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Abstract

A novel dynamic register renaming approach is

proposed in this work. The key idea of the novel scheme is

to delay the allocation of physical registers until a late

stage in the pipeline, instead of doing it in the decode

stage as conventional schemes do. In this way, the register

pressure is reduced and the processor can exploit more

instruction-level parallelism.

Delaying the allocation of physical registers require

some additional artifact to keep track of dependences.

This is achieved by introducing the concept of virtual-

physical registers, which do not require any storage

location and are used to identify dependences among

instructions that have not yet allocated a register to its

destination operand. Two alternative allocation strategies

have been investigated that differ in the stage where

physical registers are allocated: issue or write-back. The

experimental evaluation has confirmed the higher

performance of the latter alternative.

We have performed an evaluation of the novel scheme

through a detailed simulation of a dynamically scheduled

processor. The results show a significant improvement

(e.g., 19% increase in IPC for a machine with 64 physical

registers in each file) when compared with the traditional

register renaming approach.

1. Introduction

Dynamically scheduled processors are the most com-

mon organization nowadays in the marketplace. Most of

the latest general purpose microprocessors of major ven-

dors, as well as those announced for the near future, use

such organization. A dynamically scheduled processor has

the ability of executing instructions out-of-order, and thus,

it puts obviously much less constraints on the issue order

of instructions than an in-order execution processor. This

in general results in much higher instruction-level parallel-

ism (ILP).

However, a dynamically scheduled processor does not

have complete freedom to chose the execution order of

instructions. In particular, it must obey instruction depen-

dences. These dependences are usually classified into

three types [5]:

• Data dependences. They occur when one instruction

produces a value that is used by another instruction.

• Name dependences. They are caused by the reuse of

storage locations, namely registers and memory.

However, in this case there is no flow of data

between the involved instructions.

• Control dependences. They are due to conditional

branches. These instructions determine which

instructions should be executed later.

Name dependences through registers are usually elimi-

nated by providing multiple storage locations for the same

register name and keeping track of which storage location

is referred to by each different instance of the same name.

This technique is called dynamic register renaming. In this

context, the name of a register is referred to as a logical

register whereas the physical location to which it is

mapped at a given time is called a physical register.

The amount of physical storage devoted to register

renaming determines the maximum number of simulta-

neously live values, and therefore, it limits the instruction

window size. Future microprocessors will likely manage a

larger instruction window to increase the exploitation of

ILP and thus, the register requirements will be higher.

Enlarging the physical register file is an obvious solution

for a balanced design. However, the hardware cost of the

register file is very high mainly because of the large num-

ber of ports that it has. In addition, larger register files

have a longer access time, and this may increase the criti-

cal path length and penalize performance [1].

In this paper we propose a novel register renaming

approach that significantly reduces the register pressure.

This benefit can be used either to increase the processor

performance through the increase of the active instruction



window size or to reduce the hardware cost by reducing

the amount of storage devoted to register renaming, with-

out loosing performance when compared with the tradi-

tional renaming scheme. The novel register renaming

approach is based on introducing a new concept that is

called virtual-physical registers. Virtual-physical registers

are names that are used to identify values that will be pro-

duced by instructions in the future, and thus, do not use

any storage location. Virtual-physical registers are used to

keep track of dependences among instructions and there-

fore, to drive the issue logic. Physical registers are used to

store the live values of instructions as in the conventional

scheme and thus, virtual-physical registers are mapped to

physical registers at some point in time. However, the vir-

tual-physical register organization allocates a physical

register for a much shorter interval of time than the con-

ventional scheme, which is the reason for the reduction in

register pressure.

The performance evaluation of the virtual-physical reg-

ister approach for a dynamically scheduled processor with

64 physical registers shows a 19% speedup when com-

pared with the traditional scheme, and about the same per-

formance than the traditional scheme with just about half

the number of physical registers for renaming.

The rest of this paper is organized as follows. Section 2

reviews the traditional register renaming approaches. Sec-

tion 3 presents the novel virtual-physical register scheme.

