Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2006-064 September 11,2006

Virtual Monotonic Counters and
Count-Limited Objects using a TPM
without a Trusted OS (Extended Version)

Luis F. G. Sarmenta, Marten van Dijk, Charles W.
O’Donnell, Jonathan Rhodes, and Srinivas Devadas

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

Virtual Monotonic Counters and Count-Limited Objects
using a TPM without a Trusted OS
(Extended Version)-

Luis F. G. Sarmenta, Marten van Dijk,

Charles W. O’Donnell, Jonathan Rhodes, and Srinivas Devadas
Computer Science and Artificial Intelligence Laboratory (CSAIL)
Massachusetts Institute of Technology
Cambridge, MA 02139

{Ifgs,marten,cwo,jrhodes,devadas}; @mit.edu

ABSTRACT A few applications taking advantage of the TPM in this way have

A trusted monotonic counter is a valuable primitive that enables alrea_dy been pro_posed, including applications .S‘UCh as distributed
a wide variety of highly scalable offline and decentralized appli- certlflt_:ate authorltle_s (11}, p_eer-to-peer computing with enhanced
cations that would otherwise be prone to replay attacks, includ- S€cUrity [2], controlling mobile access to broadcasted media [13],
ing offline payment, e-wallets, virtual trusted storage, and digital f'and oth_ers [23, 26]. In thls_paper, we propose using the TPM not
rights management (DRM). In this paper, we show how one can Just to |mp|eme.nt. one pa_rtlcular appllcatlon: but tq implement a
implement a very large number girtual monotonic counters on fund_amc_ental primitivéhat in turn enables a wide variety of us_,eful
an untrusted machine with a Trusted Platform Module (TPM) or applications. Namely,'w_e show how a TPM can be used to |_mple-
similar device, without relying on a trusted OS. We first present a ment a potentially unlimited ngmber of trustetitual monotonic
log-based schentbat can be implemented with the current version counterson an untrust_ed machln(_e without a trusted_ OS.

of the TPM (1.2) and used in certain applications. We then show A trustedl monotonic counter 1.e., a tamper-resistant counter
how the addition of a few simple features to the TPM makes it pos- €MPedded in a device whose value, once incremented, cannot be

sible to implement dash-tree-based schertieat not only offers reverted back to a previous value — is a very valuable primitive be-
improved performance and scalability compared to the log-based cause |t.enables oneto |mplem.ent a wide variety of highly scalable
scheme, but also makes it possible to impleneennt-limited ob- applications that would otherwise be vulnerabledplay attacks

jects (or “clobs’ for short) — i.e., encrypted keys, data, and other These include several applications of great interest and commer-

objects that can only be used when an associated virtual monotonicCia! value today, such as secure offline payments, e-wallets, virtual

counter is within a certain range. Such count-limited objects in- truste%zt_qragehdigitbgll_rightsdmgl_nagemegt (DR&An)il ar_wdéiigital cash.
cluden-time use keys:-out-of-n data blobs n-copy migratable In a mlon, the a Iblty t(; edicate and use amlimitec (olrag .
objects and other variants, which have many potential uses in digi- '€aSt very large) number of monotonic counters on a single device

tal rights management (DRM), digital cash, digital voting, itinerant IS even more valuable_. For one, it enables a_user’s pe_rsonal device,
computing, and other application areas such as a PC or mobile device, to be used in an arbitrary number

of independent applications at the same time, even if each of these
Keywords: trusted storage, key delegation, stored-value, e-wallet, @Pplications requires its own dedicated monotonic counter. Simi-
smartcard, memory integrity checking, certified execution larly, it also enable_s a single server to_ prowdg dedlc_ated monoton_lc
counters to an arbitrary number of clients. Finally, it makes possi-
ble new classes of applications and mechanisms that cannot be im-
plemented with only one or a small number of monotonic counters.
1. INTRODUCTION A particular example of these is the ideaanfunt-limited objects
The increasing availability of the Trusted Platform Module (TPM) which we present in Sects. 2 and 6, and which have many potential
[32] as a standard component in today’s PCs and mobile computersapplications in secure and pervasive computing.
creates many exciting new possibilities in the realm of secure scal- In the latest version of the TPM specification, version 1.2 [32],
able and distributed computing. In the past, applications requiring the Trusted Computing Group (TCG) has introduced built-in sup-
security have generally assumed that users’ machines are untrustegort for monotonic counters into the TPM [31]. However, because
and have thus requireshline interaction withcentralizedtrusted the low-cost TPM chip can only afford to have a small amount of
servers. Today, as more ordinary users’ machines start including ainternal non-volatile memory, this new functionality is necessarily
TPM, however, it now becomes possible to avoid having to contact limited. Specifically, a TPM 1.2 chip is only required to be able
a central server by placing trust in the TPM chip on users’ machines to store four independent monotonic counter values at a time, and
instead. This means that one can now create a varietgag#ntral- only one of these counters is usable during a particular boot cycle
izedandoffline secure applications which have much higher levels (i.e., once one of the counters is incremented, the other counters
of scalability than previously possible with centralized schemes. cannot be incremented until the host machine is rebooted). The in-
tent of the TCG in designing the TPM this way is not for the built-in
*A shorter version of this paper will appear in the 1st ACM CCS monotonic counters to be used by user-level applications directly,
Workshop on Scalable Trusted Computing (STC'0®ACM, but rather for the single usable counter to be used by a trusted OS

2006. This work was done as part of the MIT-Quanta T-Party .omponent to implement an arbitrary numberwiftual monotonic
project, funded by Quanta Corporation.

counter$, which in turn can then be used by user-level applications such systems is to allow a credit issuer to store a credit balance on a
[31]. In this way, a TPM 1.2 chip can theoretically be used to pro- user’s device, and then, when the user makes a purchase, allow mer-
vide an arbitrary number of dedicated virtual monotonic counters chants to securely verify and reduce this balaw@bout needing
to different applications using only a single monotonic counter. to communicate with the credit issuer or a third parfthe security
The problem with this approach, however, is that although it is challenge in these systems is obvious: since the value of the balance
theoretically sufficient from an abstract point-of-view, its use in is stored in the untrusted user’'s own device, how does one prevent
practical applications is limited by the complex security mecha- the user fromdouble-spendingpis credits by simply changing or
nisms needed to implement a trusted OS. For example, one schemeewinding the value as he pleases? Prevendirgtrary changes
for implementing virtual monotonic counters outlined by Microsoft to the stored balance is easy. A credit issuer can simply use a pri-
as part of their proposed Next Generation Secure Computing Basevate or secret key, known only to itself and to trusted hardware in
(NGSCB) system [27] seems simple and straightforward by itself, the merchant’s devices, to produce a digital signature or message
but if we look at the security requirements for NGSCB, we find that authentication code (MAC) for the account balance stored on the
it needs not only a PC with a TPM, but also (at least) the following user’s device. This way, only the credit issuer and the trusted mer-
hardware-based security features as well [12]: (1) a trusted BIOS chant devices can write valid balances on the user’s dévibiee
that acts as the Core Root-of-Trust for Measurement (CRTM), (2) harder problem is that of preventing the user fn@windingor re-
a built-in security mechanism in the main CPU, such as Intel’s La- playinghis account balance. Thatis, even if the balances are signed
Grande Technology [19], that can be used to implemerisala- with an unforgeable signature, the user can still easily ooy
tion kerne| and (3) a memory controller or chipset that facilitates signed balances and reuse these copies with different merchants. A
protection from DMA attacks. Furthermore, it also requires users merchant who has no contact with a centralized server, and who has
to switch to an entirely new OS built according to the NGSCB ar- not seen the same or a newer signed balance from that user before,
chitecture, and requires OS vendors to perform extensive securitycan tell that the balance @uthenticbecause it is signed with the
testing on their OS components every time they make a change. credit issuer’s private key. However, he has no way of telling if the
Given the importance of virtual monotonic counters as an en- balance idresh—that is, that it is not an old copy.
abling primitive in many useful applications, we argue that it is Without some sort of trusted memory or trusted component on
worth the effort to ensure that it is possible to implement such coun- the user’s device, preventing suplay attacksn an offline sys-
ters using a TPM alonwithoutrelying on a trusted OS or trusted tem would be impossible. If the user’s device, however, has a
software. In this paper, we discuss how this goal can be achieved,trusted monotonic counter (trusted by the credit issuer and the mer-
and present concrete solutions, recommendations, and applicationschants), then a relatively simple solution is possible. Whenever
We begin in Sect. 2 by identifying the many potential applica- the credit issuer or a merchant’s device increases or reduces the
tions of being able to keep track of a large number of virtual mono- stored value in the user’s device, it first increments the monotonic
tonic counters on a single host. In Sect. 3, we present an abstracitounter on the user’s device, and then signs a token including the
model for how virtual monotonic counters can be used in appli- new monotonic counter value and the new balance value. Then,
cations and how they can be implemented. In Sect. 4, we presentwhen the user presents the token to another merchant at a later time,
alog-basedscheme that can be implemented with TPM 1.2. We that merchant’s device checks not only that the signature on the to-
note, however, that this scheme has two drawbacks. First, it canken is valid but also that the counter value in the token matches
only implement anon-deterministidorm of monotonic counters the current value of the monotonic counter on the user’s device.
which are useful in stored-value and trusted storage applications, This prevents a malicious user from replaying an old credit balance
but it cannot be used to implement the stronggthmeticform of since the counter value signed with an old balance will not match
monotonic counters which is useful in a broader range of applica- the latest counter value in the trusted monotonic counter.
tions. Moreover, it has a potentially unbounded worst-case read and Note that in order for this scheme to workdadicatedcounter
increment latency. In Sect. 5, we solve these problems by present-is neededor each balance that needs to be protectétus, if we
ing a new scheme based on the idea of Merkle hash trees [22] thatwant to be able to store different independent credit balances (e.g.,
can easily be implemented with the addition of relatively simple from different credit issuers) in a single user's device, then that
new functionality to the TPM. Unlike the log-based scheme, this device must be able to keep track of multiple independent mono-
hash tree-based scherhas a small bounded worst-case read and tonic counters. This is why a mechanism for implementing a large

increment latency 0D (logN), whereN is the number of virtual number of virtual monotonic counters on a single device would be
counters. Moreover, it can be used to implememithmeticmono- useful. With such a mechanism, a user’s device can effectively be-
tonic counters which the log-based scheme cannot implement. Thiscome are-wallet— that is, a digital equivalent of a real wallet that

in turn enables us to implement a new idea we@alint-limited ob- can store cash, credit cards, and generally different forms ef cur

jects which we discuss in Sect. 6. In Sect. 7, we present some ex- rency and credits from different credit issuers.

perimental peformance measurements using present-day TPM 1.2

chips. We cite related work throughout this paper as appropriate Virtual trusted storage. A related use of virtual monotonic coun-
and discuss other related works in Sect. 8 as well. Finally, we sum- ters is in implementingirtual trusted storage The idea here is to

marize our contributions in Sect. 9. create a potentially unlimited amount of private, tamper-evident,
and replay-evident virtual storage using untrusted storage and a
smallandconstant-sizettusted component such as a TPM.
2. APP_LICATI_ONS_ o) Consider, for example, a user who wants to store his data on a
A monotonic counter is a highly valuable primitive because it can third-party server on the Internet and wants to be able to retrieve it
be used to detect (and thus prevereplay attacksin offline and at a later time from any one of several client devices that he (or his
decentralized secure applications. In this section, we present ex-friends) own. If the other client devices can be offline at different
amples of such applications. times or do not have any secure means of communicating directly
Offline payments, stored-value, and e-walletsWe first consider 1We assume for now that some other mechanism allows us to pro-

the problem obffline paymenor stored-valuesystems. The goal in tect against malicious merchants tampering with their devices.

with each other (except through storing and retrieving data on the
untrusted server itself), then the user’s data can be vulnerable to a
replay attack by a malicious third-party server. That is, a second
client device retrieving data from the server would have no way of
knowing if the data on the server is in fact the latest version.

Note that this problem is actually a more generalized form of the
problem in the stored-balance offline payment system described
earlier, except that the directions are reversed. That is, here, the
user is storing his data on a third-party machine, instead of the other
way around (i.e., a third-party such as the credit issuer or merchant
storing data on the user’s device). Thus, a monotonic counter can
also be used to protect the data from replay attacks by the untrusted
server in the same way as described earlier. In this case, the “bal-
ance” being protected is the user’s trusted data, and the server takes

clobsor ordered clobswhich have different usage intervals
set in such way as to ensure that certain clobs cannot be used
before others.

n-copy migratable objectsHere, a virtual counter is used
to limit the number of times a clob can bagrated(i.e., re-
encrypted) from a particular TPM to another TPM such that
copies of the clob can barculatedindefinitely (i.e., Alice
can migrate a clob to Bob and Bob can migrate the clob back
to Alice without needing a trusted third party), but oy
mostn copies of a clob are usable at any pointin time (where
n is the count-limit range of the original clob).

Count-limited TPM operations Extending the existing idea
of wrapped commands TPM 1.2, we can have a clob that

the role of the e-wallet host while the user’s devices take the role of
the credit issuer and merchant’s devices.

