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Abstract Currently, there is a strong effort of the research community in rethinking

the Internet architecture to cope with its current limitations and support new require-

ments. Many researchers conclude that there is no one-size-fits-all solution for all of

the user and network-provider needs and, thus, advocate for a pluralist network archi-

tecture, which allows the coexistence of different protocol stacks running at the same

time over the same physical substrate. In this paper, we investigate the advantages and

limitations of the virtualization technologies for creating a pluralist environment for

the Future Internet. We analyze two types of virtualization techniques, which provide

multiple operating systems running on the same hardware, represented by Xen, or mul-

tiple network flows on the same switch, represented by OpenFlow. First, we define the

functionalities needed by a Future Internet virtual network architecture, and how Xen

and OpenFlow provide them. We then analyze Xen and OpenFlow in terms of network

programmability, processing, forwarding, control, and scalability. Finally, we carry out

experiments with Xen and OpenFlow network prototypes, identifying the overhead in-

curred by each virtualization tool by comparing it with native Linux. Our experiments

show that OpenFlow switch forwards packets as well as native Linux, achieving similar

high forwarding rates. On the other hand, we observe that the high complexity involv-

ing Xen virtual machine packet forwarding limits the achievable packet rates. There is

a clear tradeoff between flexibility and performance, but we conclude that both Xen

and OpenFlow are suitable platforms for network virtualization.
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1 Introduction

The Internet is a great success with more than one billion users spread over the world.

The Internet model is based on two main pillars, the end-to-end data transfer service

and the TCP/IP stack [2]. Indeed, those two pillars guarantee that the network core

is simple and transparent, while all the intelligence is placed on the end systems. This

architectural choice makes it easy to support new applications, because there is no

need to change the network core. On the other hand, this model ossifies the Internet,

making it difficult to solve structural problems like scalability, management, mobility,

and security [6]. Today, there is a rough consensus that upgrade patches are not enough

to meet current and future requirements. Then, the Internet must be reformulated to

provide a flexible infrastructure that supports innovations in the network, which is

being called the Future Internet [3, 6]. We divide the models for the Future Internet

into two types: monist, described in Fig. 1(a), and pluralist, described in Fig. 1(b) [1].

According to the monist model, the network has a monolithic architecture that is

flexible enough to provide support to new applications. On the other hand, the pluralist

approach is based on the idea that the Internet must support multiple protocol stacks

simultaneously. Hence, the pluralist model establishes different networks, according to

the needs of network applications. A characteristic in favor of the pluralist model is that

it intrinsically provides compatibility with the current Internet, which can be one of the

supported protocol stacks. Other specialized networks could be used to provide specific

services, such as security, mobility, or quality of service. This is a simpler approach than

trying to design a network that could solve all the problems that we already know in

the network, as well as all the other problems that we still do not know, as suggested

by the monist model.

(a) Current monist architecture model.
Only one protocol stack running over the
physical substrate.

(b) Pluralist architecture model. Different
protocol stacks running, at the same time,
over the same physical substrate.

Fig. 1 Models for the monist and pluralist network architectures.

All pluralist proposals are based on the same idea that multiple virtual networks

should run over the same physical substrate [9], even though they differ in packet

formats, addressing schemes, and protocols. Indeed, the virtual networks share the same

physical medium, but run different protocol stacks independently from each other.

This paper addresses the issue of sharing the network physical substrate among

different virtual networks. We analyze two of the main approaches for virtualizing the
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physical network, Xen [7] and OpenFlow [12], and discuss the use of these technologies

for running virtual networks in parallel. The main objective of this paper is to in-

vestigate the advantages and limitations of the network virtualization technologies for

creating a virtual environment that could be used as the basis of a pluralist architecture

for the Future Internet.

The performance of Xen and OpenFlow in personal computers used as routers/

switches has been previously evaluated. Egi et al. [7] evaluate the performance of dif-

ferent forwarding schemes using Xen. Authors observe that forwarding packets using

virtual machines severely impact system performance. Therefore, they evaluate the

forwarding performance in a specialized domain, improving the performance of Xen to

near non-virtualized environments. Egi et al. argue that each virtual machine requires

CPU time to process its operations. Therefore, the number of virtual-machine context

switches increases proportionally to the number of instantiated virtual machines, de-

creasing the performance of the whole system. Mateo analyzes packet forwarding using

OpenFlow [11]. He investigates the network aggregated throughput under normal and

saturated conditions. In addition, he also analyzes different OpenFlow configurations.

Mateo shows that OpenFlow throughput can be as high as non-virtualized environ-

ments. Nevertheless, this performance is affected by the flow table size. He shows that

flow tables configured using a hash algorithm reaches high aggregated throughput even

under heavy traffic conditions.

The contributions of this paper are threefold. First, we establish the functionalities

and primitives required by a virtual network architecture and show how Xen and

OpenFlow satisfy such requirements. We then provide a detailed comparison of Xen

and OpenFlow virtualization models, showing how they impact network scalability,

programmability, processing, forwarding, control, and management. We show that a

network virtualization model using Xen is a powerful and flexible solution, because the

whole network element can be virtualized into virtual slices that have total control of

hardware components. This powerful flexibility, however, impacts the packet forwarding

performance [7]. A solution to this problem seems to be the sharing of data planes

among virtual slices. OpenFlow follows this approach by defining a centralized element

that controls and programs the shared data plane in each forwarding element. Finally,

we carry out experiments to compare Xen and OpenFlow performance acting as a

virtualized network element (router/switch) in a personal computer. Both Xen and

OpenFlow are deployed in a Linux system. Hence, we use native Linux performance as

a reference to measure the overhead introduced by each virtualization tool. We analyze

the scalability of Xen and OpenFlow with respect to the number of parallel networks.

Our experiments show that, using shared data planes, Xen and OpenFlow can multiplex

several virtual networks without any measurable performance loss, comparing with a

scenario where the same packet rate is handled by a single virtual network element.

