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Abstract

A basic question in Virtual Private Network (VPN) design is if the symmetric version of
the problem always has an optimal solution which is a tree network. An affirmative answer
would imply that the symmetric VPN problem is solvable in polynomial time. We give an
affirmative answer in case the communication network within which to create the VPN is a
circuit. This seems to be an important step towards an answer to the general question. The
proof relies on a dual pair of linear programs and actually implies an even stronger property
of VPNs. We show that this property also holds for some other special cases of the problem.

1 Introduction

In this paper, we consider a problem that is known as the symmetric virtual private network
(VPN) problem, a problem emerging in telecommunication. Think of a large communication
network represented by an undirected graph G = (V, E), with a vertex for each user, and
an edge for each link in the network. Within this network, a subgroup W ⊆ V of the users
wishes to reserve capacity on the links of the network for communication among themselves:
they wish to establish a virtual private network. Vertices in W are also called terminals.

On each link, capacity (bandwidth) has a certain price per unit, c : E → R+. The problem
is to select one or more communication paths between every pair {i, j} of users in W and
to reserve enough capacity on the edges of the selected paths to accommodate any possible
communication pattern amongst the users in W . Possible communication patterns are defined
through an upper bound on the amount to be communicated (transmitted and received) for
each node in W , specified by b : W → R+. This so-called hose model for VPNs was proposed
by Duffield et al. [2]. More precisely, a communication scenario for the symmetric VPN
problem can be defined as a symmetric matrix D = (dij){i,j}⊆W with zeros on the diagonal,
specifying for each unordered pair of distinct nodes {i, j} ⊆ W the amount of communication
dij ≥ 0 between i and j. A communication scenario D = (dij){i,j}⊆W is said to be valid if∑

j∈W\{i} dij ≤ b(i), ∀i ∈ W . We denote the collection of valid communication scenarios by
D.

A network consisting of the selected communication paths with enough capacity reserved
on the edges to accommodate every valid communication scenario we call a feasible VPN. The
(symmetric) VPN problem is to find the cheapest feasible VPN.

There are several variants of the problem emerging from additional routing requirements.

SPR Single path routing: For each pair {i, j} ⊆ W , exactly one path Pij ⊆ E is to be selected
to accommodate all traffic between i and j. The problem is then to choose the paths Pij such
as to minimize {

∑
e∈E cexe | xe ≥

∑
{i,j}:e∈Pij

dij ,∀e ∈ E ∀D = (dij) ∈ D}.
TTR Terminal tree routing: This is single path routing with the additional restriction that
∪j∈W Pij should form a tree in G for all i ∈ W .
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TR Tree routing: This is SPR with the extra restriction that ∪{i,j}⊆W Pij is a tree in G.

MPR Multi-path routing: For each pair {i, j} ⊆ W , and for each possible path between i and j,
the fraction of communication between i and j to be routed along that path has to be specified.

The following lemma summarizes the rather obvious relations between the optimal solution
values of these variants. By OPT (SPR) we denote the cost of an optimal solution for the
SPR variant of the VPN problem. Similar notation is used for the other optimal values.

Lemma 1.1

OPT (MPR) ≤ OPT (SPR) ≤ OPT (TTR) ≤ OPT (TR).

Proof. SPR is the MPR problem with the extra restriction that all fractions must be 0 or 1.
The other inequalities are similarly trivial. 2

This paper shows that equality holds throughout in Lemma 1.1 for some special cases, in
particular in the case that G is a circuit.

We mention some previous results. Gupta et al. [5] and Kumar et al. [8] have shown that
TR ∈ P (TR is polynomially solvable). In [5] it is also shown that OPT (TR) = OPT (TTR)
and that OPT (TR) ≤ 2OPT (MPR). Erlebach and Rüegg [3] proved that MPR ∈ P . This
fact also follows from our LP-formulation in Section 2 (see also Section 6).

A prominent open question in VPN is if the optimal solution of the SPR problem is always a
tree; i.e., OPT (SPR) = OPT (TR). An affirmative answer to this problem would imply that
SPR ∈ P . Italiano et al. [7] mention this as an open problem. Erlebach and Rüegg [3] mention
that no VPN instance has been found so far for which even OPT (MPR) < OPT (TR).

Our own conjecture is that OPT (MPR) = OPT (TR), from which SPR ∈ P would follow.
OPT (MPR) = OPT (TR) (or even OPT (SPR) = OPT (TR)) was not known to be true for
any class of graphs other than trees. It seems to be a crucial step forward to prove it for
circuits, which is the main result in this paper.

Theorem 1.2 Let G = (V, E) be a circuit. Then OPT (MPR) = OPT (TR).

This result is proved in Section 4 of this paper. Before that, an LP-formulation of MPR
is given in Section 2, and a reformulation of the conjecture that OPT (MPR) = OPT (TR) in
terms of this LP-formulation is given in Section 3, together with some preliminary results.

In Section 5, we proceed to prove our conjecture for some other special cases. We prove
it for any graph G and any cost function c, if the communication bound of some terminal is
larger than the sum of the bounds of the other terminals. We also prove it for any graph on
at most 4 vertices, and for any complete graph if the cost function c is identical to 1. We
also prove that the property OPT (TR) = OPT (MPR) is preserved under taking 1-sums of
graphs, implying a common generalization of all the aforementioned results.

