proof. First note that given any α1 + α2 = α and w ∈ p−1
β (Im(τα1α2)), there

is a unique partition K ∪ K ′ = Σ such that the decomposition of C̄w along the
partition K ∪K ′ is the inverse to the clutching transformation τ̃α1α2 . We denote
this correspondence by α1α2 7→ Kw(α1α2). By making each Wβ small enough,
we can assume that the following two conditions hold automatically for all β ∈ Λ.
First, for w,w′ ∈ p−1

β (Im(τα1α2)) we have Kw(α1α2) = Kw′(α1α2); second, the
map {

(α1, α2)|
α1 + α2 = α and
p−1
β (Im(τα1α2)) 6= ∅

}
−→

{
(K,K ′)|CUβ |u is decomposable along

K ⊂ Σ for some u ∈ Uβ

}
is injective and onto. The first is possible because τα1α2 is a closed embedding. We
define Kβ(α1α2) = Kw(α1α2) for some w ∈ p−1

β (Im(τα1α2)). Hence for each β,∏
K⊂Σ

fK,β = fn,β ◦ πmn,β .(5.2)

Here if K ∪K ′ is not in the image of the above correspondence, then fK,β ≡ 1. To
show that ⊗Lα1α2 = Lα, we need to check

∏
fα1α2,ββ′ = fα,ββ′, which amounts to

proving the identity∏
α1+α2=α

(παm,β ◦ πWβ
)∗fKβ(α1α2),β

(παm,β′ ◦ πWβ′ )
∗fKβ′(α1α2),β′

=
(παn,β ◦ πWβ

)∗fn,β
(παn,β′ ◦ πWβ′ )

∗fn,β′
,(5.3)

on Wββ′ . This is obvious from the previous identity if all quotients are well-defined
and unique. To prove (5.3), we first embed Fββ′ ⊃ Wββ′ into a smooth affine
scheme, say Fββ′ ⊂ R. Without loss of generality, we can assume Wβ , Uβ and
Wββ′ are affine. Let φ :R→ Uβ be a morphism extending the morphism

ψβ : Fββ′
πFβ−−→ Fβ

π̄αm,β−−−→ Uβ .

We claim that there is a morphism φ′ :R → Uβ′ extending ψβ′ : Fββ′ → Uβ′ such
that

pβ ◦ πmn,β ◦ φ = pβ′ ◦ πmn,β′ ◦ φ′ ,(5.4)

where pβ :Vβ →Mg,n is the obvious morphism. Indeed, the morphism φ :R → Uβ
provides a family of m-pointed stable curves over R via pull back. Let it be XR with
the sections {si}. Let ψ∗β′CUβ′ be the pull back of CUβ′ via ψβ′ :Fββ′ → Uβ′ . Then
after restricting XR to Fββ′ and discarding its last k sections, the resulting family
is isomorphic to ψ∗β′CUβ′ as n-pointed curves. We choose k sections s̃n+1, · · · , s̃m
of XR extending the last k sections of ψ∗β′Cβ′ , which is possible because XR is
smooth over R along sections of ψ∗β′Cβ′ . We denote XR with these new sections

(· · · , sn, s̃n+1, · · · ) by X̃R. Then X̃R induces a morphism φ′ :R → Uβ′ that has the
desired property.

Now we show that
∏
fα1α2,ββ′ = fα,ββ′. Because of (5.4) above and because φ′

is induced by the family of curves, we have a unique lifting φ̄ : R → Vββ′ . Then
because R is smooth and because neither fKβ(α1α2),β ◦ φ nor fKβ′(α1α2),β′ ◦ φ′ is

zero, there is a unique rational hα1α2,ββ′ such that

fKβ(α1α2),β ◦ φ = hα1α2,ββ′ · (fKβ′(α1α2),β′ ◦ φ′) .
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Clearly, hα1α2,ββ′ is regular and non-vanishing near Fββ′ ⊂ R. It follows that

∏
α1+α2=α

(fKβ(α1α2),β ◦ φ) =
( ∏
α1+α2=α

hα1α2,ββ′
)( ∏
α1+α2=α

(fKβ′ (α1α2),β′ ◦ φ′)
)
.