The performance of the new scheme is compared with the

traditional one in section 4. Finally, the main conclusions

of this work are summarized in section 5

2. Register renaming

Register renaming was first implemented for the float-

ing-point unit of the IBM 360/91 [14]. Register renaming

is a key issue for the performance of out-of-order execu-

tion processors and therefore, it is extensively used. In this

paper we focus on dynamically scheduled processors that

implement precise exceptions [9]. In such processors,

instructions are committed in-order. After being decoded,

instructions are kept in the instruction reorder buffer until

they commit. The size of the reorder buffer determines the

maximum number of in-flight instructions. These instruc-

tions are usually called the instruction window and the

size of the reorder buffer is the size of the instruction win-

dow. In other words, the instruction window is defined as

the set of instructions from the oldest not committed

instruction to the latest decoded instruction

The objective of register renaming is to remove name

dependences through registers (anti- and output depen-

dences). This is achieved by allocating a free storage loca-

tion for the destination register of every new decoded

instruction. There are two different schemes regarding the

approach taken to implement these rename storage loca-

tions. In particular, the two following approaches are the

most common solutions to provide the rename storage

locations:

• The entries of the reorder buffer [11]. In this case,

the result of every instruction is kept in the reorder

buffer until it is committed. It is then written in the

register file. The source operands that are available

when an instruction is decoded are read either from

the register file or from a reorder buffer entry. Those

operands that are not ready at decode are forwarded

from the execution units to the corresponding

instruction queue entries (reservation stations) when

they are produced. When an instruction commits, its

result is copied from the reorder buffer to the regis-

ter file. There is a slight variation that includes a

register buffer used just for renaming and avoids to

store the result in the reorder buffer(e.g. PowerPC

604 [12]).

• A physical register file. In this case there is a physi-

cal register file that contains more registers than

those defined in the ISA (instruction set architec-

ture), which are referred to as logical registers. By

means of a map table, each logical register is

mapped to a physical register in the decode stage.

The destination register is mapped to a free physical

register whereas source registers are translated to

the last mapping assigned to them. When an instruc-

tion commits, the physical register allocated by the

previous instruction with the same logical destina-

tion register is freed. In this scheme, the operands

are always read from the physical register file,

which simplifies the operand fetch task when com-

pared with the previous model.

Both register renaming schemes are being used in the

latest microprocessors. The first one is used by the Intel

Pentium Pro [2], the PowerPC 604 [12], and the HAL

SPARC64 [3]. The MIPS R10000 [15], and the DEC

21264 [4] are current implementations of the second

approach. In this paper, we focus on the second scheme. A

comparison of both approaches in terms of cost-effective-

ness could be an interesting study but it is beyond the

scope of this paper. However, notice that both approaches

have similar renaming storage requirements. In both

cases, a new rename storage location is allocated when an

instruction is decoded, and a location is released when an

instruction commits. Therefore, the main advantage of the

virtual-physical register organization, which is the alloca-

tion of rename storage locations for a shorter period of

time, also applies when compared with the reorder buffer

approach.



In the physical register file organization, to take advan-

tage of a given instruction window size a number of phys-

ical registers close to the number of logical registers plus

the window size is required since most of the instructions

have a destination register. This is so because when the

instruction window is empty (e.g., after a branch mispre-

diction), each logical register is mapped to a physical reg-

ister. Thus, the minimum number of physical registers that

are used is equal to the number of logical registers. In

addition, for every instruction whose destination operand

is a register, an additional register is allocated when it

enters the window (decode stage) and a physical register is

released when it leaves the window (commit stage).

3. Virtual-physical registers

This section describes the virtual-physical register

renaming approach. First, the motivations for the new

scheme are presented and then, its implementation is

detailed.

3.1. Motivation

The motivation for the register renaming approach that

is proposed here comes from the observation that the con-

ventional register renaming scheme based on a physical

register file allocates a new physical register for every

instruction with a destination register. This register is allo-

cated when the instruction is decoded and it is not released

until the next instruction that has the same logical destina-

tion register is committed.

Notice that this is a conservative approach that is used

for simplicity reasons. In fact, the value that a register

holds is live for a shorter period of time. The lifetime of

the value produced by an instruction extends from the

time the execution of the instruction finishes to the time

when all the instructions that use such value have read it

and are guaranteed to commit.

Thus, the conventional register renaming scheme

“wastes” a register for each instruction that is in either of

the two following states:

• It has been decoded but its execution has not fin-

ished yet (i.e., it is either waiting in the instruction

queue to be issued or being executed in its corre-

sponding functional unit).

• It has been committed as well as all the instructions

that used the produced value but the next instruction

with the same logical destination register has not

been committed yet.

As described by other authors [8] [10], the second

source of register waste can be eliminated by associating a

counter with each physical register that keeps track of the

pending read operations. A register is freed whenever the

counter is zero, provided that the corresponding physical

register has been subsequently renamed to another physi-

cal register.