Finally, in Section 6, we discuss the more general asymmetric VPN problem. In the
model of this problem, also proposed by Duffield et al. [2], there is a distinction between a
bound b− : W → R+ for incoming communication and a bound b+ : W → R+ for outgoing
communication. Gupta et al. [5] prove that even the TR problem is NP-hard for the VPN
problem with asymmetric communication bounds. However, the TR problem is solvable in
polynomial time if b−(v) = b+(v) for all v ∈ W . Italiano et al. [7] show that this is true already
if
∑

v∈W b−(v) =
∑

v∈W b+(v). Gupta et al. [5] and [6] study approximation algorithms for
NP-hard versions of the VPN problem.

For the MPR variant of this asymmetric problem, we give an LP-formulation of a size
that is polynomial in the number of vertices of the graph. Polynomial time solvability of
the asymmetric MPR VPN problem follows, using the ellipsoid method. This was already
observed by Erlebach and Rüegg [3], but their formulation has exponential size.

The challenge remains to prove or disprove that SPR is polynomially solvable on any graph.
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2 A linear programming formulation

Let G = (V, E) be a graph, W ⊆ V a set of terminals, b ∈ RW
+ a vector of communication

upper bounds, and c ∈ RE
+ a vector of unit edge costs. We also use the notation bv for b(v) and

similarly ce for c(e). We denote the set of all paths between vertices i and j in W by Pij . Let
P = ∪{i,j}⊆WPij . We introduce the variable xp for each p ∈ P. In the SPR VPN problem we
are to select one path for each pair {i, j} of distinct nodes in W ; i.e., we are to select values
for the x-variables that satisfy

∑
p∈Pij

xp = 1, for all {i, j} ⊆ W and xp ∈ {0, 1}, for all p ∈ P.

Once paths have been selected, i.e., values for xp, p ∈ P have been set, the computation of
the capacity that has to be reserved on the edges, ze, e ∈ E, is straightforwardly formulated
in the following linear program. Let αe

p = 1 if edge e is on path p, and 0 otherwise.

ze = max
∑

{i,j}⊆W

∑
p∈Pij

αe
pxpdij ,

s.t.
∑

j∈W dij ≤ bi, ∀ i ∈ W,

dij ≥ 0, ∀ {i, j} ⊆ W,

which, by strong duality, is equal to

ze = min
∑

i∈W biy
e
i ,

s.t. ye
i + ye

j ≥
∑

p∈Pij
αe

pxp, ∀ {i, j} ⊆ W,

ye
i ≥ 0, ∀ i ∈ W.

The MPR problem is to make a feasible choice for the variables xp such as to minimize total
reservation costs

∑
e∈E ceze, which by the above can be formulated as

min
∑

e∈E ce

∑
i∈W biy

e
i ,

s.t. ye
i + ye

j −
∑

p∈Pij
αe

pxp ≥ 0, ∀ {i, j} ⊆ W, ∀ e ∈ E,

∑
p∈Pij

xp = 1, ∀ {i, j} ⊆ W,

ye
i ≥ 0, ∀ i ∈ W, ∀ e ∈ E,

xp ≥ 0, ∀ p ∈ P.

(1)

The MPR problem, formulated above, is the LP-relaxation of the SPR problem, in which all
variables xp are restricted to be 0 or 1. The dual of MPR is given by

max
∑

{i,j}⊆W µij ,

s.t.
∑

j∈W λe
ij ≤ cebi, ∀ i ∈ W, ∀ e ∈ E,

µij −
∑

e∈E αe
pλe

ij ≤ 0, ∀ {i, j} ⊆ W, ∀ p ∈ Pij

λe
ij ≥ 0, ∀ {i, j} ⊆ W, ∀ e ∈ E.

(2)

At this point, let us note already that the separation problem over the dual polytope can be
solved in polynomial time. There is only a polynomial number of constraints of the first type.
For the second set of constraints, suppose we are given λe

ij ∀ {i, j} ⊆ W, ∀ e ∈ E, and µij

∀ {i, j} ⊆ W . Take for any pair {i, j} ⊆ W the constraints for all p ∈ Pij together. To check
if they are satisfied is a matter of computing a shortest path between i and j in W , where
each edge e ∈ E has weight λe

ij . There are only polynomially many i, j pairs in W .
It follows, using the ellipsoid method (see [4]), that MPR can be solved in polynomial time,

which was also proved in [3]. The formulation above, as well as the formulation in [3] is not
of polynomial size, however. In Section 6, we show how a linear program of polynomial size
for MPR can be formulated using the ideas from this section. The formulation is extended
there to a very general asymmetric version of the MPR VPN problem.
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3 A reformulation of the conjecture, and some pre-
liminary results

We start with some notation and terminology. Given a connected graph G = (V, E), a set of
terminals W ⊆ V , a demand function b : W → R+ and a cost function c : E → R+, we will
regard b as a function on V rather than on W (with b(v) = 0 for v /∈ W ) and simply identify
W with the set of vertices {v ∈ V | b(v) 6= 0}. The triple (G, b, c) is then called an instance
(of the MPR or SPR or TR problem), and we will refer to a pair (λ, µ) feasible for the linear
program (2) as a feasible dual or briefly dual for this instance. If moreover,

∑
{u,v} µuv = K,

we will say that (λ, µ) is a dual of value K. A tree solution for the instance (G, b, c) is a
solution to the TR problem with these parameters. So a tree solution is a tree in G spanning
the set of terminals W = {v ∈ V | b(v) > 0}, together with optimal capacity reservations on
the edges of the tree.

