
Virtual Network Mapping into Heterogeneous

Substrate Networks

João Nogueira1,2, Márcio Melo1,2, Jorge Carapinha2, Susana Sargento1

1 Instituto de Telecomunicações, University of Aveiro, Portugal
2 Portugal Telecom Inovação, Aveiro, Portugal

joaonogueira@ua.pt, marciomelo@av.it.pt, jorgec@ptinovacao.pt, susana@ua.pt

Abstract—As the interest on Network Virtualization continues
to grow, so does the awareness of the many technical obstacles to
transpose before the envisioned virtualized network environment
may become a reality. A significant obstacle lies on the efficient
assignment of virtual resources into physical ones. Performing the
so-called mapping of a virtual network into a substrate network
is a computationally intensive task, due to the dual optimization
required for nodes and links placement.
The purpose of this paper is to tackle this problem taking into
consideration real-life scenarios of network operators, where
the limitations imposed by the heterogeneity of the virtual and
substrate networks must be accounted for. To that end, this paper
proposes a heuristic algorithm for virtual resources mapping in
the physical infrastructure that supports the heterogeneity of
networks, in both links and nodes. The mapping heuristic was
evaluated both through simulation and in a real experimental
virtualization platform. Through the simulation results, it is
shown that the mapping approach is able to embed a high
percentage of the Virtual Network (VNet) requests respecting
all links and node constraints. With respect to the experimental
results, the proposed algorithm was shown to be fast, requiring a
mapping time in the order of low tens of milliseconds, and linearly
scalable with the increase in the number of existing VNets.

Index Terms—Virtualization, Virtual Networks, Network, Em-
bedding, Mapping, Heterogeneous

I. INTRODUCTION & MOTIVATION

Network Virtualization has been hailed by the research

community as a key enabler technology to escape from the

current well-known limitations of the Internet. Moreover,

it is also seen as a viable tool for experimenting novel

network protocols on production networks without affecting

other critical services, running of the same substrate network.

The capability of providing isolated and protocol-independent

virtual networks on top of a single network infrastructure has

also drawn attention from network operators. From one side

they may reduce their Total Cost of Ownership (TCO) through

consolidated network resources and management; from the

other side they may gain business advantages by being able to

provide custom-tailored networks to their costumers quickly

and without significant infrastructure costs [1], [2].

Although there is a large interest on virtualized networks

both from the research community and network operators,

several challenges still prevent it from being deployed on

real environments [3]. One of the major obstacles lies in

the efficient embedding of a virtual network onto a substrate

network. Since this process requires the simultaneous opti-

mization of virtual nodes and links placement, it is complex in

nature and requires large amounts of computing power. Some

authors, such as [4], [5], [6], [7], [8], have already proposed

possible solutions to this problem, but have failed to provide an

algorithm that takes into consideration the limitations imposed

by the heterogeneity of resources in terms of links (their

bandwidth, delays, etc.) and nodes (CPU, RAM, etc.).

In this paper we propose a mapping algorithm, heuristic

based, that considers the support of heterogeneous virtual and

substrate networks. This algorithm defines stress formulas,

for both nodes and links, that take into account the several

characteristics of both nodes and links. The mapping approach

is then performed heuristically using a Constrained Shortest

Path First (CSPF) algorithm, which will then determine a node

potential to be used in the mapping process. The mapping

algorithm was evaluated both through simulation and through

a real virtualization platform. From the simulation results, we

show that the mapping approach is able to embed a high

percentage of the VNet requests, while respecting all links’

and nodes’ constraints. The experimental results show that,

unlike most available algorithms that are very time consuming

and cannot be deployed in real scenarios, our algorithm is

indeed feasible to be used in a production environment.

The paper starts with the discussion of the related work on

mapping algorithms, on Section II, and proceeds on Section

III with the specification the developed algorithm. Section IV

analyzes its performance, both through simulation and through

a real testbed environment. The paper concludes on section V.

II. RELATED WORK ON MAPPING ALGORITHMS

When receiving VNet request, it is of the Infrastructure

Provider (InP) (who owns and manages the physical network

infrastructure) best interest to optimize resource allocation in

order to reduce congestion and maximize profitability (by

allowing more VNets request to be accepted on the future).