In this application, the ability to have a very large number of
dedicated monotonic counters becomes useful for the server, since
it would allow the server to handle an arbitrary number of inde-
pendent users, each of whom may in turn want to securely store an
arbitrary number of indepedent pieces of data. This ability in turn The different forms of count-limited objects, have many exciting
can enable us to implement many different applications in mobile new applications, which we discuss next.
and distributed computing, including file storage, synchronization,
and sharing applications.

contains a wrapped command together with a count-limit
condition. This allows us to apply the various types of count-
limit conditions (e.g.,n-time-use,n-out-of4n, n-time mi-
gratable, sequenced, etc.), to any operation that a TPM is
capable of executing.

Digital rights management (DRM). The idea of limiting the use
of data and programs is central to DRM. Thus, clobs naturally have
Count-limited objects (aka clobs). A very useful feature oéx- many direct applications to DRM. For exampletime-use decryp-
isting TPM chips (to be described in more detail in Sect. 6) is the tion keys anch-out-of-m encrypted data blobs can be used to allow
ability to perform operations usirgncrypted blobsontaining keys & copyright owner to create and store many encrypted media files
or data that have been encrypted such that only a particular TPMON a user’s device, while limiting the number of media files that
can decrypt and use them. At present, there is no limit to the num- the user can decrypt and use. Time-limited clobs would allow for
ber of times a host can make a TPM use an encrypted key or datamedia files that can only be used within a certain real time interval.
blob once it has a copy of that blob. However, if we can enable a Most interestinglyn-copy migratable clobs can make it possible to
TPM to keep track of a large number of virtual monotonic coun- Ccreate protected media files that users can frisaig or circulate
ters, then we can link a blob with a particular virtual monotonic to other users much like people do with physical books and CDs.
counter so that the TPM can use this counter to track and limit the
usage of these blobs. Such blobs would then become what we cal
count-limited objectsor “clobs’ for short?

Count-limited objects can take many different interesting and
useful forms, including:

[Digital cash. Clobs also have potential applications as a way to
implement or supplemertigital cashschemes which require the
ability to performoffline and anonymougransactions. Consider,
for example, an e-wallet mechanism where instead of storing a
user’s total credit amount as an account balance, we store a col-
e n-time-use clobs Here, each clob has its own dedicated lection of n-time-use signing keys. When a user with this kind
counter, which is incremented every time the clob is used. of e-wallet purchases goods from a merchant, a merchant receive
Useful forms of these include-time-use decryption keys payment from the user by asking the user to sign a random nonce
(e.g., Alice gives Bob a key that lets Bob decrypt anything with the credit issuer’s key using one of these signing keys. If we
encrypted by Alice’s public key, but only at mosttimes), consider each signature produced using the keyblob as having a
and n-time-use signing keyge.g., Alice gives Bob a key certain value (where different keys can represent differentméno
that lets Bob sign anything with Alice’s signature, but only nations), then the count limit on a user’s keyblob represents the total
at mostn times). stored value of that keyblob, and this value is reduced accordingly
every time the keyblob is used. This scheme is more secure than the
stored-balance scheme described earlier because it does nog¢requir
are tied to thesamevirtual counter. One form of such clobs merchant's devices to know the credit issuer’s private key. More-
are time-limited clobs wherein the shared counter is one over, another advantage of this scheme is that it preserves the user’s
whose value is tied to real time so that the valid interval for - anonymity This is because the signed nonces that the user gives to
the clob corresponds to the real-time interval during which it - the merchant are signed with theedit issuer'skey, notthe user’s.
is allowed to be used. Another form ameout-of-m clobs Thus, at the end of the transaction, the merchant has proof that the
includingn-out-of-m encrypted data blohsvhich are blobs transaction was valid, and can go to the credit issuer to exchange
that share the same counter and all have a usage interval of lthe signed nonce for real money, but neither the merchant nor the
ton, such that one can only uaemostr out of m encrypted credit issuer has any information on who the user was.
blobs (regardless of.).* Still another form are osequenced Using n-copy migratable clobs, an even more interesting form

2This idea isnot related to the character large object (CLOB) data of digital cash is possible. If a credit issuer, for example, creates a
type in some databases. “digital coin” as a one-time migratable clob, then such a coin can

$Note that in this case, the encrypted data blobs can be encrypted?® migrated from user to user an arbitrary number of timiéisout

with different keys which do not necessarily have to be count- requiring contact with the credit issuer or a trusted third party
limited as long as they are protected by the TPM. This more closely corresponds to how real cash is used in the real

e Shared-counter interval-limited clobsThese are clobs that

world. If we assume that all users have TPMs and that all these rently working on possible solutions to these problems using other
TPMs are trusted and working properly, then transactions are both functionality that count-limited objects can provide beyond one-
secure (i.e., at most one valid copy of a coin exists at any time), and time signatures. Meanwhile, although the scheme above may not
anonymous (i.e., the identity of the previous holder of a coin need be good enough for political elections at this time, it may already
not be exposed in a transaction). be useful for less critical applications such as marketing or social
Finally, if we assume that TPMsan get compromised, then computing applications that involve voting and secure counting.
more complex schemes would be necessary, but are possible if we
have count-limited TPM operations involving special types of sign- Itinerant computing. Clobs would also be useful itinerant com-
ing or decryption. One possibility, for example, is to use Brands’ Putingapplications. Here, a user's code ruret on the user’s own
scheme [4], wherein a trusted hardware device calledbserver machine, but omther people’snachines, using resources on those
is used to produce a signature needed for a successful transactionNachines as necessary, and then moving on to other machines (also
To prevent a user from double-spending his digital coins, the ob- belonging to other people) to continue the computation.
server is trusted to only produce this signature at most once (i.e., A traditional example of such itinerant computing applications
for each coin, the observer stores a random number that is neededre applications involvingnobile agentshat move from one host
to produce the signature for that coin, and then erases it after usingto another, executing code on behalf of its owner [9, 16, 20]. In
it Once)_ However, even if the observer is Compromised, the cryp- such applications, clobs such as count-limited keyS and commands
tographic property of the e-cash scheme itself is not compromised, €an improve security by allowing a user's mobile agent to use the
and double-spending can still be detected (and the offender identi-User’s private keys as it executes on a host, while preventing the
fied) eventually by the credit issuer. In our case, we can implement host from using these keys after the agent leaves, even if the host
a digital coin as a one-time-use clob representing this special sig- Makes a copy of the mobile agent's code and wrapped keys. (In a
nature operation. This allows us to implement Brands’ idea of an Way, this is a hardware-based alternative or supplement to Hohl's
observer, but with the advantages that we can handle an aribtraryidea of time-limited blackbox security [16].)

number of coins at the same time, and that we can do it usioga Clobs also enable new forms of itinerant computing where the
dedicatedsecure coprocessor (i.e., the TPM) that is not limited to the user himselfs itinerant. Suppose, for example, that a user is
e-cash, but can also be used for other applications. traveling and visiting different places where he needs to be able to

run certain programs that require use of his private key, but sup-
Digital voting. The properties that make clobs useful for digital pose that he prefers not to bring his own computer with him as he
cash may also make them useful for certain formdigital voting travels (e.g., perhaps because airlines have banned passeagers f
As in digital cash, two major goals in digital voting (among others) carrying-on electronic devices). In this case, if his host institutions
are anonymity (i.e., the voter’s identity should not be traceable from have machines with a TPM, then the user can create clobs on his
his ballot) and the prevention of double use (i.e., in this case, dou- hosts’ machines before his trip. (To prevent a clob from being used
ble voting instead of double spending). Correspondingly, just as in before the user arrives, a clob can include an encrypted authoriza-
digital cash, a one-time-use signing key can also be used to addression password like TPM wrapped keys do.) When the user gets
these problems. Specifically, in this case, the election organizersto a host institution, he can use the clobs he has previously sent
can issue a one-time-use signing clob to each voter. This clob con-over to do his required computations. Then, when he is done, he
tains theissuer’skey and can be used by the voter to sign his votes makes sure to increment the clobs’ counters beyond their usable
at election time. In this case, double-voting is prevented becauserange. (Or, if he has created migratable clobs, he can also migrate
the clob lets the voter sign only one set of votes, and then becomeshis clobs to his next host institution.) This way, even though the
unusable after that. At the same time, the voter's anonymity is host can keep a copy of the clobs or even steal the authorization
preserved because the signature produced over the vote is made ugasswords from the user as he types using their keyboard, the host
ing theissuer'skey, and not the voter’s (just as in the digital cash cannot use the clobs outside of the count-limit.
case)! An additional advantage here is that if we ensure that the
clob is nonmigratable from its host TPM, then we ensure that a Count-limited objects and virtual monotonic counters. Many
voter can only cast his vote using his personal registered deviceother applications of count-limited objects are possible. We em-
(with his personal TPM). This makes it harder for a user to give his phasize, though, that the crucial feature that makes count-limited
voting power to another person, since doing so would requiyes- objects possible is the ability to keep track of a large number of
ica”y g|v|ng the other person the user’s persona| device at least atVirtUal monotonic counters. This is because we need a different
the time of voting. This is not only inconvenient for both the user Virtual counter value for each independent clob (or group of shared
and the other person, but if the TPM involved is also being used by counter clobs). Having only one or a few monotonic counters, like
the user for other personal applications (i.e., as an e-wallet, storagethe existing TPM currently has, is not good enough since it does
for his personal private keys, etc.), then the user also has a strong0t allow us to freely create counters when needed for a new clob.
incentivenotto give the other person access to his personal TPM.

In addition to anonymity and double-voting, we note that there

are several other issues in digital voting that need to be addressedl?" VIRTUAL MONOTONIC COUNTERS
(For discussions on some of these, see [6, 1].) We do not claim thatHaving given an appreciation of the many different applications
our scheme above addresses all these problems, but we are curof virtual monotonic counters, we present in this section a model
and framework for how such virtual monotonic counters can be

“For better security in this application (as well as in digital cash), implemented and used in an actual system.
the clob should actually contain one ofanykeys of the issuer.

This way, even in the unlikely event that a TPM would be compro- pgasic definition. We model amonotonic counteras a mecha-

sed and one of the issuer’s keys is revealed, damage can be limited_ . . : :
At the same, though, there should nottbe manykeys relative to hism (implemented in hardware or software or both), which stores

the total number of voters, because then it would be possible for the & Value and provides two commands to access this valu®dhd
clob issuer to intentionally give particular keys to particular voters command, which returns the current value, andiiceement com-
and thus be able to track their votes later. mand, which increments the current value according to a specified

increment methoa@nd returns the new value of the counter. This the nonce, and a signature using the AIK over the output and the
mechanism must have the following properties: First, the value nonce together. The user can then verify this execution certificate
must benon-volatile That is, it must not change or be lost unless by checking that the signature is valid according to that counter’s
explicitly incremented. Second, it must beeversible That is, public key (this protects against an adversary using another counter
once the value has been changed (by invokimgement), there or a fake counter), and checking that the nonce included in the
must be no command or series of commands that can make theoutput message is the same as the nonce that the user gave (this
counter assume any previous value that it has had in the past. Andprotects against replay attacks by a man-in-the-middle adversary
third, the monotonic counter must behave as if Read andIn- giving a copy of an older execution certificate).
crement commands weratomic. That is, if several commands
are submitted to the counter at the same time, then the output of theVirtual vs. physical monotonic counters.As noted earlier, in or-
counter must be as if the commands were executed one at a time irder to implement the applications we would need to be able to keep
some sequential order. track of a large number of monotonic counters. Although non-
In real-world applications, a monotonic counter would not be Vvolatile RAM (NVRAM) for general storage is rapidly growing
used alone, but as part of a system containing other hardware anccheaper todagecuringarge quantities of non-volatile RAM is still
software components. Thus, in addition to having the properties Not easy to do. Thus, secuaed low-cost hardware components
above, it must also b&ustedand remainsecureeven if it or the such as the TPM are currently limited to having only small amounts
components around it are exposed to both software-based and physof NVRAM. This problem motivates the idea wirtual monotonic
ical attacks by an adversary. This means that a monotonic countercounters as opposed to thehysical monotonic countersurrently

must also satisfy the following security properties: implemented in TPM 1.2. Here, the idea is to use a shmihded-
)) sizedtamper-resistant hardware component together with ordinary
1. The counter should ideally lemper-resistantbut mustat untrustedmemory and storage (which we assume to be effectively

leastbetamper-evident That is, it must be infeasible for an ynpounded in size) to simulate a potentially unlimited number of
adversary to directly or indirectly cause the counter to behave independent “virtual” monotonic counters.
incorrectly without at least being detected. In particular, an Of course, since virtual monotonic counters need to use untrusted
adversary must not be able to set the value of the counter ar-memory, it is impossible make virtual monotonic counters truly
bitrarily, cause it to revert to a past value, cause it to generate tamper-resistant like physical ones. That is, an adversary with ac-
false execution certificates (as defined below), or cause it to cess to the untrusted memory can easily erase or alter the data in the
fail in any other way without being detected — even if the memory, causing any counters stored in the affected memory areas
adversary owns and has physical access to the hardware andg either act incorrectly or fail completely. As we will show, how-
software used to implement and use the counter. ever, itis possible to implement virtual monotonic counters that are
tamper-evidentWith such virtual counters, attempts to change the
value of a counter might not be preventable, but would always be
tion of that command. That is, if a user invokes a command detected b)_/ the clienp Thus, the worst things that_ an adversary can
do are denial-of-service attacks, such as destroying a counter (pre-

emd(t) on the counter at some real timeand then subse- X oo .
quently receives a corresponding output response rnessageventlng other users from using it in the future) or dropping com-

