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Abstract—As a new way to design, deploy and manage net-
work services, network functions virtualization (NFV) decouples
the network functions, from one or more physical network
infrastructures and black boxes so they can run in software.
It therefore comes as no surprise that NFV originated from
service providers, who were looking to improve the deployment
of new network services to support their revenue and growth
objectives. Within the NFV ecosystem, high availability and low
latency are one of the key QoS benefits that service providers
can expect from the 5G Cloud and the NFV networks to make
delay-critical services such as remote surgery a reality. Therefore,
network services should be placed, chained and routed through
the network considering users/tenants stringent quality of service
(QoS) and service-level agreement (SLA) requirements. To this
end, routing and placement optimization plays a major role
in improving network performance and the overall network
cost. In this paper, we study the problem of virtual network
functions (VNFs) placement and routing across the physical hosts
to minimize overall latency defined as the queuing delay within
the edge clouds and in network links. In that respect, this work
takes a holistic view by considering not only VNFs chaining and
placement problem but also considering the flows routing aspect
since these two problems are inter-related and have a major
impact on network latency.

Index terms— Network function virtualization, Virtual net-
works, 5G networks, Virtual Network function, Latency.

I. INTRODUCTION

IN recent years, communication networks have been wit-

nessing an exponential growth in user data traffic as well

as an increase in the use of virtualization technologies. The

deployment of network resources, the maintenance of hard-

ware appliances and the never ending race for marketing new

services has resulted for the network operators an excessive

operational expenditure (OPEX), the ongoing costs a com-

pany pays to run its basic services, and capital expenditure

(CAPEX), the cost of expanding, upgrading and maintaining

company’s physical assets.

In order to process multiple operations simultaneously and

balance the load among servers, moving toward data-centric

models allow to reduce traffic congestion episodes and move

closer to the end users. Therefore, network function virtualiza-

tion gives users/tenants the ability to place and deploy network

functions on the cloud.

To separate control and data, two complementary but inde-

pendent concepts are introduced: software-defined networking

(SDN) and network function virtualization (NFV) and have

†corresponding author: racha.gouareb@kcl.ac.uk

been studied during this last decade [1], [2]. SDN decouples

the control and data planes and enables programming the

behavior of the network using well-defined interfaces. As a

complementary paradigm, NFV uses virtualization technology

to run network functions on software that can be easily moved

through different network locations, which reduces CAPEX,

OPEX, space and power consumption.

The European telecommunications standards institute (ETSI)

describes a high-level NFV framework composed of three

principal domains; virtualized network functions (VNFs), NFV

infrastructure (NFVI) and NFV management and orchestration

(MANO). The group highlighted three key criteria to estab-

lish a high-level architecture framework: Decoupling as to

complete the separation of hardware and software, flexibility

in the automation and scalability of the network functions

deployment, and dynamic operations in controlling the op-

erational parameters of the network functions through control

and monitoring the state of the network [3].

Cloud service providers such as Cisco, Google [4], Amazon

[5] and Oracle own the virtual infrastructure and offer network

services, infrastructure or applications from a shared infras-

tructure. Types of offered services can vary from Software as a

Service (SaaS), Platform as a Service (PaaS), Infrastructure as

a Service (IaaS) or host-based applications. This allows users

to get the required services and deploy their application by

paying only what they used, without any control or ownership.

VNFs can be placed in different clouds and deployed on one

or more Virtual Machines, different scenarios may require

different scaling. For example, an application that needs to

run faster in order to support more transactions per unit of

time can be scaled vertically. On the other hand, horizontal

scaling can be used for applications where the load can be

spread across different virtual machines (VMs). In practise, a

required service may be composed of more than one functions,

and traffic should go through the chain of VNFs in pre-defined

order to provide the required service. Therefore, the placement

and routing of VNFs is based on the required resources and

affect both the quality of service and the overall cost for

offering to the end users a specific service.

As the number of requests, the edge clouds and available

VMs per edge cloud increases the problem of allocating

resources becomes combinatorial in its nature. To this end,

and in order to find optimal decision policies we formulate

the problem of a batch based network service chaining,

routing, and placement. Based on the incoming virtual net-

work requests and their requirements, such as delay toler-
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Fig. 1: VNFs routing and placement example

ance, we consider a network physical infrastructure where

different virtual networks have to be set up. We develop a

mathematical programming formulation using Mixed Integer

Linear Programming (MILP) model to achieve an optimal

solution, which consider vertical scaling for the purpose of

minimizing network latency. For large networks, to accelerate

the process of routing and placement, we use a scale-free

heuristic algorithm in order to be able to provide a real-

time allocation for a large number of requests. The proposed

approach also takes into account the horizontal and vertical

scaling of VMs. We also provide a performance comparison

between the proposed heuristics and a simple greedy approach

from the state-of-the-art [6].

The proposed model enables operators to increase the

acceptance rate of strict delay requirement requests and reduce

blocking requests due to capacity constraints.