Efficient resource mapping must therefore deal with the si-

multaneous optimization of the placement of virtual nodes and

links on a substrate network.

This simultaneous optimization can be formulated as an

unsplittable flow problem [4], [9], known to be NP-hard , and

therefore is only tractable for a small amount of nodes and

links. In order to solve this problem, several approaches have

been suggested, mostly considering the offline version of the

problem where the VNet requests are fully known in advance.

In [5] a backtracking method based on subgraph isomor-

phism was proposed; it considers the online version of the

mapping problem, where the VNet requests are not known

in advance, and proposes a single stage approach where

nodes and links are mapped simultaneously, taking constraints

into consideration at each step of the mapping. When a bad

mapping decision is detected, a backtrack to the previous valid

mapping decision is made, avoiding a costly re-map.

Some works, such as [6], defined a set of premises about

the virtual topology, i.e. the backbone nodes are star-connected

and the access-nodes connect to a single backbone node. Based

on these premises, an iterative algorithm is run, with different

steps for core and access mapping. However, the algorithm

can only work for sepecific topologies.

A distributed algorithm was studied in [10]. It considers that

the virtual topologies can be decomposed in hub-and-spoke

clusters and mapped each cluster independently, therefore

reducing the complexity of the full virtual network mapping.

But it still lacks from performance and scalability, when

comparing with centralized approaches.

Zhu et al. [4] proposed a heuristic, centralized, algorithm for

dealing with VNet embedding. The goal of the algorithm is to

maintain a low and balanced stress of both nodes and links of

the substrate network. However, the stress of nodes and links

do not consider heterogeneity on their characteristics.

Yu et al. [7] propose an embedding algorithm which consid-

ers finite resources on the physical network, and enables path

splitting (i.e. virtual link composed by different paths) and

link migration (i.e. to change the underlying mapping) during

the embedding process. Although, this level of freedom can

lead to a level of fragmentation that is infeasible to manage

on large scale networks. In [8], it was taken a formal approach

to solve the online VNet embedding problem using a mixed

integer programming formulation in a two-step approach. This

approach, besides not supporting heterogeneity of nodes, is

still significantly complex in real environments.

Although all these algorithms provide a solution for the vir-

tual network mapping problem, most of them fail to take into

consideration that not all virtual nodes are the same, they can

have different requirements for Central Processing Unit (CPU),

memory and location, and their links may be constrained

by several parameters. The heterogeneity of both virtual and

substrate resources is mostly not considered. Moreover, to the

best of our knowledge, the proposed approaches were not

tested in a real environment in a virtualization platform.

III. MAPPING ALGORITHM

The proposed algorithm is inspired on the concepts of

nodes and links stress defined in [4]. However, both the stress

formulas and the algorithm itself are distinct from the ones

presented in [4] for the following reasons: (1) the node stress

is simply considered to be the number of running virtual

machines and fails to consider the reality of physical nodes,

where the CPU load, core count, frequency, and available

RAM amount are important factors; (2) the link stress is deter-

mined considering the number of virtual links going through a

physical link, instead of taking into consideration the reserved

link’s bandwidth; (3) it only takes into account perfectly

homogeneous physical and virtual networks, as is reflected on

the single pool of candidates for virtual resources; (4) node

constraints, such as location and required specifications, are

not contemplated and neither are the limitations associated

with links’ bandwidths, which are finite.

Our proposed algorithm is defined taking into account the

previous issues. The algorithm starts by determining a link and

node stress factor. Links and nodes with less stress are more

prone to accepting new virtual resources. Notice that these

concepts are similar in [4]; however, our stress formulas are

different, taking into account the heterogeneity issues.

A pseudo-code description of the proposed algorithm is

shown in algorithm 1.

Defining kj = 0...(LVj
− 1) and i = 0...(LS − 1) where kj

is the link number of a given virtual link belonging to the jth

VNet, LVj
is the number of virtual links in the same VNet,

i is the link number of a given physical link and LS is the

number of links of the Substrate Network, one can start by

establishing that the virtual link stress (SLVj
) of the link kj

belonging to the jth VNet is equal to its allocated bandwidth :

SLVj
(kj) = BW (kj). This procedure is demonstrated on the

pseudo-code on lines 1 to 9.