The virtual-physical register renaming scheme elimi-

nates the first factor of register usage waste. Notice that

this factor can be very important in the presence of long

latency instructions and parts of codes with small amount

of ILP. In such circumstances, some instructions spend

long time in the instruction queue waiting for their oper-

ands and they use (unnecessarily) a physical register for

all that period of time. For instance, suppose the following

sample code (destination operands are on the left):

load f2,0(r6)

fdiv f2,f2,f10

fmul f2,f2,f12

fadd f2,f2,1

These four instructions in this code can be fetched and

decoded in the same cycle in a four-way superscalar pro-

cessor. At that time, four different physical registers are

allocated to logical register f2, each one corresponding to

a different instruction. Let us call them p1, p2, p3 and p4

respectively. Assume that in the next cycle the load

instruction can start its execution but it produces a cache

miss. Assume also that the remaining instructions can be

issued as soon as they have all their operands and that they

can commit as soon as it execution finishes. Suppose that

the cache-miss latency is 20 cycles, the FP division takes

20 cycles, the FP multiplication takes 10 cycles and the FP

addition takes 5 cycles.

In the conventional register renaming scheme, p1, p2

and p3 are used for 42 cycles (i.e. 1 cycle spent in the

decode of the load, 20 cycles in the execution of the load,

20 cycles in the execution of the fdiv and 1 cycle in the

commit of the fdiv), 52 cycles and 57 cycles respec-

tively. However, if the physical registers were not allo-

cated until the corresponding instruction finished its

execution, they would only be used for 21, 11 and 6 cycles

respectively. That is, the register pressure would be

reduced by 75% (from 151 to 38 cycles) if we measure the

register pressure as the sum of the number of cycles that a

register is allocated for each produced value. If the physi-

cal registers were allocated when the corresponding

instructions were issued, they would be used for 41, 31

and 16 cycles respectively, which still implies a reduction

of 42% in the register pressure.

Load instructions that miss in cache is a common

source of long latency operations. Due to the increasing

gap between processor and memory speed, the load miss

latency measured in processor cycles may be even higher

in future microprocessors. Other source of long latency

operations are complex floating point arithmetic instruc-

tions such as divide or square root. However, they usually



represent a small fraction of executed instructions. In any

case, even for short latency operations, the reduction in

register pressure can be significant when the code includes

long chains of dependent instructions, as it is the case of

the above sample code. Finally, note that the amount of

time that instructions spend in the instruction window

before being executed will grow when the size of the

instruction window increases, as it is expected in the

future.

Notice that the reason why logical registers are mapped

to physical registers at decode stage in the conventional

scheme is mainly to keep track of dependences among

instructions. In fact, what is just required to keep track of

dependences is a tag that identifies the last producer for

every logical register. These tags are used to determine

from where the source operands are to be read.

3.2. The virtual-physical register renaming

The new organization, which is called virtual-physical

registers, is based on adding a new type of registers, in

addition to the conventional logical and physical types.

The registers referenced by the instructions of the ISA are

referred to as logical registers. When an instruction is

decoded, its destination register is mapped to a new tag.

Tags are not related to any physical storage location and

therefore we will call them virtual-physical registers (VP

registers). Later on, when the instructions finishes its exe-

cution, it allocates a physical register to store its result.

Finally, when the instruction commits, the physical regis-

ter allocated by the previous instruction with the same log-

ical destination register is freed.

The virtual-physical register renaming scheme can be

used for both integer and floating point registers. Thus, the

implementation described below is replicated for both reg-

ister files.

3.2.1 Register map tables. The virtual-physical register

organization is implemented by means of two register map

tables (see Figure 1). There is a table, which is called the

general map table (GMT), that is indexed by the logical

register number and contains the following three fields:

• VP register: the last virtual-physical register to

which the logical register has been mapped.

• P register: the last physical register to which the log-

ical and the virtual-physical registers have been

mapped, if any.

• V bit: indicates whether the P field contains a valid

value, that is, whether a physical register has already

been allocated to this logical register.

The other table is called the physical map table (PMT).

It has an entry for each virtual-physical register and it con-

tains the last physical register to which the virtual-physi-

cal register has been mapped. Alternatively, this map table

could be implemented by means of a CAM (content-

addressable memory) with a number of entries equal to

number of physical registers, which is much lower than

the number of virtual-physical registers. This approach is

used for instance by the DEC 21264 [4] to implement the

logical to physical map table.