The main logic behind the proposed algorithm can be seen

in Figure 1 is a simple example of virtual network functions

routing and placement in a small substrate network with 6 edge

clouds is presented. We assume that we have two admitted

requests, the related flows have different arrival rates. The

Figure shows different ways of scaling that we consider in

this work. VNF1 and VNF2 are both required by request 1

and 2. We use horizontal scaling and vertical scaling for VNF1

and VNF2 instances, respectively. As illustrated in Table I, we

define a set of VNFs chains requests. The destination nodes

are different, for request 1 and 2 destination nodes are nodes 6

and 2, respectively. In all these cases, node 1 is considered as

the gateway. Each request has a specific computing resource

and a bandwidth requirement, based on which we choose

suitable physical links from two candidate paths selected in

advance by k-shortest path algorithm. Then, we map VNFs

following the algorithms presented in Section V, by giving

higher priority to VNFs requesting higher levels of computing

resources and assign them to the physical node with the highest

remain carrying capability. If two requests are sharing the

same edge cloud to get the same service, we can either share

the same instance with a high processing capacity between

the request using vertical scaling as in the case of sharing

V NF1 instance between request 1 and request 2 in node 2. In

the case of V NF2, we use horizontal scaling by creating two

instances of V NF2 in node 3, one instance for request 1 and

the second instance for request 2. We also present different

queuing models in the same example, M/M/1 queuing model

when one processing unit is serving the incoming requests

and an M/M/m model to capture the delay when having two

or more processing units. The rest of the paper is organized as

follows. In Section II, we discuss the related research work and

describe the proposed model in Section III. A mathematical

optimization model to minimize the overall latency is proposed

in Section IV. We then propose a heuristic algorithm to solve

the problem for larger instances scenario in Section V. In

Section VI, we discuss the experimental set-up and different

results comparing between optimal and different suboptimal

results for performance evaluation.

II. RELATED WORK

Many previous research works have been focused in the

area of VNF placement, chaining and routing by considering

different metrics to increase network efficiency.

Different research works solved VM placement problem such

as [7] presenting the Advanced Predictive Placement Algo-

rithm where the best locations are defined as the less utilized

and the closest to most of the user equipments considering the

overload of VMs, the data overload, and the QoS.

In [8], the authors have considered an autonomic resource

management framework for virtual networks. They have ar-

gued that to ensure reliability, availability, and QoS require-

ments, advanced features of service offerings have to take

place via an automation and elasticity of resource distribu-

tion and allocation. They have introduced an autonomic and

distributed virtual network management resource management

based on a reinforcement learning algorithm in order that the

agents can learn progressively to enhance the performance of

the resource management in virtual networks.

An interesting approach is proposed in [9] solving the problem

of joint service placement and traffic steering incrementally.

The authors have formulated the VNF placement and routing

problem with the objective of minimizing both link and core

resource utilization. For this purpose, they have modeled the
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TABLE I: Request requirements

Request Index Candidate nodes Requested functions Carrying nodes Candidate Paths

1

{2}
{3}
{4}
{6}

1
2
3

{2}
{3}
{6}

{1 → 2 → 3 → 6}
{1 → 2 → 4 → 6}

2

{2}
{3}
{4}

1
2
4

{2}
{3}
{4}

{1 → 2 → 3 → 4}
{1 → 2 → 4}

problem using mathematical programming aiming to provide

efficient placement of service chains while considering latency

as a constraint rather than an objective to minimize.

Similarly, in [10], the authors tackle the problem of VNF

placement by considering two factors the paths between users

and gateways in addition to features mobility. This paper

presents different VNF placement algorithms, such as Avoid-

ing S-GW Relocation (A-SGWR) algorithm, which aim to

minimize the Serving Gateway (S-GW) relocation overhead in

a delay-constrained network. The evaluation of this approach

considered the delay of data packets delivery as one of the

metrics. In [11], two efficient algorithms are presented to

ensure the QoS and low cost deployment for vEPC/5G; one

uses MILP to optimise the number of virtual resource instances

of the different VNFs of vEPC/5G core network and the

second algorithm is based on coalitional game to place these

instances over a federated cloud. Chua et al. propose in [12] a

Service Function Chain (SFC) provisioning system referred to

Stringer which enables virtual network providers to minimize

the infrastructure resources and end-to-end delay. Three meth-

ods are used for SFC provisioning system; a scalable round-

robin heuristic, an optimization-based method and a queueing-

theoretic model. This paper compares the performance of

Mixed Integer Programming (MIP) with the heuristic method.

The results show that the heuristic method outperforms the

MIP significantly for the proposed system. However, this paper

does not consider the routing cost.

A number of different approaches to the VNF placement

problem consider delay as a requirement or observe the impact

of different metrics on overall latency, with different optimiza-

tion criteria such as reliability and load balancing. The authors

in [13] investigate the problem of virtual placement for optimal

service function chains (SFC) deployment across distributed

clouds. The authors have solved SFCs deployment focusing

on VNFs placement through an affinity-based heuristic and

minimize inter-cloud traffic and response time in a multi-cloud

scenario as an ILP optimization problem. In this work, the

latency is described as the link and computational delays and

modeled as M/D/1 and M/M/1 respectively.

The authors in [14] have presented an off-line approximation

FAST-RACE algorithm for load balancing using multipath

routing that decreases the latency and increases user demands.

They have shown that using this method, the average delay of

flows decreases about 26% and increase user demands around

14% compared with those of the hop-count weight vector

method for load balancing.