By weak duality, and by OPT (MPR) ≤ OPT (TR), we have for any feasible solution (λ, µ)
to (2) that

∑
{i,j}⊆W µij is at most the cost of any tree solution. It means that the following

conjecture is equivalent to the conjecture that OPT (MPR) = OPT (TR).

Conjecture 3.1 For any instance (G, b, c), the cost of an optimal tree solution equals the
value of an optimal dual.

In this paper, we will show that Conjecture 3.1 holds in several special cases, the most im-
portant one being the case where G is a circuit, and b and c are arbitrary.

The next paragraph, which is essentially extracted from [5], summarizes how to compute the
cost of a given tree solution. Let G = (V, E), b ∈ RV

+ , c ∈ RE
+ be given, and let W be the

set of terminals. We will write b(U) for
∑

v∈U b(v), U ⊆ V . Given a tree T ⊆ E spanning a
vertex set V (T ) ⊇ W a directed tree can be constructed by directing the edges of T towards
the ‘lighter’ side: if Le and Re are the components of T − e, and if b(Le) < b(Re), direct e
towards Le, if b(Le) = b(Re), direct e away from some fixed leaf l of the tree. (The italics
indicate a correction of what is written in [5].) This directed tree has a unique vertex r of
in-degree zero which is a ‘balance-point’ of the tree: every edge in the directed tree is directed
away from r. The cost of the tree T is clearly equal to∑

e

min{b(Le), b(Re)}c(e). (3)

Another expression for the cost of the tree is given in the following proposition from [5].
Here, we denote by dc

G(u, v) the distance from u to v in a graph G with respect to the length
function c.

Proposition 3.2 ([5]) Let G = (V, E), b : V → R+, c : E → R+ be given. Then the cost of a
tree solution T with ‘balance-point’ r equals∑

v∈W

b(v)dc
T (r, v).

Moreover, this cost is bounded from below by
∑

v∈W b(v)dc
G(r, v), and bounded from above by∑

v∈W b(v)dc
T (u, v) for any u ∈ V (T ).

As a consequence, we have that an optimal tree solution can be found by computing a
shortest path tree Tu from every vertex u ∈ V and taking the one with minimal cost∑

v∈W b(v)dc
Tu

(u, v) =
∑

v∈W b(v)dc
G(u, v). Hence TR is solvable in polynomial time.

In the next section, we prove Conjecture 3.1 for circuits, that is we prove Theorem 1.2. We
will restrict there to circuits G = (V, E) with |V | even and b(v) = 1 for all v ∈ V . To show
that this is not an essential restriction, we prove a few preliminary lemmas. Some of the
results here will be used in Section 5 as well.

First note that, for a fixed graph G, the optimum values of the various (integer) linear
programs are continuous functions in b and c. Hence, for proving the conjecture, we may
restrict ourselves to rational vectors b and c.
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Lemma 3.3 Let G be a fixed graph. If for any rational vectors b and c the cost of an optimal
tree solution to (G, b, c) equals the value of an optimal dual, then the same is true for any
instance (G, b, c) where b and c are real vectors. 2

The next lemma claims that scaling of b or c is allowed when proving Conjecture 3.1.

Lemma 3.4 For any β ∈ R+, the instance (G, βb, c) has a feasible dual of value βK if and
only if the instance (G, b, c) has a feasible dual of value K. Moreover, (G, βb, c) has a tree
solution of cost βK if and only if (G, b, c) has a tree solution of cost K. A similar statement
holds if c is scaled instead of b.

Proof. Obvious. Multiply all λ and µ values by β to obtain from a feasible dual of the
original instance a feasible dual for the scaled instance. The cost of any tree changes by a
factor β in the new situation as well (see for the cost of a tree solution Proposition 3.2). 2

The next lemma claims that edges of zero cost may be “contracted” or “decontracted” when
proving Conjecture 3.1. Contraction of e = {u′, v′}, by identifying the two vertices u′ and v′

with one new vertex w′, transforms G into G/e = (V \ {u′, v′} ∪ {w′}, E′), with

E′ := {{u, v} ∈ E | {u, v} ∩ {u′, v′} = ∅} ∪ {{w′, v} | {u′, v} ∈ E, v 6= v′}
∪{{w′, v} | {v′, v} ∈ E, v 6= u′}.

By the contraction of e in the instance (G, b, c) we mean the instance (G′, b′, c′), where G′ =
G/e, b′(v) = b(v) for v 6= u′, v′, and b′(w′) = b(u′)+b(v′), and moreover c′({u, v}) = c({u, v}),
if w′ 6∈ {u, v} ∈ E′, and c′({w′, v}) = c({u′, v}) or c({v′, v}), or both values occur, in case
parallel edges arise (edges in G′ can be identified with those in E \ {e}). We will denote this
contraction (G′, b′, c′) by (G, b, c)/e.

Lemma 3.5 Let (G = (V, E), b, c) be an instance, where e = {x, y} ∈ E has c(e) = 0. Then
(G = (V, E), b, c) has a dual of value K if and only if the contraction (G, b, c)/e has a dual of
value K. Moreover, (G, b, c) has an optimal tree solution of cost K if and only if (G, b, c)/e
has an optimal tree solution of cost K.

Proof. For the proof of the first statement, consider a feasible dual (λ, µ) for (G, b, c)/e.
Then the dual (λ̂, µ̂) for (G, b, c), defined by λ̂e

ij := 0, λ̂f
ij := λf

ij , f 6= e, µ̂ij := µij , is evidently

feasible too. Conversely, µ := µ̂, λf := λ̂f , for f 6= e also maintains feasiblity, because each
feasible dual (λ̂, µ̂) for (G, b, c) has the property that 0 ≤ λ̂e

ij ≤ c(e)bi = 0. Solutions (λ, µ)

and (λ̂, µ̂) have the same value.
One implication of the second statement of the lemma is obvious: if we decontract the

edge e, we obtain from a tree solution in (G, b, c)/e of cost K a tree solution in (G, b, c) of the
same cost (see Proposition 3.2).