Out(t) from the counter, there must bevarification algo- mand requests (making the counter look to an external user trying
rithm that the user can fC’)||0W to chedkut(t) and convince to use it as ifitis slow or not working at all). These attacks are still
himself that the counter has in fact executedd(t), and worth noting, but are much less dangerous than arbitrary tamper-

that Out(t) is indeedernd(t)'s correct output. We call this ing, since in many applications, it is to the gdversary’s intemest
verifiable output arexecution certificate to destroy or slow down a counter. In an offline payment system for

example, the adversary (i.e., the user) has no incentive to disable or

3. Valid execution certificates must bheforgeable It must be slow down his monotonic counter because he cannot use his credits
infeasible for an adversary using any method (including us- without it. (This situation is analogous to the real world where one
ing another counter, using a fake monotonic counter, or act- always has the ability to destroy or throw away cash in one’s walllet,
ing as a man-in-the-middle) to produce an acceptable execu-but one does not gain anything by doing so, so one does not do it.)

tion certificate certifying an operation not actually executed)))
by the counter. System model. Figure 1 depicts our model of how virtual mono-

tonic counters are used and implemented. Here, we have two in-
Attestation identity keys. In a concrete implementation, the last teracting systems: thieostand theclient. The host contains the
two conditions above can be satisfied if we assume that the countervirtual monotonic counters and some application-specific functions
has at least one unique and protected public-private keypair that itand data, while the client runs an application program that needs to
can use for signing. In keeping with TPM terminology, we call make use of the data, functions, and counters on the host.
this the counter'sattestation identity keyAlIK). The private key The virtual monotonic counter mechanism (shown in Fig.1 as
of the AIK is kept in secure non-volatile memory, and it must be the shaded box in the host) is a software component that simulates
impossible for an adversary to know this private key. The public a potentially unlimited number of virtual monotonic counters using
key is certified by a trusted certificate authority (CA), and presented the host's untrusted memory and storage and the TPM (as will be
to users of the counter when needed to enable them to verify thedescribed below). This mechanism is meant to be used by differ-

2. In response to a command, the counter must prodweeia
fiable output message that certifies the output and the execu-

courjter’s signatures.) ent clients to create and use monotonic counters as needed in their
Given such an AlK, the counter can be used as follows: First, respective applications. The virtual monotonic counter mechanism
the user of the counter generates a random nawege and then must support the following functions:

sends it to the counter together with tRead or Increment com-

mand request. The counter returns an output message, which we e CreateNewCounter(Nonce): Creates a new virtual mono-
call theexecution certificatéor the command, that includes the out- tonic counter and returnscaeate certificatewhich contains
put of the command (i.e., the current or new value of the counter), the new counter’s unique CounterID and the given nonce.

(Host (Untrusted)) (Client \
.

app request
[app-specific functions =
V/ app response app-specific program
execution certificat
VA CreateCtr(nonce) Verify
(_OSkemel) |ReadCtr(IDnonce)| (fnciop, | | 206P!
IncCtr(ID, nonce) | |p nonce or
DISK DestroyCir(...) exec cert) reject
TPM i§t9rage e

TPM
command
request

[TPM (Trusted)

response
(+signature)

firmware J(INVRAM
crypto engine)(AIKISEK

RAM

Figure 1: System Model for an application using virtual mono-
tonic counters. The TPM is a passive secure coprocessor, and
is the only trusted component in the host. An implementa-
tion scheme for virtual monotonic counters needs to define the
shaded software components, given the TPM's functionality.

e ReadCounter(CounterID, Nonce): Returns aead certifi-
catecontaining the current value of the virtual counter spec-
ified by the given CounterID, together with the CounterlD
itself, and the given nonce.

e IncrementCounter(CounterlD, Nonce): Increments the
specified virtual counter, and returnsiaorement certificate
containing thenewvalue of the virtual counter together with
the CounterID and the given nonce.

e DestroyCounter(CounterID, Nonce): Destroys the spec-
ified virtual counter (so that the same CounterID cannot be
used again), and returnsdastroy certificatecontaining the
CounterID and the given nonce.

ent times or may have no other way of communicating with each
other except indirectly through the counters they share. Thus, such
client devices araotallowed to depend on the ability to share state
information with each other except indirectly through the virtual
monotonic counters themselves.

Given this model, our main security goal is to implement a vir-
tual monotonic counter mechanism thaaisleast tamper-evident
from the owner’s point-of-view That is, at worst, all the client
devices of the owner of a virtual monotonic counter must always
be able to detect any failure or erroneous behavior of the counter
caused by an attack by the host or another owner. Ideally, however,
we would also want to be able to detect tampering by compromised
client devices of the same owner, whenever possible.

As shown in Fig. 1, we assume thalt hardware and software
components on the host, except for a Trusted Platform Module
(TPM), are untrusted — i.e., possibly under the control of an ad-
versary working against the client. This includes not only memory,
disk, and all application software, but even the CPU, the BIOS,
and the OS kernel. In particular, note that the software implement-
ing the virtual monotonic counter mechanism itself is considered
as open to being attacked and controlled by the adversary.

In this paper, we assume a TCG-type TPM chip. Abstractly,
however, our techniques should work with any trusted coproces-
sor with similar functionality. The TPM is assumed to contain the
following: (1) a cryptographic engine, (2) internal firmware for im-
plementing a set of TPM commands that the host can invoke, (3)
a small amount of trusted internal memory (both volatile and non-
volatile) that is not visible outside the TPM, and (4) a small number
of protected keys usable only within the TPM, including at least an
attestation identity kefAIK) for signing information generated by
the TPM, and atorage root keySRK) for encrypting and decrypt-
ing data. The AIK can be used to sign outputs of a TPM, and
can thus provide certification that requested operations have been
executed in the secure environment of the TPM. This is the cru-
cial feature that would allow clients to verify the virtual monotonic
counter mechanism’s outputs. The SRK is a keypair whose private
key is generated internally and never leaves the TPM. Its public key
can be used by an external user or application to encrypt keys and
other data that are meant to be decryptable and usable only inside
the TPM. This key makes encrypted (wrapped) keys and data blobs
possible, as described in Sect. 6. (For a good description of how all

Note that output certificates of these functions are not necessarily hage TPM features work and are used. see [26].)

single signed messages. In general, these certificates can be com-
plex data structures (possibly containing multiple signatures) that

are designed to beerifiableby the client through the use of a cor-
responding set of verification algorithms, which the client runs on

his own machine (which he trusts). The verification algorithm takes
the execution certificate and checks that it is valid for the same

function, counter ID, and nonce that the client originally gave.

Security model. In our model, we assume that the virtual mono-

tonic counter mechanism can be invoked remotely by an arbitrary
number of independent client devices, each of which may create an

arbitrary number of independent virtual monotonic counters. We
define theownerof a virtual counter to be the owner of the client

device that requested its creation. This owner may own several

Itis important to note here that the TPM ispecial-purposeo-
processor. Thatis, itdoes not run arbitrary application softwate, bu
can only be used to execute a limited set of pre-defined commands
as defined by the TPM specifications (see [32]). Furthermore, it is
also apassiveprocessor. That is, it cannot read or write directly
into memory or other devices, and cannot do anything unless the
CPU requests it. It also cannot prevent a CPU from submitting a
request to it. It can return an error message in response to a CPU
request, but only according to the pre-specified definition of the re-
quested TPM command. The challenge, therefore, is how to be able
to use the TPM in the host to implement a tamper-evident virtual
monotonic counter mechanism without relying on any other trusted
hardware or software on the host. This is what we will show in the
following two sections.

client devices, each of which may be used to access the virtual
counter. We assume that independent owners do not trust each
other, and generally do not shaFr)e virtual counters. However, we 4. LOG-BASED SCHEME

assume that client devices of the same owgeerallytrust each Since the TPM was not explicitly designed to support virtual mono-
other. Specifically, we allow different client devices of the same tonic counters without needing a trusted OS, it is impossible (to our
owner to run applications that depend on secret or private keys knowledge) to use a TPM 1.2 chip to directly implement unlimited

known only to the other devices of that owner. However, we as- arithmeticvirtual monotonic counters, where the counter value is

sume that the client devices of an owner may be offline at differ- incremented by 1. Wean however, implement a weaker form

of virtual monotonic counter which can be used directly in virtual cate to the current time. Thead certificatefor the ReadCounter
trusted storage and stored-value applications. command is then composed as a listlagy; of all these certificates,
plus the current time certificate.
Implementation. The idea here is to use one of the TPM's physical ~ The verification algorithm for such a read certificate is as fol-
monotonic counters as @fbbal clock where the current “time” |ows: First, the client checks the current time certificate. Then,
t is defined as the value of the monotonic counter at a particular starting from the increment certificate for its desired CounterID, it
moment in real time. Given this global clock, we then define the goes through the log making sure that; (1) there is a valid increment
value of a particular virtual counter as the value of the global clock certificate for each global time value until the current time, and (2)
at the last time that the virtual counteffcrement command was noneof the increment certificates are for the desired CounterID,
invoked. Note that this results inren-deterministic monotonic except for the first one. If this verification algorithm succeeds, then
counter, i.e., a counter that is irreversible, but whose future values the client is convinced that the firstincrement certificate indeed cor-
are not predictable. Although such a virtual counter does not have responds to the latest increment operation on that virtual counter.

all the advantages of an arithmetic counter, it can still be used in The value of the counter is then read as the value of the global
virtual trusted storage and stored-value applications as describedcounter included in that certificate.

in Sect. 2. This is because these applications only need to be able

to tell if the value of a monotonic counter has changed from its Security. This scheme is provably secure if we assume that the

previous value or not. It does not matter what the new value is, as TPM is trusted and cannot be compromised. One security issue,

long as it is different from any other value in the past. however, is that of dakeincrement. That is, the host can pretend
We can implement thincrementCounter function of the vir- that it received an increment command from the client, even when it

tual monotonic counter mechanisms by using the TPM’s built-in did not. The host cannot reverse the virtual counter in this way, but

TPM_IncrementCounter command (which increments the TPM’s can make the counter go forward without the owner of the virtual

physical monotonic counter) inside arclusive and logged trans- counter wanting it.

port sessionusing the AIK as the signing key and the hash of the In many applications, this is not a major concern because it would

counter ID and the client’'s nonce (i.e (counterID|nonce)) be to the host’s disdvantage if it increments the counter without the
as the anti-replay nonce for the finaPM_ReleaseTransport- client requesting it. For example, in the stored-value offline pay-
Signed operation. This produces a signature over a data struc- ment application described in Sect. 2, if the adversary (the user)
ture that includes the anti-replay nonce and a hash otrdres- performs a fake increment, he still cannot replay old stored val-

port session logwhich consists of the inputs, commands, and out- ues of an account balance, and would in fact lose his ability to
puts encountered during the entire transport session. This signaturaise his latest available balance at all, since its signed counter value
can then be used together with the counter ID, the client’s nonce, will not match the new counter value. This is also true of virtual
and the transport session log, to constructitieeement certificate trusted storage applications in general as well. Here, a server doing
which the client can verify. Note that by making this transport ses- a fake increment cannot successfully replay an old data value, and
sion exclusive we ensure that the TPM will not allow other ex- would instead render a trusted data value invalid and unusable by
clusive transport sessions to successfully execute at the same timethe client. In this case, the client can consider it a failure by the