(5.5)

Now let τββ′ :Wββ′ → R be the inclusion. Of course, hα1α2,ββ′ ◦ τββ′ ≡ fα1α2,ββ′.
Thus to show that ⊗Lα1α2 = (παn )∗Ln, it suffices to show that

(
∏

hα1α2,ββ′) ◦ τββ′ = fn,ββ′ ◦ παn,ββ′ ,

where παn,ββ′ : Wββ′ → Vββ′ is the projection. Indeed, because
∏
K⊂Σ fK,β =

fn,β ◦ πmn,β ,

gβ := fn,β ◦ πmn,β ◦ φ =
∏

α1+α2=α

fKβ(α1α2),β ◦ φ.

Therefore (5.5) holds with
∏
hα1α2,ββ′ replaced by gβ/gβ′ . Since all terms in (5.5)

are non-trivial and since R is smooth, gβ/gβ′ is regular near Wββ′ and its composite
with τββ′ is identical to the composite of

∏
hα1α2,ββ′ with τββ′ . Finally, because

this term is also the pull back via φ̄ :R→ Vββ′ of fn,β ◦πVβ/fn,β′ ◦πVβ′ , where πVβ :
Vββ′ → Vβ is the projection, its composite with τββ′ is the pull back of fn,ββ′ . This
proves that

∏
fα1α2,ββ′ = fα,ββ′ and consequently ⊗Lα1α2 = (παn )∗Ln. It remains

to show that
∏
fα1α2,β = fα,β . This is true because

∏
K⊂Σ fK,β = fn,β ◦πmn,β . This

completes the proof of Lemma 5.5.

As was explained before, to complete the proof of the first composition law, we
remain to investigate the tangent-obstruction complex of Zα1α2 . We first intro-
duce the functor Fα1α2 so that its coarse moduli scheme is Zα1α2 . For any scheme
S, we let Fα1α2(S) be the subset of FXα,g,n(S) consisting of families f : X → X
such that there are distinguished sections of nodal points d : S → X such that f
are decomposable to pairs of families in FXα1,g1,n1+1(S) × FXα2,g2n2+1(S) along the
nodal sections d. Clearly, Fα1α2 is coarsely represented by a scheme Vα1α2 which
is canonically isomorphic to the Zα1α2 defined before. By forgetting the distin-
guished sections, the resulting transformation Fα1α2 → FXα,g,n defines a morphism

Φ : Zα1α2 → MX
α,g,n. Φ is a closed immersion since n1, n2 > 0 and induces an

isomorphism Zα1α2
∼= Wα1α2 . In the following, we will not distinguish Zα1α2 from

Wα1α2 unless we mention otherwise.
We now give the tangent-obstruction complex of Fα1α2 . Let S be any affine

scheme and let ξ ∈ Fα1α2(S) be represented by f :X → X with the marked divisor
D ⊂ X and the distinguished nodal section d :S → X . Let B•(ξ) be the complex
[f∗ΩX → Ω0

X/S(D)] indexed at −1 and 0, where Ω0
X/S is the quotient sheaf of ΩX/S

by its torsion supported at the distinguished nodal section and f∗ΩX → Ω0
X/S is

induced by f∗ΩX → ΩX/S. Because the first order deformations of nodal curves

with distinguished nodal sections are Ext1X (Ω0
X/S,OX ), from the description of the

tangent-obstruction complex T •FXα,g,n, we see immediately that

T 1Fα1α2(ξ)(F) = Ext1X/S(B•(ξ), π∗SF),

where πS : X → S is the projection, and that there is an obstruction theory to
deformations of Fα1α2 taking values in

T 2Fα1α2(ξ)(F) = Ext2X/S(B•(ξ), π∗SF).
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Now let T̂ be the formal completion of X along d(S). It follows that we have the
long exact sequence

0 −→ T 1Fα1α2(ξ)(F) −→ T 1FXα,g,n(ξ)(F)
c−→Ext1

T̂ /S
(ΩT̂ /S , π

∗
SF) −→

b−→T 2Fα1α2(ξ)(F)−→T 2FXα,g,n(ξ)(F) −→ 0.

