
Virtual Network Mapping – An Optimization

Problem

Márcio Melo1,2,�, Jorge Carapinha1, Susana Sargento2, Luis Torres3,
Phuong Nga Tran3, Ulrich Killat3, and Andreas Timm-Giel3

1 Portugal Telecom Inovação, Aveiro, Portugal
{marcio-d-melo,jorgec}@ptinovacao.pt

2 Instituto de Telecomunicações, University of Aveiro, Aveiro, Portugal
susana@ua.pt

3 Institute of Communication Networks, Hamburg University of Technology,
Hamburg, Germany

{luis.torres,phuong.tran,killat,timm-giel}@tuhh.de

Abstract. Network Virtualization is claimed to be a key component of
the Future Internet by enabling the coexistence of heterogeneous (vir-
tual) networks on the same physical infrastructure, providing the dy-
namic creation and support of different networks with different paradigms
and mechanisms in the same physical network. A major challenge in the
dynamic provision of virtual networks resides on the efficient embedding
of virtual resources into physical ones. Since this problem is known to
be NP-hard, previous research focused on designing heuristic-based al-
gorithms; most of them do not consider a simultaneous optimization of
the node and the link mapping, leading to non-optimal solutions. This
paper proposes an integer linear programming formulation to solve the
virtual network embedding problem, as a simultaneous optimization of
virtual nodes and links placement, providing the optimal boundary for
each virtual network mapping. A link − node formulation is used and
the multi-commodity flow constrain is applied. In addition, a heuristic
algorithm for virtual network embedding is also proposed and compared
against the optimal formulation. The performance of the integer linear
programming formulation and of the heuristic is evaluated by means
of simulation. Simulation experiments show significant improvements of
the virtual network acceptance ratio, in average additional 10% of the
virtual network requests are accepted when using the integer linear pro-
gramming formulation, which corresponds, in average, to more 7 virtual
networks accommodated on the physical network.

Keywords: Embedding, ILP Model, Mapping, NP-hard, Optimization,
Virtual Networks.

� The author was supported by the Portuguese Foundation for Science and Technology
(FCT) with a scholarship No. SFRH/BDE/33751/2009.

K. Pentikousis et al. (Eds.): MONAMI 2011, LNICST 97, pp. 187–200, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

188 M. Melo et al.

1 Introduction

Network Virtualization has gained an increasing prominence in networking and
telecommunications fields in the last few years. Initially, the interest in network
virtualization was mainly pushed by Future Internet research initiatives [1,2,3,4],
mainly with the objective to find a platform on which novel Internet architec-
tures could be experimented and evaluated without limitations or constraints,
namely those associated with the traditional IP model. Later on, it became
clear that virtualization could constitute a key component of next-generation
Internet architecture itself [5], and not just as a mere platform for experimen-
tation. Perhaps more importantly for network operators, it also became clear
that network virtualization could provide a number of short/medium term busi-
ness advantages, with potential reduction of costs and increase of revenues, as
an interesting tool from an operational point of view [6,7]. Although there is a
large interest on virtualized networks both from the research community and
network operators, several challenges still prevent it from being deployed on real
environments [8]. One of the major obstacles lies in the efficient embedding1 of
a Virtual Network (VN) onto a physical network. Since this process requires the
simultaneous optimization of virtual nodes and links placement, it is complex
in nature and requires large amounts of computing power. Some authors, such
as [9,10,11,12,13,14,15], have already proposed solutions to this problem, mostly
based on heuristic approaches, but have failed to provide the optimal solution
for each VN mapping.

In this paper we propose a linear integer programming formulation to solve
the VN assignment problem and to provide the optimal boundary for each VN
embedding. The formulation supports heterogeneous virtual and substrate net-
works. In addition, we propose an heuristic algorithm based on [15] to solve the
VN assignment problem. Simulation experiments show significant improvements
of the VN acceptance ratio: in average more 10% of the VN requests are ac-
cepted when using the Integer Linear Programming (ILP) formulation, which
corresponds to more 7 embedded VNs on the physical network. The paper starts
with the discussion of the related work on existent mapping algorithms 2. Sec-
tion 3 describes the network embedding problem, specifies the ILP model and
shortly summarizes the enhancements proposed to a mapping heuristic based
on [15]. Section 4 analyzes the performance of both the ILP optimization model
and corresponding heuristic, and section 5 concludes the paper and describes
the future work.