This ensures thatomicityof the increment operation. server, and a possible breach of their service agreement (similar to
The verification algorithm for such an increment certificate is as having the server lose the client’s data or refuse to serve the client).
follows: First, the client checks thabunterI D andnonce are Nevertheless, if protection against fake increments is desired,

the same as what it gave to the host. If they are, the client thenthen there are at least two solutions. One solution is to require
computesH (counterI D||nonce) and uses this hash together with client devices that request increment operations to seodfrma-
the transport log, the signed output, and the certified public key of tion certificateafter verifying the increment certificate it receives.
the TPM's AIK to verify the certificate. Finally, if the certificate The confirmation certificate includes a signature of the incremented
verifies as valid, the client gets thwértual counter’s value as the counter value generated using the client’s secret key, so that it would
physicalcounter’s value, which is included in the log of inputs and be impossible for the host to generate fake confirmations. Then,
outputs given by the host as part of the certificate. when a read request for a counter is made at a later time, the host
The more challenging problem in this scheme is that of imple- includes the confirmation certificate of the counter’s latest incre-
mentingReadCounter. We begin by having the host keep an ar- ment as part of the read certificate. This allows a client to verify
ray of thelatestincrement certificates for each virtual counter in that the latest update was not a fake one. If a client receives a valid
its memory and disk storage, and return the appropriate one uponincrement certificate but does not receive a valid confirmation, then
a client’s request (since by definition, the global clock value at the it can suspect the host of executing a fake increment.
time of the latest increment is the value of the counter). Thisis not Another solution is to have the client first read the current global
enough, however, since a malicious or compromised host can easilycounter to get a current time certificate before doing an increment.
reverse a particular counter by replacing its latest certificate with an Using this global counter value, the client adds 1 to get the next
older certificate for the same counter. Thus, an extra mechanism isclock value, and then produces a signature or MAC of that value
needed to protect against this replay attack. using its own private or secret key (known only to that client and
Our solution is as follows: On ReadCounter request from a other client devices of the same owner). The client then issues the
client, the host first reads the global clock by issuing a TPM’s built- IncrementCounter request using the computed signature as the
in TPM_ReadCounter command in an exclusive logged transport nonce. Then, in the future, when retrieving and verifying a virtual
session. This produces aurrent time certificate analogous to counter value returned geadCounter, the client can check that
the increment certificate produced by using THRM_Increment- the nonce in the increment certificate is a valid signature or MAC
Counter command. Then, the host gets the latest increment certifi- for the appropriate counter value. If it is not, then the client knows
cate for the client’s desired counter from the array described above.that the increment was fake. The advantage of this scheme is that
Finally, it getsall the increment certificates it has generated (re- it is more robust against network failures. That is, there is no dan-
gardless of counter ID) from the time of the client’s latest certifi- ger of the confirmation being lost between the client and the host,

unlike in the previous scheme. (One possible issue here is that ofther apart, so that when verifying read certificates, the client knows
the client taking too long to issue the increment request after it gets when to expect skipping in the log. If we have exponential back-
the current global counter value, such that the global counter al- off, then we can significantly reduce the size of the verification
ready gets incremented by another client in the meantime, and thelog that needs to be checked on a read. The catch, however, is
nonce will not be valid anymore. In the case, however, the host that thewaiting time for a client that wants tencrementa virtual

can simply return an error, and let the client try the increment op- counter after not using it for a long time is potentially very long
eration again.) The real main disadvantage of this scheme is thatsince we have to wait until the host’s global counter is incremented
it always requires a read of the current global counter for each in- to the next allowed timeslot for that virtual counter. (Otherwise,
crement request. Since this requires a separate signature operation replay attack is possible.) Thus, in general, even with adaptive
by the TPM (which as we show in Sect. 7 can take around 1 s in time-multiplexing, thetotal latencyof counter operations is still
present-day TPM 1.2 chips), it can affect performance in high-load unbounded and can be very long in practice.

applications where the host needs to be able to handle a large num-

ber of increment requests as quickly as possible. Arithmetic virtual counters and count-limited objects. Another
Another possible problem worth noting is what happens if power dlsadvantage of the log-based scheme is th_at it cannot currently
to the host fails some time after tAi@M_IncrementCounter but be used to implementsefulforms of count-limited objects as we

before the host is able to save the increment certificate to disk. If have described them in Sect. 2, because these require an efficient
this happens, then the host will not have a valid execution certifi- implementation of arithmetic counters and require modifications to
cate for the increment operation, and will have a gap in the log. This the TPM that allow the TPM to prevent signing, decryption, and
problemcannotbe used for a replay attack because clients will still other operations based on the value of a particular virtual mono-
be able to at least detect the gap during the read counter operationtonic counter.

However, it does make all counters before the power failure un- Note that itis actually possible to implement a form of arithmetic
trustable (because client devices would not have proof that theseVirtual counters using our log-based scheme and existing TPM 1.2
counters wereot incremented during the time slot of the gap). chips, but such animplementation would be too inefficient for prac-
This problem cannot easily be avoided because of the limitations tical use. Specifically, we can do this by simply including in the
of existing TPMs, and is one disadvantage of the log-based schemd0d in the read certificatall increment certificates for all incre-
compared to our proposed hash tree-based scheme in Sect. 5. Notdhent operations from thérst time it is used (as opposed to the
however, that recovery of a counter’s value is still possiblallif ~last time, which is what is currently done), and then defining the
the client devices of the counter’s owner are able to communicate value of the virtual monotonic counter as thember of timeshe
together and agree on the last valid value of the counter. Then, theycounter has been incremented from the first create certificate to the
can perform a special increment operation after the gap, and signcurrent time. The verification algorithm for such a read certificate
a special confirmation together indicating the correct value of the would be similar to that in our current scheme with some differ-

counter after the gap. ences. Specifically: (1) First, the client checks that the first incre-
Finally, note that the function€reateCounter and Destroy- ment certificate has a special nonce, signed by the client using the
Counter can be imp|emented likencrementCounter with a spe- client’s secret key, which indicates that it is indeed the first opera-

cial confirmation or special nonce to indicate a creation or destruc- tion on that counter from that client (i.e., this is in effect a create
tion event for the desired counter ID. However, since the TPM does certificate). (2) Then the client goes through the log from the first
not check the nonce given to ti@MIncrementCounter opera- certificate to the current time, checking that there are no gaps in the
tion, there is nothing actually stopping a client device, in collusion 10g. (3) In the process, it counts all the instances of valid increment
with the host, from incrementing a virtual counter which has not certificates for the desired counter in the log. In the end, if all the
been created or which has already been destroyed (thus generatincrement certificat_es are ve_rified as valid, and thgre are no gap_s_in
ing a new increment certificate). Thus, the usefulness of the createthe log, then the client considers the number of increment certifi-
and destroy functions are limited when using the |Og_based schemecates found for the desired counter to be the value of that counter.

(unless we can assume that the client devices are trusted and neveFhis scheme is provably secure, but is obviousya practical so-
misbehave). lution because the size of the read certificates would grow without

limit in time.

Performance. The log-based scheme is relevant because it is im- Using this technique, it is also possible to implement a form of
plementable usingxistingTPM 1.2 chips, and it is usable in vir- n-time-use signatures. Here, the idea is that the “signature” in-
tual trusted storage and stored value applications. This means thatludes the whole read certificate log as described above, so that the
we can implement such applications using existing hardware today. verifier of the signature can verify that the counter has not been
Performance-wise, however, the log-based scheme has a significanused more than times. If the log shows that the number of times
drawback: if a virtual counte€ is not incremented while other the counter has been incremented exceedben the signature is
counters are incremented many times, then the read certificate forconsidered invalid. Such a scheme allows us to achieve some of
C would need to include the log @l increments ofll counters the properties of an-time-use signature key, but is not really use-
(not justC) since the last increment 6f. The length of this log is ful in practical applications since the “signatures” that it produces
unboundedn time and can easily grow very large. are non-standard data structures (which again can be of potentially

In some applications — either where there are only a few coun- unbounded length), and also since it does not have the anonymity
ters (e.g., a small e-wallet), or all counters are incremented fre- properties we desire for applications (i.e., the log would include
quently, this may be acceptable since the log would not get very signatures by the TPM's AIK).
long. Itis also possible to dadaptive time-multiplexing i.e., if a

particular virtual counter is not incremented for several timeslots, 5. HASH TREE-BASED SCHEME

then we make the global timeslots at which that particular timeslot .
If we can add new commands to the TPM, then a better solution

is allowed to be incremented get farther apart in time. We use an ' ‘) X
agreed-upon formula for determining how these timeslots grow far- IS Possible which not only has a bounded (and small) computation,
communication, and latency cost for virtual counter operations, but

which also enables us to implemarithmetic virtual monotonic
countersand the idea ofount-limited objectglescribed in Sect. 2.

freshness of a data object also only taki$og V) steps. Here, we
take thecurrentversion of the data object in question, and compute

In this section, we present a basic version of this solution consist- a root hash in the same way as above. The computed root hash can

ing of a new TPM command,PM_ExecuteHashTree, and some

minor changes to existing TPM commands. We discuss the imple-

mentation of count-limited objects in Sect. 6.

Merkle Hash Trees. Our solution is based on the idea oferkle
hash tree a well-known technique for efficiently checking the in-
tegrity of a large number of data objects [22]. In a Merkle hash

then be compared with a saved value of the latest root hash known
to the verifier to determine if the given version of the data object is
in fact the latest version of that object.

In the context of secure and trusted computing, Merkle trees have
been proposed as an efficient way of protecting the integrity and
freshness of a large (practically unbounded) amount of data stored
in untrusted memory using a much smalerunded-sizetrusted

tree (such as the one shown in the middle of Fig. 2), a leaf node component. The idea here is to requireledfitimateread and up-

is created for each data object, and contains a collisionesh

date requests for the data objects to go througtusted compo-

of the object’s contents. Then, a binary tree is formed, where the nentwhich maintains a hash tree and uses it to verify the integrity
value of an internal node is the hash of the concatenation of its left of the data before proceeding. It can be shown that as long as the

and right children. The root of this tree, called thet hashis then
itself a collision-free hash for the entire set of data objects, and is
guaranteed to changeahyof the data objects change.

Hash Tree State TPM TPM_HASHTREE
aikHandle EXEC_CERT
mode Internal State —
nonce 5 Root Hash nonce
%%nw (non-volatile) newCounterBlob
curOrigHash] [[ﬁrootHash] signature
curNewHash A

if last step is OK,
->update internal rootHash
and produce execution certificate

TPM_COUNTER_BLOB
counterlD] countValue [data | authDataBlob

TPM_COUNTER_ID
address | _randomID

Start

Command from Host to TPM

TPM_ExecuteHashTree(
aikHandle, mode, nonce, Cyg;,
stepInputs = [hy4gg, Dy, hyl)

Figure 2: Hash tree-based scheme data structures and exam-
ple. The counter blobs (squares) and hash nodes (circles) are all
stored in the host's memory. To read or update countef1o1,
the host sends the TPM the command shown. Dashed circles
show the inputs given to the TPM. The shaded internal tree
nodes are computed internally by the TPM given these inputs.
Arrows show the flow of computation inside the TPM.

The advantage of using a Merkle tree over other ways of pro-

root hash is kept in persistent trusted memory, then it is possible
to achieve tamper-evident operation, even if hash tree nodes them-
selves are stored in untrusted memory. This is because the use of
collision-free hash functions means that even if the adversary can
illegitimately change the data objects or any of the nodes in the
tree, it would be computationally infeasible for him to produce a
combination of these corresponding talifferentset of leaf node
values but hashing to treameroot hash node.

In previous work, different forms of such a trusted component
have been proposed and used. (The reader is referred to the paper
cited here for alternative explanations of how Merkle hash trees
work.) Applications involvingauthenticated dictionarie24] and
trusted databases [21] have been proposed that use a trusted com-
puter running trusted software to authenticate data stored in storage
that is accessible to other untrusted computers. The AEGIS project
[29] proposes @&ecure CPUwhich ensures privacy by encrypting
any data it stores in main memory, and decrypting it internally. To
protect itself against replay attacks on its externally stored data, the
AEGIS processor uses a Merkle tree with the root hash stored in
trusted memory inside the secure CPU. In other recent work, hash
trees have also been proposed as way of protecting the data in-
tegrity and freshness in a system with a TPM and the Nexus trusted
OS [34, 28]. In this case, as in the case of Microsoft’s scheme for
virtual monotonic counters cited in Sect. 1, the trusted component
is a trusted OS loaded through a secure boot process, and requires
not only a TPM, but also a trusted BIOS, and certain security fea-
tures in the main CPU and hardware of the system.

Our new scheme borrows the idea of using Merkle trees from
these previous works, but takes it further by allowing the trusted
component to be a simple apéssivecoprocessor like the TPM,
instead of a more complex aadtiveone, such as a main CPU like
AEGIS, or a trusted OS like NGSCB or Nexus.

TPM Implementation. Figure 2 presents the basic version of our
scheme, which uses a new TPM commanBM_ExecuteHash-
Tree, shown in Fig. 3. In this scheme, the data objects being pro-
tected by the Merkle tree are a seolunter blobseach represent-
ing an independent virtual monotonic counter. Aside from contain-
ing the actual value of the counteto{intV alue), each counter
blob also contains @ounter 1D an arbitrarydata field, and an
encrypted data blob for authentication informatianthDataBlob

The counter ID is composed of addressfield, and arandomID

ducing a collision-free hash over a large data set is that once thefie|g The address contains the position of the counter blob in the

tree has been initialized, it only tak€§log V) steps to update the
root hash whenever there is a change in one of\hdata objects.