Delay and jitter tests show similar results, with no measurable overhead introduced by

network virtualization tools, except for the case in which the traffic is forwarded by Xen

virtual machines. Even in this worst case, which presents per-hop delays of up to 1.7

ms, there is no significant impact on real-time applications such as voice over IP (VoIP).

Finally, our forwarding performance experiments show that OpenFlow switch forwards

packets as well as native Linux, achieving about 1.2 Mp/s of packet forwarding rate

without any packet loss. On the other hand, we observe a high complexity involving

Xen virtual machine packet forwarding that limits the forwarding capacity to less

than 200 kp/s. Differently from previous work, we also analyze how the allocation of

processing resources affects Xen forwarding perfomance.
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Based on our findings, we conclude that both Xen and OpenFlow are suitable

platforms for network virtualization. Nevertheless, the tradeoff between flexibility and

performance must be considered in the Future Internet design. This tradeoff indicates

that the use of shared data planes could be an important architectural choice when

developing a virtual network architecture.

The remainder of this paper is structured as follows. In Section 2, we discuss the

approaches for network virtualization according to data plane and control plane struc-

ture. In Section 3, we describe both Xen and OpenFlow, and in Section 4, we discuss

the use of these technologies for network virtualization. We describe the performance

test environment and the obtained results in Section 5. Finally, in Section 6, we present

our conclusions.

2 Approaches for Network Virtualization

We consider virtualization as a resource abstraction that allows slicing a resource into

several slices, as shown in Fig. 2. This abstraction is often implemented as a soft-

ware layer that provides “virtual sliced interfaces” quite similar to the real resource

interface. The coexistence of several virtual slices over the same resource is possible

because the virtualization layer breaks the coupling between the real resource and the

above layer. Fig 2 shows two examples of virtualization: computer virtualization and

network virtualization. The computer virtualization abstraction is implemented by the

so-called Virtual Machine Monitor (VMM), which provides to virtual machines (VMs)

an interface (i.e., the hardware abstraction layer) quite similar to a computer hardware

interface, which includes processor, memory, input/output devices, etc. Thus, each vir-

tual machine (VM) has the impression of running directly over the physical hardware,

but actually the physical hardware is shared among several VMs. We call slicing this

kind of resource sharing, because the virtual machines are isolated: one VM cannot in-

terfere with other VMs. Computer virtualization is widely used in datacenters to allow

running several servers in a single physical machine. This technique saves energy and

reduces maintenance costs, but flexibility is the most important virtualization feature,

because each virtual machine can have its own operating system, application programs,

configuration rules, and administration procedures. The flexibility of running whatever

is desired into virtual slices, such as different and customized protocol stacks, is the

main motivation of applying the virtualization idea to networks [1]. As shown in Fig 2,

network virtualization is analogous to computer virtualization, but now the shared

resource is the network.

2.1 Network Virtualization for Accomplishing the Pluralist Approach

Network virtualization allows to instantiate/delete and monitor virtual networks and

also to migrate network elements and set its resource-allocation parameters. Such func-

tionalities make the network virtualization a suitable technology for creating multiple

virtual networks and, as a consequence, for supporting the pluralist approach, because

several requirements are satisfied, as explained below.

Functionality 1: Creation of Multiple Customized Networks - In a pluralist

architecture, we have multiple networks running in parallel. The instantiate primitive

can be used to instantiate virtual network elements, such as virtual routers and/or
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(a) The concept of slicing re-
sources by using virtualization.

(b) Virtual slices on a computer
harware.

(c) Virtual slices on a network.

Fig. 2 Obtaining “sliced” resources by means of virtualization for different scenarios.

virtual links, and, therefore, multiple virtual networks can be rapidly deployed and run

simultaneously. Each virtual network has its own protocol stack, network topology, ad-

ministration policy, etc. This enables network innovation and new business models [9].

With network virtualization, a service provider can allocate an end-to-end virtual path

and instantiate a virtual network tailored to the offered network service, e.g. a network

with quality-of-service (QoS) guarantees. Hence, new services can be easily deployed

and new players can break the barrier to enter in the network service market.

Functionality 2: Flexible Management - The network virtualization layer breaks

the coupling between the logic used to construct the forwarding table and the physi-

cal hardware that implements the packet forwarding task [17]. Therefore, the migrate

primitive allows moving a virtual network element from a physical hardware to another,

without changing the logical/virtual network topology. In addition, traffic engineering

and optimization techniques can use the migrate primitive to move virtual network

elements/links along the physical infrastructure in order to minimize energy costs,

distance from servers to specific network users, or other objective functions.

Functionality 3: Real-time Control - The virtual networks architecture also sup-

ports real-time control of virtual network resources because resource-allocation param-

eters can be set for each virtual network element (router, switch, link, gateway, etc.).

We can set the allocated memory, bandwidth, maximum tolerated delay, etc. Even spe-

cific hardware parameters can be set, for instance, the number of virtual processors,

priority of processor usage in a contention scenario, etc. Thus, we can dynamically

adapt the resources allocated to each virtual network according to the current network

condition, number of users, priority of each virtual network, service level agreements

(SLAs), etc.

Functionality 4: Monitoring - Network virtualization also comes with a set of

monitoring tools required to measure variables of interest, such as available bandwidth,

processor and memory usage, link and end-to-end delay, etc. The monitor primitive

is called to measure the desired variables. Furthermore, an intrusion detection system

(IDS) can also be active to detect malicious nodes. In this case, the delete primitive

can be used to delete a virtual network element/link or even an entire network if an

attack (e.g., Distributed Denial of Service - DDoS) is detected.
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2.2 Network Virtualization Approaches

Network virtualization platforms must provide the above mentioned functionalities.

We now evaluate the main approaches for creating these models according to the level

at which the network virtualization is placed.