In addition, there is a pool of free physical registers,

like in the conventional scheme, and a pool of free virtual-

physical registers.

The GMT has NLR rows of  log2(NVR) +

 log2(NPR)  + 1 bits each, where NLR is the number of

logical registers, NVR in the number of virtual-physical

registers and NPR is the number of physical registers. The

PMT has NVR rows of  log2(NPR)  bits each or NPR

rows of  log2(NVR)  bits each if it is implemented

through a CAM.

Since virtual-physical registers are not related to any

storage location, the number of such registers has a small

impact on the hardware cost, especially if the PMT is

implemented through a CAM. To guarantee that the pro-

cessor never stalls because of the lack of them, the NVR

must be equal to the number of logical registers (NLR)

plus the instruction window size.

3.2.2 Functional description. For each new decoded

instruction, its source operands are renamed either to vir-

tual-physical registers or to physical registers if they are

available. In particular, for each source register operand,

the GMT is looked up. If the V bit is set, the logical regis-

ter is renamed to the physical register specified in the P

register field; otherwise it is renamed to the virtual-physi-

cal register. The destination logical register, if any, is

renamed to a free virtual-physical register. The corre-

sponding entry of the GMT is updated as follows: the VP

register field is modified to reflect the new mapping and

the V field is reset. The previous value of the VP register

field is kept in the reorder buffer to restore a precise state

in case of a branch misprediction or an exception. Then,

the instruction is dispatched to the instruction queue,

Figure 1. Tables required by the virtual-physical regis-

ter organization.

VP reg.    P reg.   VL reg.

GMT

P Reg

PMT

VP reg.



where it waits until it is issued, and the reorder buffer,

where it remains until it is committed.

An entry of the instruction queue has the following

fields (see Figure 2):

• Op code: the operation code.

• D: The virtual-physical destination register.

• Src1 and Src2: the identifiers of the two source oper-

ands (to simplify the explanation we assume that

they are always registers). Each identifier corre-

sponds either to a virtual-physical register or to a

physical register

• R1 and R2: these are the ready bits of the source

operands. When an operand is ready, the Src field

contains a physical register identifier. Otherwise it

contains a virtual-physical register identifier.

An entry of the reorder buffer has the following fields

(see Figure 2):

• L register: the destination logical register identifier.

• C: a single bit that indicates whether the instruction

has completed its execution.

• VP register: this field identifies the virtual-physical

mapping of the last instruction that had the same

logical destination register.

An instruction can be issued when the R fields of both

operands are set. This also guarantees that the Src fields

contain physical register identifiers. When an instruction

is issued, it reads its register operands from the physical

register file using the Src identifiers of the corresponding

entry in the instruction queue (if the operand is not for-

warded from the output of a functional unit).

Every instruction whose destination is a register allo-

cates a new physical register when its execution com-

pletes. At this time, a new physical register is taken from a

free pool of physical registers (the solution to the lack of

free physical registers is considered in the next section; for

the sake of simplicity we assume now that this event never

happens). Then, the PMT is updated to reflect the new vir-

tual-physical to physical mapping. In addition, the virtual-

physical register identifier of the destination operand is

Figure 2. The instruction queue and the reorder buffer.

Op code  D  Src1  R1  Src2  R2 L reg.  VP reg.  C

Instruction queue Reorder buffer broadcast to all the entries in the instruction queue along

with the physical register identifier. If there is a match in a

Src field whose corresponding R bit is not set, this field is

updated with the physical register and the corresponding

R bit is set. The virtual-physical register and the associ-

ated physical register are also broadcast to the GMT. Each

entry then compares its VP register identifier with the one

broadcast and if there is a match, the physical register

identifier is copied into the P register field and the V flag is

set. In this way, any new decoded instruction that uses

such logical register will find the corresponding physical

register in the GMT. Finally, the C flag of the correspond-

ing entry of the reorder buffer is set.

When an instruction commits, the virtual-physical reg-

ister allocated by the previous instruction with the same

logical destination register is freed. This register is identi-

fied by the VP field of the reorder buffer. Besides, the

physical register allocated by that instruction is also freed.

The identifier of such register is obtained through the

PMT, by indexing it with the VP register that is to be

freed.