Specifically, whenever a piece of data is changed, we go up the

tree, expressed as a “1” followed by the binary representation of
the path from the root to the counter blob, while taadomIDfield
contains a random number generated by the TPM at the creation of

hash tree along the path from the changed leaf node to the root. Atye virtyal monotonic counter. The use of the random ID field here

each step, the new value of a node is hashed with its sibling in order

allows the address of a virtual counter that has been destroyed to be

to produce the new value of its parent, and this process is repeatedq,sed without compromising any clients who depend on the old

until the root hash itself is updated. Verifying the integrity and

Command: TPM_ExecuteHashTree
Inputs: int aikHandle, byte mode
TPM_COUNTER_BLOB counterBlob
TPM_NONCE nonce
TPM_DIGEST stepInputs[]
(optional) byte[] command
Outputs: If successful, returns TPM_HASHTREE_EXEC_CERT
(or output of command)
Else returns error code
Actions:
1. Check authorizations for the AIK, for counterBlob, and for command
and ABORT on failure (i.e., return error code and clear hts)
2. Check mode and ABORT if illegal
3. Check counterBlob.counterID.address and ABORT if illegal

4. HASHTREE_START routine:
Initialize the Hash Tree State
a. Create a new TPM_COUNTER_BLOB, newCounterBlob
i Copy all fields of counterBlob to newCounterBlob
ii. if mode is INCREMENT then
(1) newCounterBlob.countValue
= counterBlob.countValue + 1
(2) newCounterBlob.data = nonce
iii. else if mode is CREATE then
(1) newCounterBlob.counterID.randomID
= new random number
(2) newCounterBlob.countValue = 0
(3) newCounterBlob.data = nonce
(4) counterBlob =null // old blob should have been null
b. Setup TPM’s internal Hash Tree State for leaf node
i Let Ats be the TPM’s internal Hash Tree State
ii. Set hts.aikHandle = aikHandle
iii. Set hts.mode = mode
iv. Set hts.nonce = nonce
v. Set hts.newCounterBlob = newCounterBlob
vi. Set hts.curPosition = newCounterBlob.counterID.address
vii. Compute hts.curOrigHash = Hash(counterBlob)
viii. Compute hts.curNewHash = Hash (newCounterBlob)
ix. if mode is equal to RESET then
hts.curNewHash = KnownNullHashes[height of position]
X. hts.command = command

Notes:

1. mode can be READ, INCREMENT, CREATE, or RESET.
EXECUTE is an option bit which can be OR’d into mode
(usually with INCREMENT or READ).

2. EXECUTE can be used with or without command. If used without
command, hts is remembered so it can be checked by the immediately
following command given to the TPM

HASHTREE_STEP loop:
FOR each i = 0 TO stepInputs.length DO
a. siblingHash = stepInputs|i]
b. isRight = hts.curPosition & 1 // (i.e., get lowest bit)
c. [l Set hts “current” state to refer to parent
if (isRight is 0) then
hts.curOrigHash = Hash(hts.curOrigHash |l siblingHash)
hts.curNewHash = Hash(hts.curNewHash |l siblingHash)
else
hts.curOrigHash = Hash(siblingHash || hts.curOrigHash)
hts.curNewHash = Hash(siblingHash || hts.curNewHash)
d. hts.curPosition = hts.curPosition >> 1 (right shift)
Check if computed original root hash is same as trusted root hash
a. If (hts.curPosition is not 1)
then ABORT // not enough steplnputs presented
b. If ((hts.curOrigHash is NOT EQUAL to TPM.rootHash)
AND (mode is NOT EQUAL to RESET))
then ABORT // original values fed in were not correct
Execute command according to mode
a. If (hts.mode is INCREMENT)
OR (hts.mode is CREATE)
OR (hts.mode is RESET)
then TPM.rootHash = hts.curNewHash
b. If (its.mode does NOT have EXECUTE bit set)
OR (hts.command is null) then
i. Create new TPM_HASHTREE_EXEC_CERT execCert
ii. execCert.mode = hts.mode
iii. execCert.nonce = hts.nonce
iv. execCert.newCounterBlob = hts.newCounterBlob
v. execCert.signature
= Sign(hts.mode |l hts.nonce || hts.newCounterBlob)
using AIK specified by hts.aikHandle
vi. if (hts.mode has EXECUTE bit set)
then remember Ats for immediately following command
else erase hts
vii. Return execCert
c. else/i.e., hts.mode has EXECUTE and hts.command is not null
i Get count-limit condition pertaining to hts.command
ii. ~ Compare mode and counterID in count-limit condition
with those in Ats, and ABORT on failure
iii. If hts.newCounterBlob.countValue is within the valid
range in count-limit condition then execute hts.command
and return result, else ABORT

For READ and INCREMENT, input counterBlob should have the
current counter value. For CREATE, input counterBlob contains
address and encrypted authDataBlob from owner/creator. For
RESET, input counterBlob should have address of node or subtree to
be reset, and encrypted authDataBlob with TPM owner authorization.

Figure 3: The TPM_ExecuteHashTree command pseudocode.

counter at the same address. The arbitdatafield is not strictly cause this would change the contents of the input blob given to the
necessary for basic functionality, but is used to make certain ap- TPM, and will thus result in a failure to verify the root hash.) Con-
plications possible. In our current implementation, we simply use firmations or specially-constructed nonces, as discussed in Sect. 4,
this field to store the nonce given by the client. Finally, the en- can also be used instead of or in addition to this authorization mech-
cryptedauthDataBlobfield is analogous to the authorization data anism.

fields in key blobs in the TPM. It specifies a secret that a caller to In the beginning, before any virtual counters are created, all the
the TPM would be required to demonstrate knowledge of, through counter blobs are assumed to have a special null value (i.e., all-
the TPM’s OSAP or OIAP authorization protocols, before the TPM zeros), and both the TPM and the host assume a hash tree computed
would allow any operation involving this counter blob to proceed. from such null values. Since such a tree is symmetric, the hashes
A client can use this authorization mechanism to prevent the host corresponding to internal nodes at the same depth are equal to one
from performing fake increments. (Note that the TPM’s OSAP and another. Thus, we can pre-compute all of the nodes of the tree by
OIAP protocols work without exposing the authorization secret in pre-computing a set diogo N distinct null hashes one for each

the clear between the TPM and the caller. Thus, it is possible for the level, given a maximum number of virtual countéy¥s The value

host to act as a man-in-the-middle between the client and the TPM of the highest-level hash is used as the initial value of the root hash.
without learning the secret. Also note that the encrypted authoriza- The pre-computed values of all the null hashes are also kept by
tion blob need not include a hash of the public parts of the counter both the TPM and the host for reference. The host can use these
blob, unlike in existing TPM formats. A host cannot successfully constants when it needs to produce a hash for an unused or reset
alter the authorization blob or dissociate it from the counter ID be- subtree. The TPM can store these constants in internal ROM (or

10

hardwired circuitry) and use them when resetting subtrees in the the client simply reissues thecrementCounter command. (Note
tree (at the request of the host) as is done in line 4b.ix of Fig. 3. that this assumes that a power loss whiRM _ExecuteHashTree
Starting from this null state, the host then responds to each legit- is executing results in either the root hash being untouched or be-
imate create, read, increment, and destroy request from a client bying updated to its new correct value, but not an indeterminate value.
invoking theTPM_ExecuteHashTree command, shown in pseu- This is actually not guaranteed by the current TPM 1.2 specifica-
docode in Fig. 3. This command takes in an AlK handlepaode tions for NVRAM in general, but is possible to guarantee with very
parameter to specify the desired operation, a nonce, anduthe high probability given extra internal hardware in the TPM.)
rentcounter blob corresponding to the desired virtual counter (or an
empty counter blob with only theddress field and encrypted au- ~ Variants. Note that during the execution 3PM_ExecuteHash-
thorization blob, when creating a new counter or resetting a counter Tree, the TPM only needs one of the hashesstapInputs at a
or subtree). It also takes a listiepInputs, corresponding to the time. This means that we can actually sglRM_ExecuteHash-
hashes of the siblings of the leaf's ancestors along the path to theTree into two commands: atart command, which the TPM calls
root. (An examp|e is shown in F|g2) These are provided by at the beginning with the AIK handle, mOde, nonce, and original
the host from the host's copy in untrusted memory. Given these counter blob, and atepcommand, which takes a single step in-
input parameters, the TPM computes the root hash Correspond_put (sibling hash) and is called for each successive step up the tree.
ing to the current counter blob. For create, increment, and re- The start command would essentially Correspond to lines 1 to 4 of
set operations, the TPM also generatesupdatedcounter blob Fig. 3 and the step command would correspond to one iteration of
(newCounter Blob) and computes the corresponding root hash for the loop in line 5, and then lines 6 and 7 when the position reaches
it. If the root hash computed using ticerrent (original) counter ~ the root. (Atomicity can be preserved by treating the start-step se-
blob matches the TPM’s internal copy of the root hash, then the duence like an exclusive transport session.) The advantage of us-
TPM replaces the internal copy with thewcomputed root hash, ~ Ing two separate commands in this way is that it only requires the
and generates an execution certificate signed by the specified AIK. TPM to hold a very small of amount data in secure volatile mem-
This execution certificate can then be passed by the host to theOry at a time. This may be an advantage in cases where the size of
client, which can then verify it by checking the counter ID, nonce, Volatile memory is a concern, or if we are trying to implement this
and mode in it, and verifying the signature from the AIK. mechanism in another type of secure coprocessor with much less
Whenever an update is made to any of the counter blobs, the hostmemory than the TPM. (We note, however, that even if we assume
also updates the corresponding hash tree nodes in its own untruste@ tree of depth of 32, supportirg? virtual monotonic counters,
memory. Note that the TPM only needs to produce the final execu- the stepInput array (which forms the bulk of the input data) only
tion certificate, and does not need to output the intermediate valuesamounts to 32 hash values of 20 bytes each, or 640 bytes total.
in the hash tree. This is because the host can easily compute thesdhis is still considerably smaller than the 4K byte input buffer that
values by itself given the new counter blob. Also note that the host Present-day TPMs already have. Thus, we do not really forsee a
need not store counter blobs or hash tree nodes in subtrees with nétrong need for splitting-upPM_ExecuteHashTree in this way.)

virtual counters, since the hash values of these are pre-computed as Other variants are also possible. One variant would be to modify
discussed above. Thus, even if a host may logically have a tree con-the hash tree data structure such that counter blobs are contained in

taining billions of virtual counters, it only needs memory propor- internal hash tree nodes as well, and not just the leaves. Combined
tional to the number of active virtual counters. And, significantly, With the start-step variant described above, this variation makes it
the TPM only needs a smaibnstantamount of memory, namely, ~ Possible to havelynamically growing hash tredhat enable us to
non-volatile memory for the root hash, and a constant amount of support atruly unboundednumber of virtual counters. Another
volatile memory for the hash tree state used during the execution of variant would be to have the TPM be able to handle multiple hash

the algorithm. trees by storing multiple root hashes (one for each tree). Each tree
We assume thafPM_ExecuteHashTree, like other TPM com- would have a unique random tree ID, which would be included in

mands, is an atomic operation. That is, we assume that the TPMthe counter ID of the counter blobs. _ _

will not allow other TPM commands to be invoked whill@M_Ex- We can also consider defining a multi-counter version of the

ecuteHashTree is still executing. This satisfies the atomicity re- TPM-ExecuteHashTree command which takes several indepen-

quirement for our virtual monotonic counter functions since such dent counter blobs and their respective step inputs, and then op-
functions are implemented here directly as a single calRM_Ex- erates on all of these in sequence before producing a single AIK
ecuteHashTree. signature certifying the entire sequence of counter operations. This
Also note that if there is a power loss during an increment op- Would be useful in high-load applications, where the time it takes
eration before the host is able to get the execution certificate from t0 create the final signature becomes a significant bottleneck (as
the TPM or return it to the client, then the host can simply return discussed in Sect. 7). It can also be used to allow us to implement
an error code to the client. The client can then issueead- count-limited objects whose usage restrictions depend on multiple
Counter request to check whether the counter has actually been Virtual counters at the same time. _ .
incremented or not. (The client, not the host, needs to do this be- ~ Finally, a general optimization technique worth noting that can
cause authorization may be needed.) In this case, the host perform&e applied orthogonally to any variant scheme would be that of
theReadCounter operation using aewcounter blob derived from ¢achingcertain internal nodes. This would improve performance
the old blob by incrementing the count value, and feeds this to by allowing a TPM to stop checking the hashes as soon as it reaches
TPM_ExecuteHashTree. If the operation succeeds, then the host a cached node in its internal secure volatile memory. This technique
and client know that the counter has been incremented, otherwise Was originally proposed in [14] in the context of memory integrity
checking schemes, and was used in AEGIS [29].
SWe leave the name of this command general since it is possible to

define other ways for using this command by simply definingnew 6 COUNT-LIMITED OBJECTS
modes. This allows this command to potentially support other use-)) o)
ful mechanisms as well in the future (e.g., non-monotonic virtual We can implement the idea ebunt-limited object=or clobspre-

trusted storage, etc.) sented in Sect. 2 by combining our proposed new features for vir-