Fig. 3 compares two basic approaches for virtualizing a network element. Fig. 3(a)

shows the conventional network element architecture, with a single control and data

plane. For a router, the control plane is responsible of running the network control

software, such as routing algorithms (e.g., RIP, OSPF, and BGP) and network control

protocols (e.g., ICMP), whereas the data plane is where forwarding tables and hard-

ware data paths are implemented. To virtualize the routing procedure means that a

virtualization layer is placed at some level of the network element architecture in order

to allow the coexistence of multiple virtual network elements over a single physical

network element. Assuming a virtualization layer placed between the control and data

planes, then only the control plane is virtualized, as shown in Fig. 3(b). In this case,

the data plane is shared by all virtual networks and each virtual network runs its own

control software. Compared to the conventional network architecture, this approach

greatly improves the network programmability because now it is possible to run mul-

tiple and customized protocol stacks, instead of a single and fixed protocol stack. For

instance, it is possible to program a protocol stack for network 1, which is different

from networks 2 and 3, as illustrated in the figure. In the second network virtualiza-

tion approach, both control and data planes are virtualized (Fig. 3(c)). In this case,

each virtual network element implements its own data plane, besides the control plane,

improving even more the network programmability. This approach allows customiz-

ing data planes at the cost of some performance loss, because the data plane is no

longer dedicated to a common task. This tradeoff between network programmability

and performance is investigated in detail in Sections 4.1 and 4.2.

(a) Conventional architec-
ture or monist model: only
one network.

(b) Pluralist model virtualiz-
ing the control plane (CP).

(c) Pluralist model virtualiz-
ing the control plane (CP)
and the data plane (DP).

Fig. 3 Approaches for network virtualization differ on the level at which the virtualization
layer is placed: a) no virtualization in the monist model; b) pluralist model with several virtual
networks with the same data plane, but differing in control plane, and c) pluralist model with
several virtual networks differing in control and data planes.

It is worth mentioning that the approach that virtualizes only the control plane,

can be further divided into more subcategories depending on the isolation level in data

plane sharing among virtual network elements. If there is a strong isolation, then each

virtual control plane has access to only a part of the data plane and cannot interfere

with the other parts. On the other hand, if the data plane is really shared among

virtual control planes, then it is possible that a virtual control plane interferes with

other virtual control planes. For instance, it is possible that a single virtual control
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plane fills the entire forwarding table with its own entries, which can lead to packet

drops on the other virtual networks. The decision between strong isolation (slicing)

and weak isolation (sharing) is analogous to the decision between circuit and packet

switching.

3 Network Virtualization Technologies

In this section, we present two technologies that can be used to network virtualization:

Xen and OpenFlow.

3.1 Xen

Xen is an open-source virtual machine monitor (VMM), also called hypervisor, that

runs on commodity hardware platforms [7]. Xen architecture is composed of one virtual

machine monitor (VMM) located above the physical hardware and several domains

running simultaneously above the hypervisor, called virtual machines, as shown in

Fig. 4. Each virtual machine has its own operating system and applications. The VMM

controls the access of the multiple domains to the hardware and also manages the

resources shared by these domains. Hence, virtual machines are isolated from each

other, i.e., the execution of one virtual machine does not affect the performance of

another. In addition, all the device drivers are kept in an isolated driver domain,

called domain 0 (dom0), in order to provide reliable and efficient hardware support [7].

Domain 0 has special privileges compared with the other domains, referred to as user

domains (domUs), because it has total access to the hardware of the physical machine.

On the other hand, user domains have virtual drivers that communicate with dom0 to

access the physical hardware.

Fig. 4 The Xen architecture.
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Xen virtualizes a single physical network interface by demultiplexing incoming

packets from the physical interface to the user domains and, conversely, multiplex-

ing outgoing packets generated by these user domains. This procedure, called network

I/O virtualization, works as follows. Domain 0 directly access I/O devices by using its

native device drivers and also performs I/O operations on behalf of domUs. On the

other hand, user domains employ virtual I/O devices, controlled by virtual drivers, to

request dom0 for device access [13], as illustrated in Fig. 4. Each user domain has vir-

tual network interfaces, called front-end interfaces, required by this domain for all its

network communications. Back-end interfaces are created in domain 0 corresponding

to each front-end interface in a user domain. The back-end interfaces act as the proxy

for the virtual interfaces in dom0. The front-end and back-end interfaces are connected

to each other through an I/O channel. In order to exchange packets between the back-

end and the front-end interfaces, the I/O channel employs a zero-copy mechanism that

remaps the physical page containing the packet into the target domain [13]. It is worth

mentioning that as perceived by the operating systems running on the user domains,

the front-end interfaces are the real ones. All the back-end interfaces in dom0 are con-

nected to the physical interface and also to each other through a virtual network bridge.

This is the default architecture used by Xen and it is called bridge mode. Thus, both

the I/O channel and the network bridge establish a communication path between the

virtual interfaces created in user domains and the physical interface.

Different virtual network elements can be implemented using Xen as it allows mul-

tiple virtual machines running simultaneously on the same hardware [7], as shown in

Fig. 5(a). In this case, each virtual machine runs a virtual router. Because the virtu-

alization layer is at a low level, each virtual router can have its own control and data

planes. The primitives for virtual networks, defined in Section 2.1, are easily enforced

by using Xen to build virtual routers. First, the execution of one virtual router does

not affect the performance of another one because user domains are isolated with Xen.

In addition, virtual routers are instantiated, configured, monitored, and deleted on

demand. Finally, the live-migration mechanism implemented by Xen [5] allows virtual

routers to move over different physical routers.

(a) Xen: one data plane (DP) and one control
plane (CP) per virtual router.

(b) OpenFlow: a shared data plane (DP) per
node and all the control planes (CPs) on the
controller.

Fig. 5 Virtual networks with Xen and OpenFlow.
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3.2 OpenFlow

OpenFlow [12] allows the use of the wiring closets on university campus not only for

the production network, but also for experimental networks. The OpenFlow project,

proposed by Standford University, aims at creating virtual environments for innova-

tions in parallel with the production network using network elements such as switches,

routers, access points, and personal computers.

OpenFlow presents a new architecture for providing virtual network environments.

The key idea is the physical separation of the network forwarding function, carried

out by the data plane, and the network control function, carried out by the control

plane. Hence, data and control planes are performed by different network elements.