The other implication is again obvious if edge e is in an optimal tree solution for (G, b, c),
or if at most one of its end points is covered by the tree. The remaining case is one in
which the tree solution T = (V ′, E′) of cost K does not contain edge e, but {u′, v′} ⊂ V ′, so
contraction would lead to a cycle. Let T have balance point r, and let Tr be a shortest path
tree rooted at r for the graph (V ′, E′ ∪ {e}), that does contain e. Tr has tree cost Kr ≤ K.
As T is optimal, Tr must also have cost K. Contraction of e in Tr yields a tree solution for
(G, b, c)/e of cost K.

Combining these two results shows that (G, b, c)/e and (G, b, c) have optimal tree solutions
of the same cost. 2

The last lemma says that vertices with a communication bound of 0 and degree 2 in an
instance (G = (V, E), b, c) can be neglected when proving Conjecture 3.1. Suppose v′ ∈ V
has degree 2 in V , and e1 = {u, v′}, e2 = {v′, w} are the two edges incident with v′. Let
e3 := {u, w} be a new edge. Then shortcutting v′ in (G, b, c) results in the instance (G′, b′, c′),
where G′ = (V − v′, E \ {e1, e2} ∪ {e3}), b′(v) = b(v),∀v ∈ V − v′, and c′(e3) = c(e1) + c(e2),
c′(e) = c(e) for all e ∈ E \ {e1, e2}.
Lemma 3.6 Let (G = (V, E), b, c) be an instance, and v ∈ V a vertex of degree 2 in G with
b(v) = 0. Denote the instance obtained from (G, b, c) by shortcutting v by (G′, b′, c′). Then
(G′, b′, c′) has a dual of value K, if and only if (G, b, c) has a dual of value K. Moreover,
(G′, b′, c′) has a tree solution of cost K, if and only if the same holds for (G, b, c).

5



Proof. For the first statement, consider the dual (λ, µ) for (G, b, c). Define (λ̂, µ̂) by λ̂e3
ij :=

λe1
ij + λe2

ij , λ̂e
ij := λe

ij , for e ∈ E \ {e1, e2}, and µ̂ij = µij , for {i, j} ⊆ W . For feasible (λ, µ)

this yields a feasible (λ̂, µ̂). Similarly, for a feasible dual (λ̂, µ̂) for (G′, b′, c′), define a feasible
(λ, µ) by taking, in particular, λe1

ij := λ̂e3
ij c(e1)/c′(e3), and λe2

ij := λ̂e3
ij c(e2)/c′(e3).

A tree solution for (G′, b′, c′) (not) using edge e3 can be translated into a tree solution of
the same cost for (G, b, c) (not) using both e1 and e2, and vice versa. 2

4 The circuit

In this section, we prove OPT (TR) = OPT (SPR) = OPT (MPR) for circuits, by proving
Conjecture 3.1 for circuits. We use the lemmas from the previous section to prove that we
may restrict ourselves to even circuits in which each vertex has communication bound 1 (an
even circuit is a circuit with an even number of vertices).

Lemma 4.1 If Conjecture 3.1 holds for every instance (G, b, c) where G is an even circuit
and b ≡ 1, then it holds for every instance (G, b, c) where G is a circuit.

Proof. Consider a general circuit instance (G = Cn, b, c). From Lemma 3.6 we know that
without loss of generality b(v) > 0 for all nodes v. Lemma 3.3 implies that we may as-
sume that b is rational. Dividing b by gcd{ 1

2
b(v) | v ∈ V } is allowed by Lemma 3.4.

So we may assume that each b(v) is a positive even integer. Finally, by Lemma 3.5, any
path u, v, w, for v with b(v) 6= 1, may be substituted by a path u, v1, v2, . . . , vN , w, where
N = b(v), setting b(v1) = . . . = b(vN ) = 1, and c({u, v1}) = c({u, v}), c({vk, vk+1}) = 0,
c({vN , w}) = c({v, w}). Thus, we arrive at an even circuit with b ≡ 1. 2

4.1 Properties of an even circuit with unit bounds

Given an even circuit G = C2n = (V, E) on which all vertices have communication bound 1,
we number the vertices starting at some vertex and following the circuit in counterclockwise
direction 0, 1, 2, . . . , 2n−1. All vertex and edge labels are taken modulo 2n. The edge {i−1, i}
is denoted by ei, or by i in case we use it as an index and no confusion with vertices is possible,
i = 0, . . . , 2n − 1. E.g., we will write ck for the unit cost c(ek) of edge ek. On even circuits
each edge ek has an opposite edge ek+n.

The cost of the tree solution obtained from the circuit by deleting the edge ek is denoted
by C(ek; c); we explicitly indicate dependence on c as the unit cost function of the edges, since
we will use other unit cost functions later. By (3), we have

C(ek; c) =

n−1∑
i=1

i(ck−i + ck+i) + nck+n.

Define for each vertex j the half-sum,

H(j; c) :=

j+n∑
i=j+1

ci,

i.e., the sum of the unit costs of the n edges on the path starting in j and ending with the edge
opposite to ej . This allows us to rewrite C(ek; c) in what turns out to be a more convenient
way.

