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VIRTUAL MODULI CYCLES AND GROMOV-WITTEN
INVARIANTS OF ALGEBRAIC VARIETIES

JUN LI AND GANG TIAN

INTRODUCTION

The study of moduli spaces plays a fundamental role in our understanding of
the geometry and topology of manifolds. One example is Donaldson theory (and
more recently the Seiberg-Witten invariants), which provides a set of differential
invariants of 4-manifolds [Do]. When the underlying manifolds are smooth alge-
braic surfaces, then they are the intersection theories on the moduli spaces of vector
bundles over these surfaces [Li], [Mo]. Another example is the mathematical the-
ory, inspired by the sigma model theory in mathematical physics ([W1], [W2]), of
quantum cohomology. The quantum cohomology uses the GW-invariants, which
are the intersection numbers of certain induced homology classes on the moduli
spaces of rational curves in a given symplectic manifold. This is a generalization
of the classical enumerative invariant which counts the number of algebraic curves
with appropriate constraints in a variety. The first mathematical foundation of
quantum cohomology was established by Ruan and the second named author in
[RT1] for semi-positive symplectic manifolds, which include all algebraic manifolds
of complex dimension less than 4, all Fano manifolds and Calabi-Yau spaces. In
[RT2], general GW-invariants of higher genus are constructed to establish a mathe-
matical theory of the sigma model theory coupled with gravity on any semi-positive
symplectic manifolds (also see [Ru] for the special cases). There are some related
works we would like to mention. In [KM], Kontsevich and Manin proposed an ax-
iomatic approach to GW-invariants, and in [Ko2], Kontsevich introduced the notion
of stable maps to study GW-invariants. There are also works dealing with special
classes of Fano varieties, such as homogeneous manifolds (cf. [BDW], [Ber], [Ci],
M), [LT]).

Now let us discuss the new issue in intersection theory raised from studying
GWe-invariants, and more generally the Donaldson type invariants. The core of
an intersection theory is the fundamental class. For a manifold (or a variety), the
ordinary cup product with the fundamental class given by the underlying manifold
provides a satisfactory intersection theory. However, for the GW-invariants, which
should be an intersection theory on the moduli space of stable maps, we cannot
take the fundamental class of the whole moduli space directly. This is because
the relative moduli space (i.e., the family version) in general does not form a flat
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120 JUN LI AND GANG TIAN

family over the parameter space. One guiding principle of our search of a “good”
intersection theory is that such a theory should be invariant under deformation of
the underlying manifolds. In [Do], [RT1], [RT2], the authors employed analytic
methods to construct “good” intersection theory using generic moduli spaces (they
are almost always non-algebraic).

Abiding with algebraic methods, we don’t have the luxury of having a “generic
moduli space”. Instead, we will construct directly a cycle in the moduli space,
called the virtual moduli cycle, and define an intersection theory by using this
cycle as the fundamental class. Such a construction commutes with Gysin maps.
In this paper, we will construct such a cycle by first constructing a cone cycle
inside a vector bundle, which functions as a normal cone, and then intersecting this
cone cycle with the zero section of the vector bundle. To make this construction
sufficiently general, we shall carry it out based on the moduli functor solely. The
data we need is a choice of tangent-obstruction complex of the moduli functor,
which is a global obstruction theory of the moduli problem. The virtual moduli
cycle depends on the choice of such a complex, so does the virtual intersection theory
defined. The so-constructed intersection theory will have the following invariance
property. Given a family of moduli functors, namely, a relative moduli functor, if
we assume that the tangent-obstruction complex of the relative moduli functor and
that of the specialized moduli functor are compatible, then the specialization of the
virtual intersection theory on the relative moduli space is the same as the virtual
intersection theory of the specialized moduli space. Applying to the moduli space
of stable maps from n-pointed nodal curves into a smooth projective variety X, we
can define the GW-invariants of X purely algebraically.

We now describe briefly the key idea to our construction. When we are working
with a moduli space, usually we can compute its virtual dimension. However, the
virtual dimension may not coincide with the actual dimension of the moduli space.
One may view this as if the moduli space is a subspace of an “ambient” space cut
out by a set of “equations” whose vanishing loci do not meet properly. Such a
situation is well understood in the following setting: let

zZ — X

Y
y 2w
be a fiber square, where X, Y and W are smooth varieties and subvarieties. Then
[X] - [Y], the intersection of the cycle [X] and [Y], is a cycle in A, W of dimension
dim X +dim Y —dim W. When dim Z = dim X +dim Y —dim W, then [Z] = [X]-[Y].
Otherwise, [Z] may not be [X] - [Y]. The excess intersection theory tells us that
we can find a cycle in A,.Z so that it is [X] - [Y]. We may view this cycle as the
virtual cycle of Z representing [X] - [Y]. Following Fulton-MacPherson’s normal
cone construction, this cycle is the image of the cycle of the normal cone to Z in X,
denoted by Cyz/x, under the Gysin homomorphism s*: A, (Cy,w Xy Z) — A.Z,
where s:Z — Cyw Xy Z is the zero section. This theory does not apply directly
to moduli schemes, since, except for some isolated cases, it is impossible to find
pairs X — W and Y — W so that X Xw Y is the moduli space and [X] - [Y] so
defined is the virtual moduli cycle we need.
The strategy to our approach is that rather than trying to find an embedding
of the moduli space into some ambient space, we will construct a cone in a vector
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VIRTUAL MODULI CYCLES AND GROMOV-WITTEN INVARIANTS 121

bundle directly, say C C V, over the moduli space and then define the virtual
moduli cycle to be s*[C], where s is the zero section of V. The pair C C V will
be constructed based on a choice of the tangent-obstruction complex of the moduli
functor. (The definition of tangent-obstruction complex is given in section 1.)

Let M be a moduli space. We first construct its tangent-obstruction complex,
which usually comes from studying obstruction theory of the moduli problem. For
a large class of moduli problems, their tangent-obstruction complexes are the sheaf
cohomologies of complexes of locally free sheaves

5. = [51 — 52]

Assume that M belongs to this class of moduli problems. Then at each closed
point w € M,

T1 =5 (E* @oy k(w))
is the tangent space T,,,M and
Ty = h*(E* Qo k(w))

is the obstruction space to deformations of w in M. Here h*(E®) is the i-th sheaf
cohomology of the complex. There is an “intrinsic” set of defining equations of the
germ of M at w, namely, the Kuranishi map

f:Sym®(Ty) — Sym®(T)) := lim &}, SY(T)).
Note that if we denote by @ the formal completion of M along w, then [La]
W = Spec Sym*® (T}) Dgyime (1y) K-

The normal cone to w in SpecSym®(T})) is canonically a subcone in @ xj, Tp. We
denote this cone by C,,. The virtual normal cone we seek will be a cycle [C] in
ZVect(Es), where Vect(&) is the vector bundle over M so that its sheaf of sections
is &. Then [C] is uniquely determined by the following criterion. At each w € M,
there is a surjective vector bundle homomorphism

Vect(E) X pm 0 — Vect(To) X 1,

where To = h?(€® ®o,, k(w)), that extends the given homomorphism & —
h2(E* ®o,, k(w)) such that the restriction of [C] to Vect(£2) X pq @ is the pull
back of Cy. In short, the virtual normal cone is the result of patching these lo-
cal normal cones defined by the Kuranishi maps of the moduli space. The virtual
moduli cycle [M]V" is then defined to be the image of [C] in A, M via the Gysin
homomorphism

s A Vect(E) — A M.

The GW-invariants are defined by applying this construction to the moduli spaces
of stable morphisms from nodal curves to X.

Theorem. For any smooth projective variety X, and any choice of integers n and

g and o € A1 X/ ~ag, there is a virtual moduli cycle [Mi{gm]m € ArX ®z Q,
X

where k is the virtual dimension of Mg .. Using this cycle, we can define the

GW-invariants

\I/X : (A*X)Xn X A*Mg,n — A*Mi{,g,n Kz Q

a,g,n
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122 JUN LI AND GANG TIAN
in the usual way. Let z/Jgf)g)n be the composite of ¥ with the degree homomor-
phism A*Mgig)n — Q. Then z/Jgf)g)n are invariant under deformations of X and
satisfy all the expected properties of the GW-invariant, including the composition
law.

X
«,g,n

The construction of the virtual moduli cycle [M | ]*"" is the main purpose of
this paper. The proof of the composition law is almost straightforward, following a
similar process as in [RT1]. Since maps in ./\/lgf ¢,n May have non-trivial automor-
phisms, our classes may have rational coefficients. The approach to this problem is
the usual descent argument. In the end, we obtain a cycle supported on an effec-
tive cone over Mgf g,n nside a Q-vector bundle. The virtual moduli cycle is then
the image of the Gysin map as described before. The resulting class is of rational
coefficients.

This construction of virtual cycles was finished in early 1995. During the AMS
summer meeting held at Santa Cruz, July, 1995, the first named author reported
this work. In his talk, he described the ideas of our construction of virtual moduli
cycles and the definition of GW-invariants. After the talk, S. Katz kindly informed
the first named author that he had studied the problem of constructing virtual
moduli cycles and obtained some partial results in special cases [Kzl]. During the
preparation of this paper, we learned that K. Behrend and B. Fantechi had given
an alternative construction of virtual moduli cycles [BF]. Also as an application, K.
Behrend defined GW-invariants and proved the basic property of these invariants
[Bh]. A similar idea can be applied to constructing symplectic invariants for general
symplectic manifolds.

The layout of this paper is as follows. In section one, we introduce the notion
of tangent-obstruction complexes of functors, which is a global obstruction theory
of the moduli functors. We then describe the tangent-obstruction complex of the
moduli functor of stable morphisms. The next two sections are devoted to the
construction and investigation of the virtual normal cone of any tangent-obstruction
complex. In sections 4 and 5, we will construct the GW-invariants and prove some
basic properties of these invariants, including their deformation invariance and the
composition laws.

The first named author thanks W. Fulton and D. Gieseker for many stimulating
discussions. Part of this work was done when the second named author visited the
Department of Mathematics, Stanford University, in the winter quarter of 1994.
He would like to thank his colleagues there for providing a stimulating atmosphere.
We thank the referee for many comments and suggestions.

1. TANGENT-OBSTRUCTION COMPLEX

In this section we will introduce the notion of tangent-obstruction complexes of
moduli functors. Such a notion was implicit in many earlier works and should be
viewed as another way of presenting deformation theory.

In this paper, we will fix an algebraically closed field k of characteristic 0 and
will only consider schemes over k.

We first define the functor of tangent spaces. Let S be the category of all schemes
and let §:S — (sets) be a (contravariant) moduli functor. Here we call § a moduli
functor if for any S € S the object §(S) is the set of isomorphism classes of flat
families of objects (to be parameterized) over S. For our purpose, we will introduce
an associated functor, called the pre-moduli functor of § and denoted by §P*°. For
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VIRTUAL MODULI CYCLES AND GROMOV-WITTEN INVARIANTS 123

any S € S, §°"(S) is the set of all flat families of objects (to be parameterized)
over S. Note that we do not take isomorphism classes in this case. Following the
convention, for £,& € F(S) we will denote by & = & the case when & and &
are isomorphic and denote by ~ the equivalence relation induced by 2. Hence
F(S) = FP*(S)/ ~. In this paper, for S € S we let Modg be the category of
sheaves of Og-modules. For ' € Modg, we denote by Sy the trivial extension of S
by the sheaf A/, ! and denote by mar: §P™(Sn) — FP™(S) the restriction morphism
induced by the obvious inclusions S C Sy. Given 1y € FP*(S) and (1, (2 € ijfl (o),
we say (1 =, (2 if there is an isomorphism p: (; = (2 so that its restriction
A (p) im0 = no is the identity isomorphism. Now we define the functor of tangent
spaces. For any affine S € S and 7y € FP*(S), we let TF(no) : Mods — (sets)?
be the functor that assigns N to the set 77;/1 (o) modulo the equivalence relation
induced by the isomorphism =, . In short, 7§(ny) consists of all isomorphism
classes of 77 € FP™(Sn) whose restriction to S is 9. In case ny = 7, then there
is a canonical isomorphism of sets 7§ (no) and 7F(n;). This way, for n € F(S)
we obtain an isomorphism class of functors Fg(no) : Mods — (sets)?. It is clear
that if p:S; — S5 is a morphism between affine schemes and if A € Modg, and
Na € Modg, are two sheaves with Og,-homomorphism Og, ®o, N2 — N1, then for
any 72 € F(S) with 71 = §(p)(n2) the induced object in F(S1), there is a canonical
morphism

T§(n2)(N2) — TF(m) (M),

satisfying the base change property. Note that when § is represented by a scheme
Y and 5 € F(S) is represented by a morphism f:S — Y, then

TF()N) =T (Homs(f*Qy, N)).
In this case, 7§(n) is a functor Modg — Modg.

Assumption. In this paper, we will only consider the moduli functor § such that
TF is induced by a sheaf-valued functor over fibered category of modules over
schemes over §. Namely, for any affine S € Modg, n € F(S) and N' € Modg
the set TE(n)(N) is canonically isomorphic to the set of all sections of a sheaf of
Og-modules, denoted by T'F(n)(N), and the arrows (above) in the base change
property are induced by sheaf homomorphisms

T'§(12)(N2) ®os, Os, — T'§(m) (M)

In the following, we will call 7'F the functor of tangent spaces. We remark
that we have not exhausted the literature to see how restrictive this assumption
is. Nevertheless, the moduli functors that will be discussed in this paper all satisfy
this condition.

Next, we recall the definition of an obstruction theory. An obstruction theory
to deformations of p € F(Spec k) with values in a vector space O is an assignment
as follows. Given a pair (n € §(Spec B/I),I C B), where B is an Artin ring
with the residue field k, I C B is an ideal annihilated by the maximal ideal of
B and n ®p,r k = p, the obstruction theory assigns a natural obstruction class
ob(n, B/I,B) € O whose vanishing is the necessary and sufficient condition for n
to be extendible to 77 € F(Spec B). We now introduce its relative analogue.

1By this we mean Sy = Spec(I'(Og) *T'(N)), where I'(Og) *'(N\) is the trivial ring extension

of T'(Og) by I'(NV). Note that there is an inclusion S — Sy and projection Sy — S so that
S — Sy — S is the identity. (See [Ma, p. 191].)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



124 JUN LI AND GANG TIAN

Definition 1.1. Let £ = {K,;} be a collection of sheaves of Og-modules K, in-
dexed by n for S € S and n € F(S). We say that K is a sheaf over § if for any
morphism f:7 — S of schemes, there is an isomorphism f*/C,, = K¢+, canonical
under base change.

Definition 1.2. An obstruction theory of the moduli functor § with values in a
sheaf obe over § consists of the following data: let S be any affine scheme, let
S — Yy — Y be schemes and embedding morphisms over S. Namely, Yy — Y is
an embedding and 7: S — Yj is a section of Yy — S. Let m be the ideal sheaf of
S CY and let Z C Oy be the ideal sheaf of Yy C Y. Assume that Z-m = 0. Then
for any n € §(Yo), there is an obstruction class

ob(n,Yy,Y) € I's(oby, ®0sZ),

where no = i*(n) € F(S5), whose vanishing is the necessary and sufficient condition
for 1 to be extendible to 77 € F(Y). We call ob(n,Yp,Y) the obstruction class
to extending 1 to Y. The obstruction class is canonical under base change: let
o : 5" — S be another morphism, Y’ a scheme over S’ with a section ¢’ and
f:Y’ — Y a morphism such that

f f

Y —— Y Y —— Y
R
S — S s —2 5 5

are commutative. Let Y] = Yy Xy Y’ and let ’ € F(S’) be the pull back of n. Let
g:0*(0by, ®0sTy,cy) — oby ®o,, Ly cy: be the obvious homomorphism. Then

Ob(nlv }/O/a Y/) = g(Ob(T]a YOv Y))

Example. Let X C A" be a subscheme defined by the ideal I = (f1,..., fm).
Let §x be the functor Mor(—, X) and let C* be the complex [Ox (TA™) - O%™]
where o = (df1,... ,df;). Then for any affine S, morphism 7:S — X and sheaf
N € Movs, T T x(n)(N) is the first sheaf cohomology of *C* ®0 4 N. The defining
sections f1,..., f;, define an obstruction theory of the functor §x with values in
coker(o) (see section 2 for an explicit description).

Example ([Al]). This example concerns the moduli of stable sheaves £ on a smooth
algebraic surface X of a fixed Poincaré polynomial y. Here we implicitly fix an
ample divisor on X. We denote the corresponding moduli functor by §,. For any
affine S € § and n € §,(S) representing the sheaf £ of Ox xg-modules, then

T'F(MWN) = Extsy x/5(E,E @TEN),
where the superscript means the traceless part of the extension sheaf. The canonical

obstruction theory of § takes values in the sheaf xt%, (€, €)°.

Let ob,e be the sheaf in Definition 1.2. For simplicity, we will use the convention
T2F(n)(N) = ob, ®os N and T*°F = [T'F — T>F|, where the arrow is the
zero homomorphism. By the assumption of this section, 71§ (n)(N) is a two-term
complex of sheaves of Og-modules connected by the zero arrow.

Definition 1.3. Let § be as before. A tangent-obstruction complex of § is a
complex 7°F = [T1F — T25], where the arrow is the zero arrow, such that 71§ is
the functor of the tangent spaces of § and that there is an obstruction theory of §
taking values in 72§. The tangent-obstruction complex 7*F is said to be a perfect
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VIRTUAL MODULI CYCLES AND GROMOV-WITTEN INVARIANTS 125

tangent-obstruction complex if for any affine S and n € F(S), there is an affine
covering {S,} of S such that there are two-term complexes of locally free sheaves
&2 such that for any N' € Movs,, 7'F(na)(N) is the i-th sheaf cohomology of
&, ®os, N, where 1, € §(S,) is the induced object of n via S, — S. In case the
complex E® is explicitly given, we will write 7°F = h*(E*).

We emphasize that the obstruction theory is part of the data making up the
tangent-obstruction complex. This notion is a convenient way to group the data of
tangent spaces and obstruction theory. It will be clear later that when the tangent-
obstruction complex is perfect, then the classical construction of Kuranishi maps
can be adopted to construct the relative Kuranishi families, which is the heart of
the construction of virtual moduli cycles.

Remark. The assumption that § admits a perfect tangent-obstruction complex
is a strong requirement. For instance, moduli functors of stable vector bundles
over threefolds other than Calabi-Yau manifolds may not have perfect tangent-
obstruction complexes.

In this paper, our main interest is in the moduli spaces of stable morphisms from
marked curves to smooth projective varieties. Let X be a fixed smooth projective
variety. We first recall the notion of stable morphisms introduced by Kontsevich
[Kol]. An n-pointed nodal curve is a nodal curve C' and n ordered marked points
D C C away from the singular locus of C' (we will use D to denote the n-ordered
marked points on C' in this paper). A morphism f: D C C' — X is said to be stable
if D C C'is an n-pointed connected nodal curve and f:C — X is a morphism such
that

Homc(Qc(D), Oc) — Homc(f*ﬂx, Oc)

is surjective, where f*Qx — Q¢(D) is induced by f*Qx — Qc. We will call f
stable relative to D or simply stable if the marked points D C C' are understood.

From now on, we fix a class @ € A1 X/ ~alg and two integers n and g. We
let Sg{gm : S — (sets)? be the functor that assigns any S € S to the set of all
isomorphism classes of flat families over S of stable morphisms

f+Dcx —X

from n-pointed connected nodal curves D C X of arithmetic genus g to X such
that f sends the fundamental classes of closed fibers of X over S to a. Since X is
a smooth projective variety, by the work of [Al], §§ g,n 18 coarsely represented by a

projective scheme. We denote this scheme by M§ g,n- 1t is also known that §§ gn
is represented by a Deligne-Mumford stack [FP].