11

tual monotonic counter features with existing features in the TPM migratable key wrapped for a source TPMcan be migrated to
for supporting encrypted keys and data blobs. In this section, we a destination TPMB by invoking a migration command on TPM

show how this can be done. A with the public key of TPMB and the migration authorization
secret of the key. (Note that the TPM does not certify that the other
Background: wrapped keys and encrypted data blobsOne of TPM'’s public key is authentic, but relies on the assumption that the

the useful features @istingTPM chips today is the ability tosign trusted party who knows the migration authorization secret trusts

or decrypt data usingarapped key-i.e., a public-private keypair the public key of the other TPM.)
where the private key has been encrypted (by the TPM itself or by

an external party) using a key protected by the TPM (e.g., the SRK Implementing count-limited objects. Currently, there is no limit
mentioned in Sect. 3), such that it can only be decrypted and usedto the number of times that a host can use a wrapped key or en-
internally by a particular TPM. There are several forms of such crypted data blob as long as it has the correct TPM, and authoriza-
keys and many applications. tion secret. If the new mechanisms for virtual monotonic coun-

A non-migratable keyfor example, is a wrapped key where the ters that we propose in Sect.5 are included in a future version of
private key is generated internally by a TPM and encrypted using the TPM, however, then these can be used to prostdemt-limited
that TPM’s unique key, so that it can only be used by that particular versions of the TPM's existing abilities to handle wrapped keys and
TPM. If one encrypts data using the public part of such a key, then encrypted data. This leads to the various forms of clobs described
the encrypted data can only be decrypted by the particular TPM in Sect. 2.
with the private key. This allows one to tie data to a particular ~ To do this, we first modify the existing TPM data structures
machine, such that, for example, if a data thief somehow copies thefor wrapped keys and encrypted data blobs to include an optional
entire hard disk of a PC, the thief cannot decrypt the data without count-limit condition field, containing the counter ID of a virtual
stealing the actual PC itself. This feature also has potential use inmonotonic counter plus, the mode and the range of counter values
DRM since it can allow a media distributor, for example, to send that are required for valid use of the key or data. At present, both the
protected media to a consumer such that the data can be decryptedPM_KEY and TPM_STOREDDATA structures for wrapped key
only on the consumer’s particular TPM-enabled device. blobs and sealed data blobs, respectively, already have a variable-

An externally wrapped keys another useful kind of wrapped length field for specifying a required PCR configuration, if desired.
key. Here, an external party, Alice, takes a public-private keypair We propose to have the TPM allow a count-limit condition structure
that she owns (i.e., where the private key is known only to her) and to be used in this field instead of, or in addition to, the PCR infor-
creates a wrapped key for another party, Bob, by using the public mation. (Note that the count-limited condition, like the PCR infor-
key of the SRK of Bob’s TPM. If Alice then gives the wrapped mation, is stored in unencrypted form to allow the host to know the
key to Bob, Bob can now use this key to sign data with Alice’s condition. However, as done with wrapped keys and sealed data
signature (if it is a signing key), or to decrypt data encrypted with blobs in TPM 1.2, a hash of the unencrypted parts of the blob —
Alice’s public key (if it is a decryption key). However, Bob can including the condition — is included in the encrypted part of the
only do this on the machine with his particular TPM. If he tries to blob. This prevents the host from altering the count-limit condi-
use the wrapped key on another machine, it will not work because tion.) Correspondingly, thd PM_LOADKEY command must be
the other machine would not be able to decrypt the private part of changed to include the count-limit condition information as part of
the wrapped key. Thus, for Alice, this is a kind kdy delegation the information loaded and kept in the TPM’s memory so that it can
mechanism that gives the assurance that her delegated key (i.e., thee checked whenever the key is used. (Note Ti¥_LOADKEY
wrapped key) can be used only on a specific machine (i.e., Bob’s). need not do any checking itself, though.)

In addition to wrapped keys, the TPM also suppemsrypted Second, we modify thePM_ExecuteHashTree command pro-
data blobs There are two forms of thesdBounddata blobs are posed earlier to allow for aBEXECUTE option bit in themode
blobs that have been encrypted using the public key of a wrappedinput parameter. If this bit is set, then the TPM will remember the
key protected by a TPM. Such blobs can be created by anyonefinal hash tree statéi{s) of a successfurPM_ExecuteHashTree
(without using a TPM), but can only be decrypted on a particular execution such that it can be checked by the TPM command in-
TPM using a particular wrapped keyealeddata blobs are cre- vokedimmediately afteit (and then erased afterwards). In typical
ated using the TPM itself, and can only besealedby the same use, we expect thEXECUTE bit to be used with théNCRE-

TPM andonly if the values in the platform configuration registers MENT mode so that using a clob requires incrementing a counter.
(PCRs) of the TPM match the values specified in thelin fo However, it may also be used with tiREAD mode to allow us
field of the data blob. Such blobs can be used to hold data that canto create clobs that do not require the counter to be incremented
only be decrypted while a certain trusted program (represented byeach time they are used. This allows fam-incrementing clobs
the particular PCR values) is running. that the host can use an unlimited number of times wattheone

Wrapped keys and sealed data blobs can also include an en-lse(e.g., the owner of the counter or another clob) increments the
crypted usage authorization secret. This adds an extra layer of secounter.
curity which ensures that a key or a blob can be used only if the Finally, we modify theTPM_Sign, TPM_Unbind, andTPM_Un-
caller knows its authorization secret. (As noted earlier, the TPM’s seal commands to add a simple check when using keys or data
OSAP and OIAP authorization protocols work without exposing blobs that have a count-limit condition field. Specifically, these
the authorization secret in the clear, so it is possible for the host to commands must first check the count-limit condition field (if any)
act as a man-in-the-middle between the client and the TPM with- in the corresponding loaded key information or data blob and make
out learning the secret.) In addition, wrapped keys, like sealed data,sure that thecounterI D andmode in the TPM’s hash tree state
can also be tied to PCR configurations such that they can only be match the values in the count-limit condition, and thaintV alue
used while running certain trusted software. is within the valid range. (In the case ®PM_Unseal, we also

A wrapped key can also beraigratable key Such a wrapped modify the command such that if there is a count-limit condition,
key includes a migration authorization secret encrypted in the blob then it does not require the sealed data blob to have a PCR config-
together with the private key and the usage authorization secret. Auration ortpm Proof field.)

12

To allow for virtual counters that can only be incremented by us- way to increment the counter when it has a value isfto use the
ing a clob (and not by callingPM_ExecuteHashTree by itself), clob C;.® then we also ensure that cléh.; cannot be usebefore
we can also allow the desired TPM command (eTg?M_Sign, clob C;. Aside from (strictly)sequenced clobsuch as these, many
TPM_Unbind, or TPM_Unseal), together with all its input param- other forms obrderingare possible to enforce by simply setting the
eters, to be included as an optional variable-length input parame-different usage intervals in the count-limit conditions appropriately.
ter of TPM_ExecuteHashTree in a similar way to how wrapped An alternative way to enforce a sequence or ordering between
commands are included in the TPM 1.ZBM_ExecuteTransport clobs is to create the clobs in such a way that the authorization
command). This is useful, for example, in implementeguenced secret needed to use a clébis unknown to the host and is only
clobsas described in Sect. 2, which require that the shared counterrevealed by using another clab (or set of clobs). (As a simple
cannot be incremented except by executing the clobs themselves. example, the authorization secret for clBtmight be a part of the

output produced by using clol.) This technique may be useful

Using count-limited objects. Given these modifications, using a in enforcing sequenced or ordered usage of clobs across multiple

count-limited object, or clob, is easy. If Alice, thgsueror dele- TPMs, wherein the technique of sharing the same virtual counter
gator, wants to give a count-limited object to Bob, tlezipientor may not be easily applicable.
delegategthen they take the following steps: Another form of ordered clobs worth noting arenerating clobs

which are clobs which produce a new clob (or clobs). Note that one

1. First, Ali hecks that Bob’s host hine h i d .)
s zlercsu’re 'II'CISI\Z Eiasctlyah ov(; thsis izsd;nnzcis”;?)t t?]seigfﬁsug}etég can view theTPM_COUNTER_BLOB data structure, used earlier

paper, but well-known schemes for doing this include Direct in Sect. 5 for keeping track of virtual monotonic counters, as such

Anonymous Attestation [5], a scheme supported in TPM 1.2 a clob. Spegifically, .the §ounter ID and value.in a counter b.|°b Is
that allows verification while preserving Bob’s anonymity. its count-limit (’:ondmon (ie., the counter blob is or_1|y usable if the
virtual counter’s current value is exactly the value in the blob), and
2. Then, if Alice wants to create antime-use clob, or the first the increment operation produces a new counter blob sharing the
clob among a set of shared-counter interval-limited clobs, same counter but with a usage interval one value higher. Note that
she gets mewvirtual monotonic counter ID from Bob by in- viewed in this way, a particulafPM_COUNTER_BLOB blob is
voking hisCreateCounter function remotely. Alternatively, essentially a one-time-use generating clob. That is, once a counter
she could also use asxistingcounter ID of Bob’s, if she blob has been used in an increment operation, it cannot be used
wants to create a shared-counter clobs using that counter. again since the virtual counter’s value would increment beyond
) o o) its usage range. Thus, the host can now only use the new blob,
3. Alice then constructs the count-limit <_:ond|t|on field with the \yhose “count-limit condition” contains the new current value of
counter ID, count range, and mode (iREAD or INCRE- the counter. Other forms of generating clobs are also possible. If
MENT) that she desires. A mode 8ICREMENT means generating clobs can produce clobs for usetirer TPMs, for ex-

that the counter must be incremented before each use of theample, then migratable clobs and clobs for mobile agents become
clob. A mode ofREAD means that the counter can be used pogsiple.

an unlimited number of times until someone else increments

the counter. Count-limited migratable objects. One of the more intriguing
variants of clobs are-time migratableor n-copy migratable ob-
jects described briefly in Sect. 2. To support such clobs, we create
new commands that work similarly to the TPM'’s existing set of
commands for supporting migratable keys, except that they take
into account the count-limit condition field. These new migration
commands must enforce the condition described in Sect. 2. Specif-
ically, if a clob’s count-limit range is 1 ta and its correspond-

ing virtual counter on the source TPM currently has the value

5. On Bobs side, Bob can use a count-limited key or data blob (Wherec < n), then TPMA can create a new clob for the desti-
exactly as he does an ordinary TPM wrapped key or data Nation TPMB with a count-limit range of 1 t& provided that the
b|0b, except that he has to first invok®M_ExecuteHash- virtual counter of TPMA'’s clob is first incremented bk and the
Tree immediately beforealling his desired operation (e.g., New counter value does not exceedGiven this rule, a clob can
TPM_Sign, TPM_Unbind, or TPM_Unseal). This reads or be circulatedindefinitely (i.e., TPMB can migrate the clob back
increments the appropriate counter, and sets up the hash tred0 4, thus creating a new clob with a separate counter from the
state so that the desired operation called after it can check it 0riginal one), but the total usable ranges of the count limits of the
before proceeding. Alternatively, he can also feed the desired Original clob and clobs migrated from it (as well as clobs migrated

TPM command as an additional input infé®M_Execute- from those) cannot exceedat any one time, where is the count
HashTree itself. limit of the original clob.

To usemigratable clobs, we simply use the modified TPM com-
mands described above (e.§RM_Sign, TPM_Unbind, or TPM-
.) _Unseal) immediately after & PM_ExecuteHashTree command
of clobs are shared-counter clobs that have different usage if#erva 4 pefore. The mode in the count-limit condition of a migratable

set to enforce aequence- or more generally aorder — to their clob determines how the clob can be used. If the modN@RE-
usage, such that certain clobs cannot be executed before or aftef,eNT then the total number of times that a clob candsedis
certain others. For example, if we create a set afobs such that '

each clobC; (for_i_ from 1 to n) is only usable when the shared 50One way to do this is to add an extra option bifiiM_COUNT-
counter's value is, then we know thaC;_, can never be used gR B| OB to indicate to theTPM_Execute HashTree command
after C; (although one can potentially increment the counter some that the virtual counter cannot incremented by itself but can only
other way and skip using’;—1). If we further ensure that thenly be incremented when a clob is being used.

4. Given the appropriate counter ID, Alice then uses the public
key of Bob’s TPM’s SRK (or another storage keypair whose
private key is known by Bob’s TPM but not revealed to Bob)
to construct a wrapped key blob or sealed data blob for Bob.
The resulting encrypted blob is usable only on Bob’s TPM,
and only according to the count-limit condition included in it
by Alice.

Sequenced, ordered, and generating clob#\n interesting form

13

limited ton regardless of which machine uses them. If the mode is (with their respective hosts simply relaying messages between the
READ, then a host holding a clob can use it an unlimited number TPMs); and (2) the destination TPM can only generate the correct
of times, as long as it has not been migrated from that host more authorization responses for this protocol through the use of another
than its count limit. (That is, if the host migrates the clob more clob given to it by the issuer. This requirement would limit the
thann times wheren is the count limit in the host's copy of the number of times that a particular TPM can receive a migrated clob
clob, then the counter exceeds the count limit and the host’s TPM without having to go back to the issuer. (Note that the modified
starts disallowing use of that clob.) This allows for a clob that can authorization protocol must be designed like the OIAP or OSAP
be circulated indefinitely and used an unlimited number of times protocols such that the destination TPM can prove knowledge of
on multiple hosts, but only in at mosathosts at any one time. This the migration secret to the source TPM without exposing the secret
variant is notable because it allows for the media “lending” exam- itself to either of the two hosts.)
ple mentioned in Sect. 2, among other applications.