C(ek; c) =

k+n−1∑
j=k

H(j; c). (4)

From this expression the following equations are easily derived.

C(ek; c)− C(ek+1; c) = H(k; c)−H(k + n; c), ∀k = 0, 1, . . . , 2n− 1; (5)

H(j; c)−H(j − 1; c) = cj+n − cj , ∀j = 0, 1, . . . , 2n− 1. (6)
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Now suppose that the tree obtained by deleting edge ek has minimum cost among all spanning
trees of the circuit, in other words C(ek; c) = mine∈E C(e; c). Then, using (5), we have

H(k; c)−H(k + n; c) = C(ek; c)− C(ek+1; c) ≤ 0, and (7)

H(k − 1; c)−H(k + n− 1; c) = C(ek−1; c)− C(ek; c) ≥ 0. (8)

Subtracting (8) from (7) and applying (6) yields

2ck+n − 2ck = H(k; c)−H(k + n; c)−H(k − 1; c) + H(k + n− 1; c)

= 2C(ek; c)− C(ek+1; c)− C(ek−1; c) ≤ 0. (9)

Consequently, if ck = 0 then ck+n = 0 and 2C(ek; c)− C(ek+1; c)− C(ek−1; c) = 0. Hence,

ck = 0 ∧ C(ek; c) = min
e∈E

C(e; c) ⇒ C(ek+1; c) = C(ek−1; c) = C(ek; c) = min
e∈E

C(e; c), (10)

i.e., if ek is a minimizer of C(e; c) and ck = 0, then the adjacent edges ek−1 and ek+1 are also
minimizers of C(e; c).

In the case of an even circuit with b ≡ 1, the constraints of the dual linear program (2)
reduce to the following. (In a circuit there are only two possible paths between any pair of
vertices.) ∑

j∈V \{i} λe
ij ≤ ce, ∀ i ∈ V, ∀ e ∈ E,

µij ≤
∑j

l=i+1 λ
el
ij , ∀ {i, j} ⊆ V,

µij ≤
∑i

l=j+1 λ
el
ij , ∀ {i, j} ⊆ V,

λe
ij ≥ 0, ∀ {i, j} ⊆ V, ∀ e ∈ E.

(11)

4.2 Proof for the even circuit with unit bounds

Given a cost function c : E → R+, we call the set of edges with non-zero unit cost the support
of c, i.e. supp(c) = {e ∈ E|ce > 0}. The following lemma is crucial to the main result.

Lemma 4.2 Let G = (V, E) = C2n be an even circuit, and b ≡ 1. Let F be a non-empty
subset of E. Then there exist a nonnegative cost function ĉ : E → R+, not identical to 0,
with supp(ĉ) ⊆ F , and a constant K, such that for all f ∈ F : K = C(f ; ĉ) = mine∈E C(e; ĉ).
Moreover, there is a dual solution (λ̂, µ̂) for the problem with cost function ĉ, with value K.

Proof. The proof is by induction on |F |. The theorem is clearly true if |F | = 1. For suppose
F = {ek}. Then we can take ĉk = 1 and ĉi = 0 for other i. Clearly, mine∈E C(e; ĉ) =
C(ek; ĉ) = 0. A feasible dual solution with objective value 0 is λ̂e

ij = 0, µ̂ij = 0, ∀e ∈ E,
∀{i, j} ⊆ V .

Suppose now that |F | > 1. We distinguish three cases.

Case 1. There exists a k such that ek ∈ F and ek+n ∈ F . In this case we call the edge set F
singular. See Figure 1 for an example.

Consider the cost function ĉ : E → R+ defined by ĉk = ĉk+n = 1 and ĉi = 0 otherwise. It
satisfies C(e; ĉ) = n, for all e ∈ E. The following dual solution is feasible with respect to this
cost function ĉ (see (11)) and has objective value

∑
i<j µ̂ij = n:

λ̂
ek
i,i+n := 1, ∀ i = 0, 1, . . . , n− 1,

λ̂
ek+n

i,i+n := 1, ∀ i = 0, 1, . . . , n− 1,

λ̂e
ij := 0, otherwise,

µ̂i,i+n := 1, i = 0, . . . , n− 1

µ̂ij := 0, otherwise.
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a

b

Figure 1: Example of a singular subset, denoted by bold lines.

f

e

Figure 2: Contracting the circuit to a smaller one.

Case 2. F is not singular, and there exist k and m, k < m < k+n, such that ek ∈ F , em ∈ F ,
el /∈ F for all k < l < m, and el /∈ F for all k + n ≤ l ≤ m + n. See Figure 2 for an example,
with e = ek and f = em.

We ‘contract’ the edges ek, . . . , em to a new edge e′ = (k−1, m), and the edges ek+n, . . . , em+n

to an edge ē′ = (k − 1 + n, m + n), to arrive at a new even cycle (V ′, E′), with |V ′| = |E′| =
2(n−m− k). We maintain the vertex labels V ′ = {m, m+1, . . . , k− 1+n, m+n, . . . , k− 1}.
The new edge set is E′ = {em+1, . . . , ek−1+n, ē′, em+n+1, . . . , ek−1, e

′}.
Note that edges that were opposite before contraction remain opposite after contraction.

Also, the new edges e′ and ē′ are opposite.
Consider the subset of edges F ′ = F\{ek, em} ∪ {e′}. As 0 < |F ′| < |F |, we can apply

the induction hypothesis. Thus, there exist a cost function c′ : E′ → R+, not identical to 0,
with supp(c′) ⊆ F ′, a constant K′ = mine∈E′ C(e; c′) = C(f ; c′),∀f ∈ F ′, and a dual solution
(λ, µ), with value K′.