After all virtual links stresses are determined, the physical

link stresses are calculated: SLS(i) is the link stress of the ith

physical link and is defined as (lines 10 to 12):

SLS(i) =

NV
∑

j

LVj
∑

k

((SLVj
(kj)|kj ⊇ i)) (1)

where NV is the number of existing VNets. As opposed to

the proposed link stress formula in [4], this formula takes into

consideration the different allocated link bandwidths, and uses

them to weight each physical link’s stress.

Afterwards, it proceeds with the determination of Node

Stress (SN - lines 13 to 15), which is a combination of

the currently available Substrate Node resources and weights

active Virtual Machines, free RAM (Free RAM) amount in

MB, number of CPUs (N.CPU), CPU frequency in MHz (CPU

Freq.) and current CPU Load, which varies between 0 and

N.CPU (number of physical CPU Cores).

The Λ function, defined in 2, determines whether or not

a virtual node nj , belonging to the jth VNet, is active and

running on the ith physical node.

Λ(nj , i) =

{

1 if (nj ⊇ i) ∧ (nj is active)
0 otherwise

(2)

The Node Stress of the ith physical node is:

SNi
=

∑NV

j

∑NVj
n Λ(nj , i)

δ + Free RAM · CPU Freq · (N.CPU - Load)
(3)

i.e., the total number of virtual machines running on the ith

physical node, divided by a metric of available resources. δ is

a small constant to avoid dividing by 0, and NVj
is the number

of virtual nodes on the jth VNet. Just like in the case of the

link stress formula, adjustments were also made that aim to

consider not only the number of running virtual machines on

each physical node, but also the capabilities and free resources

of each node. By taking into account both the available RAM

amount and a measure of available computing resources, this

node stress formula should provide a better perspective on the

usage and capabilities of the physical nodes.

The next step is the determination of node candidates (lines

16 to 22). For each virtual node, a set of physical candidates is

determined based on eliminative constraints: location, number

of CPUs, CPU frequency, free RAM amount, and available

HDD space. The location constraint allows for the establish-

ment of both logical groups and a physical location, based on a

center GPS coordinate and a radius; thus reflecting a coverage

area. The MeetsConstraints function on line 18 returns true

if a given physical node meets all of the previously specified

constraints.

After determining the candidates for each virtual node,

a sorting algorithm is run that orders the virtual nodes by

their number of candidates so that virtual nodes with fewer

candidates will be mapped first (line 23).

The algorithm continues with the node mapping and path

selection, according to lines 25 to 35. For each possible

candidate v a CSPF algorithm to all other candidates (u) of

the virtual neighbour nodes is calculated using the previously

calculated Link Stresses as weights, and the path cost is stored

(D(v, u) - line 30). The node potential π(v) is then determined

using the formula:

π(v) = π(v)

∑

u∈VC
D(v, u) · SNv

Count(n.Candidates)
(4)

where VC is a set containing the candidates of the neighbour

virtual nodes. This equation produces a node potential that, at

the end of each main loop (line 25), reflects a node potential

averaged by the number of possible destination nodes, which

assures that physical nodes with different amount of possible

virtual links are treated fairly. In addition, this formula also

differs from the one established in [4] due to its numerical

behaviour: while the one previously proposed shows an hyper-

bolic behaviour with the increase in node stress, this one has

a linear behaviour, and is, thus, more numerically balanced.

Upon calculating the node potential of all candidates, the

candidate with the lowest one is selected (line 35).

The algorithm terminates successfully when all the re-

quested virtual nodes are properly mapped, each one on a

different physical node, chosen from within its candidate

set, and the best-constrained paths for each virtual link are

determined.

Consider the simple situation of figure 1, where the stresses

of physical nodes and links have already been calculated. If it

is required to map a new virtual network, composed of virtual

nodes A and B, with a single virtual link using a bandwidth

of 20Mbps, the first step is to determine a set of physical

candidates for each virtual node. Considering the constraints,

A can be mapped either on c or d, and B can be mapped either

on a, b or c.