In the following, we will determine the natural tangent-obstruction complex of
Si{gm. We fix an affine scheme S and a sheaf N € 9Modg. Let £ € Sfig)n(S’) be
represented by f:X — X with marked sections D C X. Let XV be a flat family
of nodal curves over Sy, where Sy is the trivial extension of S by N, that extends

the family X. Then we have a commutative diagram of exact sequences

0 —— Ox ®os N —— Qxn;s®0,y Ox — Qxyg —— 0

H [ £

0—>(’)X®OSJ\/—> Oxn — Oy — 0,
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where d and dy are the differentials. The upper sequence is exact because XV is
a family of nodal curves flat over Sy, following Theorem 25.2 in [Ma]. Conversely,
given any exact sequence of sheaves of Ox-modules

0 —— Ox ®os N ¢ Qx/s — 0,
we obtain a pull-back from the S-homomorphism d: Ox — Qx/s:
0 —— Oy ®sN C QX/S 0
H [
0 —— Ox ®sg N B Ox 0.

One checks that there is a canonical way to give B a sheaf structure of Og, -algebras,
which is flat over Sy automatically. Thus we obtain a flat family X N over Sy. One
checks also that this correspondence is one-to-one and onto. This is the one-to-one
correspondence between the space of flat extensions of X — S to XY — Sy and
the module

EXt}Y/S (QX/Sa Ox ®og ./\/) .

Next we investigate when such an extension X~ admits a morphism f~: XV —
X extending f:X — X. We claim that such an f~ comes from the existence of an
Ox-linear lifting f*Qx — Qy~/5®0,,y Ox of the obvious f*Qx — x/s. Indeed,
given fV restricting to f, we certainly have such a lifting from
(FN)"Qx — Qanys and  (fY)*Qx @0, Ox = f*Qx.
Conversely, given any diagram
[ Qx [ Qx

(1.1) 5| |

0 —— Ox@sN —— B —— Qyg —— 0,

we first obtain a flat extension X of X and an isomorphism B = Qv ;s ®0 ,y Ox
based on the bottom exact sequence. Observing that

Ox —1 = f.(Ox)
lf* (8)od lf* (@)

[ Qxnv s ®0,x Ox) —— fi(Qx/s)
is commutative, we can factor f.(3)od and v through Ox — f.(Oxn~), because

f«(Oxn) —  [f«(Ox)

lf* (dx) lf* (@)

f(Quanys ®o,n Ox) —— fulQxys)

is a pull-back diagram. One checks directly that Ox — f.(Oxn~) is a homomor-
phism of sheaves of S-algebras. Therefore, it defines a morphism f&V : XN — X
that is an extension of f: X — X.

In conclusion, we have shown that for any affine S € S and £ € ng 5,0(S) that
corresponds to the family f : X — X, the tangent ngf,g,o at £ takes N' € Modg
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to the set of all commutative diagrams of Oy-modules (1.1). This set is naturally
the first extension module

EXt}Y ([f*QX - QX/S]voX Rog N) )

where [f*Qx — Qx/s] is a complex indexed at —1 and 0. We should point out
that in [Ral], Z. Ran has identified the deformation space and the obstruction space
of this moduli problem to the above diagram and has expressed them in terms of
extension modules over non-commutative rings. He actually treated more general
cases. Based on [Ra] and the above reasoning, we only need to check that the set of
diagrams above is canonically isomorphic to the above extension module. This can
be checked by using hypercohomology of a double complex based on a covering of
Xs and a locally free resolution of Qx,, similar to the example in [GH]. We leave
the details to the readers.

Now we give the tangent of the functor FX

a,g,n’

Proposition 1.4. Let S be any affine scheme and let £ € FX . (S) be represented

a,g,n

by f: X — X with marked points D C X. Then for any N € Modg,
T'EN g n(©WN) = Eathy s ([f*Qx — Quys(D)], Ox @0, N) .

Proof. We will sketch the proof of one direction and leave the other to the readers.
Given any section in the above sheaf, we can associate to it a diagram

Oy —— [f*Qx

! l

0 —— Ox®osN —— A —— Qys(D) —— 0

l ! H

0 —— Ox(D)®os N —— B —— Qx/s(D) —— 0,

where the lower left square is the push-forward of sheaves of Oxy-modules. The
last line (tensored by Ox(—D)) defines an extension XV, Since f*Qx — Qx,5(D)
factors through Qx5 C Qx,/5(D), f*Qx — B factors through B(—D) C B, and
thus defines a morphism f~ : XV — X. The immersion DV — XN extending
D — X is determined by the data coker{.A — B}. In this way, we have constructed
an extension

fNeDNcxh —X of f:DcX —X.

It is routine to check that this correspondence is one-to-one and onto, and satisfies
the required base change property. This proves the proposition. O
We now describe the standard choice of the obstruction theory of §§ gn-

Proposition 1.5. For any S € § and n € Sé{g)n(S) corresponding to the family

f:X — X over S with the marked sections D, we define ob,, to be the sheaf
Exty s([f*Qx — Qu/s(D)], Ox).

We let obe be the collection {oby,} indexed by n € F(S) for S € S. Then obe forms
a sheaf over Sgig,n. Furthermore, there is an obstruction theory of Sgig,n taking

values in the sheaf ob,.
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Proof. Tt is clear that {ob,} is a sheaf over §§ g.n- Now we describe the obstruction
theory taking values in this sheaf. Let S be any affine scheme and let S — Yy — Y
be a tuple of S-schemes described in Definition 1.2 (namely, S — Yy — Y are
embeddings and the ideal sheaf of Yy C Y is annihilated by the ideal sheaf of
S cCY). Let n € Fa,,.(Yo) be any object corresponding to a family fo: Xy — X
with marked points Dy C X, understood. We let X = Xy xy, S, D = Dy Xy, S
and f = fo|5. We let 7:X — S be the projection. Since Z := Ty, cy is annihilated
by the ideal sheaf Zg-y, Z is a sheaf of Og-modules. Clearly, Dy C Xy can be
extended to a family over Y, say D C X. Since X — Y is a flat family of nodal

curves, we obtain an exact sequence
(1.2) 0 — Zxycx — Quys ®oy Ox, — Qx, s — 0.
Let 7(X) € Hom(f5Qx,Qx,,s) be the obvious homomorphism and let
7(X) € Extly, (f*Qx,7°T)
be the image of 7(X’) under the connecting homomorphism
Hom(f§ Qx, Qayy5) —— Extly, (feQx, Tapcx) = Extl(F*Qx, 7°7).

Here the second identity holds because fi{lx is locally free. It follows that 7(X) = 0
if and only if fiQx — Qx, /s lifts to f7Qx — Qx/s ®o, Ox,. This can be shown

by similar arguments in studying T§§ g)n(n) that it is the necessary and sufficient

condition for fy: Xy — X to be extendible to f: X — X. We let
ob(n, Yo, Y) € Ext%([f*Qx — Qx,5(D)], 7°T)
be the image of 7(X') under the obvious homomorphism

Extﬁg(f*QX,fr*I) — Extgg([f*QX — Q5] T
Ext% ([f*Qx — Qz/5(D)], 7I).

S]ﬂ
i

To complete the proof, we need to check that the definition of ob(no, Yo,Y) is
independent of the choice of extension D C X, ob(ng, Yp,Y) has the required base
change property and is the obstruction to extending f to Y. Since the choice of
the marked points of the nodal curve is irrelevant to extending fy to f and since
the definition of ob(ng, Yy, Y) is independent of the choice of the marked points, to
study the obstruction problem, it suffices to look at the situation where D = .
We will assume this in the rest of this section. We now check that ob(ng, Yp,Y) is
independent of the choice of the extension X. Indeed, let X’ be another extension
over Y. Then by the deformation theory of nodal curves, there is an extension class
v E Exti;(Q;;/S, 7*T) defining the exact sequence

(1.3) 0—717T—A—Qp5—0,
of which the following holds. Let

(14) 0— (ﬁ*I)®2 I Q/\’/S Pox OXO S3) A — QXO/S —0
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be the exact sequence induced by (1.2), (1.3) and Qx,/s5 — 2%,5. Then the bottom
exact sequence in

0 —— (L)% —— Qx5 ®0, Oxy @A —— Qs — 0

(1.5) (L l ‘

0O— I — B — Qx5 — 0,

where the left square is the push forward of sheaves, is isomorphic to the exact
sequence

(1.6) 0—>7TF*Z—>QX//S®0X/ OXO_’QXO/S_’O-
Therefore, 7(X') = 7(X) + 6o(v), where
So:Hom(f*Qx, Qg g) — Ext!(f*Qx, 7°T)

is the obvious connecting homomorphism, and hence the images of 7(X') and 7(X”)
in Ext%([f*Qx — Qx/s],7*I) coincide. This proves that ob(no, Yo,Y) is well-
defined. For the same reason, the class ob(-, -, ) satisfies the required base change
property.

It remains to show that ob(ng, Yy,Y) is the obstruction to extending 7 to Y.
Obviously, if 1y can be extended to n € ﬁi{_g,n(Y), say f:X — X, we can take X to
be the extension of Xy and then 7(X') = 0 by construction. Hence ob(ng, Yy, Y) = 0.
Now assume ob(7g, Yp,Y) = 0. Because of the exact sequence

Exti;(Q)g/S,?r*I) N Exti;(f*QX,?r*I) — Ext}([f*QX — Qgp/s],7I) — 0,

7(X) is B(—v) for some v € Extig(ﬂ)g/s,?r*l). It follows from the deformation
theory of nodal curves that we can find an extension X’ over Y (of Ap) such that
the diagrams of exact sequence (1.3)-(1.6) hold. Hence 7(X’) = 7(X) + B(v) = 0,
which implies that f extends to f': X’ — X. This proves that ob(ng, Yp,T) is the

obstruction class to extending 7 to Y. O
In section 4, we will show that T'Sgi ¢.n 18 a perfect tangent-obstruction complex
of X n-

2. RELATIVE KURANISHI FAMILIES

In this section, we will construct the relative Kuranishi families of a perfect
tangent-obstruction complex. We will show that any two such families are equiva-
lent under an explicit transformation. This will be used to construct virtual normal
cones and cycles of moduli spaces in the next section.

We begin with the notion of relative tangent-obstruction complex and the obser-
vation on how defining an equation induces the relative tangent-obstruction com-
plex. In this section, we assume that S is an affine scheme and Z is a formal
S-scheme with a section i : S — Z so that as sets Supp(Z) = Supp(i(S)). We
further assume that there is a finite rank locally free sheaf F of Og-modules such
that Z is embedded in Spec Sym®(F). (Recall Sym®(F) = lim._ B S™(F).)

Definition 2.1. Let Z/S be as before. A perfect relative tangent-obstruction com-
plex is a two-term complex [£; % &) of locally free sheaves of Og-modules for which
the following hold.

(1) The cokernel of £ % &Y is isomorphic to Qz/5 ®o, Os.
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(2) Let O = cokero. Then there is a relative obstruction theory to extending
S-morphisms to Z with values in O.

Here, an obstruction theory to extending S-morphisms to Z is an assignment that,
to each tuple of S-schemes S — Y, — Y described in Definition 1.2 and any
S-morphism ¢q:Yy — Z, assigns a canonical obstruction class

ob(¢o,Y0,Y) € I's(O ®og Iy,cy)
to extending g to Y — Z.

In this paper, for a scheme W, we often need to consider the formal completion
of W x W along its diagonal. We denote this completion by W. We will view W
as a W-scheme where 7: W — W is induced by the first projection of W x W. We
will denote by pw : W — W the projection induced by the second projection of
W x W. Note that there is a canonical section W — W of m:W — W induced by
the diagonal embedding W — W x W.

Lemma 2.2. Let W be a quasi-projective scheme. Assume that W admits a per-
fect tangent-obstruction complex Ty, = h*(E®). Let S C W be a locally closed sub-
scheme. Then Ty, canonically induces a perfect relative tangent-obstruction complex
of W xw S/S, denoted by ’TV{/XWS/S.
Proof. Since W is the formal completion of W x W along its diagonal,
QWXWS/S ®OW><WS Os = Qw Row Og.

Now let S — Yy — Y be a tuple of S-schemes as before. Assume that ¢q:Yy —
W xw S is an S-morphism. Then py o ¢g is a morphism from Yy to W. Clearly,
o extends to an S-morphism ¢:Y — W xw S if and only if py o ¢y extends to
Y — W, which is possible if and only if the obstruction

ob(pw © @0, Y0, Y) € Ts(h*(£° ®o,, Os) ®os Tyycy)

vanishes. Hence ob(pw o ¢g, Yp,Y) is the obstruction to extending ¢g to Y. |

To relate a Kuranishi family to an obstruction theory, we need to investigate how
defining equations induce a perfect relative tangent-obstruction complex. Before we
proceed, let us introduce the convention that will be used throughout this section.
In this section, S will always be an affine scheme. Let & and & be two locally
free sheaves of Og-modules. We will assume throughout this section that I'(&;) are
free I'(Og)-modules. We will denote by A the ring I'(Og) and by E; the free A-
module T'(&;). Given an A-module N, we will denote by Sym®(NN) the inverse limit
lim &7 S (N) of the direct sum of the symmetric products of N. In this section,
we will always use M to denote Sym®(E)). We denote by M; C M the ideal
generated by EY C M and denote by M}, the ideal M. For any A-homomorphism
F:EY — M, sometimes denoted F € M ® 4 F», we will use (F') to denote the ideal
of M generated by the components of F'. We now fix an F: Ey — M. We assume
(F) C M;. Let 0: Ey — FE3 be the dual of EY — M;/My = EY which is induced
by F. We let O = coker(o).

We now describe how F' induces a relative tangent-obstruction complex to de-
formations of S-morphisms to Z. Let S — Yy — Y be a tuple of S-schemes as
before and let po: M/(F) — I'(Oy,) be an A-homomorphism. Let g: M — I'(Oy)
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be a lift of M — M/(F) — I'(Oy,). Clearly, Ey EMiI‘((’)y) factors through
OIE%/ — F(Iyocy). Let
Ob((po, Y(), Y) €0 XA F(Zyocy)
be the image of o under the obvious Fs ® 4 I'(Zy,cy) — O @4 T (Zy,cy). We claim
that this is the obstruction to extending Yo — Z toY — Z. Assume ob(gg, Y, Y) =
0. Then o lifts to an h: EY — I'(Zy,cy). Let h: M — TI'(Oy) be the induced
homomorphism. It follows that g — h: M — T'(Oy) factors through M/(F) —
I'(Oy). Thus ¢q extends. The other direction is clear. We leave it to the readers to
check that such an assignment of obstruction class is canonical under base change.
Definition 2.3. Let Z/S be as before. Assume that 135 = he (&) is a perfect
relative tangent-obstruction complex of Z/S. A relative Kuranishi family of 7, s =
h*(€®) is a pair (F, ®), where
F:E) — M and ® : Specy M/(F) — Z,

for which the following hold.

(1) @ is an S-isomorphism.

(2) The complex £* is identical to the sheafification of the complex E; 7+ Es

induced by F.

(3) The induced relative tangent-obstruction complex (from F') is identical to the
relative tangent-obstruction complex 77,5 = h*(£*).

If the choice of the complex 72, ¢ = h*(E*) is understood from the context, we

will simply call (F, ®) a Kuranishi family and call F' a Kuranishi map.
The relative Kuranishi families of 7, s = he(E*), if they exist, are not unique.

Let (&,m) € Auta(M) x Homy(E2, M ® 4 E2) be a pair such that
(2.1) E=1y mod Mo and n=1lg, mod M.

We will show momentarily that if (F,®) is a relative Kuranishi family, then the
pair (F’,®’) defined by

Fr=((ly@n)oE®1p))(F) and & =dof

is also a relative K}lranishi family. Here, {®1g, and 1), @7 are maps from M ® 4 s
to M ® 4 FEs and £ is the induced morphism

Spec, M/(F') < Specy M/(n(F)) = Specy M/ (F),
We will denote the pair (F’,®") above by (£,n)(F,®). We will call those (£,7)

satisfying (2.1) transformations. Given two transformations (£,n) and (¢',7n'), we
define

(5777) ’ (517"7/) = (5 © 517 (1M & 77) © (f ® 1E2) ° (1M ® 77/))
It follows that
((53 77) ) (5/777/))(F7 (I)) = (é.v 77)((5/777/)(1:7 (I)))

Let K be the set of all relative Kuranishi families and let H be the set of all
transformations. It follows that H is a group acting on K.

Proposition 2.4. Let Z/S be as before and let TZ'/S = h*(E*) be its perfect relative
tangent-obstruction complex. Then the set IC of all relative Kuranishi families is
non-empty and the group H acts transitively on K.
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We let Fy : B — M be the map EY — EY C M induced by 0:& — & in
the complex £°. As before, we denote by (Fy) the ideal in M generated by the
components of Fy. Let J; = (Fy) + M. Since coker{c"} = Qz/g, there is a
canonical S-morphism

Oy : Specy M/ J, — Z

such that the isomorphism between Q(spec 11/.7,)/5 @Ogpec 11/, Os and 27,5 ®0, Os
induced by ®; is the identity map.
The existence part of Proposition 2.4 follows from the following Lemma. Recall
0= coker{El — EQ}
Lemma 2.5. Let the notation be as before. Then there are sequences Fy, € M® o Fs
and @y :Spec M/((Fy) + My) — Z, where k =1, -, for which the following hold.
(1) F € M ®4 E> and ®1:Specy M/J1 — Z are given as before.
(2) F — Fr_1 € M, ® Es.
(3) Let Ji, = (Fg)+Mgy1. Then the image of Fy, in (Jg—1/(Mgs1+Jp—1-M1))®4
O (using quotient E5 — O) is the obstruction class
o = ob(Pp_1, M/ Jp—1, M/(Myy1 + Jr—1 - My1))
to extending ®p_1 to Spec M/ (My41 + Jx—1 - M1) — Z.

Proof. We prove the lemma by induction. Assume that we have constructed a
sequence F1, ..., Fy_ satisfying the property of the lemma. We let

Iy = Mpy1 + Jp—1 - My C M.

Note that M/Jx_1 is a quotient ring of M/I;_; and its kernel Jx_q/I;_1 is
annihilated by the ideal M;. We let fy_1 be the residue class of Fj_; in
(Jg—1/ (Mg + I—1)) ® 4 E>. We claim that the sequence

(h1,h2)

(J—1/Ip—1) @4 Es =" (Ji—1/ (M + I—1)) @4 Eo & (Ji—1/Ip—1) @4 O
(2.2) — (Jg—1/ My +1-1)) ®4 O — 0
is exact. Indeed, since hs is surjective and has kernel (Ji—1/I;—1)®@aIm{E; — Es},
the cokernel of (hq, he) is the cokernel of

(Jk—1/Ip—1) @4 Im{Ey — Eo} — (Jp—1/ (M + I—1)) @4 Eo,

which is the last non-zero term in (2.2). Now we consider (fx—1,0x) in the middle
group of the above exact sequence. By the induction hypothesis and the base change
property of obstruction class, the images of f;—1 and o in (Ji—1/(Mr+1Ix—1))®40
are the obstruction class

ob(®p_1, M/ Jp—1, M /(M + Ix—1)),
hence they coincide. It follows that there is an f € (Jy—1/Ir—1) ®a F2 such
that its image under (hq,hs) is (fx—1, 0k). N9w we chopse Fj,. We first select an

F] € Jx—1 ®4 E5 so that its residue class is fy. Since fi = fx—1 mod M}, which
by definition is the residue of Fy_1 in (M/(My + Ix—1)) ®a Es, it follows that

F,; — Fp_1 € My + Jep_1 - M.