Note that Ext1
T̂ /S

(ΩT̂ /S , π
∗
SF) ∼= F . It follows from [DM] that Ext1

T̂ /S
(ΩT̂ /S ,OT̂ )

is isomorphic to the pull back of the Q-invertible sheaf OMX
α,g,n

(Lα1α2) and the

homomorphism b is induced by the differential of the defining equation fα1α2 . Now
let S → Y0 → Y be the triple described in Definition 1.2 and let ξ0 be a family in
Fα1α2(Y0) extending ξ. Let o (resp. õ) be the obstruction class to extending ξ0 to
Fα1α2(Y ) (resp. to FXα,g,n(Y )). A straightforward analysis of the definitions of o
and õ shows that õ = c(o). Next, assume that õ = 0. Namely ξ0 extends to a family

f̃ : X̃ → X over Y . Let h ∈ Ext1
T̂
(ΩT̂ /S , π

∗
SIY0⊂Y ) be the section associated to the

family X̃ → Y . Then it is direct to check that o is the image of h under b (see
[DM]). This proves that the obstruction theory of Fα1α2 and FXα,g,n are compatible
with respect to the defining equation fα1α2 = 0. Finally, following the construction
of the complex E• in the beginning of section 4, we can find complexes E• and F•
such that h•(E•) = T •Fα1α2 and h•(F•) = T •FXα,g,n which satisfy the technical
condition of Proposition 3.9. Therefore, by the argument at the end of the proof of
Theorem 4.2, we can apply Proposition 3.9 to conclude

c1([Lα1α2 , fα1α2 ])[MX
α,g,n]vir = [Zα1α2 ]

vir.(5.6)

In the following discussions, we will abbreviate FXαi,gi,ni+1 to Fαi . It remains
to show that T •Fα1α2 is compatible to the tangent-obstruction complex of
T •(Fα1 × Fα2) with respect to the fiber product

Fα1α2(S) −−−−→ Fα1(S)× Fα2(S)y y
Mor(S,X)

∆−−−−→ Mor(S,X ×X).

(5.7)

Here, given ξ ∈ Fα1α2(S) represented by the map f and the distinguished section
d, the first vertical arrow will send it to f ◦ d : S → X . Similarly, for (ξ1, ξ2) ∈
Fα1 × Fα2(S) represented by the pair of maps f1 and f2, the second arrow will
send it to (en1+1, e1) :S → X ×X , where en1+1 is the (n1 + 1)-th evaluation map
of f1 and e1 is the first evaluation map of f2. Let ξ ∈ Fα1α2(S) be as before.
By decomposing f along its distinguished section d, we obtain a pair of families
{fi :Di ⊂ Xi → X} = ξi ∈ Fαi(S) for i = 1, 2. We let

R•i (ξ) = [f∗i ΩX(−di(S))→ ΩXi/S(Di − di(S))],

where d1 is the last marked section of D1 ⊂ X1 and d2 is the first marked section
of D2 ⊂ X2. Let ιi :Xi → X be the immersion. Then we have the exact sequence

0 −→ ι1∗R•1(ξ)⊕ ι2∗R•2(ξ) −→ B•(ξ) −→ [f∗ΩX ⊗OX Od(S) → 0] −→ 0

and its induced long exact sequence

0 −→Ext1X/S(B•(ξ), π∗SF) −→ ⊕2
i=1Ext1X/S(ιi∗R•i (ξ), π∗SF) −→

h1−→Ext1X/S(f∗ΩX ⊗OX Od(S), π
∗
SF)

h2−→Ext2X/S(B•(ξ), π∗SF) −→(5.8)

−→ ⊕2
i=1Ext2X/S(ιi∗R•i (ξ), π∗SF) −→ 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



VIRTUAL MODULI CYCLES AND GROMOV-WITTEN INVARIANTS 171

It is direct to check that there are canonical isomorphisms

ExtjX/S(ιi∗R•i (ξ), π∗SF) ∼= ExtjXi/S([f∗i ΩX → ΩXi/S(Di)], π
∗
SF)

and

Ext1X/S(f∗ΩX ⊗OX Od(S), π
∗
SF) ∼= (f ◦ d)∗Ω∨X ⊗OS F .