Note that this scheme assumes thatesvvirtual counter must ~ Count-limited TPM operations. Existing TPM 1.2 chips already
be created at the destination TPM and the counter ID of this new support the idea ofvrapped commandss part oftransport ses-
counter must be included by the source TPM in the reencrypted sions If we extend this idea by creating a clob containing a wrapped
blob. Ideally, the source TPM should verify that the counter ID command and a count-limit condition, then we can apply various
is really new and starts from zero. This may require a multi-step types of count-limit conditions (e.gn-time-use,n-out-of-m, n-
protocol where the source TPM first produces a random nonce to time migratable, sequenced, etc.) to any operation that the TPM is
be used wittCreateCounter on the destination host, and then ver- capable of executing. Furthermore, if we cres¢gjuencedlobs
ifies that the create certificate produced includes the nonce, has gas described in Sect. 2), with such wrapped commands, then we
counter value of zero, and is signed by the AIK (verified by the ver- can create a count-limitexequencef TPM operations. This would
ification key). However, this is not strictly necessary because if the be analogous to a transport session, with the advantages that: (1)
destination TPM uses an old counter whose value is not zero, thenit would be count-limited, and (2) it can be executed by the un-

there is no security problem because at worst, it can medyce trusted host without needing online contact with the remote party
the count limit on the blob, and not increase it (assuming negative issuing the operatiorfs. Note, however, that in these cases, the
counter values are never possible). sequences are no longer atomic operations, unlike the individual

One important question for migratable clobs is that of how the Wrapped commands, so care must be taken in designing them. Al-
source TPM can know that the destination pubhc key is that of a ternatively, we can also allow a Single clob to contain a small num-
valid and trustworthy TPM. In the current version of the TPM (1.2), ber of wrapped commands in sequence (as would fit in the TPM’s
the migration commands assume that either the owner of the TPM internal memory), so that atomicity can be ensured by the TPM as
or the process invoking the commands (which could be a remote it executes the operations internally.

process on a trusted machine) is trusted to verify the destination .=~ hvsical . h
public key and to only authorize migration if the destination pub- Variant: Using physical monotonic counters. Note that count-

lic key is that of a valid TPM. The TPM itself does not check the lIMited objects can also be implemented if the TPM had a larger
trustworthiness of the destination public key given to it. However, — Put not necessarily unlimited — number ifysicalmonotonic

in our model, neither the owner of the TPM nor any processes in cou_nters. Suppose{ f_or e_xample, tha_t we have a trust_ed (tamper-
the host are trusted. Thus, the TPM needs to be able to verify the 'éSistant) table ol finite-sized *slots” in NVRAM, each indexed
destination public key itself so that the secret data in the blob Y @naddressi. We can use this table to store up A6 TPM.-

is guaranteed to only be reencrypted for another trusted TPM, andCO_UNTER—BLOB Strﬂgtures, %achblreprr:esentlgg adv_lrtual mono-
never exposed to any untrusted parties. tonic counter. Using this trusted table, the read and increment op-

One possible solution to this problem is to includeesification erations can be implemented by simply having the TPM read or

keyinside the clob. This verification key should be the public key ncrement the appropriate blob directly (i.e., no hash tree compu-
of a certificate authority trusted by the issuer of the clob. (Like the tation is requwed). As in our hash-tree based scheme, we use a
count-limit condition, the verification key can be unencrypted but is random ,'Df'_EId together with th? slot address of a blob to give
included in a hash that is in the encrypted part of the blob to prevent the blob’s virtual counter ID. Th's allows us to safely reuse the
the host from altering it.) Then, when the clob is to be migrated, NVRAM space of a counter which has been destroyed. Given such

the receiving host presents a valid certificate chain, rooted at the " irgpllemtlentation,dgll the \:)ar]i(ations of clorl?s we r:lavhe described
trusted certificate authority, to certify the destination key that it is €N b€ implemented just as before, except that no hash tree compu-

giving. (An example would be a certificate chain including a DAA tations are needed anymore to verify and update the counters.
signature [5] on the receiving TPM's AIK, which in turn certifies Such an implementation would have the benefits of better perfor-

the destination key as a non-migratable storage key on that TPM.) mance and reliability (since there is no risk of_ the_ host losing the
Given the verification key in the original blob and this certificate cOUNter blobs and hash tree nodes). The main disadvantage here,
chain, the source TPM can then verify the destination public key of course, is that the _number of mqnqtonlc counters that the host
and reencrypt the blob only if the destination key is valid. (Note €20 keep track odt a timewould be limited, and thus the number

that the same verification key is included in the reencrypted blob,) ©f clobs thata host can hold would be limited too. In some applica-
Other variations and extensions ofcopy migratable clobs are tions, however, this may be acceptable. For example, in digital cash

also possible. One such extension would be to inclubleplimit applications, this would simply mean that the host can only hold at
in the blob. When migrating a blob, the migration command decre-
ments its hop-limit and puts the decremented value in the new reen-\we assume that the source TPM first verifies the destination TPM
crypted blob. This would limit the spread of a blob (i.e., the number using the verification key in the clob.

of hops from the original host), and prevent a blob from circulating 8In TPM 1.2 transport sessions, wrapped commands are encrypted
indefinitely. Another variation is to modify the authorization mech- Wwith a random session key, and thus requires online contact with
anism for migration so that: (1) the authorization protocol is per- the remote party. In the case of a clob with a wrapped command,

oAt his is unnecessary since the wrapped command can be encrypted
formed between the source and the destination TPMs themselves,fJsing the public key of the TPM's SRK, just as in other clobs.

14

mostN digital coins at a time, and would need to use a coin before divide a 160-bit address into 10 16-bit addresses, and thus use 10
it can get a new one. This is not different from the real world, where physical counters in a table at® physical counters. When creat-
areal wallet can only hold a limited number of real coins. The only ing these counters, some of these counters may already be in use,
requirement, then, is for the number of secure NVRAM slgtto but the probability thaall of them already being in use is smaller
be large enough for the needs of the user. Thus, if it becomes pos-than if we only chose one counter in a 32-bit address space (assum-
sible in the future to implement sufficiently large tamper-resistant ing that there are sufficiently few virtual counters currently in use).
NVRAMSs, then this variant may be a practical way to implement Given this set of 10 counters, reads and increments of the virtual
virtual monotonic counters and clobs. counter would then checéll the values of the 10 physical coun-
Note, however, that even if it does become possible to make ters,butonly read or increment thewest-valuedne. That is, for
tamper-resistant NVRAMs large enough for users’ needs, using our an increment, if there are several counters with the lowest value,
hash-tree scheme still has its benefits. For one, it would still be then all these counters are incremented atomically, but the higher-
much easier for the TPM manufacturer to guarantee the physical value counters are not affected. (Note: This differs slightly from
security of a single NVRAM register for storing the root hash than a count-min sketch as proposed in [10] wherein all counters are
that of a large numbe¥V of NVRAM slots. Thus, a TPM usingour incremented, including the higher-valued ones. The idea of only
hash-tree scheme can arguably be made cheaper for the same levahicrementing the lowest-valued counters is adapted from a similar
of security (or alternatively, more secure for the same price) than technique used by Varghese on a different application in network

one depending on many secure NVRAM slots. security [33].) By implementing the virtual counters in this way,
_ _) o it is still possible for counters to collide but the value of the vir-
Variant: unique clob counter IDs. Another interesting imple- tyal counter cannot be inadvertently incremented urddissf the

mentation variant is one where the counter ID of a clob is derived |owest-valued counters are affected. Furthermore, at worst, if there
from a function (such as a collision-free hash) that generates ajs a collision, then the counter still cannot be reversed but can only
uniquelD based on certain parts of the clob’s contents. This al- be made to skip steps. The drawback of this scheme, however, is
lows us to skip the step of having to create a new virtual counter on that beyond a certain number of virtual counters, the probability
the host before Creating the clob. In this case, the issuer of the ClObof collisions increase and can become worse than in a Straightfor-
can simply create the clob and give it to the host. Then, just before ward uniform mapping from the large address space to the smaller
using the clob for the first time, the host issues a special commandone. Thus the usefulness of this technique in practical applications
to the TPM, which then computes the unique counter ID from the needs to be studied further.

blob and gives it to the hoStGiven this unique ID, the host then

performs aCreateCounter operation using the given addre$s.

It is important to note that this scheme requires a counter ID ad- 7. PERFORMANCE ISSUES
dress space large enough (e.g., 160-bits) so that the probability of)
collisions is negligibly small. Otherwise, such collisions can allow EXPerimental TPM Performance Results. To get a feel for the
someone or something else other than the clob itself to incrementPractical performance that we can expect to get from our schemes,
the clob’s counter (whether maliciously or unintentionally). Since W€ measured the execution times of various TPM instructions on

our hash-tree-based scheme requires 6rlipg V) steps for each ~ an HP DC7600 with a Broadcom TPM 1.2 chip. We used IBM's
counter operation, implementing even a very large virtual counter ¢ Pdd device driver [17] as the low level device driver providing
address space would still take a reasonable amount of time, and cari’® TDDL-levelinterface, and used JTPM, a Java API that we have
still be useful in many non-time-critical applications. For example, déveloped ourselves to allow us to access TPM 1.2-specific func-
as noted in Sect. 7, if we assume the speed of present-day Tpmtionality such as monotonic counters_and transport sessions, which
chips, then handling 160-bit counter ID addresses would only take '€ Not supported by other freely available TPM software stacks to-
around 3 s — which is an acceptable delay if, for example, the clob d&Y- Note that the TPM is slow enough compared to the main CPU
in question is a key used for decrypting a media file being migrated that any slowdown due to the use of Java (vs. C) was verified by us
from one secure media player to another, since this delay is still ©© P& negligible. _
negligible compared to the time required to move the media itself ~ Roughly, we found that on averagePM_PCRExtend (which

as well as play it. If we are using an implementation usihghysi- computes the hash of two 160-bit values concatenated together)

cal monotonic counters as just described in the previous subsectiorl@<€S about 12 ms, generating a signature takes about 0.9 s, and

above, then we could use a hash table mechanism to map the larg& c@ll to TPM.IncrementCounter wrapped in a logged transport
virtual address space to the smaller physical address space. Note>€SSion takes about 1.4 s (about 0.4 s to increment the counter, and
however, that in this case, the mapping and the handling of colli- about 1 s to generate the signature of the transport log). However,
sions should be done securely inside the TPM (as part of a new©n the Broadcom chip, the latter can only be done once every 2.1

built-in mechanism) so that these operations are not manipulatableS:_(T0 prevent burnout of the monotonic counter's NVRAM, the
or visible from the outside (i.e., outside users only see the virtual 1M 1.2 specifications allow TPM implementations to throttle the

counter IDs). monotonic counter to be incremented only once every 5 s.)

Another interesting possibility is to use a mechanism similar to Ve have implemented the log-based scheme described in Sect. 4,
a count-min sketchil0]. Here, we divide the long (e.g., 160-bit) and have verified that, as predicted, we can indeed execute an
address intanultiple smaller addresses and th@mulate(with the crementCounter operation approximately once every 2.1 seconds
TPM) a virtual counter where the value of the virtual counter is the (with the operation itself taking around 1.4 s but requiring a wait
minimumof the physical counters’ values. We may, for example, before it is used again). We cannot implement the hash-tree based

scheme on a real TPM chip since TPM 1.2 does not support our

9The host cannot compute this ID by itself because the function for proposedrPM_ExecuteHashTree cqm_mand. quever, from our
computing the ID may use secrets encrypted in the blob itself so Measurements above, we can preliminarily estimate that the hash-
that the ID can only be computed internally by the TPM. tree based scheme would take about 1.7 s per operation assuming

19The TPM in turn cannot “create” the counter by itself because it @ 32-level hash tree allowing a maximum 3f* virtual counters
needs the step inputs from the host in order to update its root hash.(i.e., 0.9 s signing time, plus 32 hash operations at 12 ms each, and

15

around 0.4 s to write to the NVRAM), and would take only about schemes are another form of count-limited object since they are not
3.2 s per operation (i.e., same computation as before with 160 hashsupposed to be used more than once.
operations instead) even if we used a 160-bit counter ID address In [3], Bauer et al. present a logic model that can be used to
space allowing a maximum &' °° independent virtual counters. analyze, develop, and prove systems that use what theyozadt “
Moreover, in a real implementation, the actual time would proba- sumable credentidls- i.e., credentials that provide authorization
bly be less because the 12 ms cost per hash operation that we usenly a limited number of times, such as coins, tickets, and simi-
in these estimate is actually the cost of invoking a separate TPM lar tokens in both the real and digital worlds. However, as far as
command. This cost likely includes a significant amount of com- we understand, although they discuss how consumable credentials
munication overhead which will not exist in our proposed imple- (which are essentially count-limited objects as well) carubed
mentation where all the inputs can be given in one command. they do not answer the question of how these caimiptemented