In case of a exception or a branch misspeculation, a

precise state can be obtained by undoing the mappings

performed by the instructions that follow the offending

one. This can be done by popping out the entries of the

reorder buffer from the newest until the offending one. For

each instruction, the reorder buffer stores the destination

logical register and the previous virtual-physical register

that was allocated to it. Using the logical register identi-

fier, the GMT is accessed and the current virtual-physical

mapping is obtain. In addition, if the V flag of the GMT

entry is set, the current physical mapping is also obtained.

Both the current virtual-physical register and the physical

register (if already allocated) are returned to their corre-

sponding free pools. The VP register field of the GMT

entry is restored with the VP field of the reorder buffer

(the previous virtual-physical mapping) and the physical

mapping associated to such register, if any. Such physical

mapping is obtained from the PMT. If the restored virtual-

physical register is mapped to a physical register, the V

flag is set; otherwise it is reset.

A mechanism based on checkpointing similar to the

one used by the R10000 [15] could be used to recover

from branches in just one cycle.

Finally, notice that the proposed mechanism does not

imply any additional delay to the critical path when com-

pared with the traditional scheme, except for the commit,

which may be delayed by one cycle due to the requirement

to look up the PMT. The GMT look-up is equivalent to the

traditional register mapping task. The allocation of physi-

cal registers can be performed during the last cycle of the

execution so that it is available at the beginning of the

write-back stage.



3.3. Avoiding deadlock

A virtual-physical register organization may be

designed with any number of logical, physical and virtual-

physical registers. The number of virtual-physical regis-

ters has a small impact on the hardware cost, as pointed

out above. The number of logical registers is a feature of

the ISA and therefore remains fixed for different imple-

mentations of the same ISA. On the other hand, the num-

ber of physical registers has a very high impact on the

hardware cost as discussed in the introduction. In conse-

quence, the number of physical registers will be lower

than that of virtual-physical registers.

In this case, it may happen that when a instruction com-

pletes there is no a free physical register. The obvious

approach to deal with this situation would be to squash

such instruction. However, in this situation, the oldest

instruction in the window would not be able to commit

because when its execution completes it would also find

that there is not any free physical register. Under this cir-

cumstances, no instruction would be allow to commit and

therefore no physical register would be freed, which

would result in a deadlock.

This deadlock can be avoided by a slight modification

of the register management policy. In particular, it suffices

to guarantee that a given number of the oldest instructions

that have a destination register will have a physical regis-

ter for renaming. Let us call this number the number of

reserved registers (NRR). In general, this parameter can be

different for floating point and integer registers. In this

way, the oldest NRR instructions that have a destination

register and those instructions in between without a desti-

nation register are guaranteed to commit. Since every

instruction that consumes a register frees another one

when it commits, the next NRR instructions with a desti-

nation register and those instructions in between are also

guaranteed to commit. Following the same reasoning it

can be proved that all instructions are guaranteed to com-

mit and therefore no deadlock occurs.

Such scheme is implemented by means of two pointers

in the reorder buffer, one for integer and the other for FP

instructions. Such pointers identify the oldest NRR inte-

ger/FP instructions that have a destination register and

they are called PRRint and PRRfp respectively (see Figure

3 for an example). In addition, there are two registers that

indicate the number of instructions below such pointers

that have a destination integer/FP register and another two

registers that indicate the number of such instructions that

have already allocated a physical register. Such counters

will be called Regint, Regfp, Usedint and Usedfp respec-

tively.

Every time an instruction with an integer destination

register commits PRRint is moved up to the next instruc-

tion with an integer destination register. If such instruction

has not yet allocated its physical register, Usedint is

decreased; otherwise it is left unchanged. If the head of the

reorder buffer is reached before finding the next instruc-

tion, then Regint is decreased. When a new instructions

with a integer destination register is decoded, if Regint is

lower than NRRint then Regint is increased and PRRint is

made to point to such instruction. The same procedure is

applied to instructions with an FP destination register and

their corresponding pointer and counters.

When an instruction completes, it allocates a new phys-

ical register as previously described, provided that the are

more free physical registers than NRRint/fp minus Usedint/

fp or it is an instruction not youngest than the one pointed

by PRRint/fp. Otherwise, the instruction is squashed and

sent back to the instruction queue to be re-executed again.

NRR can take any value from 1 to the number of physi-

cal registers minus the number of logical registers. It is

difficult to anticipate which is the best value without

experimental evaluation. A low NRR implies that the pro-

cessor has more registers to allocate on demand of com-

pleting instructions, which favor a more aggressive out-of-

order execution. On the other hand, when the processor

runs out of physical registers, the execution can progress

using only NRR registers for renaming (those reserved for

the oldest instructions) since those younger instructions

that have completed and thus allocated a new physical

register will not release any register until all previous

instructions and themselves have committed.