Since e′ is a minimizer of C(e; c′), using (9) and the fact that c′(ē′) = 0, we have

c′(e′) = 1
2
(H ′(m + n; c′)−H ′(m; c′)) + 1

2
(H ′(k − 1; c′)−H ′(k + n− 1; c′)),

8



where H ′(j, c′) is the half-sum for vertex j on the smaller, contracted circuit, with its corre-
sponding cost function c′. Now we define the cost ĉ : E → R+ from c′ as follows:

ĉm := 1
2
(H ′(m + n; c′)−H ′(m; c′)),

ĉk := 1
2
(H ′(k − 1; c′)−H ′(k + n− 1; c′)),

ĉi := c′i, ∀{i− 1, i} ∈ F, i 6= k, m,

ĉi := 0, ∀{i− 1, i} ∈ E\F.

It follows from (7) and (8) that ĉm ≥ 0 and ĉk ≥ 0. Note that ĉk + ĉm = c′(e′) and

ĉk + H ′(k + n− 1; c′) = ĉm + H ′(m; c′) = 1
2

∑
e∈E′ c′e = 1

2

∑
f∈F ′ c′f

= 1
2

∑
f∈F ĉ(f) = 1

2

∑
e∈E ĉ(e).

Hence, for the half-sums in the larger circuit, we have

H(j; ĉ) = ĉm + H ′(m; c′) = 1
2

∑
e∈E ĉ(e), j = k, . . . , m− 1,

H(j; ĉ) = ĉk + H ′(k + n− 1; c′) = 1
2

∑
e∈E ĉ(e), j = k + n, . . . , m− 1 + n,

H(j; ĉ) = H ′(j; c′), otherwise.

Using this in (4) yields C(ek; ĉ) = C(em; ĉ), and C(ek; ĉ) − C(f ; ĉ) = C(e′; c′) − C(f ; c′), for
all f ∈ F ′. Hence, C(f ; ĉ) = mine∈E C(e; ĉ) = K,∀f ∈ F , with K = K′+ 1

2
(m−k)

∑
e∈E ĉ(e).

To define the dual feasible solution with value K we represent V as V = V ′ ∪ Ve′ ∪ Vē′ , with
Ve′ = {k, k + 1, . . . , m− 1} and Vē′ = {k + n, k + n + 1, . . . , m + n− 1}. Again we construct
the dual solution (λ̂, µ̂) for (V, E, ĉ) from the dual (λ, µ) associated with (V ′, E′, c′):

λ̂e
ij := λe

ij , for e ∈ F \ {ek, em}, {i, j} ⊆ V ′,

λ̂
ek
ij :=

λe′
ij ĉk

c′(e′) , for {i, j} ⊆ V ′,

λ̂em
ij :=

λe′
ij ĉm

c′(e′) , for {i, j} ⊆ V ′,

λ̂e
ij := ĉ(e), for e ∈ E, i ∈ Ve′ , j = i + n,

λ̂e
ij := 0, otherwise,

µ̂ij := µij , for {i, j} ⊆ V ′,

µ̂ij := 1
2

∑
e∈E ĉ(e), for i ∈ Ve′ , j = i + n,

µ̂ij := 0, otherwise.

Case 2 is settled by an easy verification that (λ̂, µ̂) satisfies the dual constraints (11), and has
value ∑

i,j∈V,i<j

µ̂ij =
∑

i,j∈V ′,i<j

µij +
∑

i∈Ve′

µ̂i,i+n = K′ +
1

2
(m− k)

∑
e∈E

ĉ(e) = K.

Case 3. F is not singular, and Case 2 does not apply. It means that between each pair of
consecutive edges from F , e and f say, there is exactly one opposite edge ḡ of some edge
g ∈ F . See Figure 3 for an example.

Hence F consists of an odd number of edges, 2k + 1 say, such that these edges and their
opposites are perfectly alternating. As a consequence, an edge e ∈ F and its opposite ē, split
the other edges of F into two groups of size k. Therefore, we call this a uniform configuration.
Let F = {f0, f1, . . . , f2k}, with fi = (mi − 1, mi), and denote the number of nodes between
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0

1

2

3

4

Figure 3: Example of an edge set with alternating edges and opposites.

edge fi and fi+1 by νi, i.e., νi = mi+1 −mi modulo 2n. We have that
∑2k

i=0 νi = 2n. Please
note that from now on subscripts i for ν, f etcetera are taken modulo 2k + 1. Define

τi :=

k∑
j=0

νi+j −
2k∑

j=k+1

νi+j = 2(mi+k+1 −mi) mod 2n, i = 0, 1, . . . , 2k,

By uniformity,
∑k

j=0 νi+j >
∑2k

j=k+1 νi+j , whence τi > 0, i = 0, . . . , 2k. Notice that 1
2
τi

equals the number of nodes between f̄i and fi+k+1 (or equivalently between fi and f̄i+k+1).
Note that, by definition, νi+k = 1

2
(τi + τi+k). This justifies the equality in the next definition

of the cost function:

ĉ(fi) :=
νi+k

τiτi+k
= 1

2
(
1

τi
+

1

τi+k
), i = 0, 1, . . . , 2k; ĉ(e) := 0, e /∈ F.