Algorithm 1: Mapping Algorithm Pseudo-Code

input : Substrate (Substrate Network) , VRequest (Requested VNet)

output: VMap (Mapped Virtual Network)

1 foreach Link i in Substrate.Links do

2 foreach VNet j in Substrate.V Nets do

3 foreach Link k in j.Links do

4 if Link kj ⊇ Link i then

5 SLS(i) += SLVj
(kj) ;

6 end

7 end

8 end

9 end

10 foreach Link i in Substrate.Links do

11 SLS(i) =
∑NV

j

∑LVj

k
((SLVj

(kj)|kj ⊇ i)) ;

12 end

13 foreach Node i in Substrate.Nodes do

14 SNi
=

∑NV
j

∑NVj
n Λ(nj,i)

δ+Free RAM·CPU Freq·(N.CPU - Load)
;

15 π(v) = 0 ;

16 end

17 foreach Node n in VRequest.Nodes do

18 foreach Node i in Substrate.Nodes do

19 if MeetsConstraints(n, i) then

20 n.Candidates.Add(i) ;

21 end

22 end

23 end

24 SortVirtualNodes(VRequest) ;

25 foreach Node n in VRequest.Nodes do

26 foreach Link k connected to n do

27 ConnectedVNode=GetLinkDestination(k) ;

28 foreach SourceCandidate v in n.Candidates do

29 foreach DestCandidate u in ConnectedVNode.Candidates do

30 D(v,u)= Cost(CSFP Dijkstra(v,u)) ;

31 end

32 π(v) = π(v) +

∑
u∈VC

D(v,u)·SNv
Count(n.Candidates)

;

33 end

34 end

35 n.Map = v : π(v) = min(π) ;

36 end

37 foreach Node n in VRequest.Nodes do

38 VMap.Nodes ∪ n ;

39 foreach Link k connected to n do

40 ConnVNode=GetLinkDestination(k) ;

41 VMap.Links ∪ CSFP Dijkstra(n.Map,ConnVNode.Map) ;

42 end

43 end

Since A has the fewest number of physical candidates, the

mapping procedure will start with this node. By applying the

CSPF Dijkstra algorithm considering firstly c as a source node

and a and b as potential destination nodes, the node potential

of 0.7144 is determined. Applying the same procedure to the

candidate d results in a node potential of 0.5417. Since d

has the lowest node potential, it is chosen to hold the virtual

node A. Regarding the virtual node B, mapped next, the same

algorithm is applied, resulting with a being chosen to hold

B. Finally, the CSPF Dijkstra algorithm decides that the link

between a and b is the best to hold the requested virtual link.

IV. PERFORMANCE RESULTS

This section contains two types of performance results:

simulation and experimental based. The simulation results

assess the efficiency of the algorithm in determining the best

mapping for the VNets requested. The experimental results

assess the feasibility of the algorithm in a real environment

and the cost of its deployment. It is known that most available

algorithms are very time consuming and cannot be deployed

Figure 1. Virtual Network Mapping Example.

in real scenarios; in this experimental setup we show that it is

feasible to use our algorithm in a production environment.

Because no similar mapping algorithm was found in the

literature, i.e. one that takes into account the heterogeneity

of the substrate and virtual networks, no comparisons were

performed with other algorithms.

A. Simulation Results

The purpose of this subsection is to simulate the developed

algorithm in conditions as similar as possible to the ones found

on real networks, with heterogeneous resources and links. By

testing the algorithm on these “closer-to-reality” conditions,

insight and conclusions about the algorithms performance and

applicability shall be taken.

Regardless of the simulation parameters, the following

simulations will all obey to a general procedure, which will

be described next.

On the first step, a physical topology was generated using

the Waxman random topology generation method [11], with

30 physical nodes. The recommended parameters, α = 0.4
and β = 0.4, presented some connectivity issues, especially

for reduced amounts of nodes, e.g. less than 16 nodes. These

settings often caused isolated nodes or clusters where there

was not at least one path between every physical node. Hence,

after generating the topologies, in the lack of full connectivity,

nodes with less links were given additional links until full

connectivity was established.

The generated physical nodes were randomly attributed a

set of parameters, from a pool of possible ones, such as

RAM amount, number of CPUs and CPU frequency, using

an uniform random distribution. The physical link’s bandwidth

was set at a fixed bitrate. Next, virtual networks were generated

using the same model, with a varying amount of virtual nodes.

After generating the virtual topology, the virtual nodes were

also randomly attributed a set of specifications, with a uniform

distribution. The virtual nodes’ available specification pool can

be observed on table I.