2 Related Work

This simultaneous node and link mapping optimization can be formulated as
an un-splittable flow problem [9,16], known to be NP-hard, and therefore, it
is only tractable for a small amount of nodes and links. In order to solve this

1 The terms embedding, mapping and assignment are used interchangeably in this
paper.

Virtual Network Mapping – An Optimization Problem 189

problem, several approaches have been suggested, mostly considering the off-line
version of the problem where the VN requests are fully known in advance.

In [10] a backtracking method based on sub-graph isomorphism was proposed;
it considers the on-line version of the mapping problem, where the VN requests
are not known in advance, and proposes a single stage approach where nodes and
links are mapped simultaneously, taking constraints into consideration at each
step of the mapping. When a bad mapping decision is detected, a back-track to
the previous valid mapping decision is made, avoiding a costly re-map.

The work in [11] defines a set of premises about the virtual topology, i.e.
the backbone nodes are star-connected and the access-nodes connect to a single
backbone node. Based on these premises, an iterative algorithm is run, with
different steps for core and access mapping. However, the algorithm can only
work for specific topologies.

A distributed algorithm was studied in [17]. It considers that the virtual
topologies can be decomposed in hub-and-spoke clusters and each cluster can be
mapped independently, therefore reducing the complexity of the full VN map-
ping. This proposal has lower performance and scalability, when compared with
centralized approaches.

Zhu et al. [9] proposed a heuristic, centralized, algorithm for dealing with VN
embedding. The goal of the algorithm is to maintain a low and balanced stress
of both nodes and links of the substrate network. However, the stress of nodes
and links do not consider heterogeneity on their characteristics.

Yu et al. [12] propose an embedding algorithm which considers finite resources
on the physical network, and enables path splitting (i.e. virtual link composed
by different paths) and link migration (i.e. to change the underlying mapping)
during the embedding process. However, this level of freedom can lead to a level
of fragmentation that is infeasible to manage on large scale networks. In [13], it
was taken a formal approach to solve the on-line VN embedding problem using a
mixed integer programming formulation in a two-step approach. This approach,
despite providing a better coordinated node and link mapping, it does not solve
the VN assignment problem as an overall, and does not support heterogeneity
of nodes.

Butt et al. [14] proposed a topology awareness heuristic for VN embedding
and also suggest some algorithms to avoid bottlenecks on the physical infrastruc-
ture, where they consider virtual node reallocation and link reassigning for this
purpose. Nogueira et al. [15] proposed a heuristic that takes into account the
heterogeneity of the VNs and also of the physical infrastructure. The algorithm
is evaluated by means of simulation and also on a small scale testbed, where it
achieves mapping times of the order of tens of milliseconds.

Although all these algorithms provide a solution for the VN mapping problem,
most of them fail to provide the optimal boundary for each VN mapping. Also,
some of them fail to solve the assignment problem as a simultaneous optimization
of the virtual node placement and of the virtual link placement, which lead to
non-optimal solutions.

190 M. Melo et al.

3 Problem Description and ILP Model Formulation

In this section, we start with the description of the VN assignment problem. The
ILP model formulation is then presented, followed by a proposal of enhancement
of a heuristic based on [15].

3.1 Virtual Network Assignment Problem Description

First, we start with the convention used for the index notation: i, j for nodes
and links in the physical network, and m,n for nodes and links in the VN.

We consider that we have a physical network with a given number of nodes,
N, and with a random topology, as depicted in figure 1. Each node is described
by the number of Central Processing Unit (CPU), which correspond to letter C
in the figure, the clock CPU frequency, F, and by the Random Access Memory
(RAM) amount he possesses, M. With respect to the links, we consider the
bandwidth capacity, B, and we assume that each link is an bi-directional link.
Virtual networks are described the same way as physical networks, as shown in
figure 2. We use the letter P when we want to refer to the physical resources,
e.g. CP , and the letterV is used for virtual resources, e.g. CV .

Fig. 1. Example of a substrate network topology description

The CPU capacity, the RAM size and the CPU frequency of the nodes is
stored in a array with NP entries, e.g. CP → NP × 1. We denote the total CPU
capacity (the initial capacity) by CPtotal , the non-allocated capacity is denoted by
CPfree , and the used capacity is denoted CPused , where CPtotal = CPused+CPfree .
The same notation is used for the RAM. We use the adjacency matrix (1),
AP → NP ×NP , to describe the connectivity of the physical network, and (2)
to describe the connectivity of the VN, AV → NV ×NV .