The virtualization of the forwarding elements is accomplished by a shared flow table,

which represents the data plane, and all control planes are centralized in a network

element, called controller, which runs applications that control each virtual network.

An example of network using OpenFlow is on Fig. 5(b).

The OpenFlow protocol defines the communication between forwarding elements

and the controller. It is based on the establishment of a secure channel between each

forwarding element and the controller, which uses this channel to monitor and configure

the forwarding elements. Basically, OpenFlow defines a flow as a sequence of packets

and performs forwarding based on flows. Every time the first packet of a not yet

classified flow reaches a forwarding element, it is forwarded to the controller. Then, the

controller sets a path for the following packets of the flow by setting forwarding rules in

each forwarding element that belongs to the chosen path. The controller may also set

the action of normal processing for a flow to be forwarded according to conventional

layer-2 (L2) and layer-3 (L3) routing, as if OpenFlow did not exist. That is the reason

why OpenFlow can be used in parallel to the production network without affecting

production traffic.

The data plane in OpenFlow is a flow table described by header fields, counters,

and actions. The header fields are a twelve-tuple structure that describes the packet

header, as shown in Fig. 6. These fields specify a flow by setting a value for each field

or by using a wildcard to set only a subset of fields. The flow table also supports the

use of subnet masks, if the hardware in use also supports this kind of match [15].

This twelve-tuple structure gives high flexibility for the forwarding function, because

a flow can be forwarded based not only on the destination IP, as in the conventional

TCP/IP network, but also on the TCP port, the MAC address, etc. Because the flows

can be set based on layer-2 addresses, the forwarding elements of OpenFlow are also

called OpenFlow switches. This, however, does not imply that forwarding in OpenFlow

must be based on layer 2. Moreover, one of the future objectives of OpenFlow is that

the header fields are user-described, which means that the packet header will not be

described by fixed fields in a flow, but by a combination of fields specified by the

administrator of the virtual network. Thus, OpenFlow will be able to forward flows

belonging to networks with any kind of protocol stack.

After the header fields, the flow description is followed by the counters, which

are used for monitoring forwarding elements. Counters compute data such as the flow

duration and the amount of bytes that were forwarded by one element. The last fields

in the flow description are the actions, which are a set of instructions that can be taken

over each packet of a specific flow in the forwarding elements. These actions include

not only forwarding a packet to a port, but also changing header fields such as VLAN

ID, priority, and source/destination addresses.
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Fig. 6 A flow entry in an OpenFlow forwarding element.

The controller is a central element in the network, which communicates with all

the nodes to configure the flow tables. The controller runs a network operating system,

which provides the basic functions of network configuration to the applications that

manage the virtual networks. Hence, the controller in OpenFlow works as an interface

between the network applications and the forwarding elements, providing the basic

functions for accessing the first packet in flows and for monitoring network elements.

OpenFlow works with any controller that is compatible with the OpenFlow protocol,

such as Nox [10]. In this case, each control plane is composed of a set of applications

running over Nox. Hence, a virtual network in OpenFlow is defined by its control plane

and by the flows that are being controlled by this control plane, as shown in Fig. 7.

Hence, the virtual network topology depends on the current flows in the network.

Fig. 7 The OpenFlow controller model.

Using the single controller model, it is possible to create many virtual networks.

It is important noticing, however, that different applications running over the same

operating system are not isolated. As a consequence, if one application uses all the

available resources or crashes it can stop the controller, harming all the other virtual

networks. FlowVisor is a tool used with OpenFlow to allow different controllers working

over the same physical network [16]. FlowVisor works as a proxy between the forwarding

elements and the controller, assuming, for instance, one controller per network. Using

this model, it is possible to guarantee that failures in one virtual network will not

impact the other virtual networks.

OpenFlow provides a flexible infrastructure based on the idea of distributed for-

warding elements, which provide basic functions for operating a network, and central-

ized control planes. Using this infrastructure, it is possible to slice the physical network

into multiple virtual networks. In OpenFlow, the instantiation of a network is just the

creation of sets of applications in the controller. The new network flows will be created

on demand, according to the packets that enter the network. OpenFlow also provides

a flexible infrastructure for reallocating network resources, which means only to re-

program the flow table in each element of the network. This is a simple operation for

the controller, because it knows where the physical elements are and how they are

connected.
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4 Characteristics of Xen and OpenFlow Virtualization Technologies

Neither Xen nor OpenFlow were developed for supporting a pluralist architecture for

Internet, but they are the best commodity alternatives for a virtual network substrate.

We evaluate the main characteristics of each of these technologies, emphasizing the

advantages and the disadvantages for supporting multiple networks and providing flex-

ibility for innovations.

Xen and OpenFlow have different virtualization concepts. Xen creates virtual net-

works by slicing physical network elements into different concurrent virtual routers.

Consequently, a virtual network is seen as a set of interconnected virtual routers dis-

tributed over the physical infrastructure. Differently, OpenFlow creates virtual net-

works by slicing the network control into many control planes, which create the for-

warding tables in each network element. Hence, when using OpenFlow, a virtual net-

work is a set of flows with common characteristics, which are controlled by the same set

of applications of the OpenFlow controller. The differences between Xen and OpenFlow

virtualization models impact scalability, programmability, and network-data process-

ing/forwarding.

4.1 Network-data Processing and Programmability

One of the main advantages of the pluralist model is to support innovation. As a

consequence, the network must be flexible enough providing end-to-end paths over the

available physical infrastructure, guaranteeing to the administrator the whole control

of the network, which includes, the choice of the protocol stack, the forwarding rules,

the network-data processing, etc.

Because Xen virtualization layer is directly placed over the hardware, each virtual

router has access to all computer components, such as memory, processor, and I/O

devices. Therefore, the network administrator is free to choose everything that runs over

the virtualization layer of Xen. Thus, different operating systems, forwarding tables,

forwarding rules and so on, can be defined for each virtual network. Furthermore, both

data and control plane can be completely virtualized, as shown in Fig. 3(c). Therefore,

Xen provides a powerful and flexible platform for the network control and management,

allowing hop-by-hop packet processing and forwarding. This way, virtual networks with

new functionalities can be easily deployed. For instance, a virtual network with support

for packet signature can be instantiated to guarantee authentication and access control.