Observe the following identity, for i = 0, 1, . . . , 2k,

i+k∑
j=i

ĉ(fj)−
i+2k∑

j=i+k+1

ĉ(fj) =

i+k−1∑
j=i

(ĉ(fj)− ĉ(fj+k+1)) + ĉ(fi+k)

= 1
2

(
i+k−1∑

j=i

(
(

1

τj
+

1

τj+k
)− (

1

τj+k+1
+

1

τj
)

)
+ (

1

τi+k
+

1

τi+2k
)

)
(12)

=
1

τi+k
> 0

As a consequence, we have that consecutive edges from F yield the same cost, as

C(fi; ĉ)− C(fi+1; ĉ) =

C(fi; ĉ)− C(f̄i+k+1; ĉ) + C(f̄i+k+1; ĉ)− C(fi+1; ĉ) =
1
2
τi(ĉ(fi+1) + . . . + ĉ(fi+k)− (ĉ(fi+k+1) + . . . + ĉ(fi+2k+1)))+

1
2
τi+k+1(ĉ(fi+1) + . . . + ĉ(fi+k+1)− (ĉ(fi+k+2) + . . . + ĉ(fi+2k+1))) =

1
2
τi(−

1

τi
) + 1

2
τi+k+1

1

τi+k+1
= 0

Using (10), we conclude that C(fi; ĉ) = mine∈E C(e; ĉ), for all fi ∈ F .

We introduce the following entities to facilitate the exposition of the dual solution that we
propose:

Λe
i :=


1
2

τi
νiνi+k

ĉ(e)
(
1 + 1

τi

1∑
j ĉ(fj)

)
, if fi < e ≤ fi+k,

1
2

τi
νiνi+k

ĉ(e)
(
1− 1

τi

1∑
j ĉ(fj)

)
, if fi+k < e ≤ fi+2k+1.
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Now we define the dual solution as

λ̂e
st :=


Λe

i , ∀e ∈ E ∀i = 0, 1, . . . , 2k ∀s, t : mi ≤ s < mi+1, mi+k ≤ t < mi+k+1,

0, otherwise,

µ̂st :=
∑

e:s<e≤t λ̂e
st, ∀{s, t} ⊆ V.

To verify feasibility of this solution, first notice that from (12) we have

0 <
1

τi+k

1∑
j ĉ(fj)

≤
∑i+k

j=i ĉ(fj)∑
j ĉ(fj)

≤ 1, ∀i,

whence λe
uv ≥ 0 is satisfied for all u, v ∈ V and all e ∈ E. Simple algebraic computations

show that, for all e ∈ E, for all i = 0, 1, . . . , 2k, and for all s with mi ≤ s < mi+1,

mi+k+1−1∑
t=mi+k

λ̂e
st +

mi+k+2−1∑
t=mi+k+1

λ̂e
ts = νi+kΛe

i + νi+k+1Λ
e
i+k+1 ≤ ĉ(e)

Actually, the inequality is tight except for e = fi+k+1.
To show that (λ̂, µ̂) satisfies the second and third type of dual constraints in (11), it suffices

to show that the sum of λ̂-values over edges along the s − t-path is the same as the sum of
λ̂-values over edges along the t − s-path; i.e.,

∑
e:s<e≤t λ̂e

st =
∑

e:t<e≤s λ̂e
st, for all s, t ∈ V .

Clearly we need to show this only for pairs {s, t} with mi ≤ s < mi+1, mi+k ≤ t < mi+k+1

for some i. The claim follows straightforwardly from the fact that the equality

(ĉ(fi+1) + . . . + ĉ(fi+k))(1 +
1

τi

1∑
f ĉ(f)

) = (ĉ(fi+k+1) + . . . + ĉ(fi+2k+1))(1−
1

τi

1∑
f ĉ(f)

)

is equivalent to the equality

1

τi

1∑
f ĉ(f)

(ĉ(fi+1) + . . . + ĉ(fi+k) + ĉ(fi+k+1) + . . . + ĉ(fi+2k+1)) =

(ĉ(fi+k+1) + . . . + ĉ(fi+2k+1))− (ĉ(fi+1) + . . . + ĉ(fi+k)),

which is evident, since the right hand side equals 1
τi

by (12). This completes the feasibility
check.

It remains to verify that
∑

{s,t}⊂V µ̂st = C(f0; ĉ). We use that C(f0; ĉ) = C(fi; ĉ) for all

i = 0, 1, . . . , 2k implies that C(f0; ĉ) = 1
2k+1

∑2k
i=0 C(fi; ĉ). The half-sums that constitute the

cost C(fi; ĉ) start in nodes j = mi, . . . , mi +n−1 (4). These starting nodes can be subdivided
into 2k + 1 subsets: for j = i, . . . , i + k the half-sums starting in the 1

2
τj nodes between fj

and f̄j+k+1 all have value
∑j+k

t=j+1 ĉ(ft), whereas for j = i, . . . , i+k−1 the half-sums starting

in the 1
2
τj+k+1 nodes between f̄j+k+1 and fj+1 all have value

∑j+k+1
t=j+1 ĉ(ft). Altogether, the

total cost is

1

2k + 1

2k∑
i=0

C(fi; ĉ) =
1

2k + 1

2k∑
i=0

[
i+k−1∑

j=i

( 1
2
τj

j+k∑
t=j+1

ĉ(ft) + 1
2
τj+k+1

j+k+1∑
t=j+1

ĉ(ft))

+ 1
2
τi+k

i+2k∑
t=i+k+1

ĉ(ft)

]