The authors in [15] address the VNF scheduling problem

and its respective resource optimization solutions. The authors

have considered both VNF transmission and processing delays

in this investigation. They have proposed a generic algorithm

for solving the joint problem of VNF scheduling and virtual

network resource allocation. They have evaluated the effective-

ness of the proposed heuristic algorithm through a numerical

method. They have shown that by dynamic allocation of

bandwidth to virtual links shorter scheduling can be achieved.

The work in [16] proposes a new resource allocation algorithm

to enable energy-aware Service Function Chaining (SFC) in

Software Defined Networks (SDN)-based virtual networks.

The authors have mathematically formulated the problems

of resource allocation of VNFs to traffic flows and flow

routing as optimization problems with the aim of minimizing

energy consumption and network reconfiguration overhead.

They have proposed new heuristic algorithms for the above-

mentioned optimization problems. They have shown that the

proposed heuristic algorithms can offer sub-optimal solution

near to the optimal solution as long as minimization of energy

consumption is concerned.

In [17] the authors aim to find the optimal route in Mobile

Wireless Networks to minimize the total energy consumption.

They model the problem as a joint optimization problem

considering both the transmitting and receiving energy. The

efficiency of their framework was evaluated on a real-life

network dataset and validated by three algorithms consider-

ing different delay constraints, which revealed lower energy

consumption, optimizing transmitting and receiving cost and

showing a trade-off between delay and the receiving energy

in mobile wireless networks. Bi, Zhu, Tian and Wang [18]

aim to minimize the total number of VMs for a cluster-based

three-tier virtualized applications by suggesting a flexible

hybrid optimization. To do so, the authors have modeled the

queue as a model of M/M/m system for the first tier and

multiple M/M/1 for the remaining tiers. They have shown

that under fine-grained resource provisioning, the optimum

resource utilization can be achieved while maintaining average

response time and request arrival time requirements.

In [6], the authors have considered inter-cloud latency and

VNF response times to solve the problem of deploying SFCs

as an ILP through an affinity-based heuristic. The latency is

described as link delay and computational delay modeled as

M/D/1 and M/M/1 respectively.

VMs are the most manageable entities sharing hardware re-

sources [19] providing a number of benefits such as isolation

from hardware and other VMs [18]. Those VMs are scalable to

meet the requirements of users/tenants in a virtualized environ-

ment. Scaling can vary according to the operator requirements

such as traffic load, application type and the amount of input
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[20].

In [21], the authors propose an analytical model based on

G/G/m queuing to estimate the mean response time of a VNF.

The model can easily be extended to consider one or more

service function chains. The validation of the model has been

performed by computer simulation. The special case of the

validation has been done for an LTE virtualized Mobility

Management Entity (MME) with a three-tiered architecture. It

has been shown that the proposed model has a computational

complexity comparable to those used for analyzing Jacksons

networks and the estimation error of the mean response time

is much lower than those of the considered baseline systems.

Rankothge et al. [22] have presented a resource allocation

algorithm for VNFs based on Generic algorithms (GAs). They

have carried out an extensive analysis of two GA algorithms

for both initial placement of VNFs and the scaling of existing

VNFs for supporting traffic variation. It has been shown

that the proposed GA algorithms outperform Integer Linear

Programming (ILP) resource allocation for a large number

of VNFs in service function chains and number of virtual

machines where ILP takes several hours to process while GP

takes only a few milliseconds.

As far as we are aware, none of the above papers have

considered the joint optimization problem of VNFs routing

and placement in a multi-clouds scenario. In this work, we

formulate the optimization model considering multiple in-

stances of the virtual functions across different edge clouds

to serve flows of packets considering three VNFs models:

single-feature single-request, single-feature multi-requests, and

multi-features multi-requests [23]. We develop an optimization

model to reduce the inter-cloud and link latency. The inter-

cloud queuing delay is modeled as M/M/1 or M/M/m and

link delay is modeled as M/M/1. Later on, we present the

problem as a Bin packing problem solved by a standard heuris-

tic approach following Best-fit Decreasing (BFD) method.

Additionally, we provide a performance comparison between

heuristic and optimal solution and we compare the results of

the proposed heuristic with those of random greedy.

III. PROBLEM DESCRIPTION

As already eluded above, the optimal VNFs chaining and

routing problem is an area that has gained significant research

attention and the problem itself falls within the NP-hard

optimization problems. In this section, we set up the prob-

lem of minimizing the delay defined as inter-cloud and link

queuing delay satisfying different constraints. We formulated

the optimization model to route and assign VNFs to meet the

service requests. All VNFs of a service request can be located

at the same access/core location (the same edge cloud) or in

different edge clouds. Furthermore, we assume that all the

service requests are already admitted into the network, in other

words, no admission control is considered in this work.

Data flows should visit different network functions depending

on the required service, such as video optimizer, Deep Packet

Inspection (DPI), Session Border Controller (SBCs) and Fire-

wall in a specific order to be applied to the flow of data [24].

We define each service request as a chain of ordered functions

similar to many research work such as in [25]. In our model,

each request/service chain is associated with: a source node

and a destination node in the network; a set of VNFs that needs

to be executed on the flow and the arrival flow rate known in

advance [26].