AP
ij =

{
1, the physical node i is neighbor of j
0, else

(1)

AV
mn =

{
1, the virtual node m is neighbor of n
0, else

(2)

Virtual Network Mapping – An Optimization Problem 191

Fig. 2. Example of a virtual network topology description

3.2 ILP Problem Formulation

We use an ILP formulation [18] to solve the embedding problem of VNs . Here we
only use two assignment variables for the VN mapping: for the virtual nodes, we
use the binary variable x shown in equation (3), where xm

i → NV ×NP matrix;
for the virtual links, we use the binary variable y represented in equation (4),
where ymn

ij → (NV)2 × (NP)2 matrix (4-dimensional).
Our objective function is represented in equation (5) and is divided into two

parts. Our primary goal is to minimize the maximum load per physical resource
and, in the case of having different mapping solutions with the same maximum
utilization, the second part of the objective function is activated which will opt
for the solution that consumes the less physical links.

The maximum load at each different resource, i.e. memory RAM load (Mload),
the CPU load (Cload), and the link load (Bload), is represented in equations
(6),(7),(8), respectively. We multiply the CPU frequency by the CPU load in
equation (6) and by the RAM load in equation (7), in order to firstly use physical
nodes with lower frequency and to preserve the remaining for virtual nodes with
higher frequency demands.

Equation (9) ensures that each virtual node is assigned and it is assigned to
just one physical node, and equation (10) guarantees that each physical node
can accommodate in maximum one virtual node per VN request, although each
physical node can accommodate other virtual nodes from different VNs. We
use equations (11) and (12) to make sure that we do not exceed the available
capacity of all physical nodes, and we use equation (13) to guarantee that we do
not violate that requirement on the CPU frequency.

In order to optimize the mapping of the virtual links and at the same time to
cope with the optimization of the virtual nodes, we apply the multi-commodity
flow constraint [19] with a node − link formulation [20], and we also use the
notion of direct flows on the virtual links, which are represented in equation
(14). To ensure that we have enough bandwidth available at each physical link,
we use equation (15).

192 M. Melo et al.

Assignment Variables

xm
i =

{
1, virtual node m is allocated at physical node i
0, else

(3)

ymn
ij =

{
1, virtual link mn uses physical link ij
0, else

(4)

Optimization Function

minimize Cmax
load +Mmax

load +Bmax
load + ε×

∑
m,n∈NV (m),n<m

ymn
ij ×BV

mn (5)

Constraints
Derived from the Optimization Function

∀i : FP
i × CPused

i +
∑

m xm
i × CV

m

CPtotal

i

≤ Cmax
load (6)

∀i : FP
i × MPused +

∑
m xm

i ×MV
m

MPtotal

i

≤ Mmax
load (7)

∀i, j ∈ NP (i), i < j :
BPused

ij +
∑

m,n∈NV (m) y
mn
ij ×BV

mn

BPtotal

ij

≤ Bmax
load (8)

Assignment of virtual nodes to physical nodes

∀m :
∑
i

xm
i = 1 (9)

One virtual node per physical node

∀i :
∑
m

xm
i ≤ 1 (10)

CPU conservation
∀i :

∑
m

xm
i × CV

m ≤ C
Pfree

i (11)

Memory conservation

∀i :
∑
m

xm
i ×MV

m ≤ M
Pfree

i (12)

Frequency limitation

∀i :
∑
m

xm
i × FV

m ≤ FP
i (13)

Virtual Network Mapping – An Optimization Problem 193

Multi-commodity flow conservation with link − node formulation

∀m,n ∈ NV (m),m < n, ∀i :
∑

j∈NP (i)

(ymn
ij − ymn

ji) = xm
i − xn

i (14)

Bandwidth conservation

∀i, j ∈ NP (i), i < j :
∑

m,n∈NV (m),m<n

BV
mn × (ymn

ij + ymn
ji) ≤ B

Pfree

ij (15)

3.3 Mapping Heuristic Algorithm

In this section, we propose a heuristic algorithm for VN embedding, based on
the one from [15]. A pseudo-code description of the mapping algorithm is shown
in algorithm 1. With respect to the base algorithm, this one contains several
changes.