This functionality would solve security problems of the current Internet that cannot

be implemented due to the network “ossification” [6]. Even disruptive network models

can be implemented due to Xen flexibility for packet processing.

The OpenFlow virtualization model is different from Xen, because the virtual slice

is a set of flows and, as a consequence, the actions concern flows, instead of packets.

OpenFlow provides a simple packet forwarding scheme in which the network element

looks for a packet entry on the flow table to forward the packet. If there is no entry, the

packet is forwarded to the controller that sets a forwarding rule in each node on the

selected route to forward the packet. Hence, the main disadvantage of the OpenFlow

is that all virtual networks have the same forwarding primitives (flow table lookup,

wildcard matching, and actions), because the data plane is shared by all the virtual

networks in each network node.This, however, does not imply in a completely inflexible

packet processing. Indeed, OpenFlow protocol version 1 specifies that the controller can
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set flow actions that define that a header field can be modified before forwarding the

packet. Hence, OpenFlow provides a fine grained forwarding table, much more flexible

than the current TCP/IP forwarding table. For instance, the forwarding element could

change the destination address to forward the packet to a middle box before forwarding

it to the next network element. On the other hand, packet-level features, such as packet

signature verification, are not easily implemented in OpenFlow because such features

must be executed by the controller or by a middle box, which causes a great loss in

the network performance.

Opposing to the OpenFlow shared-data-plane model, Xen provides independent

data planes for different virtual networks. Neverthless, Xen is still based on the current

TCP/IP forwarding table. Currently, Xen provides a forwarding table which is based

on IP routing, which means that the forwarding plane is only based on the source and

destination IP addresses. In contrast, OpenFlow flow space definition is composed of n

dimensions, where n is the number of fields in the header that could be used to specify

a flow, as shown on Fig. 8. Hence, we define a flow based on all the dimensions or based

on a wildcard that defines which header fields are important for forwarding packets of

that flow [12]. The consequence of this kind of forwarding table is that the packets are

forwarded based not only on the destination IP, but also on other parameters, such as

the kind of application that is in use. This kind of forwarding table is also possible in

Xen, but it is still not available.

(a) Flow space definition in
the TCP/IP model.

(b) Flow space definition in the Open-
Flow model.

Fig. 8 Models of flow space to define the forwarding table in TCP/IP based networks and in
OpenFlow based networks.

Another key difference between Xen and OpenFlow in what concerns programma-

bility is the control plane model. In Xen, each virtual network node has both the data

and the control plane, and, consequently, the network control is decentralized. In Open-

Flow, the network node has only the data plane. The control plane is centralized on

the controller, which is a special node in the network. The use of a centralized control

plane makes it easier to develop algorithms for network control, when compared to the

use of a decentralized approach. A centralized control, however, creates the need for

an extra server in the network and also creates a single failure point in the network.
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4.2 Performance on Network-data Forwarding

One important feature of a technology to provide an environment with multiple vir-

tual networks for the Future Internet is a high forwarding performance. The efficiency

of network-data forwarding does not uniquely depend on the hardware, but also on

the logic provided by each technology. In this section, we assume that both Xen and

OpenFlow run in the same hardware to evaluate which losses each technology imposes

to the network-data forwarding.

Xen performance depends on the location where packet forwarding is performed.

For each virtual router, packet forwarding can be performed by the operating system

running on the user domain corresponding to the virtual router or by domain 0. In the

first case, we have more flexibility in the packet processing, but the costs associated with

moving packets between dom0 and domU, to perform forwarding, introduces control

overhead and impact Xen performance. In the second case, packets to and from all

virtual routers are forwarded by dom0, which deals with multiple forwarding tables

simultaneously.

The Xen performance of packet forwarding also depends on the two possible modes

used to move packets among virtual machines [7]: bridge and router modes. The bridge

mode is the default network architecture used by Xen, presented in Fig. 4. Nevertheless,

this architecture does not apply for a router, because we need more than one physical

interface in each device. Fig. 9(a) shows an example of the bridge mode with two

physical interfaces. We have two bridges on dom0, one per physical interface, connecting

the back-end interfaces and the physical ones. Packet forwarding, in this case, can be

performed at dom0 by using layer-2 or layer-3 forwarding. Let p be a packet arriving

at physical interface ph0 that must be forwarded to physical interface ph1. First, p

is handled by the device driver running on dom0. At this time, p is in ph0, which is

connected to bridge br0. This bridge demultiplexes the packet p and moves it to back-

end interface be00 based on the MAC address of the frame destination. After that, p is

moved from be00 to the front-end interface fe0 by using the I/O channel through the

hypervisor. The packet p is then forwarded to the front-end interface fe1 and after that

another I/O channel is used to move p to the back-end interface be01. This interface

is in the same bridge br1 of the physical interface ph1. Thus, p reaches its outgoing

interface. It is worth mentioning that the hypervisor is called twice to forward one

packet.

In the router mode, illustrated by Fig.9(b), the domain 0’ interfaces are the physical

ones with an IP address associated to each one. As a consequence, the router mode does

not require bridges connecting each physical interfaces and I/O channels, i.e., packet

forwarding from a physical interface to another one at dom0 is performed as well as in

native Linux. In this case, if domain 0 is used as shared data plane (Fig. 3(b)), there

are no calls to the hypervisor. With the router mode, the hypervisor is called only

when each virtual router implements its own data plane, as illustrated in Fig. 3(c). In

this case, packets are routed to the back-end interface associated to the destination

domU and then are moved to the front-end interface by using the I/O channel through

the hypervisor. Then, packets are moved to the back-end interface and finally routed

to the outgoing physical interface. In order to allow user domains to send and receive

packets, IP addresses are also assigned to back-end interfaces in contrast to the bridge

mode.