Therefore, we can find an Fy so that Fj, — Fy_1 € My and F, — F}, € Jp—1 - I—1.
Let Ji = (F)) + Mg41. It remains to show that ®;_; extends to an S-morphism

Dy : Specy M/ Jy — Z.
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Because of the obstruction theory, it suffices to show that under ho the residue class
of Fi, in (Jg—1/Ix—1) ®4 Eo is mapped to the obstruction class o, because then
the obstruction class

ob(®p_1, M/ Jp—1, M/ Jy)

will be the image of Fy in (Ji—1/Jk) ® 4 O, which will be zero. But this is exactly
the condition imposed on Fj in our selection. This proves that ®;_; lifts to &y as
desired. Finally, it follows from Fy41 — Fy, € My that lim F, = F € M ® 4 E5 exists
and F' — F, € My. Also, since @1 is an extension of ®, the limit im &) = & :
Specy M/(F) — Z is an S-morphism. This proves the lemma. |

To complete the existence part of Proposition 2.4, it remains to show that ® is
an isomorphism and the induced perfect tangent-obstruction complex from (F, )
is identical to 72,5 = h*(£°). We now show that ® is an isomorphism. By our

technical assumption, Z embeds in Spec Sym®(H) for some finitely generated free
A-module H. Without loss of generality, we can assume that rank H = rank F.
Let N = SpecSym® (H), let Ny C N be the ideal generated by H C N and let
N = Nf. We let K C N be the ideal of Z C Spec N. Let ®*: N/K — M/(F) be
the ring homomorphism induced by ®. Because ® induces an isomorphism between
Uty Onyry A and Qn g @y A, @* induces an isomorphism N/(K + Np) =
M/((F)+ Ms). It follows that we can find an A-isomorphism ¢: N — M such that
¢(K) C (F)and ¢/K:N/K — M/(F)is ®*. We now show that ¢(K) = (F). Let k
be the least integer so that ¢(K )+ M1 # (F)+ M. Clearly, k must be at least 2.
Let J = ¢(K)+Mp41. Since J+My, = (F)+My, ((F)+Mj;)/J is annihilated by M;.
Now let o be the obstruction class to extending I'(Oz) = N/K — M/((F) + M)
to I'(Oz) — M/J. Because such an extension does exist, we have o = 0. On the
other hand, since J C (F) - M1 + M1, by the definition of F' the obstruction o is
the residue of F in (((F) + My)/J) ®4 O. Hence

Fe ((F)+ M) @aIm{Ey — Ex} +J C ((F) - My + Myy1) +J = J.

This implies that (F') + My+1 = J, contradicting our assumption that J # (F) +
My.41. This proves that ¢(K) + My = (F) + My, for all k, and hence ® is an
isomorphism. The proof that the tangent-obstruction complex of (F, ®) is Z'/ g =
he(£*) is straightforward, and will be omitted. The existence part of Proposition
2.4 is proved.

Now we study the group action on K. We first check that if T = (£,n) € H
and (F,®) € K, then T(F,®) € K. Let (F',®') = T(F,®). Because of the
base change property of the obstruction class, it suffices to show that the sequence
(F}, ®},) = (F',®') satisfies the three properties listed in Lemma 2.5. Indeed,
in case T = (§,1p,), properties 1, 2 and 3 in Lemma 2.5 are obviously satisfied.
Property 3 also holds because £: M — M induces an isomorphism between (F')+ M,
and (F') + My, for all k. This shows that (§,1g,)(F,®) € K. Now we consider
(1pr,m) € H. Let F' = n(F). Then since (F) = (F') C M, properties 1 to 3 in
Lemma 2.5 hold for (F’,®’) as well. This proves that (£,n7) = (1,7) - (£,1) acts on
K.

Lemma 2.6. H acts transitively on K.

Proof. Let (F,®) and (G, ¥) be any two elements in K. By definition, we know that
(F,®) = (G,¥) mod M,. Now assume that thereis a k > 2 so that (F, ®) = (G, V)
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mod Mj,. We will show that there is a transformation (£,n) € H satisfying £ = 1,/
mod M, such that (&,n)(F,®) = (G,¥) mod Mj41.

Let Jix—1 = (F)+ My, which is (G) + My, by the assumption. Let I—1 = M1+
Ji—1+M; and let fi and gx be the residue classes of F and G in (Jg—1/Ix—1) @4 Ea
respectively. Let

B:(Jk—1/Ik—1) ®a Ea — (Jg—1/Ik—1) ®4 O

be the obvious homomorphism. By definition, 3(f%) and 3(gx) are the obstruction
classes to extending ®y_; = W¥y_q : Specy M/Jy_1 — Z to Specy M/I;_1. Tt
follows that 5(fx) = B(gx), and hence

fe— gk € (Jg—1/Ix-1) @4 Im{Ey — Es}.

Let t € M ®4 E5 be a lift of fk — k. Then F, — G —t € I,_1 ®4 E>. On the
other hand, since M ® 4 In{E; — E2} C J1 ®4 E2 C M1 ®4 Es,

te(Jr1-Jx-1)®a Eo CIi—q1 ®4 Fo.

Therefore f—gi € Ix—1®4 E>. This implies that for some n € Homa(Ea, M ® 4 E2)
satisfying property (2.1), we have G — n(F) = 0 mod My4q1. Hence J, = (F) +
M1 = (G) + My41.

Next we analyze ®; and Uy. Let @, ¥y : T'(Oz) — M/J; be the homo-
morphisms of rings induced by ®, and Wy respectively. Then since ¢ = Yy
mod My, there is a D € Dera(I'(Ogz), Jp—1/Jx) such that ¢ = ¢ + D (see
[Ma, p. 191]). Since (Jz—1/Jx) - M1 = 0 and since ®; induces an isomorphism
between Qz/s ®0, Os and Qy,s ®o, Os, where Y = Spec, M/Jy, there is a
Dy € Dery(M/Jy, Jp—1/Jk) so that 1 = (id + Dg) o ¢. Since id + Dy is an
isomorphism of M/Jj that is the identity modulo My, there is an isomorphism
&:M — M so that £ = 1p; mod My, £(Jx) = Ji and the induced homomorphism
M/ J, — M/ Jy is exactly id 4+ D.

The transformation (£, n) is not quite what we want, since it satisfies the relations

G=n(F) mod Mg and U=>0o0f mod Myy;.

To obtain 7 so that G = ((1a ®7) o (€ ® 1,))(F), we instead look at the relative
Kuranishi family (F’,®") = (£, 1g,)(F, ®). Then since

(F',®) = (F,®) = (G,¥) mod My,

by the previous argument we can find an n € Hom 4 (FEq, M ® 4 E9) satisfying (2.1)
so that G =n(F’) mod M.

Now we apply induction on k. The previous argument shows that there is a
sequence of transformations T € K so that if we let Sy = Ty o --- o Ty, then
Se(F,®) = (G,¥) mod Myy1. Let Ty be (&,nmk). Since & = 1p mod My,
&k o -+ 0 & converges to an automorphism £ : M — M. & satisfies the property
(2.1). Now let (F',®') = ({x0, 11, ) (F, ®). For the same reason, there is a sequence
M, € Homy (Fa, My ®4 Es) so that if we let Hy = F’ and Hygy1 = (1g, + 0 ) (Hg),
then G = Hpy1 mod Mgyi. Applying the Artin-Rees lemma to the ideal L =
(F") C M, we can find an integer ¢ so that

LMy 0 M = MI~(LM; N Mf)
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for any n > c¢. Let Ly = (Hy). Since L is isomorphic to Ly under an isomorphism
of M, the same identity holds with L replaced by L. Then since

nk(Hy) = Hyy1 — Hy, € Homy (Ea, Ey) @4 (L My 0 MY),
for k > ¢, we can assume that the 7, have already been chosen so that
M € Homa (B, Ey) @4 M{ ¢

With this choice of n, the composite (1g, + nx) -+ (1g, + n1) will converge to
an 7 € Homy(FE2, M ®4 E») such that 1., = 1g, mod M; and G = e (F).
Therefore, (€, Moo ) (F, @) = (G, V). This proves Lemma 2.6 and Proposition 2.4.

O

Corollary 2.7. Let Z/S and 7T, Z/S = h*(&®) be as in the situation of Proposition
2.4. Let T C S be a closed subscheme. Let W = Z xg T and B =T(Or). Then
17 2/ canonically induces a relative perfect tangent-obstruction complex TW/T =
h® (5’ ®os Or). Further, if (F,®) is a relative Kuranishi family of 13s, then
F'=F ®4 B and the restriction of ® to Spec N/(F'), where N = M ®4 B, is a
relative Kuranishi family of T, /S =h*(&* ®oy Or).

Proof. This is obvious from the proof of Lemma 2.5. O

Before we close this section, we will point out the relation between the relative
Kuranishi families and the Kuranishi families in the usual sense. Let S and 7§ =
h*(E®) be an affine scheme and a perfect tangent-obstruction complex of S. Let
Z be the formal completion of S x S along its diagonal and let 7, / s =b%(&%) Db
its induced perfect relative tangent-obstruction complex. Let (F,®) be a relatlve
Kuranishi family of this complex. In the following, we will localize (F,®) and
compare it with the usual Kuranishi maps.

Let ¢ € S be any closed point and let m C A be the maximal ideal of ¢ € S. Let
A = lim A/m™, let E’i =FE, 04 Aandlet M =M @4 A be their respective formal
completions. We denote by Z the formal completion of Z along Z x5 {g} and by
S the formal completion of S along ¢g. Then 7, T, s = h*(& ') canonically induces

a perfect relative tangent-obstruction complex 72 / ¢ =b%(FE %), Obviously, (F,®)
induces a Kuranishi family

FEM@AEQ and & : Spec M /(F) —

of TZ'/S he(E*).

Now we turn to the usual Kuranishi families. For simplicity, we assume & ®oy
k(q) is isomorphic to h2(E®) R, k(q). Let T; = £ ®o4 k(q). Then T is the tangent
space T,S. The complex 7§ induces an obstruction theory to deformations of ¢ in

S taking values in Ty. Now let B = Sym*(T})) and let
feBeR Ty and ¢ : SpecB/(f) — 8

o~ oA

—Z

be a Kuranishi family (cf. [La]). In the following, we will construct a pair (f, @)
from (f, o) analogous to (', ®). Let I € B®y,B be the ideal generated by a®1—1®a
and let B = lim B ®, B/I™. Let p1,p2:B — B be the homomorphisms defined by
p1(a) = a®1 and pa(a) = 1®a. For f € BRyTs given before, we denote by p1(f) the
image of f under p1 ® 17,: BTy — By Ty. As before, we denote by (p1(f)) C B
the ideal generated by the components of p1(f). We let C = B/(p1(f)). C is an
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fl-algebra via A = B/(f) — C induced by p1. Let f = pa(f). Tt follows that
Spec C/(f) is the formal completion of S x S along its diagonal. Because Z is the
formal completion of S x § along its diagonal, we obtain a canonical S-isomorphism

(2.3) & : SpecC/(f A)iZA

Now let Ic C C be the ideal generated by the images of I C B ® B. Note that
Cllc = A. We consider the complex of A-modules

F* = [(Io/12)Y — T> @y 4]
indexed at 1 and 2, where the arrow is the dual of df : Ty ® A — I¢/I%. Since
H~'(Hom 4(F*, A)) = Qp/(s), there is an isomorphism of complexes
(2.4) Hom 4(E*, A) = Hom 4(F*, A)

so that their induced isomorphism on H~! is the canonical isomorphism between
Qg and Qp/(y). Namely, we have the commutative diagram

H_l(HomA(E",A)) _ Qg

~| |=

H~Y(Hom (F*, A)) —— Qp(s).

Let (r1,72) : E* — 13", where r; : E; — Fj are the corresponding isomorphisms.
Since £ ® 4 k and E* ®4 k are Ty X—QTZ, we can choose 72 so that its tensoring
with k is the identity of T,. We now compare the pairs (f, @) and (F,®). Let
&:C — M be the A—isomorphism induced by the dual of By — (IC/I%)V and
let n1:Ts ®p A — E’z be 7“2_1. Then our choice of r; and o guarantees that

((1M®771)0(§1®1T2))(f)EF mod My and  po& =& mod M,
where & :Spec M /(F) — Spec C/(f) is the isomorphism induced by ;.
Lemma 2.8. There is an A—isomorphism £&C — M and

n € Hom 4 (T, @ A M ®4 E»)
satisfying
(2.5) £E=¢& mod My and n=m mod M,
such that

(g @noEeln)(f)=F ad $of=9,
where, as usual, & is the isomorphism induced by &.
Proof. The proof is parallel to that of Lemma 2.6. The difference is that in this
case we can only compare the obstruction classes when they lie in h*(E® ® 4 k) or
in bQ(F" ® 4 k), because the identification (2.4) is canonical only after tensoring
k. We proceed as follows. Let mg C C and m{ C M be their maximal ideals,
and let J, = IZ -m k L'c ¢ and Ji = My - 6k '« M. Assume that there are
£x—1:C — M and 77k—1 € Hom 4 (T2 @ A, M ®4 E») satisfying (2.5) such that

(L @m—1) 0 (Erm1 @ 17,))(f)=F mod J,  and  ¢o&_1 =& mod Jj.
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We consider the residue classes
or = residue of f in (((f) + J)/((f) - mo + Jit1)) @k To;
of, = residue of F'in (((F)+ JL)/((F)-wmy + J; 1)) @ To.

Because f and F are the (relative) Kuranishi maps, they are the obstruction class
to lifting

AP0, — C/(H+T)  to A= C/(f) mo+Jis)
and the obstruction class to lifting

A0, — M/(E)+J;)  to A M/(F)-my+ Jii),

where ps is induced by Z — S x § 22 S It follows that they must coincide under

the isomorphism

(((F) + Te)/(f) - mo + Jig1)) @k To = ((F) + Jp) /(F) - m) + Jiyy)) @k T

induced by £x_1. The remainder argument is a repetition of the proof of Lemma
2.6, and will be omitted. This proves the lemma. O

3. VIRTUAL NORMAL CONES

In the first part of this section, for any quasi-projective scheme W and a perfect
tangent-obstruction complex 7;}, = h*(€*®), we will construct a virtual normal cone
CE" C Vect(E;). Here Vect(&;) is the vector bundle on W so that its sheaf of
sections is £&. By abuse of notation, we will not distinguish a vector bundle with
the scheme of its total space. The cone C¢ will be the restriction to W of the
normal cone to the zero locus of a relative Kuranishi map in its graph. Based on
the property of the relative Kuranishi families, we will show that C¢" is unique (as
a scheme). Because of this, this construction can be applied to the moduli functors
represented by Deligne-Mumford moduli stacks.

We begin with an affine scheme S and a perfect tangent-obstruction complex
7$ = h*(€°). Let Z be the formal completion of S x S along its diagonal. We
continue to use the convention adopted in the previous section. Namely, A = T'(Og),
E; = T'(&;), which are assumed to be free A-modules, and M = Sym*(EY). We let
N = Sym*(EY). Let (F,®), where F € M ®4 Es, be a relative Kuranishi family
of 72, = he(£°®). It is clear that F' extends to an A-homomorphism N — M of
A-algebras. We let I'r C Spec N ® 4 M be its graph. We let j:S — Spec N be the
obvious section and let

t=j3xgl:SpecM =S xgSpec M — Spec N ® 4 M.

We view ¢ as the 0-section of Spec N ® 4 M — Spec M. In the following, we will
view Z as a subscheme of Spec M via the isomorphism Spec M/(F) = Z. Tt follows
that

L(Z) = 1—‘F XSpec N® 4 M L(SPQCM).

We let N'F' be the normal cone to +(Z) in T'r. NF is canonically embedded as
a closed subcone in Vect(€) X g Z, which is the normal bundle to «(Spec M) in
Spec N @ 4 M. Finally, we let C¢" be the restriction of N'F to S:

Cg. ZNF Xzs.
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Remark. The cone N'F is the normal cone to Z in Spec M, denoted C7/ $pec > and

CcE =y /Spec M X z S. However, using the graph description it is clear how these
cones are canonically embedded in the vector bundles Vect(€3) x g Z and Vect(&2),
respectively.

Lemma 3.1. Let (F,®) and (G, ¥) be two relative Kuranishi families of T3 =
he(E°®). Then as subschemes of Vect(E2) X g Z,

NF XstNG Xzs.

In particular, the cone CE° C Vect(&2) does not depend on the choice of the relative
Kuranishi families.

Proof. By Proposition 2.4, there is a transformation (£, 7) € H so that (£, n)(F,®) =
(G, ). Let 0 be the automorphism of N ® 4 M defined by

a® 1 n"(a) and 1®@b—1®E(D).
Here, " : N — N ® 4 M is the homomorphism induced by
'€ Homy (Fy, M @4 Fs)

such that n=ton = 1g,. Let 0 :Spec N ®4 M — Spec N ®4 M be the induced
isomorphism. Clearly, ¢ preserves t(Spec M) and induces an isomorphism between
I'r and I'. Hence 0 induces an isomorphism, denoted 0*, of the normal bundle to
t(Spec M) in Spec N ® 4 M with itself. It follows that 6, induces an isomorphism
between N* and N'¢. Finally, because n = 1g, mod M; and ¢ = 1) mod Mo,
the restriction of 6, to Vect(£2) C Vect(E2) x5 Z is the identity homomorphism.
Therefore, N¥' x ; 8§ = N x z S. This proves the lemma. O

We will call C€" C Vect(E,) the virtual normal cone of the tangent-obstruction
complex 78 = h*(E*).

Lemma 3.2. Let the notation be as before. Assume F® = [F1 — Fa] is another
complez of locally free sheaves so that T§ = h*(F*). Assume further that there is a
surjective homomorphism of complexes F* — E° such that the induced isomorphism
of their sheaf cohomologies h®(F*) = h*(E®) is the identity, using the isomorphisms
he(F*) = T3 = h*(E°%). Let po: Fa — & be one of the homomorphisms and let
C(p2): Vect(Fa) — Vect(E) be the induced submersive morphism. Then

Clp) 1(C*") = C7".
Here by C(p2)~1(CE") we mean CE" X Vect(£2) Vect(Fa).

Proof. This is a local problem. By shrmklng S if necessary, we can assume that
there is an isomorphism F* = £°* @ [0F* 5 q 0% so that the given F* — &°
is the obvious projection. Let Fy : By — M be a relative Kuranishi family of

T3s = b°(E°). Let M’ = Sym*(A®®) and let Fp: A®* — M’ be induced by
id: A% — A®a Then

Fiol+1@F:E &A% — Mo M

is a relative Kuranishi family of 7} s = h*(F*). A direct computation on nor-

mal cones shows that C%" is the pull back of C¢" under the obvious projection
Vect(Fy) — Vect(E,). This proves that C(p2) " (C€") = C7". O
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Let ¢ € S be any closed point, let 71 = T,S and To = h?(€°®) ®o, k(g). Then
7¢$ provides an obstruction theory to deformations of ¢ in S. As in section 2, we
let S be the formal completion of S at ¢, let f:Ty — B, where B = Sym®(T}), be
a Kuranishi map. Let C/ be the normal cone to Spec B/(f) in Spec B. It follows
from the above Remark that C/ is canonically embedded in Vect(T3) xj S.

Lemma 3.3. Let the notation be as above. Then there is a quotient vector bundle
map j:Vect(E2) xg S — Vect(Tz) x S extending the given quotient map

Vect(€2) x5 {q} = Vect(E; @04 k(q)) — Vect(T)
so that as subschemes in Vect(E2) X g S,
(Vect(€2) x5 S) Xyeqy(ryy g CF = 8 x5 CF".

Proof. We first consider the case where dim7T, = rank&,. Then we are in the
situation of Lemma 2.8 and its proof. We continue to use the notations introduced
there. Let R; = Spec M, let 47 : S — R1 be the obvious section induced by
S — Spec M and let Fe M@AEQ be the image of F under M ® 4 Fs — M@AEQ.
We let Ry = Spec C' C Spec B, iy: S — Ry be the section induced by a ® b — ab
and let f € C ®y, Ty be the image of the Kuranishi map f:7, — B under

p2 X1,
BrTy, — B, B®,Ty — C®y Ty,

where pa(a) = 1 ® a. Let Vi = Spec(Sym*(EY)) and Va = Spec(Sym®(Ty @ A)).
Let Oy, be the 0-section of V; — S. Tn the proof of Lemma 2.8, we have shown that
there is an isomorphism

K:VixgR — VaxgRy

for which the following holds. First, it induces an isomorphism between Oy, X g 1
and Oy, X g Ro, and induces an isomorphism between the graphs I' . and I' 7 Second,
let

@1 (Vect(E2) x5 S) x g Ri — Vect(T») x Ry

be the induced isomorphism between the normal bundle to Oy, x g R1 in V1 X g Ry and
the normal bundle to Oy, X g R2 in V5 X g R2. Then the restriction of v to the fiber
over the closed point of R; is the identity homomorphism between Vect(€2) x g{q} =
Vect(E2 oy k(q)) and Vect(Tz).