First, we propose a different formula to determine the node stress, SN , which is
presented in equation (16). The formula used in the base algorithm to obtain the
node stress, tends to balance the number of virtual nodes per physical nodes,
in order to, favor nodes with lower CPU clock frequency, and to reduce the
combination of consumed RAM and CPU. However, we could have physical
nodes with different capacities and also virtual nodes with different requirements,
which do not cope well with the objective of distributing the virtual nodes per
physical nodes uniformly; moreover, physical nodes could be highly loaded at
the CPU and mostly free at the RAM or the opposite, which, for the previously
used formula was totally hidden, as long as, the combination of the two has the
lower value. The node stress formula proposed, in equation (16) tends to balance
the use of both RAM and CPU, at the same time, and also to favor nodes with
higher clock CPU frequency.

Secondly, we added a tuning variable, β, which is used to tune the link−path
cost, D(u, v), according to the neighborhood, reflected in lines 30 to 32. We have
set the value of β to 0.01, which largely reduces the link − path cost to virtual
neighbors that have been already assigned.

As a third modification, we propose a new formula for calculating the node
potential, i.e., π, shown in the lines 34 to 39. The formula proposed by Nogueira
et al. [15] calculates the average to all possible destination nodes. Here, the node
potential, is the average of the minimum link − path cost to all the possible
candidates to virtual neighbors, multiplied by the node stress, which corresponds
to line 41.

The last improvement, is present in the lines 50 to 54 of the algorithm 1,
where we dynamically update the link stress, SLS, for physical links that have
been already assigned to virtual links, during each VN mapping process.

SNi = CPU Freq× [(
MPused

MPtotal
)2 + (

CPused

CPtotal
)2] (16)

194 M. Melo et al.

Algorithm 1. Mapping Algorithm Pseudo-Code
input : Substrate (Substrate Network) , VRequest (Requested VN)
output: VMap (Mapped Virtual Network)
foreach Link i in Substrate.Links do1

foreach VN j in Substrate.V Ns do2
foreach Link k in j.Links do3

if Link kj ⊇ Link i then4
SLS(i) += SLVj

(kj) ;5

end6

end7

end8

end9
foreach Link i in Substrate.Links do10

SLS(i) =
∑NV

j

∑LVj
k ((SLVj

(kj)|kj ⊇ i)) ;11

end12
foreach Node i in Substrate.Nodes do13

SNi
= CPU Freq× [(MPused

MPtotal
)2 + (CPused

CPtotal
)2];14

π(v) = 0 ;15

end16
foreach Node n in VRequest.Nodes do17

foreach Node i in Substrate.Nodes do18
if MeetsConstraints(n, i) then19

n.Candidates.Add(i) ;20
end21

end22

end23
foreach Node n in VRequest.Nodes do24

foreach Link k connected to n do25
ConnectedVNode=GetLinkDestination(k) ;26
foreach SourceCandidate v in n.Candidates do27

foreach DestCandidate u in ConnectedVNode.Candidates do28
D(v,u)= Cost(CSFP Dijkstra(v,u));29
if u.Map then30

D(v,u)=β × D(v,u);31
end32

end33
if π(v) then34

π(v) = mean[π(v),min(∀u ∈ VC : D(v,u)] ;35
end36
else37

π(v) = min[∀u ∈ VC : D(v,u)] ;38
end39

end40
π(v) = π(v) × SNv ;41

end42
n.Map = v : π(v) = min(π) ;43

end44
foreach Node n in VRequest.Nodes do45

VMap.Nodes ∪ n ;46
foreach Link k connected to n do47

ConnVNode=GetLinkDestination(k) ;48
VMap.Links ∪ CSFP Dijkstra(n.Map,ConnVNode.Map) ;49
foreach Link i in Substrate.Links do50

if VMap.Links then51
SLS(i)+ = SLVn (k) ;52

end53

end54

end55

end56

Virtual Network Mapping – An Optimization Problem 195

4 Evaluation Results

In this section, we describe the simulation scenario and depict our major results.
Our evaluation is primarily focused on the VN acceptance ratio according to
different number of demands, i.e. average number of VN requests per time unit,
and also on how many VNs can be accommodated on the physical network using
the proposed model. We also compare the ILP model with the heuristic described
in the previous section.

4.1 Simulation Parameters

In order to evaluate the ILP model according to different number of VN requests
per time unit, we have implemented a discrete event simulator in Matlab R©.