OpenFlow does not assume virtualized data planes on forwarding elements and,

consequently, follows the model of one data plane for all the networks. Consequently,
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(a) The bridge mode.

(b) The router mode.

Fig. 9 The Xen network architectures for packet forwarding.

it is expected for OpenFlow performance the same performance of the native packet

forwarding. OpenFlow, however, shows a disadvantage when the flow is not configured.

As we explained before, when a packet reaches an OpenFlow switch, if the flow is not

configured on the table, it is forwarded through the network to the controller. The

controller, then, configures the OpenFlow switches to route the packet through the

network. This mechanism introduces a greater delay when forwarding the first packet

of each flow, due to the transmission and the controller processing delays. If the traffic

is mostly formed of small flows, it can imply in a performance decrease in OpenFlow.

4.3 Scalability to the Number of Virtual Networks

Scalability is related to the number of virtual networks running over the same physical

node. The new Internet requisites are still an open issue and the new architecture should

not restrict the number of networks running over the available physical infrastructure.

The Xen approach is less flexible in this sense, because the virtual network element is
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a virtual machine, which demands much more hardware resources, such as processing

power and memory space, than a simple set of flows in an OpenFlow switch. Indeed,

context switching and datapath in Xen are much more complex than in OpenFlow. The

concept of virtual networks in OpenFlow is given by a set of flows which corresponds

to a specific set of characteristics that define that virtual network. For this reason,

OpenFlow supports thousands of virtual networks running in parallel, while Xen is

restricted to the number of virtual machines that can be multiplexed over the same

hardware. It is worth mentioning that Xen scalability can be improved if Domain 0 is

used as a shared data plane.

5 Performance Evaluation

We evaluate the performance of Xen and OpenFlow in a testbed composed of three

machines, as shown in Fig 10. The Traffic Generator machine (TG) sends packets to

the Traffic Receiver machine (TR), through the Traffic Forwarder machine (TF), which

simulates a virtual network element. The Traffic Forwarder machine (TF) is an HP

Proliant DL380 G5 server equipped with two Intel Xeon E5440 2.83GHz processors

and 10GB of RAM. Each processor has 4 cores, therefore TF machine can run 8

logical CPUs. When not mentioned, TF machine is set up with 1 logical CPU. TF

machine uses the two network interfaces of a PCI-Express x4 Intel Gigabit ET Dual

Port Server Adapter. The Traffic Generator and Traffic Receiver are both general-

purpose machines equipped with an Intel DP55KG motherboard and an Intel Core I7

860 2.80GHz processor. Traffic Generator (TG) and Traffic Receiver (TR) are directly

connected to the Traffic Forwarder (TF) via their on-board Intel PRO/1000 PCI-

Express network interface.
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Fig. 10 Testbed used in the evaluation. The Traffic Forwarder machine (TF) is set as Xen,
OpenFlow, or Native Linux, according to each experiment.

In the following experiments, we test packet forwarding using Native Linux, Xen,

and OpenFlow.

In Native Linux experiments, the Traffic Forwarder runs a Debian Linux kernel

version 2.6.26. This kernel is also used in OpenFlow experiments with an additional

kernel module to enable OpenFlow. In Xen experiments, Domain 0 and User Domains

run a Debian Linux system with a paravirtualized kernel version 2.6.26. For traffic

generation, we use the Linux Kernel Packet Generator [14], which works as a kernel
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module and can generate packets at high rates. In the following, we explain the packet

forwarding solutions evaluated in our experiments.

5.1 Xen, OpenFlow, and Native Linux Scenarios

In the Xen scenario, we test three different network configurations. In the two first

ones, Xen works in the bridge mode, explained in section 4.2. In the first configuration,

called Xen-VM, virtual machines work as complete virtual routers, which means that

both data and control plane are on the virtual machine. In the second configuration,

called Xen-Bridge, we assume that virtual machines contain only the control plane.

The data plane, running in Domain 0, is shared by all virtual routers. The Xen-Bridge

configuration is expected to give a higher performance on packet forwarding, but it

reduces the flexibility on packet processing when compared with the Xen-VM configu-

ration. Finally, in the third configuration, Xen works in the router mode. In this case,

we evaluate only the packet forwarding through Domain 0 and we call this configu-

ration Xen-Router. We assume, for this configuration, the existence of a forwarding

table in Domain 0 corresponding for each virtual machine. We use the Xen hypervisor

version 3.4.2 for all configurations.

In the OpenFlow scenario the Traffic Forwarder (TF) acts as an OpenFlow Switch.

An OpenFlow Controller is connected to TF, using a third network interface. TF runs

OpenFlow Reference System version 0.8.9. The controller is an IBM T42 Laptop that

runs a Debian Linux system. We choose Nox version 0.6.0 [10] as the network controller.

We use the pyswitch application, which is available in Nox to create flow rules in the

OpenFlow switch.

In the Native Linux scenario, we test three different packet forwarding configu-

rations. In the first one, Native-Router, TF works as a router. For this test we used

the standard Linux kernel routing mechanism with static routes. The Native-Bridge

configuration uses the Linux kernel bridge, which implements a software-based switch

on the PC. Since we compare layer-2 and layer-3 solutions with OpenFlow and Xen,

we need to compare their performance with both bridge and router modes of native

Linux to evaluate the impact of virtualization on packet forwarding. Xen in the bridge

mode, however, has a different configuration from the native Linux with bridge. This is

because Linux bridge does L2 forwarding between two physical interfaces and Xen goes

up to L3 forwarding. To perform a fair comparison between Xen in bridge mode and

native Linux, we create an hybrid mode (bridge and router) for native Linux, which we

call Native-Hybrid. In this hybrid mode, TF’s physical network interfaces are connected

to different software bridges and kernel routing mechanism forwards packet between

the two bridges. This configuration simulates in native Linux what is done on Xen

bridge mode, illustrated in Fig. 9(a).