N. CPUs {1; 2; 3; 4 }
CPU Frequency (GHz) {2.0 to 3.2 in 0.1 steps }

RAM Memory (MB) {64; 128; 256; 512 }
Link Bandwidth (Mbps) {34.368 139.264 }

Table I
VIRTUAL NETWORK MAPPING- VIRTUAL NODES’ PARAMETERS POOL.

In the virtual network mapping algorithm, if the mapping

succeeds, the virtual nodes are placed on the physical nodes,

reducing the amount of available RAM and increasing the

physical nodes CPU load by a random amount. The utilization

of the physical links will also increase according to the

bandwidth utilized by the virtual links. Notice that we do

not include a performance comparison with available mapping

approaches, as they do not consider heterogeneous nodes and

links.

In order to evaluate the mapping algorithm, two main

metrics were considered: the node stress ratio RN and the

link stress ration RL. From the definition of these two metrics

on equations 5 and 6, one can see that in a perfectly load

balanced network, their value should be 1. Therefore, smaller

stress ratios indicate better virtual network embedding in the

network. On the equations, NS and LS are the set of substrate

nodes and links, respectively. A confidence interval of 95%

was considered for every result.

RN =
maxv∈NS

SN (v)

[
∑

v∈VS
SN (v)]/ |NS |

(5)

RL =
maxv∈VS

SL(v)

[
∑

v∈LS
SL(v)]/ |LS |

(6)

1) Simulation Scenario 1: The first simulation scenario

assumes that the parameters of the physical resources are

taken from the pools of table II. For each generated physical

network, attempts were made to map as many virtual networks

as possible. It was considered that a mapping algorithm could

not map any more virtual networks when it failed to embed

10 successive virtual networks.

N. CPUs {2; 4; 6; 8}
CPU Frequency (GHz) {2.0 to 3.2 in 0.2 steps }

RAM Memory (GB) {2; 4; 6}
Link Bandwidth (Mbps) {1000}

Table II
VIRTUAL NETWORK MAPPING SIMULATION SCENARIO 1- PHYSICAL

NODES’ PARAMETERS POOL.

Two approaches of the developed algorithm were simulated,

one that starts the embedding by selecting the virtual nodes

with the least amount of physical candidates, and another one

that starts the mapping in a random fashion, i.e. without pre-

sorting the generated virtual nodes.

The simulation was run 100 times for different virtual

network sizes. The number of virtual nodes ranged from 4

to 14 in increments of 2.

0 5 10 15
0

5

10

15

20

25

30

35

Number of Virtual Nodes

N
u

m
b

e
r

o
f
A

c
c
e

p
te

d
 V

ir
tu

a
l
N

e
tw

o
rk

s

Maximum Number of Accepted Virtual Networks vs Virtual Network Size

Candidate Sort

Random Sort

Figure 2. Virtual Network Mapping Simulation Scenario 1 - Maximum
accepted Virtual Networks.

The results may be observed on figure 2. As the virtual

networks’ size grows, due to the increase in the number

of virtual nodes, the number of maximum accepted virtual

networks decreases, which is as expected since larger networks

are harder to map due to a higher amount of constraints.

Considering the case of small virtual networks, with 4 virtual

nodes for example, the mapping algorithms were able to

embed about 33 of them, while in the case of virtual networks

with twice the virtual nodes, it was only able to embed

approximately 8.

The number of maximum accepted virtual network appears

to behave similarly to a decaying exponential function, with

the increase of the size of the virtual networks. The mapping

algorithm performing a pre-sort of the virtual nodes, consid-

ering their amount of physical candidates, consistently shows

slightly better results than the random one, particularly for

simulations with few or many virtual nodes.

2) Simulation Scenario 2: Although the maximum number

of accepted VNets is important, the load distribution should

not be disregarded. To that end, this simulation scenario aims

to evaluate the performance of both approaches (candidate

and random sort) relating the node and link stress ratios,

according to equations 5 and 6. In order to provide a fair

comparison between the two approaches, an embed of 75%

of the previously identified maximum of accepted virtual

networks was performed.

The physical nodes’ specifications were kept equal to the

previous simulation ones. The simulation was run 300 times

for different virtual network sizes. The number of virtual nodes

ranged from 4 to 14 in increments of 2.