Now let NV} be the normal cone to Spec M /(F) in Ry and let N3 be the normal
cone to Spec C/(f) in Ry. Note that A7 and A5 are canonically embedded in V; Xg
Spec M /(F) and in Vs X ¢ Spec C/(f), respectively. Let @ be the restriction of ¢ to
Vect(E:)x sSpec M /(F). @ is an isomorphism between Vect(E) x &Spec M /(F) and
Vect(Ty) x Spec C/(f). Since K preserves the O-sections and the graphs, @(N;) =
N5 and hence

SB(Nl ><Spccl\}[ S’) :N2 XSPECC S’

Since the term inside the parentheses on the left hand side is C€" x g S, to prove the
lemma, it suffices to show that the right hand side is Cf. Let 7:Spec C' — Spec B
be the morphism induced by a +— 1 ® a. Clearly, 7 is flat and

Spec C' Xspec B Spec B/(f) = Spec C/(f).
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It follows from [Vi, p. 639] that C¥ xgpec 5 Spec C = Na. Therefore
NQ XSpecC S = Cf X Spec B SpecC X SpecC S’ = Cf

This proves the lemma in case rank& = dim7%. In general, by shrinking S if
necessary we can find a complex F*® and an isomorphism of complexes £°® & F* &

[A®a i A®9] such that a = rank & — dimT5. Then the general case follows from
Lemma 3.2 and the situation just proved. This proves the lemma. O

Since dimI'y = rank &;, we have dim C' =rank&;. This proves
Corollary 3.4. The cone CE" is equidimensional and has dimension rank &1 .

Corollary 3.5. Assume that we have two complexes E* and F* so that h*(E®) =
T$ and h*(F*) = T3. Assume further that there is a surjective homomorphism
p:Fa — & so that the following diagram is commutative:

Fo —— TZ(0g)

d H

52 —_— TS?(OS)
Then as cycles, we have
Clp)([C%]) = [CT] € Zu(Vect(F2)).
Here C(p): Vect(Fa) — Vect(Es) is the induced morphism on vector bundles.

Proof. Let g € S be any closed point. Lemma 3.3 says that there are quotient
vector bundle homomorphisms

1 : Vect(E) x5 S — Vect(Ty) x S and  ja : Vect(Fz) xg 8 — Vect(T) x S,
extending the given Vect(€3) x s{q} — Vect(T) and Vect(F2)x s{q} — Vect(T:) re-
spectively, such that j71(CY) = C€" xS and j; 1 (Cf) = CF" x4 S. Tt follows that
there is a vector bundle quotient homomorphism j: Vect(Fs) x g8 — Vect(£;) x g S
extending Vect(F) x g {q} — Vect(E) x s {q} such that j=1(C¢* x5) = CF" xgS.
This implies that cycles [C7 ] and C(p)*([C€]) have the same support along the
fiber over ¢ and that the multiplicities of their respective components near the fiber
over ¢ coincide. Since ¢ is arbitrary, we must have C(p)*([C€"]) = [CF"]. This
proves the corollary. O

Remark. The proof shows that the cycle [C€"] can be characterized as follows. At
each g € S, there is a quotient vector bundle homomorphism

j: Vect(&) xg S — Vect(T) x S,

extending Vect(&2) x g {q} — Vect(T:), such that j*([Cf]) = r*[CE"], where r :
Vect(E2) x g5 — Vect (&) is the induced morphism and is flat. Clearly, this criterion
determines [C¢ .] completely, if it exists. The reason we need to use the relative
Kuranishi families is to ensure that [C€"] does exist as a cycle.

Let Sy C S be a closed subscheme. Then 77,4 = h*(£*) induces canonically a
relative tangent-obstruction complex 72, o /3o = b° (F*), where F* = £°®04Os, -
Let (F,®) be a Kuranishi family of 175 = h*(€®). Let Ay = I'(Os,), My =
M @4 AO and F; = F; ®4 A(). The pair Fy € My ® A, F5 and <I>0:Spec M()/(F()) —
Z x5 Sp defined by Iy = F ®4 Ag and ®g = ®|spec a1y /(Fy) 18 @ relative Kuranishi
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family of TZ’XSSO/SO = h*(F*). We let C = Cspec My /(Fy))/ Spec M, and set cr*
C Xspec M, So, which is canonically embedded in Vect(F2). Note that Vect(Fz) =
Vect(é'g) X g So.

Corollary 3.6. C7" = C¢" x4 Sy as subschemes of Vect(Fz).

Proof. The proof is similar to the proof of Corollary 3.5. We continue to use the
notations introduced there. Let ¢ € Sy be any closed point and let Sy be the
formal completion of Sy along ¢. It follows that Sy = S x5 So. Let 71 be the
map constructed in the proof of Corollary 3.5 and let jo be the restriction of j; to
Vect (&) xs So. Hence, ja : Vect(Fa) X s, So — Vect(Th) x So. Then Lemma 3.3
shows that j7(CF) = C¢" xg 5. We claim that j5;1(Cf) = C7* xg, So. Indeed,
by the proof of Lemma 3.3, it suffices to check that if we let Cy be the formal
completion of M, along the maximal ideal mg of ¢ € Sy, then Cj is flat over B via
the homomorphism B — (Y induced by py. But this is obvious. This proves the
claim. Therefore,

C€" x5Sy = jr HCF) x4 o = j; H(CF) = C7 x5, So.
This proves that CF° = C€" x5 Sj. O

In the remainder of this section, we will construct the virtual normal cone and
the virtual cycle of a perfect tangent-obstruction complex. We will show in the end
that this construction commutes with the refined Gysin maps.

Let Z be a quasi-projective scheme and let 7 be a tangent-obstruction complex
of Z. We assume that £* = [£; — &-] is a complex of locally free sheaves of Oyz-
modules so that 7,7 = h*(£°*). We cover Z by affine open S, such that I's, (&;) are
free T'(Og,, )-modules for i = 1, 2. It follows from Lemma 3.2 that we have canonical
cones C’g. C Vect(E2) Xz S, of the tangent-obstruction complex

75, = 1°(€° ®oy Os,,)
By Lemma 3.3, S, x 7 C§° = S5 xz CE" as subcones in Vect(E2) Xz (Sa N Sp).
Therefore C£* patch together to form a global cone scheme C€* C Vect(&s).

We remark that a global resolution 7} = h*(£°) allows us to construct a global
cone as a subscheme in Vect(€2). However, if we only have a locally free sheaf V
making 77(Oyz) its quotient sheaf, then we can canonically construct a cone cycle
as follows. Since 7 is perfect, we can find an open covering S, of Z and complexes

&5 of sheaves of Og,-modules such that h*(E;) = 75, and that there are quotient
homomorphisms ¢, :V ®o, Os, — €2, such that

V®o, O0s, — Tsi(OSa)

=] H

527(1 - 7?920( (Osa)

is commutative. Because of Corollary 3.5, the flat pull backs C(p,)*([C¢]) and
C(pp)* ([C’gf;]) coincide over S, N.S3. Therefore they patch together to form a cycle
[CY] € Z.Vect(V). Because of Corollary 3.5 again, [CV] is unique.

Now we construct the virtual cycle of a perfect tangent-obstruction complex 7.
We first present 77(Oz) as a quotient sheaf of a locally free sheaf V, which is
possible since Z is quasi-projective. Let iy : Z — Vect(V) be the zero section and
let 43, : Ay (Vect(V)) — A.Z be the Gysin homomorphism.
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Definition 3.7. Let the notation be as before. Then we define the virtual cycle
[Z]VI* of T2 to be

[Z]V =i [CY] € AL Z.

In order to show that [Z]VI" is well-defined, we need to check that it is independent
of the choice of quotient homomorphism V — 72(Oz). Assume that W is another
locally free sheaf of Oz-modules and W — T2(0O) is a quotient homomorphism.
We let M’ be the pull back defined by the square

M — 1%

l l

W —— T2(0y).

Then by making M’ a quotient sheaf of a locally free sheaf, say M, we obtain
¢1: M — YV and ¢o: M — W. Tt follows from Corollary 3.5 that

C(¢1)*([CY]) = [CM] = Clg2)* ([C™)).

This implies that i}, [CY] = i},[CM] = i}, [C"V] € A.Z as required. So [Z]''" is
well-defined.

Refined Gysin maps play an important role in intersection theory. Given a fiber
product square of schemes

Wo —— W

(3.1) lio li

Xo;’X,

where £ is a regular embedding of codimension d, then the refined Gysin map
&AW — A gW

sends D € AW to the intersection of [Cp , x,/p] with the zero section of ig Nx, /x-
In this section, we will show that the refined Gysin map is compatible to our virtual
cycle construction.

Let W be a quasi-projective scheme over X and let Xy C X be a regular embed-
ding. We define Wy by the Cartesian square (3.1). We assume that W (resp. Wy)
admits a perfect tangent-obstruction complex 7y3, (resp. 73y, ). Let £ be the sheaf
of normal bundle to Xy in X. For any affine S, n:S — Wy C W and F € 9Modg,
there is a canonical sheaf homomorphism

Tv%/(ﬂ)(}_) = Homog (W*Qwa}_) - (iO o 77)*5 ®os F,
induced by *Zx,cx — Zw,cw, that fits into the exact sequence
(3.2) 0 — Ty, (M)(F) — Ty (n)(F) — (i o n)"L ®o F.

Definition 3.8. We say that 733, and 7y, are compatible with the Cartesian square
(3.1) if (3.2) extends to a long exact sequence

Ty (0)(F) — (i 0 1)L @og F =Ty, () (F) == T (m)(F) — 0

for which the following holds. Let S — Yy — Y be a tuple of S-schemes described
in Definition 1.2 and let 7 = Ty, cy. Let no:Yy — Wy be any morphism and let
0 € Ty, (no)(Z) be the obstruction class to extending 7o to Y — Wy. Then r(o) €
T (n0)(Z) is the obstruction class to extending 19 to Y — W. Secondly, assume
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that r(0) = 0. Then we have an extension, say 17:Y — W. Let 8 € (ipono)* L0 T
be the canonical homomorphism (igon0)*(Zx,cx /Z%,cx) — Z induced by 7. Then

0= 58(8).

We make one technical assumption, which usually can be checked explicitly in ap-
plications. Let S, be an open covering of Wy. We assume that there are complexes
of locally free sheaves £5 and F of Og_ -modules fitting into the exact sequence

0 — [0 =L @w, Os,] — & — F5 —0

such that 7§ = h*(&3), 7. = h*(Fa) and the long exact sequence of sheaf coho-
mologies

b7 ([0 — i L ®w, Os,]) — b7 (£2) — b’ (F2) — (0 — 5L @w, Os.,])

is the exact sequence given in the above definition. We assume that there are
sheaves £ and F; of Oy -modules so that £, 2 and F, 2 are restrictions of & and
Fa to S, respectively. Also, over S M Sg, there are isomorphisms of £5 and &3
and isomorphisms of 3 and F§ so that the induced isomorphisms on their sheaf
cohomologies are the identity maps. Finally, we assume that F5 can be extended
to a sheaf of Oy-modules, say Fa, so that Fo — T3, (Ow,) extends to a quotient

homomorphism Fy — T3 (Ow).

Proposition 3.9. Let Wy C W be defined by the square (3.1) such that their
tangent-obstruction complexzes Ty, and Ty, are compatible. Assume further that
the technical conditions stated above are satisfied. Let [Wo]V'' and [W]'™ be the
virtual cycles of Ty, and Ty, respectively. Then

5! [W]vir — [Wo]Vir.

This identity is essentially a statement about associativity of refined Gysin maps.
As usual, we will transform this problem to a problem about the commutativity of
Gysin maps and then apply the basic Lemma in [Vi] to conclude the proof of the
proposition. We now provide the details of the proof, which will occupy the rest of
this section.

We first introduce some notations. Let Wy (resp. W) be the formal completion
of Wy x Wy (resp. W x W) along its diagonal, considered as a scheme over Wy
(resp. W) via the first projection of the product. We denote by pw, : Wo — W
(resp. pw : W — W) the morphism induced by the second projection. We begin
with a locally closed affine subscheme S C S,. We fix the complexes £3 and F
given before. We let A = I'(Og), F; = I'(Fas ®Ow, Og), E; =T'(Eq,i Row, Os)
and L = I'(igL£ ®oy,, Os). By shrinking S, if necessary, we can assume that all
modules F;, E; and L are free A-modules. As before, we let M = Sym®(EY),
which is canonically isomorphic to SyAm’ (F}Y) using En,1 = Fo 1. We pick a relative

Kuranishi family (f, ) of TV;XWS/S, where f € M ® 4 F» and ¢ is an S-isomorphism

Spec M/(f) — W xw S. We now pick a relative Kuranishi family of TV%/OXWO s/s"

We first pick a splitting o : F5 — F, of the exact sequence L — FEy — Fb.
Let g1 = (1pm ® 0)(f). Note that (g1) = (f), hence Spec M/(¢1) is isomorphic to
W xw S. We denote this isomorphism by ¢. Let [ = codim(Xg, X). Without loss
of generality, we can assume that near i(S) C X the sheaf Tx,cx is generated by
[ sections, say s1,---,8. Welet §1,...,8 € M/(g1) be the pull backs of s1,---, s
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via
Spec M/(g1) — W xw S 25 W 2% W -5 .
Note that (s1,---,s;) form a basis of Zx,cx/Tx,cx near i(S). Then (5,---,5)

defines a homomorphism go: LY — M/(g1). Let ¢:Spec M/(g1,32) — Wo XWo S
be the morphism induced by ¢:Spec M/(g1) — W xw S.

Lemma 3.10. Let 7: M ®4 L — M ®4 Es be the homomorphism induced by
L — E5. Then there is a lift go € M @4 L of ga € (M/(g1)) ®a L such that

g: =91 +7(92) € M @4 F> and ¢ : Spec M/(g) — Wo xw, S
form a relative Kuranishi family of TV%fong 5/5 = h*(&a ®ow, Os)-

Proof. Assume that we have found a lift h € M ®4 L of g such that g1 + 7(h)
mod M}, and the above ¢ satisfy the property in Lemma 2.5. Let J = (g1 +7(h)) C
M, Jy—1 = J+ My and Iy = J - My + Mp+1. We consider the epimorphism
M/Jk_l — M/Ik_l and its kernel Jk—l/Ik—l- Now let O = T&,(Os), let Oy =
T3, (Os) and let 7:Og — O be the homomorphism given in Definition 3.8. Let o
(resp. 0g) be the obstruction class to extending

Ok = @lspec M/ gy, : Spec M/ Jy 1 — W xw S

to Spec M/I_1 — W xw S (resp. to Spec M/Ij_1 — Wy xw, S). Since the
obstructions are compatible, we have that r(og) = 0. Now let g, and 7(h) be the
residue classes of g1 and 7(h) in (Jy—1/Ix—1) ®a Oq, respectively. Since f is a
relative Kuranishi map, we have that r(g;) = o. On the other hand, we know that
or extends to Spec M/(I—1 + (f)) — W xw S. It follows that the residue class
of 7(h) in (Jr—1/(Ix—1 + (f))) ®a Oo, which also is the residue class of ga, is the
obstruction class to extending ¢y, to

Spec M/(Ij_1 + (f)) — Wo xw, S.
Therefore (g1 + &(h)) — 0o belongs to

Ker{(Jy—1/Ix-1) ®4 Og — (Ji—1/T5—1) @4 O ® (Jp—1/(T—1 + (f))) ®a O }.
This proves that there is an e, € (f)®4 L so that g1 +7(h+e€,) mod My satisfies
the property in Lemma 2.5. It follows from the proof of Lemma 2.5 that we can
choose € to be in ((f) N M) ®a L. Hence an induction on k shows that there is
a lift go € M ®4 L such that g := g1 + 7(g2) € M ®4 E and ¢ = ¢|spec p/(q) 15 @
relative Kuranishi family of Tv%/OXWOS/S =h*(€* ®oy, Os). O

Now let Z = Spec M and let Z(g) = Spec M/(g) C Z. Then Z is a scheme over
S, thus a scheme over Wy. Let Vi = Vect(L) xw, Z, V = Vect(&2) Xw, Z and
Vo = Vect(Fz) xw, Z. Then V; is a subbundle of V' and V4 is the quotient vector
bundle V/Vi. Let Cyz(gy/z be the normal cone to Z(g) in Z. The cone Cyz(yy/z is
canonically embedded in V' xz Z(g). We let

Dl(S) = CZ/(g)/Z Xz S CVxgz85.

It follows from Lemma 3.1 that for the affine covering S, of Wy, the collection
{D1(S4)} patches together to form a cone D; in V. By Definition 3.7, if we let
7n1: Wy — V be the zero section,

[Wol*™ = n;[Da].
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Next, we consider the subscheme Z(f) = Spec M/(f) C Z and the normal cone
Cy = Cy(y)/z, which is naturally a subcone of V2 x z Z(f). Welet Co — X be the
morphism induced by

Voxz Z(F) 2 Z(f) =W xw S ZL W 2% W -4 X,
The normal cone Cg,  , x,/c, 18 canonically a subcone in
(‘/2 Xz (W Xw S)) Xz (‘/1 Xz (WQ X Wo S)) = (‘/1 Xz ‘/2) Xz (WO X Wo S)
We set
DQ(S) = CC2><XX0/C2 XWOXWOS S.

For the same reason, the collection {D2(S,)} patch together to form a cone Dy C
Vect(L) Xw, Vect(Fz). We claim that

€ W] = n3[Do),

where 12 : Wy — Vi Xy, V2 is the zero section. By our technical assumption,
F» extends to Fy so that Fy — T2 Fw,(Ow,) extends to Fo — TV%,((’)W). Let
N € Z,Vect(Fz) be the virtual cone cycle of 753, provided by Lemma 3.1 and Corol-
lary 3.5. Then the normal cone cycle [Chrx  x,/a7] is canonically a cone cycle in
Vect(L) X, Vect(Fz). It follows from [Vi, p. 643] that &*[W]VT = 03 [Chrx  xo/n7]-
However, by using Lemma 3.1 and Corollary 3.6, we have that [Cy « , x,/a7] = [Da].
Therefore, &' [W]V'" = n3[Da).

It remains to show that nj[D1] ~yat 75[D2]. Our strategy is to transform it into
a problem about commutativity of Gysin maps and then apply work in [Vi]. Let
p1: V1 — V and py: V — V5 be the embedding and the quotient vector bundle
morphisms, and let 1y, x p: V3 — Vi xz V be the product morphism. Let I' be the
graph of the relative Kuranishi map g € M ® 4 5 and let Oy, be the scheme of the
0-section of V;. We set

Y=VixzI, Xi=v, xp1)V1) xvisvY, Xo= 0y, xzV) Xy x,v Y.

The scheme Y is a subscheme of V5 xz V and X; and X5 are subschemes of Y.
Clearly, X; = W xw S, Xo 2T and X1 Xy, x,v Xo 2T xy 0p. It follows that the
normal cone Cx,y is V1 xz I, a cone over X. Now let B1(S) be the normal cone
to Cx,/y Xy X1 in Cx,y. Since Cx,,y Xy X1 is V1 xz (I' xy Oy), the scheme
By (S) is the pull back of Cry, ¢, /v C V under

(Vi xz V) xz (Wo Xw, S) 22V xz (W xw, S).
Let B1(S) = B1(S) xz S. Then B1(S,) patch together to form a cone
B C Vect(L) xw, Vect(Es).
The cone By is the pull back of D; C Vect(&,) via
Vect(£) Xy, Vect(Ey) 22 Vect(&s).

Hence if we let 19 be the zero section of Vect(L) xw, Vect(E2), then n§[B1] = n;[D1].
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Next, we let By(S) be the normal cone to Cx, )y xy X3 in Cx, y. The cone
B3(S) is canonically a subcone of (Vi xz V) Xz (Wo Xw, S). We claim that
BQ(S) - CngxXo/Cg

! l

(Vi 2 V) xz (Wo xwy S) —2222 (Vi x4 Va) x 7 (Wo X S)
is a fiber square. We first look at Cx, /y. Let h: Vi xzV — V1 xz V be the iso-
morphism defined by h(a,b) = (a,b— p1(a)). Then |1, xp,)(v;) is an isomorphism
between (1y, x p1)(V1) and V] x z0y. Further, under 1y, X p2: Vi Xz V — Vi Xz Vs,
h(Y') is isomorphic to Vi x 7z (Ov, X1, I'y). Therefore, the subcone Cx, /y of

Cliv, xp) (Vi) VixzV Xvixzve X1 =V xz X3
fits into the Cartesian square
CX1/Y E—— CQ

l |

Vxz X —— %Xz(VAVXWS).