5.2 Experimental Results

Our first experiments measure the forwarding rate achieved by the different packet

forwarding solutions. The packet forwarding rate analysis is accomplished with mini-

mum (64 bytes) and large (1512 bytes) frames. We use 64-byte frames to generate high

packet rates and force high packet processing in TF and 1512-byte frames to saturate

the 1 Gb/s physical link.
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Figs. 11(a) and 11(b) show the forwarding rate obtained with Native Linux, which

gives an upper bound for Xen and OpenFlow performances. We also plot the Point-To-

Point packet rate, which is achieved when TG and TR are directly connected. Any rate

achieved below the Point-To-Point packet rate is caused by loss between TG and TR.

The results show that Native Linux in router mode performs as well as the Point-to-

Point scenario. This is explained by the low complexity on kernel routing mechanism. In

the bridge mode, however, Native Linux performs worse than in router mode. According

to Mateo [11] this result may be due to the Linux bridge implementation, which is not

optimized to support high packet rates. Finally, we observe that Native Linux in the

hybrid mode has the worst forwarding performance. This is an expected result due to

the previously mentioned limitations of bridge mode and the incremental cost required

to forward packets from the bridge to IP layer in TF.
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Fig. 11 Packet rate for different forwarding elements, using 64-byte frames.

The forwarding rate results for Xen are shown in Fig. 11(b). First, we analyze a

scenario where Domain 0 forwards the packets. In this scenario no virtual machine is

running, although the same results are expected when virtual machines are up and they

do not forward packets [7]. In this experiment, we test the Xen bridge and router modes.

Xen-Bridge uses the Linux bridge to interconnect the virtual machines, as explained in

Section 4.2. Xen-Bridge suffers the same limitations of Native Linux in bridge mode,

since the bridge implementation is the same. In addition, Xen-Bridge forwards packets
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Fig. 12 Packet rate for different forwarding elements, using 1512-byte frames.

from the bridge to IP layer, as in hybrid mode, combined with hypervisor calls necessary

in this mode. As expected, Xen-Bridge performs worse than all Native Linux forwarding

schemes. On the other hand, Xen-Router performs better than Xen-Bridge, because

the Linux bridge is not used and Xen hypervisor is not called when Domain 0 forwards

packets. Nevertheless, Xen-Router is still worse than Native-Router. The forwarding

rate rapidly decreases after about 1.2 Mp/s load. This behavior is also observed for

Xen-Bridge and in the following experiments with virtual machine forwarding. This

performance penalty is related to Xen interrupt handling implementation and needs

further investigation. Next, we analyze a scenario where a virtual machine forwards

traffic using Xen bridge mode, the default Xen network configuration. In XenVM-1

configuration, both virtual machine and Domain 0 share the same CPU core. This

result shows a drop in performance compared with previous results, in which Domain

0 was the forwarding element. At first glance, this poor performance could be caused

by high contention for CPU resources due to the fact that a single CPU core is shared

between the domains. To eliminate the contention for CPU resources we experiment

with XenVM-2 configuration in Fig. 11(b), where we give one exclusive core to each

domain. The performance obtained with XenVM-2 experiment is better than with

XenVM-1, but it is still lower than Domain 0 results. This can be explained due to

the high complexity involving virtual machine packet forwarding. When the traffic

is forwarded through the virtual machines, it must undergo a more complex path

before reaching TR. Upon packet receiving, it is transferred via DMA to Domain 0
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memory. Domain 0 demultiplexes the packet to its destination, gets a free memory

page associated with the receiving virtual machine, swaps the free page with the page

containing the packet, and then notifies the virtual machine. For a virtual machine to

send a packet, it must put a transmission request along with a reference to the memory

area where the packet is into Xen I/O ring. Domain 0 then polls the I/O ring and,

when it receives the transmission request, it maps the reference into the physical page

address, and then sends it to the network interface [4]. This increased complexity is

partially responsible for the lower packet rate obtained in the two curves where virtual

are used to forward packets.

Fig. 11(c) shows that OpenFlow performs near Native Linux in router mode. In

addition, the comparison between OpenFlow and XenVM results shows the tradeoff

between flexibility and performance. On XenVM we have more flexibility, because the

data and control planes are under total control of each virtual network administrator.

In OpenFlow, however, the flexibility is lower because the data plane is shared by

all virtual networks. On the other hand, due to lower processing overhead, OpenFlow

performs better than XenVM in our scenario. Xen performance can be raised if the

data plane is moved to Domain 0, as we can see in Xen-Router and Xen-Bridge results.

In this case, however, the flexibility of customizing data planes is decreased.

We also carried out packet forwarding experiments with 1470-byte data packets,

shown in Fig. 12. With large packets, all forwarding solutions but XenVM-1 and

XenVM-2 have the same behavior as in the Native-Router scenario. It means that

there is no packet loss in TF and the bottleneck in this case is the 1 Gb/s link. Nev-

ertheless, with XenVM-1, where a virtual machine shares the same core with Domain

0, the packet rate is achieved is lower. In XenVM-2 experiments, where we give one

exclusive CPU core for each domain, the behavior is similar to Native-Router. Thus,

we conclude that, in this case, the performance decrease in XenVM-1 result is caused

by high contention for CPU resources between domains and giving an exclusive CPU

core to Domain 0 solves the problem.
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Fig. 13 Analysing network delays according to the network element which forwards the traffic,
assuming 128-byte packets.

Next, we analyze how each type of virtual network element impacts the traffic la-

tency. We create background traffic with different rates to be forwarded by the network

element. For each of those rates, an ICMP echo request is sent from the generator to
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the receiver, to evaluate the round trip time (RTT) and the jitter according to the gen-

erated background traffic. By analyzing the jitter, defined as the mean of the standard

deviation of RTT measures, we investigate if the network element inserts a fixed or a

variable delay in the network, which could affect some real-time applications.