We assign a list of shortest path to each request using

Dijkstra’s algorithm [27] in a weighted network. The weights

assigned to links are positive, pre-defined by a service provider

and can be related to link bandwidth, average link delay, or

even the required power for transmission. Shortest paths are

sorted by cost, the first shortest path is assigned as far as there

is enough capacity to host the VNFs and enough bandwidth to

transmit the flow through VNFs executed by Virtual Machines

(VMs). In other words, we assume a set of pre-defined multiple

shortest paths between end users and edge clouds as well as the

network gateway. Hence, any multiple shortest path algorithm

can be used in the proposed framework.

Every edge cloud is a pool of physical resources that can

be shared through different VMs. Different VMs might offer

distinct performance and execute the same service, this can be

due to the heterogeneity of hardware. Since a VNF instance

can adapt its capacity as a function, VM can be scaled up or

scaled down.

We consider the fact that edge clouds have different geo-

graphical locations linked between them; there is a traffic

going between the nodes. For this, the capacity of links or

edge clouds will be defined as the remaining capacity that

can be used to solve VNFs routing and placement problem.

We are going to compare three models [23] in this paper:

single-feature single-request (SFSR) where a VNF instance

can serve packets related to one request, single-feature multi-

requests (SFMR) where a VNF instance, scaled up, can

process more than one flow and multi-features multi-requests

(MFMR) where different VNF instances, scaled horizontally,

can process more than one flow all sharing the same buffer.

The delay in SFSR and SFMR can be modeled as M/M/1

queuing model where arrivals are determined by a Poisson

process, in the same way, the delay in MFMR can be modeled

as M/M/m for the reason that m VMs are processing the same

function on different flows.

A. VMs scaling:

One way to scale virtual machines is vertical scaling (scal-

ing up) that allow us to add more or less physical resources

(CPU/Memory) to an existing virtual machine. This way of

scaling allows us to resize the virtual machine by changing

CPU or memory. Usually, vertical scaling requires downtime

to add new resources and has defined limits by hardware.

On the other hand, horizontal scaling (scaling out) allow us

to add more or less virtual entities to work as a single logical

unit to adapt to network’s load changes. Based on resource

demands we can dynamically add or reduce the number of

VMs.

B. Queuing theory

Traditionally, queuing theory is used to model servers and

internet routers, to measure different metrics and improve
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TABLE II: Description of queuing system notations

Parameter Description

µe Service rate (inverse of average service time)

λ r Arrival rate (inverse of average inter arrival time)

We f Average customer waiting time in queue

ρe f Ratio of arrival rate

Pe f Probability that an arriving customer has to wait in queue

p0
e f Probability of no customers in the system

network performance [28][29]. In this work we provide an

amalgamation of queueing theory with integer programming in

order to optimize the overall delay. To this end, we utilize two

queuing models methods; the M/M/1 which is used to model

link queues, whereas servers queues in the edge clouds are

modelled using the M/M/m model. The difference between the

two models is that with the M/M/m we assume that there are

m available resources to run VNFs (i.e., m VMs) in the system

that are independent. Similarly to the M/M/1 model, arrivals

and server’s service time follows an exponential distribution

with λ and µ parameters respectively. As defined in the

queuing theory [30], the delay is formulated based on the

definitions of the average processing time (2), the arrival rate

(3), its ratio (4), the probability of a customer waiting in

the queue (5) or none (6), and the average waiting time (7).

The variables are summarized in TableII and the delay is

formulated in equation (1) as:

De, f =
1

µe f

+We f ∀e ∈ E ∀ f ∈ F (1)

To define the average waiting time We f of a packet in the

queue (7) we define the average processing time and the arrival

rate in equations (2) and (3) respectively.

µe f =

m

∑
i=1

µie f

r

∑
i=1

xie f

∀e ∈ E ∀ f ∈ F (2)

λe f =
r

∑
i=1

λixie f ∀e ∈ E ∀ f ∈ F (3)

ρe f =
λe f

mµe f

∀e ∈ E ∀ f ∈ F (4)

Pe f =
p0

e f (mρe f )
m

m!(1−ρe f )
∀e ∈ E ∀ f ∈ F (5)

p0
e f =

1

m−1

∑
k=0

(mρe f )k

k!
+

(mρe f )m

m!(1−ρe f )

∀e ∈ E ∀ f ∈ F (6)

We f =
ρe f Pe f

λe f (1−ρe f )
∀e ∈ E ∀ f ∈ F (7)

C. Virtual Network functions affinity:

Affinity and anti-affinity rules in NFV must be considered

and added carefully in order to reduce communication costs

between VNFs instances, ensure high availability, resilience,

privacy and service performance [31]. In this context, two main

aspects should be considered: modeling and describing the

affinity rules and adapting the placement algorithm to respect

the constraints [32].

Depending on the use case there might be instances where

we need to place a pair of VNFs on the same edge-cloud

(e.g., VNFs exchanging a big amount of data). In this case,

we should define affinity constraints to place the two or more

VNFs in the same host [33]. In other cases, anti-affinity rules

are considered to allow critical VNFs to run on different nodes

(e.g., in the case of failure, it will be better to have different

instances of the same function placed on different edge clouds

or different physical servers in the same edge cloud). Anti-

affinity rules ensure the minimum cross interaction between

VNFs running on the same server.

Based on the above discussion, We pre-initialize an affinity

matrix that defines if two VNFs have a high affinity or a non-

affinity relation. Vi j will be defining the affinity between V NFi

and V NFj as follows:

Vi j =

{

1 if V NFi and V NFj have a high affinity.