(Note that X is canonically isomorphic to W xw S .) From this description, we
immediately see that Cx, /y Xy Xb fits into the Cartesian square

Cx, /)y Xy X2 ——— CoyxxXo/cs Xz (Wo X, S)

! !

(Vl Xz V) Xz (W() XWo S) _— (V1 sz2) Xz (WO XWo S)
This proves the claim. Finally, we let By(S) = B2(S) xz S. For the same reason,
Bs(S4) patch together to form a cone By C Vect(L) Xy, Vect(E2). From the local
description, we see that [By] is the pull back of [Ds] € Z, (Vect(L) xw, Vect(F2)).
Therefore &'[W]VF = n[Ba).
It remains to show that [B1] ~yat [B2]. We will apply the basic Lemma in [Vi]
to construct a cycle [R] € Z, (A x Vect(L) X, Vect(&2)) such that

(3.3) [R] N [131(0)] = [R] N [ma1 (1)] = [By] — [Ba].

The main conclusion of the basic Lemma in [Vi] is as follows. Let Y be any reduced
and equidimensional scheme and let X7, Xo C Y be closed subschemes. Let D1
be the normal cone to Cx,/y Xy X2 in Cx,/y and let Dy be the normal cone to
Cx,,y Xy X1 in Cx, /v, both are canonically embedded in Cy, )y Xy Cx,,;y. Then
there is a cycle [R] € Z.(A' x Cx, ;v xy Cx,,y) such that

[R] N [m32(0)] = [R) N [m32 (1)] = [Da] — [Da].

Further, R is canonical under étale base change. The reason that we cannot apply
this result directly to our choice of X7, X C Y is that the ambient scheme Y in
our situation, which is V' x z I', may not be equidimensional. However, because of
Lemma 3.3, we will argue that the basic Lemma still applies.

We let S = S, be one of the open sets in the covering of Wy and let T3, -+ ,T;
be the irreducible components of S (with reduced scheme structure). We fix one of
these components, denoted by T'. T' C W) is a locally closed affine subscheme. We
then form cycles B1(T') and By(T). Because the corresponding Y in constructing
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B;(T), which is (V xzT') xz (Z xg T), is reduced and equidimensional, the basic
Lemma provides a cycle
R(T) € Z(A' x (Vi xz V) x5 T)
such that
[R(T)] N [ (0)] = [R(D)] N [m33 (V)] = [Bu(T)] = [B2A(T)].

We need to show that the collection {R(7,)} provides a global cycle [R] as
required. For this, we need a comparison Lemma similar to Lemma 3.3. Let ¢ € S
be any closed point, let Z, be Z x g {q}, let Z be the formal completion of Z along
Zq and let ¢ be the formal completion of S along ¢q. Note that § is canonically a

subscheme of Z,. For i = 1,2 or 0, we let V; be the formal completion of V; x Z
along its zero section Oy, Xz Z.

Sublemma. There is a morphism @:Z — Z, and there are isomorphisms (bizf/i —
(\A/l X4 Zq) Xz, Z, where i = 1,2 and (0, for which the following hold.

(1) Lett:g — Z be the inclusion induced by ¢ — S — Z. Then the restriction of
@ to 1(q) factors through the subscheme ¢ — Z, and the factored morphism
1(§) — § is the identity map between ¢ = 1(§) and ¢ C Z,.

(2) Fori=1,2 and 0, ¢;(0y,) = (0y, x5 Zg) Xz, Z and the restrictions of ¢; to
V; X 5 Zq are the identity morphisms of V; X5 Zg.

(3) We have the commutative diagram

Vi — 14 — Vo
o Js |+
(V4 X5 Zq) xqu — (v X5 Zq) xqu — (W X, Zq) Xz, Z,
where theAloweT sequence 18 indyced by Vi Ly % Vs. R
(4) ¢(Uy xz 2) =Ly xz Zy) Xz, Z and ¢p2(Ly Xz Z) = (Uy Xz Zg) Xz, Z.

Proof. The proof is similar to the proof of Lemma 3.3. The only modification
is to make sure that the morphisms p; and py; and the schemes I'y and I'y are
compatible. This can be done easily following the argument used to construct the
relative Kuranishi families of 7y, from 77y, We will omit the details. O

Now if we view ¢ € Wy as an affine subscheme, we obtain the schemes B;(¢) and
B2(q), and the cycle R(q). Assume that ¢ € T;. Let T; be the formal completion
of T; along ¢q. Then the flat morphism

(‘71 XZ V) XSTi — (Vl XZ V)M((Vl XZ ‘7) XZ Zq) qu Z

gZVl XZ V) XZ Zq

induces isomorphisms between respective X7, Xo and Y in the construction of
B;(T;) and Bj(q). Let

hi: A x (Vi xz V) xsTi — Al x (Vi xz V) Xz Zg,
where h; is induced by Tl cZ LZq, and let
hy : A x (Vi xz V) xg Ty — Al x (Vi xz V) x5 T}
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be the obvious morphism. Note that both are flat. We claim that
(3.4) hi1(R(q)) = h3(R(T3)).
This is not exactly what was proved in [Vi], since
H(Vl X2V) XSTi_’ (‘71 X2V) XSZ—>(V1 X2V) ><2Zq

is not étale. However, it is clear that H is of the form U— U, x Uy 25 U1, where
U; and Usy are two reduced, irreducible formal complete schemes each supported
at a single closed point and U is the formal completion of U; x U, along its closed
point. A step by step check of the proof of the basic Lemma in [Vi] shows that the
isomorphism (3.4) does hold.

It is clear now how to construct the cycle R(S) € Z.(A! x (V4 xz V) xz S).
We let the support of R(S) be the union of Supp(R(T})). Because of the identity
(3.4), R(S) with reduced scheme structure is an equidimensional closed subscheme.
Now we assign multiplicity to each irreducible component of R(S). Let p € R(S)
be a general point of one of its irreducible components, say C. Let ¢ € S be the
closed point under p. We assume ¢ € T;. The component C' corresponds to a
unique irreducible component C’ in R(7}) and a unique irreducible component Cy
in R(g), by (3.4). Let m¢c be the multiplicity of Cy in R(g). Since Tj is reduced
and irreducible, m¢ is also the multiplicity of C" in R(Tj). We assign mc¢ to be
the multiplicity of C' in R(S). Such an assignment is well-defined.

Remark. The cycle R(S) has the property that for any closed point ¢ € S, the flat
pull back h%(R(S)) is isomorphic to the flat pull back h}(R(g)), where

hs : (A' x Vect(L) xw, Vect(£2)) xw, § — A’ x Vect(L) xw, Vect(E).

Of course, if such an R(S) exists, it is unique. The construction using the relative
Kuranishi families is to ensure that R(S) exists.

Finally, it follows from the étale base change property that R(S,) patch together
to form a cycle

[R] € Z, (A" x}, Vect(L) xw, Vect

(€2))-
Because R(q) provides a rational equivalence of [B1(g)] and [Bz2(q)], R provides a
rational equivalence of [B;] and [Bs]. Therefore, £*[W]'' = [W,]Vir. This completes
the proof of the proposition.

4. GROMOV-WITTEN INVARIANTS OF SMOOTH VARIETIES

Let X be a smooth projective variety, n, g integers, and o € A1 X/ ~u.. The
GWe-invariants are defined by taking intersections on the moduli space of stable
maps from n-pointed genus g curves to X such that their image cycles are in a. We
denote this moduli space by M ... When M, has the expected dimension,
then the GW-invariants can be defined as usual. However, this rarely happens.
Thus we need to use the virtual moduli cycles to define these invariants.

Let S be an affine scheme and let n € FX g.n(S) be an element represented by
the morphism f: X — X, where X is a curve over S with marked sections D C X

understood. Then the standard choice of the tangent-obstruction complex of ng gn
is

T*Fogn(M(F) = [Exty )5 ([f*Qx — Qu/s(D)], 75 F)],
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where F € Modg and 7g: X — S is the projection. We now show that there are
complexes of locally free sheaves over §X so that their sheaf cohomologies are

«@,g,mn
T*FX g
We fix a sufficiently ample invertible sheaf £ on X and then form the exact
sequence

O W2 Wl f*QX — 0 )
where W, — f&{1x is the natural surjective homomorphism
* * * -1 *
TeTss (Was(D)®° @ fH(L®NX)) © (ways(D)*° @ f*L) " — f*Qx.
We then form complexes
A; = [WQ — 0] and 8:7 = [Wl — Q/y/s(D)]

indexed at —1 and 0 with W — Qx,5(D) the composite Wi — f*Qx — Qux/5(D).
Let Cp = [f*Qx — Qx/5(D)]. Then we have an exact sequence of complexes

0 A By cs 0,

and hence a long exact sequence of sheaf cohomologies
Sxt}/s(c,'l, Ox) — Sxt}/s(B;, Ox) — Sxt}/s (A3, 0x) — Sxtg(/s(c,'l, Ox).

Since £ is sufficiently ample, ExtiX/S(B;, Ox) and 5xtiX/S(A,'7, Oy) vanish for i # 1.
Hence

(4.1) Egp = Exth 5By, Ox)  and &9 = Exty g(A3, Ox)

are locally free and the sheaf cohomology of £ = [£,1 — &,2] is T*FX, ,(n). It is
straightforward to check that the collection {85} satisfies the base change property
in Definition 1.1, hence it forms a complex of sheaves over §§ gn

To construct the virtual moduli cycle [Mgf g)n]"ir, we need to address one techni-
cal issue, namely, Mgf ¢.n does not admit universal families due to the presence of
non-trivial automorphisms. An automorphism of a morphism f from C to X is an
automorphism ¢:C' — C fixing its marked points such that po f = ¢. Because f is
stable, Aut(f) is finite. There are two approaches to get around this difficulty. One
is to realize the moduli space as a quotient by a reductive group, say G. The other
is to use the intersection theory on stacks developed in [Vi]. The former relies on
constructing G-equivariant data and then descending them to the quotient space.
This can be done directly if the quotient is a good quotient. Otherwise, the étale
slice of the group action can be used to study the descent problem. This approach
allows one to work with Fulton’s operational cohomology theory of Mf g,n» Tather
than the parallel theory on the moduli stack of ng gn:

From [Al], there is a quasi-projective scheme Q and a reductive group G acting
on Q such that Mgig,n is the categorical quotient of @ by G. Over Q, there is a
universal family

{F:DCcX —X}=¢€FX, .(Q

a,g,n

acted on by G. For any closed point w € Q, the stabilizer G,, C G of w is naturally
the automorphism group of F,, : D,, C X, — X. Now by using this family we can
construct the complex £° := £¢ in (4.1), after fixing a very ample invertible sheaf
L. By our construction, 7°F; , ,.(€) = h*(E®). Further, both £°* and T*FX, ,(¢)
are canonically G-linearized and the identity is G-equivariant.
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We now construct the virtual cycle [M§ g,n]"i’r with the complex £° provided.
Let z € MY, , be any closed point and w € 7~ !(z), where 7 : @ — M7, is
the quotient projection. Let G, be the stabilizer of w. By combining an argument
in [Ko2] and the construction of [Al], we can find a G-invariant slice S C Q
containing w such that S/G,, is an étale neighborhood of z € ./\/lgigm. Let &g €
&i{gm(S) be the object associated to the restriction of F: X — X to fibers over S.
Clearly, T'Sé{g)n(fs) is a tangent-obstruction complex of S and £§ = £°* ®p, Oy is
the complex whose sheaf cohomology is T'Sgi g.n(§s). Therefore, by applying the
construction in the previous sections, we obtain a canonical cone

C% C Vect(Es,2) = Vect(&) x o S.

Let C%5 /G, C Vect(&;) xg S/G,, be their quotients. Assume that T is another
G -invariant slice passing through w’ € O,, such that T/G,, is an étale neighbor-
hood of z; then we obtain the cones C¥7 C Vect(E) xg T and their quotients by
Gy. Since £° is G-linearized, by Lemma 3.2, the pull-back of these schemes to
S/Gy XM, T/G, from S/G,, and T/G,, are naturally isomorphic. Hence the

collection Vect(£2) X o /Gy, descends to a scheme Vect r(€2) over M, and the
collection C¢5 /G, descends to a scheme Cﬁ which is a subscheme of Vect a((E2).
Note that Vectaq(E2) is not necessarily a vector bundle. We will call Vecta(E2)
the Q-descent of the vector bundle Vect(&s).

Similar to the ordinary case, we define the virtual moduli cycle [M  ]V" to be

s [C5] € A (MZ ) 9z Q,

where s: MY — Vectr(£2) is the zero section and s* is the Gysin map. Note
that s* is well-defined. One way of seeing it is by using the description of Gysin
maps in terms of Chern classes [Fu, §6.1]. This way, to define s*, it suffices to define
the Chern classes of Q-descents of vector bundles (i.e. V-vector bundles), which

are known to exist with rational coefficients.

Lemma 4.1. The cycle [Mgig)n]"ir is independent of the choice of the complex £°
making T’&i{g’n(f) =h*(&°).

Proof. We will apply Corollary 3.5 to prove the invariance. Clearly, by the proof of
Corollary 3.5 and the above construction, it suffices to show that if F* = [F; — F3]
is another complex of G-linearized locally free sheaves such that 7°FX gn(&) =
h*(F*) and that the identity is G-equivariant, then there is a G-linearized locally
free sheaf of Og-modules K and surjective G-linearized sheaf homomorphisms K —
&y and K — F3 such that

K — &

| Js
Fr —— T 4n(6)(O0)

is commutative. We first let Iy be the pull-back of (a, b), where a and b are shown
in the above square. Then Ky is canonically G-linearized. It remains to find a
G-linearized locally free sheaf IC so that Ky is a G-quotient sheaf of K. Let L be an
ample G-linearized line bundle on Q. Such an L exists following [Al]. Let w € Q
be any closed point and O,, its G-orbit, which is closed. Using locally free sheaves
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&y and Fa, we can find a G-equivariant surjective homomorphism
Nw : E2® Fo — Ko @ Oo,, .

Since G, is finite, for some power L®"  the G-action on L™ ® k(w) is trivial.
Because Q is quasi-projective and L is ample, for some large m, the homomorphism

N+ (E2@ F2) @ O(L™™) — Ko @ Oo,,

induced by 7, which is still surjective and G-equivariant, lifts to a global homo-
morphism

n:(Ea®F)@O(L™™) — Ko .

Then applying the Reynolds operator, we can assume that 7 is also G-equivariant
and its restriction to O,, is n,,. Since Q is quasi-projective, a finite sum of sheaves
of this type gives us the desired G-equivariant surjective homomorphism K — K.
Therefore, by Corollary 3.5, if we let Vect o¢(KC) be the Q-descent of the vector bun-
dle Vect(K) and let ¢1: Vect p(K) — Vectaq(E2) and ¢a: Vect p(K) — Vect pq(F2)
be the induced morphisms between the V-vector bundles, then ¢%[C5;] = ¢3[C%(]-
Therefore, [M g)n]"i’r is independent of the choice of the complex £°. |

In the remainder of this paper, we will define the GW-invariants of any smooth
projective variety and prove some of its basic properties. From now on, unless oth-
erwise mentioned we will only consider homology theory with rational coefficients.
We will denote the (operational) cohomology and homology by A* and A, respec-
tively. When the varieties are over complex numbers, sometimes we will use the
singular homology theory, which we will denote by H,. We now give the definition
of GW-invariants of any smooth projective variety X. We fix the o € A1 X/ ~aig
and the integers g and n as before so that 2g +n > 3. Let

[Mi{,g,n]\,ir € A* (Mi(,g,n)

be the virtual moduli cycle. By using the Riemann-Roch theorem, it is a purely
(3—dimX)(g — 1) + n + « - ¢1(X) dimensional cycle. Let 7% : M7, ,, — Mgn
be the stable contraction morphism. The k-th marked points in curves naturally
induce an evaluation morphism e : MY — X. We let ev: M7, — X™ be the

product ey X - - - X €,,. Paired with the cycle [M g, we obtain a homomorphism

TX L AN(X) ) A (M) — AdME

«@,g,n «,g,n

defined by
UX,n(B:7) = (ev*(B) U (=) (7)) (M2 1Y) -
Composing W, ,, with the degree map A, (M, ) = Ao(MZ, ) — Q, we obtain

«@,g,n «@,g,n

the GW-invariants
X PANX) X A (Mg n) — Q.

a,g,n
If we fix a polarization H of X and an integer d, we can define the GW-invariants
Vilgn AT (X)X AT (M) — Q
as follows. We let Sé{ oS — (sets)? be the moduli functor of stable morphisms

defined similar to X, except that the condition f.([C]) € « is replaced by the

«,g,n

condition that the degree of ¢i (H)(f«([C])) is d. Because of [Al], ijgm is coarsely
represented by a projective scheme, denoted Méf g The previous construction
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works for this moduli functor without any change. Consequently we have the virtual
moduli cycle [Mf gl Which in turn defines the GW-invariants i g When X
is a smooth complex projective variety, then we can use the ordinary homology

theory to define
VX L HY (X)) x H (My,) — Q,

«,g,n

where a € Ha(X,Z), by using the image of [M{ , ]V in H,(MJ, ). Here since
a € Hy(X,Z), the moduli functor gg{q,n parameterizes all stable morphisms f :
C — X with f.([C]) = « understood as an identity in the singular homology
H»(X,Z). Note that if o ¢ Hy(X,Z) N H*!(X,C)*, then ¢, ,, = 0.

The GW-invariants satisfy some basic properties. One of them is the invariance
under deformations of X. Let m: X7 — T be a smooth family of relatively projective
varieties over T. For t € T we let X; = 7~ 1(t) and for 3 € A*(X7)*" we let
By € A*(X¢)*™ be the pull back of 8 under X; — Xr. We fix a relatively ample

line bundle of X1 /T.

Theorem 4.2. Let X7 /T be as before with T an irreducible smooth curve. Then
for any d € Z and cohomology classes f € A*(X7)*™ andy € A*(Mgy.r), the values
of the GW-invariants (bjfgm(ﬂt, v) are independent of t € T.

When X1 /T is defined over C, we can use knowledge of H2(X¢,Z) to prove a
finer version of the invariance theorem. Consider the analytic curve

A= Rom.Zx, @7 R 71, Zx, x1 - x1r RF"n,Zx,

over T. Clearly any point w € A corresponds to w = (au, Bw) € Ha(Xt,Z) X
H*(Xy,Z)*™ for some t € T. Hence for any v € H*(M, ) we can define

U,:A—Q
that assigns w to Xt . (Buw;7Y)-

aw,g,n
Theorem 4.2'. Let X1 be defined over C as before. Assume T is a smooth con-
nected curve. Then for any v € H*(Mg,) the function ®,: A — Q is locally
constant.