Figs. 13(a) and 13(b) show the results for the RTT and the jitter, respectively. As

the generated traffic increases, the RTT and jitter of the ICMP messages increase only

for the configuration in which the traffic passes through the virtual machine, which we

call XenVM-1 in the graph. The difference in the RTT between XenVM-1 and Native-

Linux experiments is up to 1.5 ms in the worst scenario, with background traffic of

500 Mb/s. The RTT and the jitter of OpenFlow have the same order of magnitude as

the RTT and jitter of Native-Linux. Despite of the delay difference between XenVM-1

and the other configurations, Xen virtual machines can handle network traffic without

a significant impact on the latency. Because the RTT is always smaller than 1.7 ms,

even in the worst case, virtual routers running over Xen do not significantly impact

real-time applications such as voice over IP (VoIP), which tolerates up to 150-ms delay

without disrupting the reliability of the communication, even if one considers multiple

hops [8].
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Fig. 14 Aggregated packet rate according to the number of virtual networks.

We also analyze how each virtualization platform behaves with multiple networks

and multiple flows per network. In this scenario, each network is represented as a flow

of packets between the TG and TR for OpenFlow, and as a virtual machine for Xen.

The packet size and the generated packet rate are fixed in 64 bytes and 200 kp/s,

respectively. If there is more than one parallel flow, the aggregated generated traffic is

still the same. For example, if the test is performed with four parallel flows, each of

them receives a packet rate of 50 kp/s, generating an aggregated rate of 200 kp/s.

Fig. 14(a) shows the aggregated packet rate as a function of the number of virtual

networks, with one flow per network. OpenFlow acts like a software switch despite

the fact that the first packet of the flow must go to the OpenFlow controller. The

performance obtained is very similar to a software bridge running over Native Linux,

maintaining the received rate close to the generated rate of 200 kp/s. Although Xen’s

Domain 0 must have its interrupts first handled by the hypervisor, Xen-Bridge performs

almost as well as native Linux in bridge mode. On the other hand, in the case where

multiple virtual machines are simultaneously forwarding traffic (XenVM-1 configura-
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tion), the performance degrades as the number of parallel virtual machines increases.

This is mainly because of the CPU scheduler, which must multiplex the processor

among an increasing number of machines, each one requiring to forward its own flow.

Fig. 14(b) shows the aggregated packet rate as a function of the number of flows,

considering a single virtual network. As expected, OpenFlow and Xen-Bridge present

the same behavior as in Fig. 14(a), because both share the data plane and, consequently,

there is no difference between a virtual network with multiple flows and multiple net-

works with one flow each. On the other hand, when the traffic is forwarded through the

virtual machines (XenVM-1 configuration), the traffic must undergo a more complex

path before reaching TR, as seen in previous results. In order to verify if the complex

path is the only bottleneck, the test was repeated in a configuration where the virtual

machine does not share the same physical core with Domain 0, referred to as XenVM-2.

In this configuration, the performance is increased by up to 50 kp/s, which indicates

that the lack of processor availability is an important issue in network virtualization.

To analyze the impact of CPU allocation on virtual machine forwarding, we have

conducted a CPU variation test in which we send packets from TG to TR at a fixed

rate of 200 kp/s through virtual machines and vary the number of dedicated CPU

cores given to Domain 0. The 200 kp/s rate is used because near this rate we obtain

the best performance in the 1-virtual machine scenario. According to previous results,

the forwarding performance increases when both Domain 0 and virtual machine have

a dedicated CPU core. This test aims to complement those results by analyzing the

forwarding performance when the number of Domain 0’s exclusive CPU cores increases

and more virtual machines forward packets. When more than one virtual machine is

used, the global sent rate of 200 kp/s is equally divided among virtual machines. Fig. 15

shows the aggregated received rate in a scenario in which each virtual machine has one

single core and the number n of CPU cores dedicated to Domain 0 is varied. According

to Fig. 15, the worst performance is obtained when all domains share the same CPU

core (i.e., n = 0), due to a high contention for CPU resources. As expected, when n = 1

the performance increases, because each virtual machine has a dedicated CPU core and,

consequently, has more time to execute its tasks. In addition, when Domain 0 receives

more than one dedicated CPU core (i.e., n ≥ 2), the performance is worse than when

Domain 0 has a single dedicated CPU core, even when more virtual machines forward

packets. These results show that the network tasks that Domain 0 executes when each

virtual router has 2 interfaces are single-threaded and these tasks are under-performing

in a multi-core environment.

6 Conclusions

In this paper, we investigate the advantages and limitations of Xen and OpenFlow

as network virtualization platforms for creating a pluralist architecture for the Fu-

ture Internet. We show that both Xen and OpenFlow allow the creation of multiple

customized virtual networks, but using different approaches. Xen enables a network

virtualization model in which the network element is totally virtualized, with both

control and data planes residing into a virtual machine. This construction provides a

powerful and flexible environment in which the network administrator can program

new network protocol stacks and also customized network-data forwarding structures

and lookup algorithms. Nevertheless, our experimental results show that this flexibil-

ity comes with a performance cost. Our experiments in a personal computer used as
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Fig. 15 Received packet rate when varying the number of CPUs allocated to Domain 0.

a software router reveal a high complexity involving Xen virtual machine packet for-

warding that limits the forwarding capacity to less than 200 kp/s. We also observe

that moving the data planes from virtual machines to privileged domain of Xen avoids

hypervisor calls, and thus Xen forwarding capacity improves near to the native Linux

performance. In this configuration, however, we lose the flexibility of customizing each

virtual router data plane, because shared data planes require the use of the same for-

warding mechanisms for all virtual networks. OpenFlow network virtualization model

follows the shared data plane approach by defining a centralized element that controls

and programs the flow table in each network element. Our results demonstrate that

the generalization of a flow to an n-tuple of header fields enables a flexible and yet

performant forwarding structure. Our PC-based OpenFlow prototype forwards pack-

ets as fast as native Linux. Other experiments show that both Xen and OpenFlow

are suitable platforms for network virtualization, because they are proved to support

multiple instances of virtual network elements with no measurable performance loss,

using the shared data-plane configuration. We will investigate in a future work the

benefits of modern hardware-assisted I/O virtualization technologies. We expect that

direct access to I/O devices will significantly improve the packet forwarding efficiency

through Xen virtual machines.
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