To be more precise, let us suppose that NRRint is equal

to 1, all the instructions have a integer destination register,

the number of logical registers is 32, the number of physi-

cal registers is 64 and the size of the reorder buffer is 64.

Suppose that at a given time the reorder buffer is full; the

oldest instruction, which has a long latency, is executing

but has not completed yet; the next 32 instructions depend

on the oldest one and thus have not been issued and the

remaining 31 instructions (the youngest ones) have all

Figure 3. Example of the use of the PRRint and PRRfp for

NRR equal to 2.

Reorder buffer

add r1,r2,r3

sub r2,r3,r5

load f2,0(r1)

store 0(r2),r3

bne r1,L

fadd f4,f4,f6

add r1,r2,r7

fdiv f4,f2,f8

PRRfp

PRRint

oldest

youngest



executed and completed. Since NRRint is equal to 1, the

youngest 31 instructions are allowed to allocate a register

when they complete since there is only one register

reserved for the oldest instruction. Then, when the oldest

instruction completes it allocates the reserved register.

Next, it commits an frees a register that is used by the fol-

lowing instruction. When this instruction commits, the

register that it frees can be used by the next one and so on.

In consequence, until the commit point reaches the young-

est 31 instructions, the remaining instruction have only

one renaming register available, which forces a sequential

execution.

In conclusion, avoiding to allocate some registers to

some instructions that cannot issue and giving them to

some younger instructions is beneficial because it allows

to advance some future work. However, it penalizes the

execution of the instructions in between.

Notice that having an NRR equal to the number of

physical registers minus the number of logical registers,

which could be considered the most conservative configu-

ration, is expected to perform at least as well as the con-

ventional register renaming scheme. In such scenario the

virtual-physical register scheme allocates all available

physical registers always to the oldest instructions, like the

conventional scheme. However, the virtual-physical regis-

ter scheme has important additional advantages. First, if

the processor runs out of a type (integer or FP) of regis-

ters, the processor is allow to continue executing instruc-

tions of the other type, whereas in the conventional

scheme the processor would stall. Second, the processor

cannot complete the execution of any instruction beyond

the oldest NRR with a destination register, like in the con-

ventional scheme. However, in the virtual-physical regis-

ter organization the processor is allowed to continue the

fetch and decode of further instructions. Finally, those

instructions without a destination register will never stall

once they have their operands, even if they are beyond the

PRR pointer. This may help for an earlier resolution of

branch instructions.

The performance achieved by different values of NRR

is experimentally evaluated in section 4.

3.4. Alternative allocation policy

One potential drawback of the virtual-register organiza-

tion described above is the re-execution of instructions

that do not have a physical register when they complete.

An alternative solution that we have researched is based

on allocating physical registers when instructions are

issued instead of when they complete. In such scheme, an

instruction with a destination register will be allowed to be

issued if it has a physical register available. Obviously the

drawback of this approach is that it reduces the register

pressure when compared with the conventional scheme

but not as much as the scheme based on allocating regis-

ters when the instructions complete. Section 4 compares

both approaches.

4. Performance evaluation

This section presents a performance evaluation of the

virtual-physical register organization. The evaluation of

the new scheme is performed by comparing the execution

time of an aggressive superscalar processor with a conven-

tional register organization with that of the same processor

with the virtual-physical register organization. In both

cases it is assumed the same amount of physical registers.

4.1. Experimental framework

A trace-driven simulator of a realistic out-of-order

superscalar processor has been developed to evaluate the

proposed register organization. Two different register

organizations have been simulated. The first one is the

conventional register renaming scheme used by the

R10000 [15] among others, which is based on a physical

register file and a map table that translates logical to phys-

ical registers. The second one is the virtual-physical regis-

ter organization proposed in this paper.

The processors can fetch up to eight consecutive

instructions every cycle. A perfect instruction cache is

assumed. Branch prediction is performed using a 2048

entry Branch History Table with a 2 bit up-down saturated

counter per entry. A 128-entry instruction reoder buffer is

assumed. There is one physical register file for integer

data and another for FP data. Both have 16 read ports and

8 write ports. The number of physical registers has been

varied from 48 to 96. Functional units are fully pipelined

except for integer and FP division. Table 1 shows the

number of functional units and their latency.