The physical network topology was created using the Waxman random topol-
ogy generation method [21], and the number of physical nodes was set to 30.
The recommended parameters for link probability, α = 0.4 and β = 0.1, were
used although some topologies did not have full connectivity, i.e. one physical
node with no viable path to all the remaining nodes (e.g. a node with no links or
non-connected clusters). In order to circumvent this, after generating the topol-
ogy, additional links were added to the nodes with fewer interfaces, until total
connectivity was reached. For each substrate node, a set of parameters was ran-
domly attributed, from a pool of possible ones, using an uniform distribution,
such as RAM amount, number of CPUs and CPU frequency. The physical link’s
bandwidth was set at a fixed bitrate. The set of parameters is presented on
table 1.

The VNs were generated using the same topology generation model, although
the number of virtual nodes was not fixed, but follows a uniform distribution,
from 2 to 10 virtual nodes per VN topology. After generating the virtual topol-
ogy, the same set of specifications was assigned, with a uniform distribution. The
virtual nodes specification pool can be observed on table 2.

We assume that each VN request arrive according to a Poisson distribution
and that each VN has an associated lifetime with an average of μ = 75, following
an exponential distribution. Regarding the average number of VN requests per
time unit, we have started with 0.8 VN requests per time unit and we have
increased by intervals of 0.2 until reaching 1.8. For each different demand, i.e.
value of 1/ λ, 10 trials were performed. A new set of VN requests and a new
physical network topology was generated for each trial and for each value of 1/
λ. All simulations were set to run until 1000 time units. A confidence interval of
95% is used for every result presented below.

We have used CPLEX R©[22] version 11 to solve the linear programming prob-
lem, and a time limit of 600 seconds was defined for each VN mapping, although
most VNs were embedded in hundred of milliseconds.

4.2 Simulation Results

We used several performance metrics to evaluate the optimal model and the
heuristic algorithm. We measured the acceptance ratio and the number of

196 M. Melo et al.

Table 1. Physical Nodes Pool Parameters

N. CPUs {2; 4; 6}
CPU Frequency (GHz) {2.0 to 3.2 in 0.2 steps }
RAM Memory (GB) {2; 4; 6; 8}

Link Bandwidth (Mbps) {500}

Table 2. Virtual Nodes Pool Parameters

N. CPUs {1; 2; 3; 4 }
CPU Frequency (GHz) {2.0 to 2.6 in 0.1 steps }
RAM Memory (MB) {64; 128; 256; 512 }

Link Bandwidth (Mbps) {2.048; 8.448; 34.368}

accommodated VNs as a function of the number of requests. We also measured
the average memory RAM and CPU utilization on the nodes, and the average
bandwidth utilization on the links. In all these cases, we plot the performance
metrics as function of the number of VN requests per time unit.

Figure 3 presents the VN acceptance ratio of the proposed ILP model (’opti-
mal’) and of the enhanced heuristic (’heuristic’) for different number of requests
(’number of demands’). As can be observed, the acceptance ratio decays lin-
early with the number of requests for both mapping methods. This is expectable
once we have more VNs to embed with the same amount of physical resources.
The optimal method achieves a higher acceptance ratio, for instance, with a
1/λ = 0.8, i.e. 0.8 VN request per time unit, nearly all (i.e. 95%) the VNs are
accepted when using the ILP model, while with the heuristic only 85% of the
requests are accepted.

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of demands

V
irt

ua
l N

et
w

or
k

A
cc

ep
ta

nc
e

R
at

io

(1/λ)

Optimal
Heuristic

Fig. 3. Average acceptance ratio per demand

Virtual Network Mapping – An Optimization Problem 197

The average number of accommodated VNs per request is depicted in fig-
ure 4. For both embedding methods, there is a linear increase in VNs allocated
in the substrate with the number of mapping requests. Note that the optimal
model accommodates in average more VNs than the heuristic algorithm, approx-
imately 7 VNs. We also observe that the number of VNs accommodated tend to
a maximum value, which is expected since we have a finite amount of physical
resources. For values of 1/λ � 1.4 we already realize this behavior, it is expected
that the physical network would accommodate a maximum of 90 VNs using the
optimal method and just over 80 when using the heuristic.