Starting with the figure 3, it is possible to state that, as

the size of the virtual networks grows, the node stress ratio

decreases, showing that the network’s node load is better

distributed. The large node stress ratio differences, regarding 4

and 14 nodes VNets, is mainly due to the way the node stress

is calculated. Since the node stress is inversely proportional

to the free CPU load, which varies between 0 and NCPUs,

one can realize that as the physical nodes become loaded, and

their available CPU load tends to 0, the node stress will tend

0 5 10 15
0

2

4

6

8

10

12

14

16

Number of Virtual Nodes

N
o

d
e

 S
tr

e
s
s
 R

a
ti
o

Node Stress Ratio vs. Virtual Network Size

Candidate Sort

Random Sort

0 5 10 15
0

1

2

3

4

5

6

Number of Virtual Nodes

L
in

k
 S

tr
e

s
s
 R

a
ti
o

Link Stress Ratio vs. Virtual Network Size

Candidate Sort

Random Sort

Figure 3. Virtual Network Mapping Simulation Scenario 2

N. CPUs {4; 8; 12; 16}
CPU Frequency (GHz) {2.0 to 3.2 in 0.2 steps }

RAM Memory (GB) {4; 8; 12}
Link Bandwidth (Mbps) {1000}

Table III
VIRTUAL NETWORK MAPPING SIMULATION SCENARIO 3- PHYSICAL

NODES’ PARAMETERS POOL WITH DOUBLED NODE CAPACITY.

to infinity. In the 14-node virtual network embedding scenario,

since only 3 virtual networks were embedded, for a total of

42 embedded virtual nodes, it was not very likely that a set of

physical nodes got their available CPU load close to 0; thus,

their node stress was kept at moderate levels.

On the other hand, since in the case of 4-node networks,

25 virtual networks with 100 virtual nodes were embedded, it

was more likely that some physical nodes, possibly physical

nodes with fewer CPUs, got overloaded and that their node

stress reflected that overload, thus producing higher node stress

ratios. The node stress ratios followed a similar trend, with the

pre-sorting approach faring slightly better overall.

Regarding the evolution of the link stress ratio with the

increase of the size of virtual networks, it is possible to

note that it shows a growing behaviour. The reason for this

behaviour is quite simple: when considering the embedding

of smaller virtual networks, the granularity for link placement

optimization is high; therefore, it will be easier to better take

advantage of physical links with less link stress. In the case

of larger and more complex virtual networks, there is less

granularity in link placement, it is harder to optimize link

placement due to node constraints.

Through the attained results, it is possible to state that pre-

sorting the nodes leads to lower link stress ratios.

3) Simulation Scenario 3: In order to assess the impact of

both the nodes’ and links’ capacity on the overall maximum of

accepted virtual networks, the tests of the first simulation run

were repeated considering two separate situations: the first one

where the physical node’s capacity was doubled, according to

table III, and a second one where the physical links’ capacity

was doubled, as observed on table IV.

On the first case, figure 4, only a minor improvement in the

number of accepted virtual networks was achieved with the

N. CPUs {2; 4; 6; 8}
CPU Frequency (GHz) {2.0 to 3.2 in 0.2 steps }

RAM Memory (GB) {2; 4; 6}
Link Bandwidth (Mbps) {2000}

Table IV
VIRTUAL NETWORK MAPPING SIMULATION SCENARIO 3- PHYSICAL

NODES’ PARAMETERS POOL WITH DOUBLED LINK CAPACITY.

0 5 10 15
0

5

10

15

20

25

30

35

Number of Virtual Nodes

N
u

m
b

e
r

o
f
A

c
c
e

p
te

d
 V

ir
tu

a
l
N

e
tw

o
rk

s

Maximum Number of Accepted Virtual Networks

vs Virtual Network Size - Double Capacity Nodes

Candidate Sort

Random Sort

0 5 10 15
0

10

20

30

40

50

Number of Virtual Nodes

N
u

m
b

e
r

o
f
A

c
c
e

p
te

d
 V

ir
tu

a
l
N

e
tw

o
rk

s

Maximum Number of Accepted Virtual Networks

vs Virtual Network Size - Double Capacity Links

Candidate Sort

Random Sort

Figure 4. Virtual Network Mapping Simulation Scenario 3 - Maximum
accepted Virtual Networks.

doubling of nodes’ capacity. In the best-case scenario, for vir-

tual networks composed of 4 virtual nodes, the improvement

was limited to 2 additional embedded virtual networks. The

differences in the mapping algorithm with or without candidate

sorting are barely perceptible.