0 otherwise.
(8)

To ensure that affinity between VNFs wouldn’t affect the

performance of the network, we define the affinity constraint

(9).

∑
i∈F

∑
j∈F

∑
r∈R

Vi jxreixre j = 1 ∀e ∈ E (9)

IV. OPTIMIZATION MODEL

In this section, we present our model as a mathematical

programming formulation where key notations are described

in Table II and Table III. We set up the problem of minimizing

inter-cloud and link delays in a multi-cloud scenario as a MILP

optimization problem. The goal of our approach is to place

VNFs, route workflows and assign client requests to these

flows to meet the service demands. We present our objectives

combined with constraints, then we elaborate on how we

linearized the objective function and nonlinear constraints.

A. Optimization Function

We will be modeling edge-cloud and link delay in the

following subsections using the M/M/1 queuing model to

optimize the delay. Packets for each flow request are enqueued

in every edge cloud waiting to get processed by available VMs,

and then in another queue to get transmitted through network

links. Each Edge cloud can have none, one or different queues,

depending on the number of VNF instances assigned to it.

We consider the M/M/1 queuing model for both link traffic

and inter-cloud traffic where one VM is available to serve

incoming traffic requiring a specific function.

We define the decision variable x to define the allocation

of VNFs instances composing every service request, such that

xre f =1 or xre f =0. The value 1 will be assigned if VNF f of a
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request r is assigned to an edge cloud e consuming a portion

of its resources: memory, network, and computing available

resources. Decision variable ψ represents the assignment of

one path p to one or different requests, ψrp = 1 means that

request r will use path p and go through all nodes and links

belonging to path p to get the requested services. Requests

might share the same paths or some links belonging to the

same path. Both variables vep and ζpl define the nodes and

the links belonging to path p respectively.

xre f =







1 if flow related to request r go

through edge cloud e for VNF f .

0 otherwise.

(10)

ψrp =

{

1 if request r use SP p.

0 otherwise.
(11)

vep =

{

1 if edge cloud e ∈ path p.

0 otherwise.
(12)

ζpl =

{

1 if link l ∈ path p.

0 otherwise.
(13)

Using Little’s Theorem [30], we define the delay in the

inter-cloud in Equation 14 where hr f is the processing

capacity and λr is the arrival rate.

Nre f =
1

hr f −λr

∀r ∈ R ∀e ∈ E ∀ f ∈ F (14)

Similarly, we define The link delay as follows, where Cl is the

capacity of the link and Tl is the total traffic in link l.

Ll =
1

Cl −Tl

∀l ∈ L (15)

In order to minimize the overall delay from the gateway

to the end-users, we solve the MILP formulation modeling

both inter-cloud and link queuing delays. We use mixed

integer linear program (MILP) Matlab tool and formulate

the objective function in the equation(16) and applicable

constraints in equations(17-26) based on the above definitions,

the mathematical problem can be formulated as follows:

min
ψrp,xre f

∑
l∈L

∑
n∈N

zlnLl(bn)+ ∑
r∈R

∑
e∈E

∑
f∈F

xre f Nre f (16)

s.t. z1,lb1 + z2,lb2 + · · ·+ zn,lbn = x1,l ∀l ∈ L (17a)

z1,l + z2,l + · · ·+ zn,l = 1 ∀l ∈ L (17b)

∑
r∈R

∑
f∈F

xre f hr, f ≤ µe ∀e ∈ E (18)

xre f λr ≤ ωre f µe ∀r ∈ R ∀e ∈ E ∀ f ∈ F (19)

xre f hr, f = ωre f µe ∀r ∈ R ∀e ∈ E ∀ f ∈ F (20)

∑
r∈R

∑
p∈P

λrζplψrp ≤Cl ∀l ∈ L (21)

∑
p∈P

ψrp = 1 ∀r ∈ R (22)

∑
e∈E

∑
f∈F

∑
p∈P

xre f ψrpvepηr f = dr ∀r ∈ R (23)

∑
f∈F

∑
r∈R

ωre f A f ≤ Re ∀e ∈ E (24)

∑
f∈F

∑
e∈E

∑
l∈L

∑
p∈P

xre f

hr f −λr

+
ζplψrp

Cl −Tl

≤ Tr ∀r ∈ E (25)

vep,ψrp,xre f ,ηr f ,ζpl ∈ {0,1} hr f ,λr,µe ≥ 0 (26)