Therefore, (5.8) is the long exact sequence of cohomologies mentioned in Definition
3.8. Now we show that the tangent-obstruction complexes of Fα1α2 and of Fα1×Fα2

are compatible with respect to the defining diagram (5.7). Let ξ ∈ Fα1α2(S) be as
before and let ξi ∈ Fαi(S) be represented by the family fi. We first show that the
canonical homomorphism

T 1(Fα1 × Fα2)(ξ1, ξ2)(F) −→ (en1+1, e1)
∗O(TX×X)⊗OS F −→ (f ◦ d)∗Ω∨X ⊗OS F

is the homomorphism h1 in the exact sequence (5.8). Let S be affine, let F ∈ModS
and let v1 ∈ T 1Fα1(ξ1)(F) be represented by a flat extension f̃1 of f1. Let

f∗1 ΩX f∗1 ΩXy y
0 −−−−→ π∗SF −−−−→ B −−−−→ ΩX1/S(D1) −−−−→ 0

be the associated diagram. We first set B′ to be the sheaf defined by the push-
forward diagram

π∗SF(−d1(S)) −−−−→ B(−d1(S))y y
π∗SF −−−−→ B′ .

Then f∗1 ΩX(−d1(S))→ B′ lifts to f∗1 ΩX → B′. Let B•1(ξ1) = [f∗1 ΩX → ΩX1/S(D)]
and let p(ξ1) be the homomorphism

T 1Fα1(ξ1)(F) = Ext1X1/S

(
B•1(ξ1), π∗SF

) p(ξ1)−−−→ e∗n1+1Ω
∨
X ⊗OS F

that sends v1 to the composite

e∗n1+1ΩX −→ e∗n1+1B′ −→ coker{B(−d1(S))→ B′} ≡ F .

One checks directly that p(ξ1) assigns the flat extension f̃1 to the tangent direction

of f̃ ◦ ẽn1+1, where ẽn1+1 is the (n1 + 1)-th marked section of f̃ . Similarly, we let
p(ξ2) be

p(ξ2) : T 1Fα2(ξ2)(F) = Ext1X2/S

(
B•2(ξ2), π∗SF

)
−→ e∗1Ω

∨
X ⊗OS F

that is defined with f1, etc. replaced by f2, etc. respectively. Then p(ξ1) −
p(ξ2) is the homomorphism h1 in the exact sequence (5.8). Therefore, the induced
homomorphism (en1+1, e1) on the tangent spaces

T 1(Fα1 × Fα2)(ξ1, ξ2)(F) −→ (en1+1, e1)
∗Ω∨X×X ⊗OS F

coincides with (p(ξ1), p(ξ2)), and consequently, its composite with

(en1+1, e1)
∗Ω∨X×X ⊗OS F −→ (en1+1, e1)

∗N∆(X)/X×X ⊗OS F
is p(ξ1)−q(ξ2), after identifying the normal bundle N∆(X)/X×X with TX . Similarly,
it is direct to check that the obstruction classes to extending a given family to
families in Fα1α2 and to families in Fα1×Fα2 are compatible in the sense of Definition
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3.8. Finally, similar to the case studied before, we can construct complexes of locally
free sheaves whose sheaf cohomologies are the tangent-obstruction complexes of
Fα1 × Fα2 required by Proposition 3.9. Therefore, by applying Proposition 3.9, we
have

∆!
(
[MX

α1,g1,n1+1 ×MX
α2,g2,n2+1]

vir
)

= [Zα1α2 ]
vir .(5.9)

Finally, we choose a sufficiently large l such that L⊗lα1α2
and L⊗ln are conventional

line bundles. Then

l · (τg•n•)![MX
α,g,n]vir = c1((π

α
n )∗L⊗ln )[MX

α,g,n]vir

=
∑

α1+α2=α

c1(L
⊗l
α1α2

)[MX
α,g,n]vir =

∑
α1+α2=α

l · c1([Lα1α2 , fα1α2 ])[MX
α,g,n]vir.