Proof of Theorem 4.2. We first form the relative moduli functor. For simplicity,

we assume 7' is affine. Let Gchp be the category of T-schemes and let S;{;y{f :

G&chy — (sets)? be the functor that sends any S € Schy to the subset of 52(7;711(8)
consisting of the isomorphism classes of f: X — Xp such that

X%XT

Lo

S —— T

is commutative. S;{;y{fp is coarsely represented by a T-projective scheme Mf);{f
[Al]. Let Mf;_/nT — T be the obvious morphism. Then we have the Cartesian
square

Xy XT/T
Md,gm Md,gm

| l

{ty —— T
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Following the principle of conservation of number [Fu, section 10.2], to prove the
theorem it suffices to show that
Xr/Tvi i
,'7! [Md7§7él ]v1r _ [M;()tg)n]wr i

;{);QT. Let S 5T be any

(S) be represented by f: X — X with marked

points D C X understood. From the discussion in section 1, the tangent of 5?;_?
at £ is

We first determine the tangent-obstruction complex of §

Xr/T

affine scheme over T" and £ € §; ',

TngT/T(é')(N) = &vt}y/s (Bg, Ox ®04 N) )

d,g,n

where N € Mods and BE = [[*Qx, — Qays(D)]. We claim that the obstruction
to deformations of f lies in the kernel of

Eatl 5 (B2, Ox @05 N) - Eatl 15(CE, Ox ®os N),

where C¢ = [f*m*Qr — 0] and 7: X — T. Here the homomorphism [ is part of
the long exact sequence of cohomologies induced from the short exact sequence

0—>C§°—>Bg—>A§—>O

induced by 7*Qr — Qx, — Qx, 7. Here A is the complex [f*Qx, 7 —
Qx/s(D)]. Indeed, let S — Yy — Y be a tuple of S-schemes described in Def-
inition 1.2 with Zy,cy =2 N and let fo: Xy — X; with marked points Dy C Xy be
a family of stable morphisms over Y. Let D C X be an extension of Dy C Xy and
let o be the obstruction to extending fy to f over Y. Then using the description of
o in section 1 we see immediately that §(o) is the image of

{TF*QT — QXO/S} =0¢c HOHl(ﬂ'*QT, QX/S)

in Ext%(Cg, 5A), which is zero. We denote the kernel of 3 by T2, 7/ (€)(\).

d,g,n
T 'Si;ﬁf is the tangent-obstruction complex of Si;ﬁ. Now assume S -5 T factors

through {t} C T'. Then for N € Modg we have the exact sequence
0— T'FS (OW) — TFE/TOWN) — N —

d,g,n ,g,m
(4.2) — T2FN (OW) — T35 () (W) — 0.

Also, from the description of the obstruction classes in section 1, we see immediately
that the obstruction classes are compatible in the sense of Definition 3.8.

To prove the theorem, we need to choose complexes so that they satisfy the
technical condition of Proposition 3.9. We fix a sufficiently ample invertible sheaf
L on X;. We first let H* (resp. K®) be the complex constructed in (4.1) with f*Qx
replaced by f*Qx, (resp. f*Qx,). We let G* be the complex in (4.1) with f*Qx
replaced by f*Ox, and with Qy (D) replaced by 0. Clear, they fit into the exact
sequence 0 — H®* — K* — G* — 0. Now let £&* = H* ¢ [(951—d>(’)5] and let F*
be the kernel of K* — G®. Note that h'(G®*) = Og. We pick a homomorphism
Og — F1 so that Og — F; — h1(G*) is the identity homomorphism. The long
exact sequence of the sheaf cohomologies of the resulting exact sequence

0—[0—05] —& —F —0

Xr/T

is exactly the sequence (4.2), and hence the tangent-obstruction complex of o

satisfies the technical condition of Proposition 3.9.
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Lastly, we need to modify the proof of Proposition 3.9 to accommodate the

fact that Mi;{f has no universal family, as we did in constructing the virtual
moduli cycle. We will omit the details here since it is a repetition of the previous
argument. Note that Mé{);)n is a categorical quotient by a reductive group and the
cones constructed in the proof of Proposition 3.9 are all canonical under étale base

change. This completes the proof of Theorem 4.2. O

Proof of Theorem 4.2'. We still assume T is affine. Let R be a connected compo-
nent of Rom,Zx,. R is a smooth analytic curve étale over T'. Let Xr = X7 X1 R
and let a: R — Rom.Zx, be the section induced by the component R. Note that
a(s) € Hy(Xs,Z) for s € R. Note also that under Hy(Xs,Z) — H2(Xg, Z) all a(s)
have identical images. We let ag € Ha(X g, Z) be their common images. Let Hg be
the pull back of the relatively ample line bundle on X7 /T. Then «(s)-c1(Hg) € Z
is independent of s. We denote it by d. Clearly, for any ¢ € T' the disjoint union
of Mi{(ss),g,n for all s € R over t is an open and closed subscheme of Mé{fg)n. Since

Mf;_n is projective, it is possible that either R — S is finite or the set of s € R of

which Mf(ss) . = () is discrete. We first look into the second situation. From the
Xt
d,

construction of virtual cycle, it is clear that if V.C M . is a connected compo-
nent, then using the induced tangent-obstruction complex of V' we can construct
the virtual cycle [V]*. Tt follows from the proof of Theorem 4.2 that for any con-
Xr/T
dgin
ViV = ni[V]¥') where V; = V xr {t}. Since /\/l;;/nT consists of fibers over a
discrete point set of T, 0} [V]V" ~p4¢ 0 for all t € T. Hence [Mf(ss) g LV =0 for all
s € R. As to the first situation, since R — S is finite, R is algebraic. Hence The-
orem 4.2 implies that for any s € R, [Mf(ssmm]"ir =} [Mgifg/ﬁ]m. Theorem 4.2’
then follows from the principle of conservation of number. This proves Theorem

4.2'. (]

nected component V' of M and immersion 7, : {t} — T we have the identity

The Gromov-Witten invariants are expected to satisfy a set of relations, as ex-
plained in [KM], [RT1], [RT2]. We state these relations in terms of the virtual
moduli cycles. We will provide their proofs except for the composition law, which
will be proved in the next section.

We first recall the contraction transformation. For n > 1 we let Sgigm — 33{97”71
be the transformation that sends any family f: X — X over S in Siqm(S) to the
family f’: X’ — X, where X’ is the curve over S obtained by forgetting the n-
th labeled section of X and then stable contracting the resulting (n — 1)—};;ointed
curve relative to f, and f’ is the unique morphism so that X — X' —— X is
x -1 X, We let Tn: Mg o — M, 1 be the induced morphism. Similarly, we

let pp: Mg — My n—1 be the morphism induced by forgetting the last sections.

Theorem 4.3. The virtual moduli cycle [Mi{gm]m satisfies the following proper-
ties:

(1) [Mfig)n]"ir € Ak./\/lgig)n where k=3 —dimX)(g—1)+n+ a-c1(X).

(2) Let o € S, be any permutation of n elements and let ¢, :Mi{gm — Mﬁig)n
be the morphism induced by permuting the n marked points of the domains of

feMZ, .. Then ¢g is an isomorphism and g [M , V" = [MX, V"
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(3) The morphism mn,: M ,,, — My .1 is a flat morphism of relative dimen-
sion 1. Further

ﬂ-;; [Mgz(,g,n—l]Vir = [Mgz(,g,n]Vir'

(4) Let B3 € A'X and e, :./\/lgig,n — X be the n-th evaluation morphism. Then
Tnx (625 : [Mi(,g,n]‘,ir) = deg(a ' 6) : [Mi(,g,n—l]\,ir'

(5) Composition law (see the statement and the proof in the next section).

We remark that what is known as the fundamental class axiom is a direct con-
sequence of (3) of the theorem. Let &,: M . — X" x M, be the product of

«,g,n

ev: Mﬁig’n — X" and the projection = : Mgigm — My . Then another way to

describe the GW-invariants is by the homomorphism

IX L AN(X) — AM .,

a,g,n

defined by I, ,(8) = ma. (77 (8) (& [MZ , ,]Y")), where 1 and 75 are the first and
the second projections of X™ x M, ,,. The fundamental class axiom claims that for
n>1and 2g +n > 4, and for any 3 € A*(X)*"~1, we have

(4.3) I gn(Bx1x) =PI g no1(B),

where 1x € A%(X) is the identity element. We now show that (3) implies (4.3).
Consider the commutative diagram

MX S Xl M,

«@,g,n

Jrrrn Jrlxpn

M gy = X0 X My
where 1: X! — X1 ig the identity map and ¢ is the product of the first n — 1
evaluation morphisms and the projection Mgig’n — Mg n. Using the projection

formula and the property of cohomology classes [Fu, Definition 17.1], it is direct to
check that (4.3) follows from the identity

(4.4) (1% P s (M gt = E((ME, ).

In light of (3) of the theorem, to prove (4.4) it suffices to show that for any irre-
ducible variety Y ¢ MX

a,g,n—1»
(4.5) Emn([Y]) = (1 x pn)*&n1u([Y]) € Zu(X™ 71 X Mg ).

Note that the above square is not necessarily a fiber square. We now prove (4.5).
Clearly, £(m71(Y)) = (1 x pp) " (€n_1(Y)) as sets. Hence it suffices to show that
for any irreducible component W C m;*(Y) such that dim W = dim (W), the
coefficient of [€(W)] in &7 ([Y]) is identical to its coefficient in (1 X p,)*€n_1.([Y]).
Let W C 7;1(Y) be any irreducible component such that dim W = dim £(W). Let
w € W be a general point associated to the stable map fy: Cy — X with the
marked points z1, -+ ,z, € Cy. Let Ey be the irreducible component of Cy that
contains x,. Let (Co, &1, -+ ,&n_1) be the stable contraction of (Co, 1, -+ , Tp_1).
Let Ey C Cy be the image of Ey. Since dim W = dim &(W), the map Ey — Eq is
generically one-to-one. Let &, € Ey be the image of z,.
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Now let w' = 7, (w), z = 7% (w) and 2’ = p,(2)(= 7%_;(w')), and let G be the
automorphism group of (C’o, Z1, -+ ,&n—1). We claim that there are G-schemes U,
U’, V and V' and a G-equivariant fiber square

U%V

(46) hul hvl

AN v
such that their quotients by G are étale neighborhoods of w € MX gms W E
Magn 1, 2 € Mg, and 2/ € Mg ,,_1, respectively, and that the induced mor-
phisms shown in the following makes the square (4.6) compatible to the middle

square in
p T q
U —— ./\/l){gn — My, — V
ﬂnl pnl
l i X T 7 /
U —— ./\/lag,n_l — My —— V.

Indeed, we can find a desired G-scheme V' such that there is a tautological family
{D" c C'} € Fgn-1(V'), where F4n—_1 is the moduli functor of stable (n — 1)-
pointed curves of genus g. Then V can be chosen as an open subset of the total
space of C’ that contains %, € Cy. By shrinking V’ and V if necessary, we can
assume that V' — V' is smooth with connected fibers. As to U’, we can choose it so
that in addition to U’/G being an étale neighborhood of w’ there is a tautological
family {f:D c C — X} € §X,,,_1(U’) of which the following holds. First, there
is an isomorphism, denoted by ¢, between the stable contraction of {D C C} with
the pull back of {D’ C €’} under U’ — V’. Second, for any point s € V' we let
{D! C C.} be the fiber of {D’ C C'} over s and let As be the set of isomorphism
classes of pairs (a,b), where a = {¢: Dy C Cy — X} € Sagn 1(Speck) such
that the stable contraction of {Dy C Cy} is isomorphic to {D, C C.} and b is
an isomorphism between the contraction of {Dy C Cp} and the curve {D) C C.}.
Then the canonical map I'~!(s) — A, induced by the isomorphism ¢ mentioned
in the previous condition is an isomorphism. Now let U = U’ xy/ V and let
{f:D c C — X} be the pull back of {f:D c C — X} under U — U’. Because
Ey — Ej is generically one-to-one, by shrinking V', V and U’ if necessary, there
is a unique section D,,: U — C such that {f: D U D — X} € §X,,(U) and the
stable contraction of { DUD,, C C} is isomorphic to the pull back of the tautological
family over V'. Tt is direct to check that the induced map U/G — MZX  makes

it an étale neighborhood of w. Hence the choice of U’s and Vs satisfy tﬁe desired
property. With this choice of U’ and V', we can take U = U’ xy+ V which satisfies
the desired property. Now let W be any irreducible component of (1 x ¢)~*(£(W)).
Then with our choice of U, etc., it is clear that if we let 11y, (1 x ¢)* Emi([Y D)

be the coefficient of [W] in (1 x ¢)*&.7*([Y]), then it is equal to

ppviry (€0 x D).hp™ (Y1) = iy (1 x hy)*(ev” x 1)up™ ([Y]))
= iy (1 x @) (1 x pn)*&u([Y))),
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where ev:U — X"~ 1 is the composite of U — Mi{g ,», With the product of the first
n — 1 evaluation morphisms, and ev’:U’ — X" ! is defined similarly. This proves
the identity (4.5), and hence (4.6)

Proof of Theorem 4.3. By the construction, the cycle [MX gn)" is an equidimen-
sional cycle whose dimension is the virtual dimension of M gn- Using the
Riemann-Roch theorem, one calculates that it is exactly the k given in the state-
ment. This proves (1). Also, it is clear that for any o € S, we have that
Go: Mgfg n= Mi{g’n is an isomorphism of schemes. Since the tangent-obstruction
complex of FX _g,n does not depend on the ordering of the marked sections, the
virtual moduli cycle will be invariant under ¢,.. This proves (2). Next, we prove
statement (4) assuming property (3). Since X is smooth, 8 € A is the Chern class
of a line bundle. By applying the projection formula to the flat morphism ,,, we
obtain

ﬂ.n*(e’tlﬁ ! [Mi{g,n]‘,ir) = ﬂ-ﬂ*( ﬂ 7T [Ma ,g,m— 1]Vir)
= Te(en ) - MY g )™

Because m, is flat of relative dimension 1, m,.(ef3) = deg(a - ) - 1, where 1 €
AOMgigmfl is the identity element. This proves (4).

Now we prove property (3). Let G be the reductive group and Q be the G-scheme
mentioned before so that M gn—1 18 the categorical quotient of Q. Let C be the
universal curve over Q. Then C — Q is flat of relative dimension 1. It follows
from the universal property of Q that G acts canonically on C and MX gn 1s the
categorical quotient of the total scheme of C, denoted P, by G. Let 7/, : ./\/lgf gn =
Mgf g.n—1 be the induced morphism. 77, is the morphism described in the statement
(3) of the theorem. Now we argue that 7, (= m,) is flat of relative dimension 1. It
is obvious that 7, has relative dimension 1. Now let w € Q be any closed point and
let G, C G be the stabilizer of w. Then there is a G-invariant slice U — Q such
that U/G, — MX,,,_; is an étale neighborhood. It follows that C x o U/G,, is an
étale neighborhood MX  and the projection C x g U/G,, — U/G,, is compatible
to the projection M7, — MZ . ;. Therefore m, will be flat if we can show
that C xg U/Gyw — U/G,, is flat, which follows from the flatness of C — Q and
that G, is a finite group. This shows that =, is flat.

It remains to prove the identity in statement (3). Let f:D c C — X be the
tautological family over P, where D C C is a family of n-pointed curves over P,
characterized by the following property. There is a canonical morphism

a,g,n

7:C—CxgoP

such that the base change f’ :CxgP — X of f with the marked divisors D xgP is
the stable contraction of D.,, C C, where D<n is the first (n — 1)-marked sections
in D, relative to f : the restriction of 7 to D,, is an isomorphism between D,, and
CxgP. Let £ € FX g 1(Q) (resp. £ € FX 7gn( )) be the object corresponding to

the family f (resp. f). Following the discussion after Corollary 3.6, to construct
[MX gm—1)"" it suffices to find a G-linearized locally free sheaf V of Og-modules
such that

(4.7) T35 gm-1(6)(00) = Eatl o (If*x — Qc/0(D)], Oc)
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is a G-linearized quotient of V. As before, we pick a G-linearized locally free sheaf
Wi of Oc-modules such that Wy ! is sufficiently ample along fibers of C — Q. We
then pick a G-equivariant quotient homomorphism Wi L f*Qx and let W, =
ker{W; — f*Qx}. Wy is also locally free. It follows that (4.7) is a G-equivariant
quotient sheaf of

V= Eatl o (Wa — 0], Oc) = Ext 1 o(Wa, Oc).

By the discussion after Corollary 3.6, there is a canonical cycle [CY] € Z,Vect(V)
so that the image of its Q-descent over Mgf g,n—1 under the obvious Gysin map is

M g)n_l]"ir. Now we pick a similar vector bundle over P. We set Wy = p*W;
and Wy = p*W,, where p is the composite map prz o 7:C—C xg P — C. Then
W2 — Wl — f*QX pulls back to WQ — W1 — f*Qx. Let

V= Eat,, (Ws — 0],05) — T25X . ,()(Op)

= Ext%/P([f*Qx — Qé/p(D)]7Oé)

be the similar quotient homomorphism of sheaves. Because 7 contracts at most one
rational curve in each fiber of C over P, V is canonically isomorphic to prV, where
Pn: P — Q is the projection. We claim that there is a canonical homomorphism ¢
making the following diagram commutative:

v — T2S§,g,n (6)(073)

(4.8) lg l¢
p:,v - p;T28§,g,n—l (6) (OQ)

We consider the canonical exact sequences

l¢2 ldn !
ety o(Qeso(D), Oc) — milatl,o(f*Qx,0c) — milat,o(B*,Oc)

A*,0pz)
@

where A® = [f*Qx — Qg ,p(D)] and B* = [f*Qx — Q¢ o(D)]. Clearly, there are
canonical homomorphisms ¢; and ¢- as indicated in the above diagram making the
left square commutative. Because the two horizontal arrows on the right are surjec-
tive, there is a canonical homomorphism ¢ making the right square commutative.
The commutativity of the diagram (4.8) follows immediately.

Now let [CV] € Z.Vect(V) (resp. [CY] € Z.Vect(V)) be the virtual normal cone

cycle constructed in the beginning of section 4 associated to T'&i{g,n_l(é) (resp.

T*FX (£)), and the quotient homomorphism V — T%im(é)(op). Let

«,g,n
@ : Vect(V) = Vect(V) x o P 25 Vect(V)

be the projection. @ is flat of relative dimension 1. Now assume that

(4.9) o*[CY] = [CY].

Let [C},] and [C)\}/[] be the Q-descents of [C'V] and [C‘}] to MY, and MY

respectively, and let Vect (V) and Vect (V) be the Q-descents of Vect(V) and
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Vect(V) respectively. Then
[CY) —— Vecta(V)

| l

[CX] —— Vectm(V)

is a pull back diagram. Therefore,

M g ] = 3 [CX = mami [CX] = IME ],

@,g,n «@,g,n
where 7, and 7y are the O-sections of Vect()) and Vect(V).

We now prove the identity (4.9). We first note that there is a largest subscheme
3. C P characterized by the property that the restriction of the contraction mor-
phism

7T|C"XPE:C~X7DE—>CXQE

contracts a Pl-bundle over ¥. Since the image of any of these P! in C must be
either one of the marked points or one of the singular points of the curves in this
family, the restriction of p,: P — Q to X is a finite morphism. Let w € P be any
closed point over z € Q. Let C and C be the restriction of C and C to w and z
respectively. We let ¢: C — X and ¢:C — X be the corresponding morphisms,
and D ¢ C and D C C be the corresponding marked points, respectively. Then
(f,C, D) is the stable contraction of (f,C, D.,) relative to f. We first consider
the situation where C' is isomorphic to C. Namely, f € P — ¥. Clearly

D = O R k(w) : Exté([tp*QX — Qa(D )], (9@) = Extc([tp*QX — Qc(D)], Oc)

is an isomorphism. We claim that the obstruction theory to deformations of ¢ is
identical to the obstruction theory to deformations of ¢. Indeed, let B be any Artin
ring with residue field k and let I C B be an ideal annihilated by the maximal ideal
of B. Let By = B/I and let @o:Dy € Cyp — X be a flat family over Spec By whose
restriction to the fiber over Speck is ¢. Let 0 be the obstruction to extending ¢¢ to
families over Spec B. Similarly, we let ¢o: Do C Cp — X be the stable contraction
of pp : DO <n C Co — X and let o be the obstruction to extending g to families
over Spec B. By our description of the obstruction theory of FX g,n 0 section 1,
¢w(0) = 0. Now let

Tiw = BExt(["Qx — Qa(D)],0p) and  T;. = Exty([¢*Qx — Qe (D)],0c).
Note that in our situation, T, = T5,, and T}, is canonically a quotient vector
space of 11, with dim 7}, = dim T , + 1. Let h:T}, — 71, be the projection.
Let f, € Sym'(Tle) ®k T»,, be a Kuranishi map of w. Then f, := h*(f.) €
Syin'(Tl\fw) ®p T2, s a Kuranishi map of w. Now let
2 := Spec Sym*(7’,)/(f-) C T := Spec Sym*(1Y’,)
and let
W := Spec Sym*(1Y,,)/(fw) C S := Spec Sym* (T}, ).