To date, there have been two main approaches to enforcing the
Hybrid Log-based/Tree-based SchemeSuppose there is a high- ysage limitations of consumable credentials and count-limited ob-
load virtual storage application where a single TPM is used t0 jects. One approach is to trust that the hardware and software of
maintain virtual counters for as many clients as possible. In such the executing platform will prevent a count-limited object from be-
a scenario it is likely that more than one client would request to ing used outside of its count-limit. This approach is used in existing
increment a virtual counter at the same time. If we are using the pRM schemes for limiting the use of software and media files. The
tree-based scheme, each of these requests would have to be handlqﬁ'omem with this approach’ however, is that many imp|ementations
separately, and would thus take 1.7 s each. However, if we are us-of this approach today — including most DRM applications running

ing the log-based scheme, we can implement multipteement- on PCs — rely on general-purpose non-secure hardware, and imple-
Counter requests from different clients at the same time by us- ment security through obscurity in the trusted operating system or
ing the hash of all of the clients’ respectiv& CountI D||nonce) trusted software. This makes it possible for motivated hackers to
values together as the nonce foPM_IncrementCounter. This eventually be able to break security by disassembling the software.
sharedvariant of the log-based scheme only needs to execute asin- An alternative approach is not to trust the hardware or software
gle transport session with a singl@M_IncrementCounter com- at all, but to design the application such that if a user uses a count-

mand for multiple clients at the same time. This means that the host|imited object beyond its limit, such use will be detected eventually
can increment a potentially large number of virtual counters every gnd the user identified and punished. This approach is used in ap-
2.1s instead of just one, as in the non-shared scheme. Combinegjication areas such as digital cash. In Chaum’s e-cash scheme
with adaptive time-multiplexing as mentioned above, the shared [8], (as well as Brands’ scheme [4], described earlier in Sect. 2),
log-based scheme would thus allow more clients than a pure tree-for example, the idea dblind signaturesallows users to engage
based scheme in a high-load situation. in legal transactions offline and anonymously, but ensures that if a
The problem of unbounded worst-case latency, however, still ex- yser double-spends an e-cash coin then his identity will eventually
iStS, since in order tUel’ify the shared nonce Signed with each in- be exposed to the issuing bank, and the bank can prosecute him.
crement certificate, each client would need to receive all of the in- More recent examples of “one-time” ok-*time” operations of this
dividual nonces of all of the clients sharing that same time slot. type and their applications include [7, 20, 25, 30], among others.
However, this problem can be avoided without losing performance The approach used by these schemes has the advantage of being
if we combine the log-based and tree-based scheme ihydad secure even if the hardware or software used by the user is com-
schemeThe main idea here is to use the log-based scheme for fre- promised. The disadvantage, however, is that it does not actually
quently used counters (whose logs do not get very long), but then prevent malicious activity from happening in offline transactions
to move the maintainance of less frequently used virtual counters to hyt only detects and punishes it later. Thus, it is not effective if it is
a tree-based system if their corresponding logs gets beyond a cerpossible for the adversary to hide and escape from being punished,
tain constant size. This allows us to be able to guaranbeiaded or if there is a need to actually prevent the malicious activity from

worst-case latency per transactior(fl)+O(logN') = O(logN) happening at the time of the offline transaction itself.

(whereV is the maximum number of virtual counters) —evenifa Our approach is a variation of the first approach above, with the

virtual counter is not used for a long time. difference that we do not rely on the security of the host CPU and
OS, but only on that of a much smaller, simpler, and passive co-

8. RELATED WORK processor such as the TPM. This makes our solutions more secure

and harder to break than other existing DRM solutions that rely on
atrusted CPU and OS.

In recent work, Goldwasser et al. have coined the teoms-
time programsandn-time programdo refer togeneralprograms
that can only be run a limited number of times [15]. They have
also shown the first implementation (to our knowledge) of such
programs using very simple trusted hardware, and have proposed
the application of such programs to digital cash and DRM. Their
scheme uses a very different technique from ours, and assumes
even simpler trusted hardware than ours does. Our schemes and
ideas about count-limited keys, data, and TPM operations, and the
applications of such count-limited objects to digital cash, DRM,
and other application areas were developed independently of Gold-
wasser et al.'s work, and do not use any of their techniques. Irspire
by their ideas, however, we are developing the idezooht-limited
general-purpose progrania ongoing work.

The idea of implementing “virtual monotonic counters” using a sin-
gle physical monotonic counter and untrusted storage was previ-
ously presented in the context of TPM 1.2 by the TCG [31] and
NGSCB by Microsoft [27]. Their schemes, however, rely on a
trusted OS, which in turn relies on a trusted BIOS and special secu-
rity support in the CPU and other hardware (as noted in Sect. 1). To
our knowledge, we are the first to present a scheme for implement-
ing a potentially unbounded number of virtual monotonic counters
trusting only in a small passive coprocessor like the TPM with only
a very small amount of secure non-volatile storagighouttrusting
in the OS or even the CPU.

The idea of data, operations, or programs that can only be used
a certain number of times is an old idea that forms the core of
several computer security application areas such as DRM, digital
cash, and others. For example, one may consider limited-used trial
software or media that expire afteruses om days as a form of
count-limited object. Similarly, digital coins in existing digital cash

16

9. CONCLUSION

In this paper, we make two major contributions: First, we present

a hash tree-based schertigat makes it possible to implement a

very large number of virtual monotonic counters using only a small
constant amount of trusted space and a single simple new instruc- [8]
tion for the TPM. Unlike previous schemes, our scheme guarantees
tamper-evident operation even if everything other than the TPM on
the host platform implementing the virtual monotonic counters is
completely untrusted, including the software, the OS, BIOS, and
even the CPU. This provides a significant improvement in secu-
rity over existing schemes by making it impossible for hackers to [10]
break the security of our scheme without physically breaking into

the TPM chip. Second, we show how we can use these virtual
monotonic counters with the existing idea of wrapped keys, data, [11]
and commands already implemented by the TPM to implement the
new idea oftount-limited objectsr clobs which have many useful
applications.

The changes to the TPM that can make all these things possi-
ble are simple, elegant, and efficient, and are easily implementable[13]
given the internal features already present in the TPM. Thus, we
hope that the changes we have proposed in this paper will be con-
sidered for inclusion in future TPM specifications.

Meanwhile, we have also presented a log-based scheme which
can be implemented using the current TPM 1.2 chip without any
new instructions. Although the log-based scheme cannot be used
to implement clobs, it can be used for virtual trusted storage and
stored-value applications.

Finally, we note that our techniques are not limited to systems
using TCG’s TPM chip, but can also be applied to other secure
coprocessor systems as well. For example, our tree-based schemge]
and our mechanisms for clobs may be a useful feature to include in
smart cards or even in security technologies meant to be embedded
in CPUs, such as IBM’s SecureBlue [18]. Even though these sys- [17]
tems are already designed to be fully secure themselves, the benefit
of our techniques would be that they provide a way to support a [18]
large number of monotonic counters and count-limited objects us-
ing only a small amount of trusted space. This potentially makes [19]
it possible not only to build smaller and cheaper smart cards and
other secure components, but also to improve the security of such[20]
components, since a small trusted computing base is much easier
to guarantee security for than a bigger one.

10. REFERENCES

[1] B. Adida and C. A. Neff. Ballot casting assurance. In

Proceedings of the 2006 USENIX/ACCURATE Electronic
Voting Technology Workshppug. 2006.

[2] S. Balfe, A. Lakhani, and K. Paterson. Securing peer-to-peer
networks using trusted computing. In C. Mitchell, editor,
Trusted Computingchapter 10. IEE, 2005.

L. Bauer, K. D. Bowers, F. Pfenning, and M. K. Reiter.

Consumable credentials in logic-based access control.

Technical Report CMU-CYLAB-06-002, CyLab, Carnegie

Mellon University, Feb. 2006.

S. Brands. Untraceable off-line cash in wallet with observers

(extended abstract). BRYPTO '93volume 773 olecture

Notes in Computer Sciencgug. 1993.

E. Brickell, J. Camenisch, and L. Chen. Direct Anonymous

Attestation. InProceedings of the 11th ACM Conference on

Computer and Communications SecurQ04.

[6] J. Bryans and P. Ryan. A dependability analysis of the chaum
digital voting scheme. Technical Report CS-TR-809, School
of Computing Science, University of Newcastle upon Tyne,
July 2003.

(7]

El

[12]

[14]

(18]

[21]

[22]
(23]

3] [24]

[25]
(4]

5] [26]

[27]

(28]

17

L. Bussard and R. Molva. One-time capabilities for
authorizations without trust. IRroceedings of the second
IEEE conference on Pervasive Computing and
Communications (PerCom’04pages 351-355, March 2004.
D. Chaum. Blind signatures for untraceable payments. In
Advances in Cryptology - Crypto '82 Proceedingages
199-203. Plenum Press, 1982.

D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and
G. Tsudik. Itinerant agents for mobile computingEE
Personal Communicationg(5):34—49, Oct. 1985.

G. Cormode and S. Muthukrishnan. An improved data
stream summary: the count-min sketch and its applications.
Journal of Algorithms55(1), Apr. 2005.

A. Dent and G. Price. Certificate management using
distributed trusted third parties. In C. Mitchell, editor,
Trusted Computingchapter 9. IEE, 2005.

E. Gallery. An overview of trusted computing technology. In
C. Mitchell, editor, Trusted Computingchapter 3. IEE, 2005.
E. Gallery and A. Tomlinson. Secure delivery of conditional
access applications to mobile receivers. In C. Mitchell,
editor, Trusted Computingchapter 7. IEE, 2005.

B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and

S. Devadas. Caches and Merkle Trees for Efficient Memory
Integrity Verification. InProceedings of Ninth International
Symposium on High Performance Computer Architecture
New-York, February 2003. IEEE.

S. Goldwasser, G. Rothblum, and Y. Kalai. One-time
programs. Personal communication, June 2006.

F. Hohl. Time limited blackbox security: Protecting mobile
agents from malicious hostisecture Notes in Computer
Science1419, 1998.

IBM. Linux TPM Device Driver.
http://tpmdd.sourceforge.net/.

IBM. SecureBlue. http://domino.watson.ibm.com/
comm/pr.nsf/pages/news.200604d&xurity.html, 2006.

Intel. LaGrande Technology.
http://www.intel.com/technology/security/, 2003.

H. Kim, J. Baek, B. Lee, and K. Kim. Secret computation
with secrets for mobile agent using one-time proxy signature.
In Proceedings of the 2001 Symposium on Cryptography and
Information Security2001.

U. Maheshwari, R. Vingralek, and W. Shapiro. How to Build
a Trusted Database System on Untrusted Storage. In
Proceedings of OSDI 200@000.

R. Merkle. A certified digital signature. Imanuscript 1979.
C. Mitchell, editor.Trusted ComputingThe Institution of
Electrical Engineers, 2005.

M. Naor and K. Nissim. Certificate revocation and certificate
update. InProceedings 7th USENIX Security Symposium
(San Antonio, Texas)998.

L. Nguyen and R. Safavi-Naini. Dynamic k-times
anonymous authentication. Kpplied Cryptography and
Network Security (ACNS 20Q5)lume 3531 of.ecture

Notes in Computer Scienggages 318-333, 2005.

S. Pearson, editofrusted Computing Platforms: TCPA
Technology in ContexPrentice-Hall, 2005.

M. Peinado, P. England, and Y. Chen. An overview of
NGSCB. In C. Mitchell, editorTrusted Computing

chapter 4. IEE, 2005.

A. Shieh, D. Williams, E. G. Sirer, and F. B. Schneider.
Nexus: a new operating system for trustworthy computing.

(29]

(30]

(31]

(32]

(33]

(34]

In SOSP '05: Proceedings of the twentieth ACM symposium
on Operating systems principlgsages 1-9, New York, NY,
USA, 2005. ACM Press.

G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and

S. DevadasAEGIs: Architecture for Tamper-Evident and
Tamper-Resistant Processing Aroceedings of tha7t"

Int'l Conference on Supercomputing
(MIT-CSAIL-CSG-Memo-474 is an updated versjon)
New-York, June 2003. ACM.

I. Teranishi, J. Furukawa, and K. Sako. k-times anonymous
authentication (extended abstract) ASIACRYPT 2004
volume 3329 oL ecture Notes in Computer Scienpgages
308-322, 2004.

Trusted Computing Group. TPM v1.2 specification changes.
https://www.trustedcomputinggroup.org/groups/tpm/
TPM_1_2_Changesdfinal.pdf, 2003.

Trusted Computing Group. TCG TPM Specification version
1.2, Revisions 62-94 (Design Principles, Structures of the
TPM, and Commands).
https://www.trustedcomputinggroup.org/specs/TPM/,
2003-2006.

G. Varghese. Introspective networks. Talk at MIT CSAIL,
July 2006.

D. Williams and E. G. Sirer. Optimal parameter selection for
efficient memory integrity verification using merkle hash
trees. InProceedings of IEEE Symposium on Network
Computing and Applications (NCA '04004.

18