B. Variables and Parameters

TABLE III: Description of variables

Parameter Domain Description

hr, f hr, f ∈ R>0 processing rate of function f for request r

Nr,e, f Nr,e, f ∈ R>0
Delay in edge cloud e related to

function f in edge cloud e

Ll Ll ∈ R>0 Delay in link l

Tl Tl ∈ R>0 Total traffic in link l

Cl Cl ∈ R>0 Remain Capacity of link l

Sp Sp ∈ R>0 Cost of a path p

r r ∈ R set of requests

l l ∈ L set of links

p p ∈ P set of paths

e e ∈ E set of Edge clouds

f f ∈ F set of functions

n n ∈ N set of breaking points

ηr f ηr f ∈ {0,1}
Equal to 1 if request r

requests function f

xre f xre f ∈ {0,1}
Equal to 1 if request r goes through

edge cloud e for function f

ψrp ψrp ∈ {0,1}
Equal to 1 request r

is assigned to shortest path p

vep vep ∈ {0,1}
Equal to 1 if edge cloud e

belong to shortest path p

ωre f ωre f ∈ [0,1]
Integer variable defining the utilization

of an edge cloud e capacity to host
a VNF instance f for a request r

dr dr ∈ R>0
Number of functions
required by request r

µe µe ∈ R>0
Average processing rate

of an edge cloud e

λr λr ∈ R>0
Arrival rate in an edge cloud e

to go through a function f

ζpl ζpl ∈ {0,1}
Equal to 1 if link l

belong to shortest path p

A f A f ∈ R>0
Resource demand of each
service instance of VNF f

Re Re ∈ R>0
Resource capacity of
a computing node e

Tr Tr ∈ R>0
Delay tolerance of

a request r

C. Explanation of the optimization problem constraints

Constraints (17) ensure the piecewise linear approximation

[34] for the delay function using λ -formulation. Constraints

(18), (19) and (20) ensure that the available capacity of the

edge cloud e is not exceeded. In a similar manner, constraint

(21) ensures that the link capacity is not exceeded. Constraint

(22) enforces that each request r to be assigned to only one

routing path p. Constraint (23) ensures that when a request r is

using a path p, all VNFs required for this request are mapped

into edge nodes belonging to that chosen path p. Constraint

(24) makes sure that a VNF f is placed at an edge cloud

e with sufficient resource capacity. Finally, constraint (25)

considers each request requirement in terms of delay tolerance.
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D. Linearization of the Proposed MILP

In order to linearize the optimization problem, in constraint

(23), we replace the product of two binary decision variables

xre f ψrp with a binary variable ure f m where ure f p=xre f ψrp.

To linearize the constraint (23), we eliminate the non-linear

term xre f ψrp by replacing the product as follow:

∑
e∈E

∑
f∈F

∑
p∈P

ure f pvepηr f = dr ∀r ∈ R (27)

Note that constraints (28) (29) and (30) force the binary

variable ure f p to take the value of xre f ψrp.

∑
p∈P

ure f p ≤ xre f ∀r ∈ R ∀e ∈ E ∀ f ∈ F (28)

∑
p∈P

ure f p ≤ ψrp ∀r ∈ R ∀e ∈ E ∀ f ∈ F
(29)

ure f p ≥ xre f +ψrp −1 ∀r ∈ R ∀e ∈ E

∀ f ∈ F ∀p ∈ P
(30)

V. HEURISTIC BASED ALGORITHMS

In this part, we present different heuristic approaches that

address the same goals as the optimal one. We are using

heuristic approaches to generate competitive suboptimal so-

lutions that are able to scale with the size of the problem and

reduce the computational complexity. In the first place, we

compare the proposed heuristic with a random greedy method,

and in the second place with a greedy approach based on

FFD (first-fit decreasing method). Algorithm 5 shows the steps

for the greedy, before we iterate through all required VNFs

instances, we group the VNFs needed to satisfy all requests

in one list. Respecting capacity constraints, we allocate VNFs

instances at the appropriate node, placing a maximum number

of instances in the chosen node, before we move to the

next node. The second step of the algorithm consists of

assigning every request to a node or multiple nodes hosting

the required VNF(s) and satisfying the capacity constraints.

We finally define the routing path, following the shortest path

approach, to link between the gateway, the chosen nodes, and

the destination node.

A. Initialization algorithm

Algorithm 1 describes the steps to initialize all input

parameters and completing the routing processing step. We

first generate a random connected graph where each edge

cloud and every link is defined by its remain capacity. We

assume a number of accepted service requests, each defined

by an arrival rate a source and destination. VNFs offer

different services and process differently, for this we set up

the required amount of resources to instantiate every VNF.

Since the routing algorithm is the same for horizontal and

vertical scaling, we set up a matrix of shortest paths. For each

service demand, we calculate the 3 first shortest paths[35]

with enough capacity to handle the related traffic flow. This

pre-processing is common to heuristic algorithms presented

Algorithm 1 Input Parameter

Require: A connected edge clouds topology G(N x N) and

list of requests R(R x V)

AllVnfsPlaced = false

Read λr, µe and Cl .

Read RC(R x 1) as requests required capacity

Sort R Desc

//N= Number of Edge clouds

Read LRC(N x N) as Links remain capacity

Read NRC(N x 1) as Nodes remain capacity

Sort NRC Desc

//V= Number of VNFs instances

Read VRR(V x R) as VNFs instances required capacity

//P= Number of shortest paths

Construct SP(R x P) as shortest paths list.

Construct SPmin(R x P) as minimum link bandwidth in

the path

Algorithm 2 HSFSR & HMFMR (Horizontal scaling)

Foreach (Request r in RC)

While (AllVnfsPlaced = false)

{
Copy NRC in NRCcopy

Copy LRC in LRCcopy

Foreach (VNFs v in VRR(v,r))

Foreach (Node n in NRC)

if (n ⊂ SP(r,p) and VRR(v,r) 6 NRCcopy(n) and

RC(r) 6 SPmin(r,p))

Assign VNF instance v to Node n

Update NRCcopy and LRCcopy

Break;

EndFor

EndFor

if (All VNFs of R are placed)

AllVnfsPlaced = true

EndIf

Go to next Shortest path;

}
Copy NRCcopy in NRC

Sort NRC Desc

Copy LRCcopy in LRC

EndFor

in the following sub-sections.