Because the normal cones are canonical under flat base change [Vi], the normal
cone

(O] :=[Cy 5] € Zu(Vect(T2,w) X, @)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



160 JUN LI AND GANG TIAN

is the pull back of
[CF]:= [C. 4] € Z.(Vect(Tn,) Xy, 2)
under the canonical flat morphism w — Z. Hence, if we let U =P — X, then
Ry (0(ICV))) = Ry ([C7)) € Z.(Veet(V) xp U),

where Ry :Vect(V) xp U — Vect()) is the open immersion. Since both o*([CV)])
and [CV] are cycles of identical dimensions, to show ®*[CY] = [CV], it suffices to

show that no irreducible components of [CV] are contained in Vect(V) xp .
Now we consider w € ¥. Let T} ,, and T5 ,, be as before, and let

fu € Sym*(TY,,) ®k Ta,w

be a Kuranishi map of w. By the definition of Kuranishi families, there is an
associated family

F:xXx—X and Dcx

of stable morphisms over w. We let X’ over 1 be the resulting curve obtained
by stable contracting D, C X relative to F. Let X — X’ be the contraction
morphism and let S C 1 be g 1(¥), where g:1 — P is a morphism such that F
is the pull back of the tautological family f over P. It follows that [C"}] has no
components supported on X if and only if for any w € ¥ the cycle [C), / ¢ has no
components supported over 3.

Now we prove this statement. Let z = m,(w) € Q, let T3 , and T5 , be as before
and let f, € SyAm'(TlY ,) ®r Ts , be a Kuranishi map of z. Similarly, we let

G:Y— X and ECy

be the associated family of stable morphisms over 2. It follows that there is a
canonical isomorphism X’ x; {w} =2 Y x; {z}. Now let r € Y x; {z} be the image
of the P! C X x4 {w} that was contracted under X — &’. Let # be the formal
completion of the total scheme of ) along r. It follows that 7 is isomorphic to .
Without loss of generahty, we can assume that )/Z can be extended to a family
of nodal curves, say y over 1. In case the total space of y is smooth at r, we let
T" = T and let R be the formal completion of y along r. Otherwise, because y —T
is a flat family of nodal curves, by embedding 7" in 1" = Spec Sym'(Tl)Z @ k), w
can assume that ?/T extends to an 37’ over T" so that the total space of )5’ is
smooth at r. Then we let R be the formal completion of )5’ along r. It follows that
® =~ 7 and dim R = dim T4 Let p:R — T" be the induced projection. Because p
is flat and 7 = 2 x4, R,
CE/T’ Xz P = CTQ/R.

Hovvever because 7 = @ and dim R = dim S, # & @ extends to an isomorphism
>~ §. Therefore, there is an 1bomorphlbm C, IR = C . Finally, because the

~

restriction of the composite @ = # 2 2 to $Coabis ﬁnlte where 3 is the formal
completion of ¥ along w, C, R and hence C . /8 has no components supported

over 3. This proves that [C¥] has no components supported over ¥ and hence [CV]
is isomorphic to the pull back of [C'V] as subcone cycles in Vect()V). This completes
the proof of the theorem. O
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5. COMPOSITION LAWS OF GW-INVARIANTS

The goal of this section is to prove the composition laws of the GW invariants.

Before we state and prove the theorem, let us introduce some conventions which
we will use. In [Kn], Knudsen described various clutching morphisms, of which two
are basic to the composition laws. We fix a partition ¢g; + go = ¢g and a partition
n1 + ny = n once and for all. We always assume that g1, g2, n; and no are non-
negative. Let §g4 , be the moduli functor of stable n-pointed genus g curves and let
Mg be its coarse moduli scheme. Let S be any scheme, let & € §g,n,+1(S) be
represented by the family Cy and let & € §g, n,+1(S) be represented by Co. We
let £ € §4,n be the object represented by the family C' obtained by identifying the
last marked section of Cy with the first marked section of Cs, and set its n-marked
sections to be the first ni sections of Cy followed by the last nsy sections of Cs. In
this way, we obtain the so-called clutching transformation

7~-g.TL. : 3g1,n1+1(s) X 39277114-1 (S) - g9771(5)

If there is no confusion, we will write C' = 7y, ,, (C1,C2). We denote the induced
morphism on their moduli schemes by

Tgene * Mgy ni+1 X Mgy npt1 » Mg

and call it the clutching morphism. The other clutching morphism is defined as
follows. Given & € Fg_1.n+2(5) represented by the curve C, we obtain a new curve
by identifying the last two marked sections of C' and keep the initial n sections. The
resulting curve is in §g.,,(S). We denote this transformation by 7,_1 »+2 and denote
the morphism between their moduli schemes by 7y_1 p42 : Mg_1n42 — My p.

Theorem 5.1. Let X be any smooth projective variety. Assume that 7, T, €
H*(X) are elements so that [A]Y = Zle T; @ T; is the Kinneth decomposition of
the Poincaré dual of the class [A], where A C X x X is the diagonal. Then

(1) For any hy € Hi(Mg, n,+1) and hy € H, (Mg, n,+1), we have
w‘i{%n(fl’ e ’fang.n. *(hzl X hg)v)

k
X X ~
= Z Zwal,gl,nl—kl(gla"' 7671137-1'7}1}/) '¢a2,g2,n2+1(§n1+1a"' afnaTivh;/)'

a1toag=a =1
2) For any h € Hy(My_1ny2), we have
g-1,

k
i{,g,n(gla T 75717 Tg—1,n+2x (h)v) = Z 1/1§g_1,n+2(§1, T 767’“ Tis Tiy hv) .
i=1

We now state the composition law at the level of cycles. The numerical version
above is a direct consequence of it. Let 75 ng gn — Bgn be the transformation
X 4n(S) to the curve obtained by first forgetting the map
and then stable contract the remaining n-pointed curve. Let 7% : MY, — Mg,
be the morphism between the respective moduli schemes.

that sends any map in §
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Theorem 5.2. (1) Assume ni,n2 > 0. We form the fiber products

X X
Zoélocz - H Mal,gl,nl+l Wa MOé »g,m
l (6711+1,61)J7 and l ﬂiJ]
A 2 Tgene
X — X x X [l Mginit1 ——= Mg,

where X 25X x X is the diagonal and ey, : Magn — X s the k-th evaluation
morphism. Then there is a canonical morphism ¥ : Uy, +as=aZaias — Wa that is

finite, unramified and dominant. Further,

(> Al HMWW 1) = (Tgana) TME gl

al—i—ag @

(2) Let Z1 and Zy be defined by the following fiber diagrams:

X X
Zy — Moz,g—l,n+2 22 Ma ,g,n
l (en+1;€n+2)Jr and J, TSJ
A Tg—1,n+2
X —— X xX Mg_inge ——— Mgn.

Then the canonical morphism ® : Z1 — Zs is finite, unramified and dominant.
Further,

( [Ma ,9—1 n+2]Vir) = (Tg_lyn"’_?) [MX,q, ]Vlr

We will refer to them as the first composition law and the second composition
law.

We will give a detailed proof for the first composition law in this paper. The proof
for the second is almost identical The only difference with the proof of the second
law is that when ni,ns > 0 the clutching morphism 7y, ,, is a closed immersion
while 741 »42 are only locally closed embeddings. Some modifications are required
for these cases, which we will mention at the end of this section.

We first observe that by property (4) of Theorem 4.3, the first composition law
for MX _g,n can be obtained from that of MX gn+1- Therefore to prove the first
composition law it suffices to prove the case when ni,ns > 0, which we will assume
from now on.

Before we explain the strategy of the proof, let us first recall the notion of Q-
schemes which is a straightforward generalization of Q-varieties in [Mul].

Definition 5.3. We define a Q-scheme to be a scheme Z with the following data.

(1) A finite atlas of charts ZBEZB/GB%Z, where pg are étale, G is a finite
group acting faithfully on a quasi-projective scheme Zg and Z = U(Im pg).

(2) For any pair of indices o and 3, there is a chart Z,g with the group Gog =
Go x G such that there are equivariant finite étale Zog — Zo, Zag — Z3
commuting with projection Z,, Z3, Zag — X such that Im(peg) = Im(pa) N
Im(pg).

(3) For any triple o, 5 and 7, there is a chart Z,g, with the group Gog = G4 X
G x G such that there are equivariant finite étale morphisms from Z,g3. to
Zq, Zg and Z, such that in addition to Im(pagy) = Im(pa) NIm(ps) NIm(p,),
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the diagram

Zapy —— Zap

l l

Zoy —— Za
and the other two obtained by permuting the indices are all commutative.

It is known that Mé{gm is a projective Q-scheme. Let 8 € Mé{gm be any point
associated to the morphism f:C — X and let Gg be its automorphism group.
Then we can find an affine open Zg acted on by Gg, a Gg-equivariant family £g €
Sar g.n(Z) of stable morphisms so that the classifying morphism Z5/Gg — MY,
induced by the family {3 is an étale neighborhood of 3 € Mf g.n- For a pair 3 and
B, we can take Zgg = Isoz,xz,, (718, m3€p') (see [DM, p. 84]). For a triple 3, 5’
and 3", we can take Zgg g+ as a subscheme of Zg x Zg x Zgn defined similarly.
One can introduce the notion of Q-sheaves of O MX, -modules, or Q-complex, in
the obvious way. A Q-sheaf is a collection of Gg—equi\}ariant sheaves F3 on Z3 with
isomorphism Fg ®o, Oz,, = Fp ®z, Oz, satistying the cocycle condition over
the triple overlaps. Given a Q-locally free sheaf £ on M§ gn» We can define the
Chern class ¢;(€) as a cohomological class with rational coefficients, mimicking the
similar definition over Deligne-Mumford stacks. Lastly, if L is a Q-line bundle on
M, and s is a section of L, by which we mean a collection of s3 € H°(Zs, L)
satisfying the obvious compatibility condition on double overlaps, we can define the
localized first Chern class, denoted ¢1([L, s]), using the normal cone construction,
mimicking the construction in [Fu, §14.1]. One key observation, which can be
checked directly, is the following. Assume that for some integer k, L®* is a line
bundle on MY . Then ¢;(L¥*) =k - ¢1([L, s]).

The strategy to prove the first composition law is quite simple, at least conceptu-
ally. For any partition a1 +age = a, we let 7o, a0y : Zayas — Mgf)g)n be the clutching
morphism that sends pairs f1:C; — X and fo:Cy — X to f:C — X, where
C = Tgons (C1,C5) and f is the obvious induced morphism. Since ni,ns > 0, Ta, s
is a closed immersion. We will first introduce a Q-line bundle Ly, 4, On /\/lf an
and a section fa,q, such that the Q-subscheme defined by fuo,a, = 0 is the image
scheme of Wy, 0, = Taras(Zaras). We will construct a Q-line bundle L,, on M, ,
and a section f,, so that f,!(0) is the image scheme of the clutching morphism
Tgene- Lhe significance of these line bundles and sections are given in the following

lemma.

Lemma 5.4. There is an isomorphism of Q-line bundles
® Lojas = (1) Ly
a1 tas=a
so that under this isomorphism, we have
H Joras = (1) fn
a1 taz=a
It follows that 7, , [MX  ]V" is

cl((ﬂg)* [LTL7 fTL])[Mi{,g,n]Vir = Z €1 ([Lalaza fa1a2])[M§,g,n]Vir :

a1 tas=a
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In light of Proposition 3.9, the composition law will follow from

Cl([Lalazvfa1a2]) = [Zoélocz]wr = ([Mi(l,gl,n1+l X M§2,g2,n2+1]‘,ir)v

which will follow from establishing the compatibility of the tangent-obstruction
complexes of the corresponding functors.

We now give the details of the proof. We first recall some known facts. In this
section, we will view MZX  and Mg, as Q-moduli schemes. We let

a,g,n
{(Vs,V3/Gp,Cv,) }gen.

be an atlas of M, ,, where Cy, are the tautological families over Vs, and let
{(W57 Wﬁ/Kﬁa FWB ) CWﬁ)}5€Aa

be an atlas of MX .g.ns Where Fyy, :Cw, — X are the tautological families over Wj.
Assume that for some w € Wy and u € Vy, Cy,, |, is isomorphic to the stable con-

traction (i.e. 75 ) of Cy,|w; then there is an étale neighborhood (w0, Ws) = (w, W)
such that there is a morphism Wp NG g induced by the transformation 7, where
the family over Wg is the pull back from Wﬁ Similarly, let §; and (2 be any two
indices and let v : ng — Vg, and ¢2: Wﬁz — Vj, be the so-defined morphisms.

Then there is a canonical lifting 2 : Ws, 3, — Vpyp,- This follows immediately
from the way the double overlaps are constructed. Another property we need is
the following. Let S be any scheme and X be a family in §, ., (S). Assume that for
some s € S and u € V3, the restriction X|, 1s isomorphic to the restriction Cy, ..
Then there is an étale neighborhood (sg, Sp) — (s, S) such that there is a morphism
¢:(s0,50) — Vz such that ¢ Cvﬁ = *X and that their restriction to sg is exactly
the isomorphism X|, = Cy, |, given.

We first introduce Q-line bundles on My ,,. We fix an integer £ > 0 and let
m =n+ k. For any

K=1{hy, - ,hp,} = {n+1,--- ,m},

we let K’ = {hf,---,h},} be the complement of K. Here we assume that both
h; and h} are strictly increasing. We call K and K’ a partition of 3. Given any
K C %, there is an obvious clutching transformation

7~—K : Sgl,ml—i-l X 3g27m2+1 — ggﬂh

where m; = n; + k;. Namely, given C1 € Fg, m,+1(S) and Co € Fg, mot+1(5), we
let 7k (C1,C2) be the family obtained by identifying the last section in C; with
the first section in Cs, and set the m marked sections to be the union of all but
the last sections of C; and all but the first sections of C3. They are ordered as
follows. The first n sections are s,--- ,s,,,,85,- - , 55, .1, where {s}} and {s7} are
sections of C; and (5 respectively. We then place 5}11 1; in the h;-th place and place
s%ﬁjﬂ in the h-th place. We denote by d:S — C the section of nodal points
along which the gluing is taking place. We call such a nodal section a decomposable
nodal section, and say C' is decomposable into families in §g, m,+1 and gy mo+1
along the partition K U K’ (or along the nodal section d).

Since ny,ne > 0, 7 is a closed immersion [Kn], the image scheme of 75 is a
Q-Cartier divisor. Let {(Ug,Us/Gp3,Cu,)}pen,, be an atlas of M, ,,. For each
B € Ay, there is an fx g € Oy, such that T3 = {fx s = 0} is exactly the
subscheme such that the restriction of Cy, to it is decomposable into families in
Fg1,mi+1 and Fg, m,+1 along the partition K U K’ (see [DM, p. 83]). If T g = 0,
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we will set fx g = 1. Note that in doing so, we might need to shrink Ug if necessary.
(In the following, we shall feel free to shrink Ug and make necessary adjustments
whenever necessary.) By the theory of deformation of nodal points, dfx |7y , is
nowhere vanishing. Furthermore, over Ugg, there is an fx gg € OI*JM such that

frpomu, = frpp - (frp omu, ),

where as usual we denote by my, : Usgr — Up the projection. Clearly, {fx gs}
satisfies the cocycle condition over the triple overlaps. Hence {fx gg} defines a
Q-line bundle, denoted by Ly, and {fx g} defines a section fx of Lx. By our
choice of fx 3, the image Q-scheme Im(7x ) is defined in each Ug by the vanishing
of fx s

We now turn our attention to the contraction transformation 7} : §g.m — Fg,n
that sends any curve to the curve obtained by first forgetting the last k sections of
the curve and then stable contracting the resulting family. We denote by «)" the
morphism between the corresponding moduli schemes. For each 8 € A,,, there is
an étale covering m;: A; — Up of Ug and B} € A, such that there is a morphism
T Aj — Vs induced by the transformation 7)*. For simplicity, after replacing
Us by an étale covering of itself and rearranging the index, we can assume that
A, = Ay, £ A and that the maps T, g ; just mentioned are from Ug to Vs, denoted
T3 (we allow some Ug or V3 to be empty sets). Clearly, T g is G s-equivariant,
under the obvious group homomorphism Gg — Hg. Let f, g € Oy, be a section
whose vanishing locus defines the closed subscheme T, 3 C Vg, where T}, g is the
largest subscheme over which the family Cy, decomposes into families in Fg, n,+1
and §g,,no+1. Let

fnpp = (fn,ﬁ © WV;;)/(me’ o WVg/)?

where 7y, : Vggr — Vj3 are the projections. {f, gs '} defines a Q-line bundle L,
on My, and {f, s} is a global Q-section of L, whose vanishing locus defines the
image Q-scheme of the clutching morphism

Tgene * Mg17n1+1 X Mg27n2+1 Mg;n'

By [DM, p. 83], there is a nowhere vanishing gg € O 5 such that

11 fxs =95 (fnpomys).

KCcx

By replacing one fx 3 by fx s/9s, we can assume that gg = 1. Then

Q Lic =)Ly and  [] fxc= ) (f).

KCX KCX

In the next part, for any partition a; + as = «a we will construct the Q-line
bundle Ly, q, On Mﬁig)n and a section fq,q, Of Laja, such that fq,o, = 0 defines
the image Q-scheme of the clutching morphism 74,4,. We fix a sufficiently large
m. Let 3 € Ay and let (W3, K, Fw,,Cw,) be the chart in the atlas of M .
Without loss of generality, we can assume that there are sections s, 11,8, -, Sm,3:
W3 — Cw, such that Cy, with these extra sections is a family of m-pointed stable
curves. We fix such a choice of new sections for each § once and for all. We denote
the resulting m-pointed curve by @WB. As we did before, after rearrangement we can

assume that A, = A and that for each 3 € A there is a morphism 77, 5: W3 — Ug
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such that the pull back of Cy, is isomorphic to (fwﬁ. We fix such 7y, 5 once and for
all.

Now let 8 € A be an index. We assume that for some partition a1 + as = «a,
pgl(Im(Talaz)) # 0, where pg : Wy — M is the classifying map. Let w
be a point in this set. Then there is a unique partition K U K’ = ¥ such that
the curve associated to w with the extra sections is in the image of the clutching
transformation 7. Without loss of generality, we can assume that the partitions
KUK associated to w € pgl (Im(7a, a,)) are independent of w. Then the subscheme

(5.1) Toyaz,p ={frpomyz =0} CWps
is the closed subscheme such that the restriction of the family Fy, to Thya,,6 is in

the image of the clutching transformation

= X X X
Taias * Sahghnr‘rl x Saz,gzﬂlz-‘rl Sa,g,n'

(Here we might need to shrink Wy so that any element in {fx gomy, 5 =0} is over
the image of Ta,a,.) We let fo,a,,8 = fx,6 07, 5. In case pgl(Im(Talaz)) =0, we
set faias,3 = 1. Clearly, should there be a unique fu,q,,88 € O?;Vﬁﬁ’ such that

faloczﬁ CTMwg = faloczﬁﬁ’ ' (faloczﬁ’ o 7TW5/)

for all pairs {3, 3'}, where my, : Wgg — Wp is the projection, then {fa,a,.88'}
would satisfy the desired cocycle condition and then define a Q-line bundle, and
{faras,3} would define a global section whose vanishing locus is the image of 7o, oy s
as desired. However, for our moduli space M§ gn» 1t may happen that some
faras,p = 0. Thus the above direct argument needs to be modified. In the following,
we will first thicken the W3’s so that the desired fq,a,,35’ are still well-defined.