By (5.6), the terms in the last summation are l · [Zα1α2 ]
vir. Combined with (5.9),

we obtain

(τg•n•)
![MX

α,g,n]vir =
∑

α1+α2=α

∆!([

2∏
i=1

MX
αi,gi,ni+1]

vir).

This proves the first composition law.
In the end, we will indicate the necessary change needed to prove the second

composition law. Let Z1 and Z2 be the Q-schemes and Φ be the morphism defined
in the statement of the theorem. For convenience, we will consider Z1/Z2 and
Z2/Z2, where Z2 acts on Z1 and Z2 by interchanging the last two marked points
of the curves in MX

α,g−1,n+2 and Mg−1,n+2. Let Z ′i = Zi/Z2. Clearly, Φ factors
through Ψ : Z ′2 → Z ′1. Ψ is a local embedding in the sense that it is finite and
unramified. Let (Ln, fn) be the Q-line bundle and its section on Mg,n such that
fn = 0 defines the image Q-scheme Mg−1,n+2 → Mg,n. We pick a w ∈ Z2 and
let {z1, · · · , zk} = Ψ−1(w). Now let W →MX

α,g,n be a chart ofMX
α,g,n containing

w with the tautological family ξ. We let Ui → Z ′1 be the charts of Z ′1 containing
zi with the tautological family ηi. Recall that each family ηi has a distinguished
section of nodal points. Without loss of generality, we can assume that there are
morphisms ϕi :Ui →W such that ϕ∗i (ξ) = ηi. Now by using the technique of adding

extra sections, we can find an étale covering W̃ → W , k sections g1, · · · , gk ∈ OW̃
and étale covering Ũi → Ui of which the following holds. First, after fixing a

trivialization of Ln over a chart V ofMg,n, the product
∏k

gi is the pull back of fn
under the obvious map W̃ → V ; second, there are morphisms ϕ̃i : Ṽi → W̃ making
the diagram

Ũi
ϕ̃i−−−−→ W̃y y

U1
ϕi−−−−→ W

commutative such that ϕ̃i are embeddings and the image schemes ϕ̃i(Ũi) = {gi =
0}. Using the distinguished section of nodal points in the family ηi, one can con-

struct a Q-invertible sheaf L on Z ′1 such that over the chart Ũi, it is the locally
free sheaf defined similarly to the far right term in (5.2). For convenience, let us
assume that [MX

α,g,n]vir is a cycle R supported on an equidimensional scheme with
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multiplicity. Now let Yi = {gi = 0} ⊂ W̃ and let RW̃ be the pull back of R under

W̃ →MX
α,g,n. Consider the normal cone cycle

[CRW̃×W̃ Yi/RW̃
].

Using the isomorphism ϕ̃i : Ũi → Yi, one can pull back the cycles [CRW̃×W̃Yi/RW̃
]

and patch them together to form a global cycle in the total space of

VectZ′1(L)×MX
α,g,n

R.

We denote this cycle by D, and the zero section of VectZ′1(L)×MX
α,g,n

R by ζ. Then

by studying the tangent-obstruction complex of Z ′1 induced by the defining equation
gi = 0 and that of Z ′1 induced by the defining square of Z1 in the statement of the
theorem, we conclude that

2Ψ∗(ζ∗[D]) = ι∗Φ∗(∆![MX
α,g−1,n+2]

vir),

where ι :Z2 → Z ′2 is the projection. However, it is clear that

ι∗(τg−1,n+2)
![MX

α,g,n]vir = 2c1([(τ
α
n )∗(Ln), (ταn )∗(fn)])(R).

Therefore, the second composition law will follow from

c1([(τ
α
n )∗(Ln), (ταn )∗(fn)])(R) = Ψ∗(ζ∗[D]).

But this can can be checked directly. This proves the second composition law.
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