Three cache memory ports and the memory disambigu-

ation scheme implemented in the PA-8000 [6] have been

assumed in this experiment. Up to 8 instructions can com-

mit every cycle.

Functional Unit Count Latency

Simple Integer 3 1

Complex Integer 2 9 multiply

67 divide

Effective Address 3 1

Simple FP 3 4

FP Multiplication 2 4

FP Divide and SQR 2 16 divide

Table 1. Functional units and instruction latency.



The processor has a lookup-free data cache [7] that

allows up to 8 pending misses to different cache lines. The

cache size is 16 KB, and it is direct-mapped with 32-byte

line size. Cache hit latency is 2 cycles and the penalty for

a cache miss is 50 cycles. This cache configuration is cho-

sen to stress the penalties caused by the cache memory, as

expected in future microprocessors. An infinite L2 cache

is assumed and a 64-bit data bus between L1 and L2 is

considered (i.e., a line transaction occupies the bus during

four cycles).

Our experimentation methodology is trace-driven sim-

ulation. The object code, previously compiled with full

optimization for a DEC AlphaStation 600 5/266 with a

DEC 21164 processor, is instrumented using the Atom

tool [13]. The instrumented program is executed and the

trace generated feeds the processor simulator. A cycle-by-

cycle simulation is performed in order to obtain accurate

timing results. Because of the detail at which simulation is

carried out the simulator is slow, so we have simulated 50

million of instructions for each benchmark after skipping

the 100 million of instructions. Five floating-point (swim,

hydro2d, mgrid, apsi, wave5) and four integer (go, com-

press, li, vortex) SPEC95 benchmarks have been selected

for this study. Each program was run with the largest input

set available for that benchmark.

4.2. Results

4.2.1 Write-back allocation with maximum NRR. The

first experiment evaluates the performance of the virtual-

physical register scheme when physical registers are allo-

cated in the write-back stage. Sixty four physical registers

(like some current microprocessors have) are considered

for each register file. The NRR parameter is set to its max-

imum value (number of physical register minus number of

logical registers: 32) since this configuration is expected to

perform at least as well as the conventional scheme.

Table 2 shows the instructions committed per cycle

(IPC) for the conventional and the virtual-physical

schemes. It can be seen that the virtual-physical register

organization provides a significant improvement for all

the benchmarks. In average, the increase in IPC is of 19%

(12% if the miss penalty is 20 cycles instead of 50) and it

goes up to 84% for the best case. It can also be observed,

that the improvement is much higher for floating point

than for integer programs. Each committed instruction is

executed in average 3.3 times. However, this does not hurt

performance since re-executions usually spend resources

that otherwise would be unused.

4.2.2 Write back allocation for different values of

NRR. The next experiment evaluates the effect of the

NRR parameter on the performance of the virtual-physical

register organization. This parameter determines the num-

ber of oldest instructions that are guaranteed to have a

physical register. This parameter can be different for inte-

ger and FP registers although we consider here the same

value for both. As discussed in section 3.3, one can find

reasons that favor both high and low values of NRR. For

64 physical and 32 logical registers, NRR can take any

value from 1 to 32. Figure 4 shows the speedup achieved

by the virtual-physical register organization when com-

pared with the conventional one (IPCvirt./IPCconv.) for

NRR equal to 1, 4, 8, 16, 24 and 32.

It can be seen in Figure 4 that there are significant dif-

ferences between integer and FP programs. For the latter,

the maximum NRR (32) is almost always the best, except

for hydro2d that achieves the best performance for 24. The

speedup obtained with NRR equal to 32 is 1.3 in average

for the FP programs. Values of NRR between 16 and 24

Conv. reg.
Virtual-

physical reg.

IPC IPC imp. (%)

int

go 0.73 0.76 4

li 0.98 1.05 7

compress 1.75 1.84 5

vortex 1.14 1.24 9

FP

apsi 1.37 1.76 28

swim 1.12 2.06 84

mgrid 1.32 2.09 58

hydro2d 2.16 2.24 4

wave5 1.64 1.71 4

harmonic mean 1.23 1.46 19

Table 2. Instruction completion rates of the conventional

and virtual-physical register organizations.