We fix a two-term complex £°® of locally free sheaves such that its sheaf cohomol-

ogy H*(&*) = T’Si{g,n. Such complexes were constructed in section 4. Over each
W, T’Sgi g.n 18 Tepresented by a tangent-obstruction complex TV},ﬁ of Wg, and £°

is represented by a two-term complex of locally free sheaves of Oyy,-modules, de-
noted &5 = [€3,1 — g2, such that H*(£3) = Ty, . Let Eg be the vector bundle on
W such that Ow, (Eg) = E,1. By abuse of notation, we will also use E to denote
the total space of Eg. Because of the way £° is constructed, there is a canonical
homomorphism of locally free sheaves
op:Ep1 — gxtéwﬁ /W3 (QCW[, /Wa (DWB)? OCWB) )

where Dyy, is the divisor of n-marked sections of Cy,. By the deformation theory,
if we let J C O, be the ideal sheaf of Wy C Eg, embedded via the zero section,
and let Fjg C Eg be the subscheme defined by the ideal J?2, then there is a family
of n-pointed curves Cr, over Fjg such that the homomorphism ¢g above is the
Kodaira-Spencer map of the family Cr, along the normal bundle to W3 in Fp.
Here by the normal bundle to Wp in Fjz we mean the subbundle of T'Fp|w, that
is the kernel of T'Fj|w, — TWj. Since the restriction of Cr, to Ws C Fp is Cw,
and Cy, is smooth over W near its sections, we can extend the last k sections of
Cw, to sections in Cp, (over Fjg) and place them in the same order as Cyy, has. We
denote the resulting m-pointed curve by C. Fy, Which is a stable curve over Fg. Let

be the morphism induced by the family Cp,. Then 7%, 5 is an extension of 75, ;:
Wg — Usg.
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Now we go back to the partition K U K’ = ¥ and the Ty, q, 3 defined in (5.1).
We let fa,an6 be fxpoTg 3 € Opy. Then T = {fa a5 = 0} is exactly the
subscheme of Fj such that the restriction of C Fy to T belongs to the image of the
clutching transformation

~ =X X X
TK - Sahghmr‘rl x Saz,gzﬂnz-‘rl Sa»g,n'

We fix such a Cp,, and then T 5 and faras,p for each B € A once and for all. Recall
that mw, :Wpg — Wp is the projection. Since there is a canonical isomorphism

(mw,) Eg = (mw,, )" Egr,

Fg xXw, Wggp is canonically isomorphic to Fgr xw,, Wgg. We denote this scheme
by Fgg. We let mg, : Fggr — Fjg be the projection.

Lemma 5.5. There are ¢ € OFM, such that

falazﬁ OTFg = (b (fa1a275’ © ﬂ—FB/)'

Further, if we let 1:Wgg: — Fpg: be the inclusion, then ¢or is unique and is nowhere
vanishing. We denote ¢ ot by faras,88- {foras,83'} defines a Q-line bundle on
M 0 and { fa,as,p} defines a section of this line bundle.

Proof. The existence of ¢ follows from the fact that the subscheme { falo@, BOTE, =
0} is identical to the subscheme {fa,a,.5 © mF, = 0}. This is true because both
define the subschemes over which the two families of curves, which are isomorphic
after discarding the last k& sections, can be decomposed along the same nodal sec-
tions (see [DM, p. 83]). To show that ¢ o ¢ is unique, it suffices to show that
at each w € Wggs there is a tangent vector v € T,,Fjg contained in the kernel
of TwFsp — TwWpp such that d(fa,a,.5)(v) # 0. Here TwFss — TyWppr is
induced by the vector bundle projection Eg — Wpg. This is true because

Ep1 @ k(w) — Extg (e, (Dw), Oc,,) — Exth(Qr, Or)

is surjective. Here C,, is the fiber of Cy, over w, D,, C Cy, is the divisor of n-marked
points, r € C,, is the nodal point where the clutching 7,,q, is taking place and 7 is
the formal completion of C,, along r. Because fqo,a,,33 are unique, the collection
{faras,88'} satisfies the cocycle condition on triple overlaps. Therefore it defines
a Q-line bundle on M, denoted by La,a,. For the same reason, {fa,a.5}
forms a global section, denoted by fo,as, 0f Laja, such that the image scheme
Im(Ta,a,) C MY, is defined over each W3 by {fa,a,,8 = 0}. This proves the
lemma. |

Now, we let 75 : M gn — Mgn be the stable contraction morphism. Locally,

® is represented by maps

T,

T =TngCTmp: Wg—Vs.

Let 75y 55/ :Wgg: — Vg be the lifting of the pair () 5,75 5,), which exists and is
unique. Let fo3 € Ow, be fnpomy 5 and let fo ggr = fngp o, 55 € (’);Vﬁﬁ/.
Then {fa,pp } defines a Q-line bundle, denoted by L, which is isomorphic to the
pull back (7%)*Ly,. For the same reason, {fa g} is a section f, of L, which is the
pull back of f,, of L,.
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Lemma 5.6. There is a canonical isomorphism of Q-line bundles ® Lo,y = Lo
such that under this isomorphism, we have || fayas = fa, where the product is over
all possible a1 + as = a.

Proof. First note that given any o; + ap = o and w € pgl(Im(Talaz)), there
is a unique partition K U K’ = ¥ such that the decomposition of C, along the
partition K U K’ is the inverse to the clutching transformation 74,4,. We denote
this correspondence by ajas +— Ky(ajaz). By making each Wy small enough,
we can assume that the following two conditions hold automatically for all 5 € A.
First, for w,w’ € pgl(lm(ramz)) we have K, (ajas) = Ky (aiag); second, the
map
a1 + oz =« and ,
{0091, () 70— { K

is injective and onto. The first is possible because 74, o, is a closed embedding. We
define Kg(ai1o) = Ky (a1ag) for some w € pgl(Im(Talaz)). Hence for each S,

(5.2) H fr = fapomls

KCX

CUB |, is decomposable along}
K C X for some u € Ug

Here if KU K’ is not in the image of the above correspondence, then fx g = 1. To
show that ® Lo, a, = La, we need to check [] fa,as,88 = fa 887, which amounts to
proving the identity

(T 0 TWs) " [Ro(araa),s (T g0 Tw,)" fn
(T30 © TWy ) Fiy(aran).r (T g @ Twy )

(5.3)

altaz=a
on Wggs. This is obvious from the previous identity if all quotients are well-defined
and unique. To prove (5.3), we first embed Fgg O Wpyg into a smooth affine
scheme, say Fjggr C R. Without loss of generality, we can assume Wp, Ug and
Wpggr are affine. Let ¢: R — Ug be a morphism extending the morphism

by : Fogr — 2 Fp 7% U
We claim that there is a morphism ¢’ : R — Ug/ extending g : Fgg — Ug such
that

(5.4) pgomyzod=pgom s od,

where pg: Vg — Mg, is the obvious morphism. Indeed, the morphism ¢: R — Ug
provides a family of m-pointed stable curves over R via pull back. Let it be X with
the sections {s;}. Let ¥, Cy,, be the pull back of Cy,, via g : Fgg — Ug. Then
after restricting X'r to Fgg and discarding its last & sectlons the resulting family
is isomorphic to 1/) CUﬁ, as n-pointed curves. We choose k sections Sp,41, -, Sm
of Xr extending the last k sections of wﬁ Cps, which is possible because Xg is
smooth over R along sections of 5 Cs. We denote Xr with these new sections
(- 8ny8nt1,--+) by Xr. Then Xy induces a morphism ¢': R — Ugs that has the
desired property.

Now we show that [] fa,a,.880 = fa,pp'- Because of (5.4) above and because ¢/
is induced by the family of curves, we have a unique lifting ¢ : R — Vgg. Then
because R is smooth and because neither fx,(a,az),6 © ¢ 1O fi, (a1a),8 © ¢ is
zero, there is a unique rational hq, o, 88 such that

ng(Oclocz),ﬂ © ¢ = ha1a27ﬁﬁ’ : (fKﬁ/(alon),ﬁ/ o (b/) *

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



VIRTUAL MODULI CYCLES AND GROMOV-WITTEN INVARIANTS 169

Clearly, hq,a,,88' is regular and non-vanishing near Figg: C R. It follows that
(5.5)
H (fK[j(oqag),ﬁ O(b) = ( H hoz1a2,55’)( H (fKﬁ/(oqag),ﬁ’ O(b/)) .

altaz=«a altaz=a a1 tas=a

Now let 753/ : Wggr — R be the inclusion. Of course, ha,a,,88 © 788 = faias,88'-
Thus to show that ® Ly, q, = (7%)* Ly, it suffices to show that

n

(JT haraz.ss) 0 860 = faps 0 75 5

where 75 55 : Wgg — Vppr is the projection. Indeed, because [[xcy fxp =
frpomys,

g8 =tfapomysod= || frsaans00.
a1 taz=a
Therefore (5.5) holds with [] ha,as,88 replaced by gg/gg . Since all terms in (5.5)
are non-trivial and since R is smooth, gg/gs: is regular near Wyg and its composite
with 754 is identical to the composite of []haya,,88° With 73 Finally, because
this term is also the pull back via ¢: R — Vg of fngomy,/fnp OV, where my, :
Vg — V3 is the projection, its composite with 7gg/ is the pull back of f,, gg-. This
proves that [] faias,88° = fa,p8 and consequently ®Lg, o, = (75)*Ly. It remains
to show that [[ fa,a.,6 = fa,s. This is true because [ [ s, fr,g = fn,gom,; 5. This
completes the proof of Lemma 5.5. O

As was explained before, to complete the proof of the first composition law, we
remain to investigate the tangent-obstruction complex of Z,,4,. We first intro-
duce the functor §a,a, so that its coarse moduli scheme is Z,,q,. For any scheme
S, we let Fa,a,(S) be the subset of F , ,(S) consisting of families f: X — X
such that there are distinguished sections of nodal points d: S — A& such that f
are decomposable to pairs of families in X, . 11(S) X FX, gon,11(S) along the
nodal sections d. Clearly, §q,q, is coarsely represented by a scheme V,,,, which
is canonically isomorphic to the Z,, ., defined before. By forgetting the distin-
guished sections, the resulting transformation §u,a0, — §§ gn defines a morphism
D Zojay — Mg{)q)n. ® is a closed immersion since ni,ny > 0 and induces an
isomorphism Zu,a, = Wa,a,. In the following, we will not distinguish Zg, 4, from
Waia, unless we mention otherwise.

We now give the tangent-obstruction complex of §Fn,a,. Let S be any affine
scheme and let € € §Fq,a,(S) be represented by f: X — X with the marked divisor
D C X and the distinguished nodal section d: S — X. Let B*({) be the complex

[f*Qx — Qg,/S(D)] indexed at —1 and 0, where Qg(/s is the quotient sheaf of Qy /g
by its torsion supported at the distinguished nodal section and f*Qx — Q5 /s is
induced by f*Qx — Qx/s. Because the first order deformations of nodal curves

with distinguished nodal sections are Ext} (Q5 /5 Oy), from the description of the

X
a,g,n’

T'Foraa(§)(F) = Eaty5(B(€), m5F),

where g : X — S is the projection, and that there is an obstruction theory to
deformations of §,q, taking values in

728011042(5)(}—) = gxti’/S(B.(g)vﬁg’f)

tangent-obstruction complex 7°*F we see immediately that
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Now let 7' be the formal completion of X' along d(S). It follows that we have the
long exact sequence

0 — T'Fa10:(O)(F) — T'F2 g n((F) = Eaty o (U5, T5F) —

a.gin /8
b
> T?F 00 (E)(F) — T*Fa g.n () (F) — 0.
Note that gxt'_lf/s(Q’f'/SﬂTgf) ~ F. It follows from [DM] that Ext%/S(QT/S,OT)

is isomorphic to the pull back of the Q-invertible sheaf O yx (Laya,) and the
homomorphism b is induced by the differential of the defining equation faras- Now
let S — Yy — Y be the triple described in Definition 1.2 and let & be a family in
Soras (Yo) extending &. Let o (resp. 0) be the obstruction class to extending &y to
Faras(Y) (resp. to Sf’g)n(Y)). A straightforward analysis of the definitions of o

and o0 shows that 6 = ¢(0). Next, assume that 6 = 0. Namely &, extends to a family
f:X = XoverY. Let h € Extclﬁ(QTA/S, m5Ty,cy) be the section associated to the

family X — Y. Then it is direct to check that o is the image of h under b (see
[DM]). This proves that the obstruction theory of §a,q, and %, ,, are compatible
with respect to the defining equation fu,q, = 0. Finally, following the construction
of the complex £° in the beginning of section 4, we can find complexes £° and F*
such that H*(€*) = T*Fa,a, and b*(F®) = T*FL,,, which satisfy the technical

condition of Proposition 3.9. Therefore, by the argument at the end of the proof of
Theorem 4.2, we can apply Proposition 3.9 to conclude

(56) Cl([Loqocza falaz])[Mgig,n]Vir = [Za10£2]Vir'
In the following discussions, we will abbreviate ngi)gi’mﬂ to §a;. It remains
to show that 7°F.,q, is compatible to the tangent-obstruction complex of

T°*(Fay X Fas) with respect to the fiber product
30610& (S) - Sal (S) x 3062 (S)

(5.7) | |

Mor(S, X) 4, Mor(S, X x X).

Here, given £ € Fa,a, (S) represented by the map f and the distinguished section
d, the first vertical arrow will send it to fod:S — X. Similarly, for (£1,&) €
Fay X Fa,(S) represented by the pair of maps fi and fo, the second arrow will
send it to (en,+1,€1):S — X X X, where ey, +1 is the (n; + 1)-th evaluation map
of f1 and ey is the first evaluation map of fa. Let £ € Fnya,(S) be as before.

By decomposing f along its distinguished section d, we obtain a pair of families
{fi:D; CX; —» X} =& € Fa,(S) for i =1,2. We let

R; (&) = [£7Qx (=di(S5)) — Qu,/s(Di — di(5))],

where dy is the last marked section of Dy C X and d» is the first marked section
of Do C Xs. Let 1;: X; — X be the immersion. Then we have the exact sequence

0 — RO © 2. RI(E) — B(E) — [/ B0 Oags) — 0] — 0
and its induced long exact sequence
0 —Eaty g(B* (), m§F) — Biy Eaty st RE (§), m5F) —
(5:8) L Eath 5(f*Ox Qo Oas), T5F) 2 Eat 5 (B*(€), m5F) —
— @ty (1R (€), 5 F) — 0.
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It is direct to check that there are canonical isomorphisms
Eathy 51 RE(€), w5 F) = Extly s([f7x — Quys(Di)], 75F)
and
Exty)s(f*Ux ®oy Oqs), T F) = (f 0 d)* Q% ®0, F.

Therefore, (5.8) is the long exact sequence of cohomologies mentioned in Definition
3.8. Now we show that the tangent-obstruction complexes of Fa,a, and of Fa, X Fas,
are compatible with respect to the defining diagram (5.7). Let £ € Fa,a,(S) be as
before and let & € Fa,(S) be represented by the family f;. We first show that the
canonical homomorphism

T (Bar X Faz) (€1, &2)(F) — (en11,€1) " O(Txxx) @05 F — (f 0 d)* Q% @0, F

is the homomorphism h; in the exact sequence (5.8). Let S be affine, let 7 € Modg
and let v1 € T'F4, (€1)(F) be represented by a flat extension f; of fi. Let

O ——  fiQx

! |

0 —— 16F —— B —— Qux,5(D1) —— 0

be the associated diagram. We first set B’ to be the sheaf defined by the push-
forward diagram

e F(=di(S)) —— B(=di(9))

| l

TEF _— B .
Then ffgx(—dl(S)) — B/ liftS to fl*QX — BI. Let BI(&I) = [fl*QX — QXl/S(D)]
and let p(&1) be the homomorphism

° * (51) *
T'Fa, (61)(F) = &Eticl/s (Bl (61)5775’]:) =, enl—i-lQ} ®os F

that sends vy to the composite
61— € 1B — coker(B(~di(9)) — B} = F.

One checks directly that p(&;) assigns the flat extension fl to the tangent direction
of foé,, 41, where €,,4+1 is the (n; + 1)-th marked section of f. Similarly, we let

p(&2) be
P(&2) : T' Sy (E2)(F) = Extly, 5 (B3 (E2), 76 F) — €10 Qo F

that is defined with f;, etc. replaced by fa, etc. respectively. Then p(&) —
p(&2) is the homomorphism h in the exact sequence (5.8). Therefore, the induced
homomorphism (e, +1,€1) on the tangent spaces

Tl(gal X Fas)(1,€2)(F) — (eni11,€1)" Vo x ®og F
coincides with (p(&1),p(£2)), and consequently, its composite with
(eni4+1.€1) Q¥ w x ®0s F — (€n 41, €1) " Na(x)/xxx Qog F

is p(£1) —q(&2), after identifying the normal bundle Na(x),x xx With T'x. Similarly,
it is direct to check that the obstruction classes to extending a given family to
families in §a, 0, and to families in Fn, XFa, are compatible in the sense of Definition
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3.8. Finally, similar to the case studied before, we can construct complexes of locally
free sheaves whose sheaf cohomologies are the tangent-obstruction complexes of
Say X T, required by Proposition 3.9. Therefore, by applying Proposition 3.9, we
have

(5'9) ([M§1,91,H1+1 X M§2,92,n2+1]\,ir) = [Zala2]Vir'

Finally, we choose a sufficiently large I such that L®!_ and L®!' are conventional

line bundles. Then
l : (Tg.n.) [MX;g7 ]Vir = Cl(( ) L®l)[MX

«@,g,n

= Z 1 (Lgllom)[Mf,g,n]wr = Z L cl([Lala27falaz])[Mi{,g,n]Vir'

a1 tas=a a1 tas=a

041062

]vir

By (5.6), the terms in the last summation are [ - [Z4,a,]"". Combined with (5.9),
we obtain

(Tg.n.)![Mi{g,n]Vir = Z A HMozl,gl,nl—i-l Vlr)'

ajtas=a

This proves the first composition law.

In the end, we will indicate the necessary change needed to prove the second
composition law. Let Z; and Z5 be the Q-schemes and ® be the morphism defined
in the statement of the theorem. For convenience, we will consider Z;/Zs and
Za/Zs, where Zs acts on Z; and Zs by interchanging the last two marked points
of the curves in MS | .o and My_110. Let Z] = Z;/Z,. Clearly, ® factors
through ¥ : Z) — Z{. ¥ is a local embedding in the sense that it is finite and
unramified. Let (Ly, f,,) be the Q-line bundle and its section on My, such that
fn = 0 defines the image Q-scheme M _; n+2 — Mg n. We pick a w € Z5 and
let {z1,---, 21} = ¥~ (w). Now let W — M be a chart of M, containing
w with the tautologlcal family £&. We let U; — Z1 be the charts of Z; containing
z; with the tautological family 7n;. Recall that each family 7; has a distinguished
section of nodal points. Without loss of generality, we can assume that there are
morphisms ¢; :U; — W such that ¢} (£) = 7;. Now by using the technique of adding
extra sections, we can find an étale covering W — W, k sections g1,--- ,gx € Oy,
and étale covering U; — U; of which the following holds. First, after fixing a
trivialization of L,, over a chart V' of M, ,,, the product H gi is the pull back of f,
under the obvious map W — V; second, there are morphisms @;: V; — W making
the diagram

0 2 W
I
U, 2w

commutative such that ¢; are embeddings and the image schemes @;( 1) ={g; =

0}. Using the distinguished section of nodal points in the family 7;, one can con-
struct a Q-invertible sheaf £ on Z} such that over the chart U, it is the locally
free sheaf defined similarly to the far right term in (5.2). For convenience, let us
assume that [M , ]"" is a cycle R supported on an equidimensional scheme with
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multiplicity. Now let Y; = {g; = 0} C W and let Ry be the pull back of R under

W — /\/lgig)n. Consider the normal cone cycle

[CRWXVVYI'/RV'V]'
Using the isomorphism @; : U; — Y;, one can pull back the cycles [CRy % Vi /Ry )
and patch them together to form a global cycle in the total space of
Veth{ (E) XMQX gn R.
We denote this cycle by D, and the zero section of Vectz; (£) X pqx R by ¢. Then
by studying the tangent-obstruction complex of Z] induced by the defining equation

g; = 0 and that of Z] induced by the defining square of Z; in the statement of the
theorem, we conclude that

20, (C*[D]) = 1@ (A[MY ;1 ya]™),
where ¢: Zy — Z} is the projection. However, it is clear that
be(Tg—1,n2) M gl = 261 (1) (L), (72) (fu)]) (R).-
Therefore, the second composition law will follow from
e ([(70)" (L), (7)) (fa)])(R) = . (C*[D]).

But this can can be checked directly. This proves the second composition law.
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