For the next step, we are using the initialization algorithm

as an input. We will be defining 3 algorithms: a heuristic

algorithm using horizontal scaling, a heuristic algorithm for

vertical scaling and a Random fit greedy algorithm where the

random assignment will help us to measure the impact of our

approach on latency.

B. Horizontal scaling algorithm

Algorithm 2 describes the steps for the heuristic used for

two different cases. In the first case of SFSR, each VNF

instance may serve only one customer at the same time.
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Algorithm 3 HSFMR (Vertical scaling)

Foreach (Request r in RC)

While (AllVnfsPlaced = false)

{
Copy NRC in NRCcopy

Copy LRC in LRCcopy

Foreach (VNFs v in VRR(v,r))

Foreach (Node n in NRC)

if (n ⊂ SP(r,p) & VRR(v,r) 6 NRCcopy(n) & RC(r)

6 SPmin(r,p))

Assign VNF instance v to Node n

If (VNF f have been assigned to Node n )

Assign more resources to VM

else

New VM will process VNF f

endIf

Update NRCcopy and LRCcopy

Break;

EndFor

EndFor

if (All VNFs of R are placed)

AllVnfsPlaced = true

EndIf

Go to next Shortest path;

}
Copy NRCcopy in NRC

Sort NRC Desc

Copy LRCcopy in LRC

EndFor

We follow an M/M/1 queuing model, where the buffer hosts

packets related to one request, in other words, we will have one

queue per VNF instance per flow(s) related to one request. In

the second case of MFMR, VNFs instances can serve different

customers, different service requests sharing the same VNF.

We follow an M/M/m queuing model [30] and we group

VMs per function type, e.g. packets related to flows requiring

the same service and assigned to the same node will share

the same buffer. Furthermore, the number of VNFs instances

will be the same as the number of different service requests.

The heuristic iterates through all requests, for each we iterate

through all requested VNFs in order to place the one with the

highest resources demands to the edge cloud with the highest

remain capacity following the BFD approach. At the end of

every iteration, if not all the VNFs of a specific request are

placed we start over using the next available path. The main

difference between HSFSR and HMFMR algorithms is in the

cost measurement (calculation of the inter-cloud delay).

C. Vertical scaling algorithm

In Algorithm 3, each VNF instance can serve different

requests at the same time. Therefore one buffer will be hosting

different flows queuing to have a similar processing by the

same VNF instance. Similarly to the first heuristic, we are

following the same approach of BFD. After assigning the

VNFs to edge clouds, VMs are scaled vertically in order to

serve different flows related to different requests. In the case

two or more requests have a function in common and have

been assigned to the same edge cloud, they will share the same

VM (the same VNF instance). Instead of assigning a VNF to

another VM in the same edge cloud, we will be assigning more

resources to the same VM to be shared. To cope with a higher

number of demands without creating additional VMs. This

type of scaling can be used to avoid VMs under-utilization.

Algorithm 4 Randomized heuristic algorithm

Foreach (Request r in RC)

Choose a path from the SR list

While (AllVnfsPlaced = false)

{
Copy NRC in NRCcopy

Copy LRC in LRCcopy

Foreach (VNFs v in VRR(v,r))

Scan NRCcopy for a node to accommodate the VNF

instance/VM

if (such node is found)

Assign VNF instance v to Node n

Update NRCcopy and LRCcopy

Break;

EndFor

if (All VNFs of R are placed)

AllVnfsPlaced = true

EndIf

Go to next Shortest path;

}
Copy NRCcopy in NRC

Copy LRCcopy in LRC

EndFor

Algorithm 5 Greedy heuristic

Foreach (VF instance v in V)

Foreach (edge cloud e in NRC)

While (AllVnfsPlaced = false and NRC(e) ≥ VRR(v) )

{
if (constraints are satisfied and node has enough

capacity)

Assign VNF instance v to Node e

EndIf

}
EndFor

EndFor

Foreach (Request r in RC)

Foreach (edge cloud e in NRC)

Foreach (VF instance v in V)

if (v instance is installed in edge cloud e)

Assign request r to Node e

EndIf

EndFor

EndFor

EndFor
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TABLE IV: Virtual processing times of virtual network functions used in our
evaluation

Network Function Processing time

Load Balancer 0.647.5 pps

Firewall 7.0771 pps

VPN Function 1.6385 pps

D. Random Placement and routing algorithm

Additionally, with the random routing and placement algo-

rithm, for each service demand, the algorithm selects one path

randomly to be assigned to a request. Then randomly choose

one of the nodes with sufficient capacity for the placement of

VNFs. The output solution will be respecting the constraints

defined in the LP approach and compared with the heuristic

algorithm outputs.

VI. EXPERIMENTAL SETUP AND RESULTS

In this section, we observe and analyze the behavior of the

proposed heuristic based on three different models: SFSR,

SFMR, and MFMR. We compare suboptimal approaches

and present heuristic based SFSR (HSFSR), heuristic-based

SFMR (HSFMR) and heuristic MFMR (HMFMR) results,

we also compare their results with the MILP based solution.

Furthermore, we show that the proposed heuristics allow us

to increase the size of the problem solved compare to the

MILP based solution. Thus, they allow a scale-free operation,

amenable to run in large network topologies with an increased

number of requests.