Figure 4. Speedup of the virtual-physical register organi-

zation with register allocation at write-back.
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provide a better performance than the conventional

scheme for all FP programs but the performance decreases

when NRR decreases. Finally, very small values of NRR

are not adequate for any FP programs. In this case, the vir-

tual-physical register organization can perform worse than

the conventional scheme. It is remarkable the good perfor-

mance of the new scheme for the swim program for any

value of NRR. The speedup for this benchmark range

from 1.27 to 1.84.

For integer benchmarks the speedup of the virtual-

physical register scheme is lower but still significant. In

this case only NRR equal to 32 provides an improvement

for all the benchmarks. Decreasing NRR provides a slight

improvement for two programs (go and li) but a signifi-

cant detriment for the other two.

4.2.3 Issue allocation versus write-back allocation. As

discussed in section 3.4, an alternative implementation of

the virtual-physical register organization could allocate the

physical registers in the issue stage instead of the write-

back. This will avoid re-executions of instructions but will

not be as effective to reduce the register pressure. Figure 5

shows the speedup of the virtual-physical register organi-

zation with this alternative register allocation scheme. In

this case, the optimal value of NRR is 32 (24 has the same

average performance), which provides an improvement of

4% over the traditional register mapping scheme.

Figure 6 compares the two alternative schemes to allo-

cate physical registers in the virtual-physical register orga-

nization. In each case, the optimal value of NRR observed

in the previous experiments is considered (32 for both). It

can be seen that allocating registers in the write-back stage

significantly outperforms the other scheme.

Figure 5. Speedup of the virtual-physical register orga-

nization with register allocation at issue.
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4.2.4 Varying the number of physical registers. We

have also evaluated the virtual-register scheme for a dif-

ferent number of physical registers. In addition to the size

of each register file previously considered (64) we have

also evaluated the performance of the virtual-physical reg-

ister organization for 48 and 96 registers. Figure 7 shows

the IPC of the virtual-physical organization with allocation

in the write-back stage and NRR equal to 16, 32 and 64

respectively, compared with that of the conventional

renaming scheme. It can be seen that the virtual-physical

organization always outperform the conventional one. The

improvement increases when the number of physical reg-

ister decreases, as one could expect since the new organi-

zation reduces the register pressure. In average, the

improvement of the virtual-physical scheme is 31%, 19%

and 8% for 48, 64 and 96 registers respectively.

Another conclusion that can be drawn from these

results is that the virtual-physical register organization can

reduce the size of the register file without penalizing per-

formance when compared to the conventional scheme. For

instance, the average IPC of the virtual-physical register

organization with 48 registers (1.17) is about the same as

that of the conventional scheme with 64 registers (1.23);

thus, the new organization provides a 25% register saving.

5. Conclusions

We have presented a novel register renaming scheme

for dynamically scheduled processors. The key idea

behind the new organization is to delay the allocation of

physical registers, instead of doing it in the decode stage,

in order to reduce the register pressure.

The new scheme is based on introducing a new concept

that is called virtual-physical registers. Virtual-physical

registers are not related to any storage location but they
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Figure 6. Write-back versus issue register allocation.



are merely tags that are used to keep track of register

dependences.

We have investigated two alternative realizations of the

virtual-physical register scheme that differ in the time

when physical registers are allocated. We have shown that

the scheme that allocates them in the write-back stage is

more effective than the scheme that allocates them in the

issue stage, in spite of the large number of instruction re-

executions that the former scheme implies. Besides, both

schemes outperform the traditional register renaming

organization.

We have also researched the most critical design

parameter of the novel organization, that is the number of

oldest instructions in the instruction window that are guar-

anteed to have a physical register. This feature is neces-

sary to avoid deadlocks in a precise exception processor.

We have shown that the new renaming approach pro-

vides significant improvements for a different number of

physical registers. When compared with the conventional

scheme, the virtual-physical registers provides an increase

in IPC of 31%, 19% and 8% for 48, 64 and 96 physical

registers. In general, the improvement for FP programs is

higher than for integer benchmarks. We have also shown

that the new scheme with 48 registers provide about the

same performance than the traditional one with 64.

Finally, it is important to point out that the benefits of

reducing the register pressure can be even much more

beneficial for future architectures with a larger instruction

window and thus, a much higher register pressure. For

instance, we believe that in the context of multithreaded

architectures the benefits of the virtual-physical register

organization will be more important than those observed

for a superscalar processor. We plan to explore this sce-

nario in future work.

Figure 7. IPC of the virtual-physical register organiza-

tion and the conventional renaming scheme for a varying

size of each register file.
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