Regarding the doubling of link capacity, the gains realized

are notorious. In fact, the number of accepted virtual networks

almost doubled for virtual networks with 4 to 8 virtual nodes,

and showed significant improvements for the other virtual

networks’ sizes.

Considering the accomplished results, it is clear that, for the

specified simulation parameters, the main limiting factor for

virtual network embedding is the links’ capability. Improving

the nodes’ capacity barely showed any improvements, while

increasing the links’ bandwidth showed improvements similar

to the bandwidth’s increase factor.

B. Experimental Tests

In this section, the performance of the proposed algorithm

will be evaluated in a real platform with the goal of assessing

if it presents a viable option in production environments. For

this purpose we developed a network virtualization testing

platform, which will be described next.

1) Experimental Network Virtualization Platform: The

Network Virtualization System Suite (NVSS) is a development

and testing platform [12] that provides a framework for

working with a virtualized network environment. This plat-

form is highly modular in nature and provides the necessary

functionalities to monitor, discover [13], deploy and manage

virtual networks running on top of a substrate network. It is

designed to run on Fedora Core 8 and Debian Lenny Linux

distributions with the Xen kernel.

This virtualization platform is composed of three modules:

the Agent module, the Manager module and the Control Centre

module; their hierarchical decomposition can be analysed on

figure 5.

Figure 5. Network Virtualization System Suite - Existing modules

The Control Centre module is the user’s front-end, i.e. the

Graphical User Interface, from which the user may view and

manage the existing VNets as well as design and create new

ones.

The Manager module’s functions are many-fold: it gathers

information from the Agents and sends them commands, and

keeps the Control Centre with up-to-date information about its

requested virtual networks .

Finally, the Agent module is designed to run on every

substrate node in order to act and periodically gather data

from it. The Agents send their local resources’ information

to the Manager, provide discovery functions through a dis-

tributed algorithm, and execute resource creation and network

configuration requests.

The testbed is composed of 6 physical nodes, containing

Intel Core 2 Duo CPUs, and 6GB of RAM on average, which

are interconnected using 100Mbps and 1Gbps links. In spite of

the small-scale testbed, some insight should be gained about

the scaling of the algorithm with the increase in the number

of existing virtual networks.

2) Experimental Results: In order to assess the mapping

times, 40 virtual networks were created, one at a time. For

simplicity purposes, the created VNets were equal and their

topology was an exact replica of the underlying physical

network. Each virtual node was configured with 1 CPU,

64MB of RAM, and all virtual links were setup with a

1.0Mbps bandwidth. The Manager was running on an external

computer, connected directly to the testbed (Intel P8600; 4GB

of RAM; 100Mbps link).

The time required for the Manager to process the received

request and return the mapping information was measured.

Their average and 95% confidence interval were calculated .

The time required to perform the mapping is shown to

increase with the number of existing virtual networks (figure

6). Since the mapping procedure only depends on the virtual

0 5 10 15 20 25 30 35 40
6

8

10

12

14

16

18

20

22

24

26

V
ir

tu
a

l
N

e
tw

o
rk

 M
a
p

p
in

g
 T

im
e
(m

s
)

Number of Existing Virtual Networks

Analysis of a 6 Node VNet Required Mapping Time vs Existing VNets

Figure 6. Virtual Network Mapping results.

network to be embedded and on the physical network, it would

be expected that the mapping times remained constant, which

is not the case.

In order to understand the increase in the required mapping

time, one must take into consideration that when performing

the mapping, the Manager needs to update the physical links’

load, and therefore needs to access each existing virtual net-

work. Thus, for each additional virtual network, the Manager

will need more time to calculate the physical links’ stress.

This increment in required time is revealed in the obtained

results, which clearly show a linear scaling with the number

of existing virtual networks.