For instance, we have evaluated our approach on a random

28 nodes topology network, each with total CPU capacity of

100%. To build our topology, we consider one gateway and

several destination edge clouds in a random connected graph,

having n possible vertices and N edges, chosen randomly with

equal probabilities edges [36][37]. To build the graph we are

following the theory of random Walk [38], where we select a

starting point node, we select a neighbor of it at random and

move to this neighbor; then we select a neighbor node of this

point at random, and move to it. Each request is defined by a

source gateway to a specific destination node in the graph.

For simplicity, we assume that a packet size is 500 bytes,

a request arrival rate is assumed to be 1 to 100 packets

per second (pps) [39] and VNFs instances have different

processing service rates [37] as illustrated in Table IV. We

vary link transmission capacities randomly from {2, 20, 200,

510} Kpps or 2 Mpps [13].

The proposed MILP framework takes 144 seconds to find

optimal solutions for 4 service chains composed of 3 services

chosen randomly from a list of 5 different VNFs (Load

Balancer, Firewall, Intrusion Detection System (IDS), Deep

packet inspection (DPI), virtual private network (VPN) func-

tion) where 4 GB RAM used by the optimization solver,

while the heuristic methods take just 3 seconds to run for

220 requests. To compare the optimal solutions coming from

the MILP framework with the heuristic results, we focus on

small scale scenarios. This is because, as expected, integer

programming suffers from the curse of dimensionality, hence

the calculation time increases exponentially with a linear

Fig. 2: Heuristic vs. Optimal (varying number of requests)

Fig. 3: Computational time (s)

increase of the size of the problem [9]. To investigate the

impact of a number of requests, considered as accepted, on

the execution time in the proposed model, we plot the average

execution time for a different number of requests varying from

2 to 10. We measured the computational time for both heuristic

and MILP as illustrated in Figure 3. The results show that the

heuristic is 700 to 1000 times faster than MILP and this is

the case for the considered small scale scenario. Therefore

using MILP on larger network instances can be deemed as

prohibited and this explains the scalability challenge we are

facing. Figure 2 shows that MILP results are better but close

to the heuristic for a number of requests varying from 2 to 12

service chains. We note that the optimality gap is kept low and

therefore from these results we can assume that the heuristic
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Fig. 4: Heuristic vs. Random greedy

Fig. 5: HSFSR vs. HSFMR (varying number of requests)

based algorithms can find competitive solutions.

Figure 4 shows that our approach can decrease the average

delay significantly compared with the randomized solution.

To observe the behavior of the proposed approach, we have

evaluated the heuristics on a large scale network scenario. The

results of HSFMR show that with vertical scaling, we can

decrease the delay by approximately 70% and 35% compared

to horizontal scaling in HSFSR and HMFMR approaches,

respectively. Sharing a VM instance between different chains

with the same processing requirements decreases the delay and

the number of VMs from 300 to 78 VMs in a random 28 edge

clouds network while serving 100 requests as shown in Figure

5.

Figure 7 shows the average delay of data flows when

Fig. 6: Comparison with the state of art

demand varies between 100 and 500. We observe the ex-

pected growth of the delay measured in HSFR, HSFMR, and

HMFMR as the number of requests increases. As in the case

of vertical scaling, sharing a VM instance between different

request helps to increase the utilization of the processing unit

which reduces the edge cloud delay but increases the link

delay. The results from the greedy algorithm in the state of

the art are very close to the results of those of vertical scaling

and horizontal scaling but still the results of our heuristic give

a better performance. Compared to the proposed greedy in the

state of art, the delay is decreased by approximately 65% in

the case of horizontal scaling and a little 1% using vertical

scaling since the inter-cloud delay is the same but the link

delay is different. In our approach, we choose first the best

shortest path before assigning the requests to the edge clouds,

but in the simple greedy we first assign the VNFs instances of

the requests before routing. The first available node is loaded

before no capacity is remained before going to the next one

which might cause a link bottleneck and increase the delay in

that specific link. Our approach helps us to balance the load

over the available resources and avoid a bottleneck.

VII. CONCLUSIONS

In this paper, we first formulated the VNF placement and

routing problem as a non-linear integer mathematical program

and subsequently we have linearized the mathematical formu-

lation in order to utilize powerful mixed integer mathematical

solvers. The proposed approach is shown to be useful in

founding optimal solutions for small to a medium number

of instances. This allowed comparing the performance of

a number of scale-free heuristic algorithms and validating

proposed schemes whilst evaluating the incurred delay for

different models.

The results show that the MFMR approach allows us to

meet a stringent latency requirement for horizontal scaling, this
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Fig. 7: Comparing heuristics

reduces the delay by 18% when serving 100 requests compared

to HSFMR results. Scaling out VMs can provide in general a

better performance in terms of delay, it also avoids us to put

the machine in an off-line state to upgrade it for peak demand.

Likewise, vertical scaling allows us to optimize latency, but

increasing virtual resources online and dynamically might

be a problem for different tenants since an interruption of

the ongoing process is necessary and such a change in the

system should be planned in advance. An interesting future

avenue of research is to investigate the proposed approach

by considering also request admission control and VNFs

affinity rules to increase the network performance and take

into account potentially other network metrics.
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