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
45

50

55

60

65

70

75

80

85

90

95

Number of demands

N
um

be
r

of
 A

co
m

m
od

at
ed

 V
irt

ua
l N

et
w

or
ks

(1/λ)

Optimal

Heuristic

Fig. 4. Average number of accommodated virtual networks per demand

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of demands

C
P

U
 U

til
iz

at
io

n

(1/λ)

Optimal
Heuristic

Fig. 5. Average CPU utilization per demand

198 M. Melo et al.

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of demands

M
em

or
y

U
til

iz
at

io
n

(1/λ)

Optimal

Heuristic

Fig. 6. Average memory utilization per demand

The remaining results concern the average utilization on the different types
of resources: memory RAM and CPU on the physical nodes and bandwidth
on the physical links, according to the VN requests. The resource utilization
metric can be easily associated with the efficiency and is useful for two main
reasons: (1) how much can the network operator load the physical resources;
(2) what type of resources become scarce sooner. Figure 5 shows the average
CPU utilization for different number of demands. Both embedding methods
produce an increase of the CPU utilization with the number of requests, loading,

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of demands

B
an

dw
ith

 U
til

iz
at

io
n

(1/λ)

Optimal

Heuristic

Fig. 7. Average bandwidth utilization per demand

Virtual Network Mapping – An Optimization Problem 199

in average, the CPU at a maximum of 74% and 62% for the ILP model and
for the heuristic algorithm, respectively. The average memory RAM utilization
according to different demands is depicted in figure 6. Both mapping methods
produce an increase of memory utilization with the number of requests, reaching
a stable value of 80% with the ILP model and 73% with the heuristic. The
average bandwidth utilization is depicted in figure 7. Again, with both mapping
methods, there is an increase of the resource utilization, with the optimal model
reaching higher utilization values (i.e. 75%) and the heuristic method not going
beyond 60%.

5 Conclusion

This paper proposed an ILP model to solve the VN embedding problem and to
provide the optimal boundary for each VN mapping. The model applies opti-
mization theory and simultaneously optimizes the virtual nodes and the virtual
links assignment, supporting heterogeneous virtual and substrate networks. This
paper also proposed an enhancement to a heuristic algorithm that is used as
comparison with the ILP model.

The obtained results show significant improvements of the VN acceptance
ratio, when we compare the ILP model with the heuristic. In average, the ILP
model is able to map additional 10% VN requests. Translating this in the number
of extra VNs accommodated on the physical network, in average, 7 more VNs are
allocated in the substrate. The ILP model is able to load the physical resources
to a maximum of 80% in average, with a high VNs demand, while the heuristic
does not go beyond 74%.

Future work will endorse the global optimal solution (which may require re-
assignment of previously mapped virtual nodes or links), and the migration of
virtual nodes and networks. Scalability issues of the proposed model will also be
addressed.

References

1. Peterson, L., Anderson, T., Culler, D., Roscoe, T.: A blueprint for intro-
ducing disruptive technology into the internet. SIGCOMM Comput. Com-
mun. Rev. 33, 59–64 (2003), http://doi.acm.org/10.1145/774763.774772,
doi:http://doi.acm.org/10.1145/774763.774772

2. Anderson, T., Peterson, L., Shenker, S., Turner, J.: Overcoming the Internet
Impasse through Virtualization. Computer 38, 34–41 (2005),
http://portal.acm.org/citation.cfm?id=1058219.1058273,
doi:10.1109/MC.2005.136

3. Feamster, N., Gao, L., Rexford, J.: How to lease the internet in your spare time.
SIGCOMM Comput. Commun. Rev. 37(1), 61–64 (2007),
http://doi.acm.org/10.1145/1198255.1198265

4. Zhu, Y., Zhang-Shen, R., Rangarajan, S., Rexford, J.: Cabernet: connectivity ar-
chitecture for better network services. In: Proceedings of the 2008 ACM CoNEXT
Conference, CoNEXT 2008, ACM ID: 1544076, pp. 64:1–64:6. ACM, New York
(2008), doi:10.1145/1544012.1544076

http://doi.acm.org/10.1145/774763.774772
http://portal.acm.org/citation.cfm?id=1058219.1058273
http://doi.acm.org/10.1145/1198255.1198265

200 M. Melo et al.

5. Touch, J., Wang, Y.S., Eggert, L., Finn, G.: A virtual internet architecture. ISI
Technical Report ISI-TR-2003-570 (2003)