Regarding the absolute mapping times, they remain in the

order of low tens of millisecond, which is very good and can

be considered real-time. The considerable deviations on the

measured mapping times are probably due to the Manager’s

need to lock the different resources’ mutexes, while perform-

ing the mapping. The considerable deviations on the measured

mapping times are probably due to the Manager’s need to

lock the different resources’ mutexes, while performing the

mapping.

V. CONCLUSIONS

This paper proposed a heuristic-based virtual network em-

bedding algorithm that considers the support of heterogeneous

virtual and substrate networks. This algorithm defines stress

formulas, for both nodes and links, that take into account the

several characteristics of both nodes and links. The mapping

approach uses a CSPF algorithm, which will then determine

a node potential to be chosen in the mapping process.

The simulation results have shown that the main bottleneck

for virtual network embedding is the capacity of the links. It

was also shown that the number of embedded virtual networks

has a decaying exponential behaviour with the growth of the

virtual networks’ size.The experimental results demonstrated

that the proposed algorithm is fast (requiring a mapping time

in the order of low tens of milliseconds) and linearly scalable

with the increase in the number of existing virtual networks.

Future work will address the reconfiguration and fault-

management approaches.

VI. ACKNOWLEDGMENTS

The authors are thankful to the members of the 4WARD

project, particularly those involved in Work Package 3, for

the collaboration and fruitful discussions.

REFERENCES

[1] J. Carapinha and J. Jiménez, “Network virtualization: a view from
the bottom,” in Proceedings of the 1st ACM workshop on Virtualized

infrastructure systems and architectures. Barcelona, Spain: ACM, 2009,
pp. 73–80.

[2] M. Melo, S. Sargento, and J. Carapinha, “Network Virtualisation from
an Operator Perspective,” Proc Conf. sobre Redes de Computadores -

CRC, October, 2009.
[3] N. M. K. Chowdhury and R. Boutaba, “Network virtualization: State

of the art and research challenges,” IEEE Communications Magazine,
no. 7, pp. 20–26, July.

[4] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network re-
sources to virtual network components,” in INFOCOM 2006. 25th IEEE

International Conference on Computer Communications. Proceedings,
2006, pp. 1–12.

[5] J. Lischka and H. Karl, “A virtual network mapping algorithm based on
subgraph isomorphism detection,” in VISA ’09: Proceedings of the 1st

ACM workshop on Virtualized infrastructure systems and architectures.
New York, NY, USA: ACM, 2009, pp. 81–88.

[6] J. Lu and J. Turner, “Efficient mapping of virtual networks onto a shared
substrate,” Washington University in St. Louis, Tech. Rep., 2006.

[7] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: Substrate support for path splitting and migration,” ACM

SIGCOMM Computer Communication Review, vol. 38, no. 2, p. 17–29,
2008.

[8] N. Chowdhury, M. Rahman, and R. Boutaba, “Virtual network embed-
ding with coordinated node and link mapping,” in INFOCOM 2009,

IEEE, 2009, pp. 783–791.
[9] D. G. Andersen, “Theoretical approaches to node assignment,” Dec.

2002, unpublished Manuscript.
[10] I. Houidi, W. Louati, and D. Zeghlache, “A distributed virtual network

mapping algorithm,” in Communications, 2008. ICC ’08. IEEE Interna-

tional Conference on, 19-23 2008, pp. 5634 –5640.
[11] B. Waxman, “Routing of multipoint connections,” Selected Areas in

Communications, IEEE Journal on, vol. 6, no. 9, pp. 1617 –1622, dec
1988.

[12] J. Nogueira, M. Melo, J. Carapinha, and S. Sargento, “Network Virtu-
alization System Suite: Experimental Network Virtualization Platform,”
TridentCom 2011, 7th International ICST Conference on Testbeds and

Research Infrastructures for the Development of Networks and Commu-

nities, April 2011.
[13] J. Nogueira, M. Melo, J. Carapinha, and S. Sargento, “A Distributed Ap-

proach for Virtual Network Discovery,” IEEE Globecom 2010 Workshop

on Network of the Future, December 2010.

	Introduction & Motivation
	Related Work on Mapping Algorithms
	Mapping Algorithm
	Performance Results
	Simulation Results
	Simulation Scenario 1
	Simulation Scenario 2
	Simulation Scenario 3

	Experimental Tests
	Experimental Network Virtualization Platform
	Experimental Results

	Conclusions
	Acknowledgments
	References