6. Carapinha, J., Jimnez, J.: Network virtualization: a view from the bottom. In:
Proceedings of the 1st ACM Workshop on Virtualized Infrastructure Systems and
Architectures, pp. 73–80. ACM, Barcelona (2009),
http://portal.acm.org/citation.cfm?id=1592648.1592660,
doi:10.1145/1592648.1592660

7. Melo, M., Sargento, S., Carapinha, J.: Network Virtualisation from an Operator
Perspective. In: Proc Conf. sobre Redes de Computadores - CRC (2009)

8. Chowdhury, N.M.K., Boutaba, R.: Network virtualization: State of the art and
research challenges. IEEE Communications Magazine 47(7), 20–26 (2009),
http://www.mosharaf.com/wp-content/uploads/nv-overview-commag09.pdf

9. Zhu, Y., Ammar, M.: Algorithms for assigning substrate network resources to vir-
tual network components. In: Proceedings of 25th IEEE International Conference
on Computer Communications, INFOCOM 2006, pp. 1–12 (2006)

10. Lischka, J., Karl, H.: A virtual network mapping algorithm based on subgraph
isomorphism detection. In: VISA 2009: Proceedings of the 1st ACM Workshop on
Virtualized Infrastructure Systems and Architectures, pp. 81–88. ACM, New York
(2009), doi: http://doi.acm.org/10.1145/1592648.1592662

11. Lu, J., Turner, J.: Efficient mapping of virtual networks onto a shared substrate.
Tech. rep., Washington University in St. Louis (2006)

12. Yu, M., Yi, Y., Rexford, J., Chiang, M.: Rethinking virtual network embedding:
Substrate support for path splitting and migration. ACM SIGCOMM Computer
Communication Review 38(2), 17–29 (2008)

13. Chowdhury, N., Rahman, M., Boutaba, R.: Virtual network embedding with coor-
dinated node and link mapping. In: INFOCOM 2009, pp. 783–791. IEEE (2009),
doi:10.1109/INFCOM.2009.5061987

14. Farooq Butt, N., Chowdhury, M., Boutaba, R.: Topology-Awareness and Reopti-
mization Mechanism for Virtual Network Embedding. In: Crovella, M., Feeney,
L.M., Rubenstein, D., Raghavan, S.V. (eds.) NETWORKING 2010. LNCS,
vol. 6091, pp. 27–39. Springer, Heidelberg (2010)

15. Nogueira, J., Melo, M., Carapinha, J., Sargento, S.: Virtual network mapping into
heterogeneous substrate networks. In: IEEE Symposium on Computers and Com-
munications, ISCC 2011 (2011),
http://www.av.it.pt/mmelo/nogueira2011mapping.pdf

16. Andersen, D.G.: Theoretical approaches to node assignment (2002) (unpublished
manuscript)

17. Houidi, I., Louati, W., Zeghlache, D.: A distributed virtual network mapping al-
gorithm. In: IEEE International Conference on Communications, ICC 2008, pp.
5634–5640 (2008), doi:10.1109/ICC.2008.1056

18. Wolsey, L.: Integer programming. IIE Transactions 32, 273–285 (2000)
19. Even, S., Itai, A., Shamir, A.: On the complexity of time table and multi-

commodity flow problems. In: 16th Annual Symposium on Foundations of Com-
puter Science, pp. 184–193 (1975)

20. Pióro, M., Medhi, D., Service), S.O.: Routing, flow, and capacity design in com-
munication and computer networks. Citeseer (2004)

21. Waxman, B.: Routing of multipoint connections. IEEE Journal on Selected Areas
in Communications 6(9), 1617–1622 (1988), doi:10.1109/49.12889

22. IBM ILOG Optimization Products,
http://www-01.ibm.com/software/websphere/products/optimization

http://portal.acm.org/citation.cfm?id=1592648.1592660
http://www.mosharaf.com/wp-content/uploads/nv-overview-commag09.pdf
http://doi.acm.org/10.1145/1592648.1592662
http://www.av.it.pt/mmelo/nogueira2011mapping.pdf
http://www-01.ibm.com/software/websphere/products/optimization

	Virtual Network Mapping – An Optimization Problem
	Introduction
	Related Work
	Problem Description and ILP Model Formulation
	Virtual Network Assignment Problem Description
	ILP Problem Formulation
	Mapping Heuristic Algorithm

	Evaluation Results
	Simulation Parameters
	Simulation Results

	Conclusion