=

2k∑
i=0

[
1
2
τi

k + 1

2k + 1

i+k∑
j=i+1

ĉ(fj) + 1
2
τi+k+1

k

2k + 1

i+k+1∑
j=i+1

ĉ(fj)

]
(13)
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In turn, the value of the dual solution can be rewritten as

∑
{s,t}⊂V

µ̂st =

2k∑
i=0

νiνi+k

∑
e=fi+1,...,fi+k

Λe
i

=

2k∑
i=0

1
2
τi

[
i+k∑

j=i+1

ĉ(fj) +
1

τi

∑i+k
j=i+1 ĉ(fj)∑

f ĉ(f)

]

=

2k∑
i=0

1
2
τi

[
i+k∑

j=i+1

ĉ(fj) +
1

τi

k

2k + 1

]

=

2k∑
i=0

1
2
τi

 i+k∑
j=i+1

ĉ(fj) +

 i+2k+1∑
j=i+k+1

ĉ(fj)−
i+k∑

j=i=1

ĉ(fj)

 k

2k + 1


=

2k∑
i=0

1
2
τi

 k + 1

2k + 1

i+k∑
j=i+1

ĉ(fj) +
k

2k + 1

i=2k+1∑
j=i+k+1

ĉ(fj)

 ,

which equals (13). This settles the proof of Case 3, and thereby the proof of the lemma. 2

We are now ready to prove the main result of this section.

Theorem 4.3 Given an even circuit G = (V, E) with b(i) = 1, ∀ i ∈ V , and a nonnegative
cost function c : E → R+, the cost of an optimal tree solution equals the value of an optimal
dual.

Proof. The proof is by induction on |supp(c)|. The theorem is clearly true if |supp(c)| = 1,
when deleting the only edge with positive unit cost yields a tree solution with total cost 0.
Setting all dual variables to 0 is feasible and yields value 0.

Now suppose |supp(c)| > 1. Lemma 4.2 (applied to F := supp(c)) tells us that there exist
a non-negative non-zero cost function ĉ, such that C(f ; ĉ) = mine∈E C(e; ĉ), ∀f ∈ supp(c),
and a dual solution (λ̂, µ̂) w.r.t. ĉ with the same objective value. Define cost vector c′ as
c′ := c−σĉ, where σ is a scalar chosen such that c′ is non-negative and at least one f ∈ supp(c)
has c′(f) = 0. Such a scalar exists, since supp(ĉ) ⊆ supp(c) and supp(ĉ) 6= ∅.

Let C(e∗; c′) = mine∈E C(e; c′). By (10), we can assume that e∗ ∈ supp(c′) ⊂ supp(c).
Since |supp(c′)| < |supp(c))|, the induction hypothesis may be applied to c′, giving a feasible
dual (λ′, µ′) w.r.t. c′ of value

∑
µ′vw = C(e∗; c′). The solution (λ, µ) := (λ′, µ′) + σ(λ̂, µ̂)

is feasible w.r.t. c, as c = c′+σĉ. Its value is equal to C(e∗; c′)+σC(e∗; ĉ) = mine∈E C(e; c). 2

This theorem together with Lemma 4.1 implies our main result, Theorem 1.2.

5 Other cases where the conjecture holds

In this section, we prove the other results announced in the introduction. We start with the
observation that Conjecture 3.1 holds for trees, since it is equivalent to the statement that
OPT (TR) = OPT (MPR), which is obviously true for trees. In fact, it is possible to construct,
for any instance (G, b, c) where G is a tree, an explicit dual (λ, µ) with value equal to the cost
of the tree.

Indeed, denote the unique path in the tree G between two distinct vertices i, j ∈ V by Pij .
For any edge e of the tree, denote the two components of G− e by Le and Re. Note that the
cost of the tree G is given by K =

∑
e min{b(Le), b(Re)}c(e). Define the dual as follows:

λe
ij := b(i)b(j)

b(Le)b(Re)
min{b(Le), b(Re)}c(e), if |{i, j} ∩ Le| = 1,

λe
ij := 0, otherwise,

µij :=
∑

e∈Pij
λe

ij , for {i, j} ⊆ V .
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Then λ, µ is a feasible dual: for i ∈ Le we have∑
j 6=i

λe
ij =

∑
j∈Re

b(i)b(j)

b(Le)b(Re)
min{b(Le), b(Re)}c(e)

=
b(i)

b(Le)
min{b(Le), b(Re)}c(e) ≤ c(e)b(i),

and similarly for i ∈ Re. Since there is only one path between any two vertices i and j, the
constraint for µ holds by definition. The value of this dual is, as required,∑

i,j

µij =
∑

e

∑
i,j:e∈Pij

λe
ij =

∑
e

min{b(Le), b(Re)}c(e) = K.

As we gather from the next lemma, for proving Conjecture 3.1 we may assume that the graph
G is complete, and that the cost function c is a metric (satisfies the triangle inequality), i.e.
c(uw) ≤ c(uv)+c(vw) for any three vertices u, v, and w. From now on, we use labels uv or vu
to denote the edge {u, v}. The ‘metric’-assumption will be used frequently in the remainder.

Lemma 5.1 Let G = (V, E), b ∈ RV
+ , c ∈ RE

+ be given. Let H = (V, F ) be the complete graph
on V . Define c′(uv) for {u, v} ∈ F as the length of a shortest path between u and v with
respect to the length function c (so that the new cost function c′ ∈ RF

+ satisfies the triangle
inequality). If an optimal tree solution for the instance (H, b, c′) has cost K equal to the value
of an optimal dual, then K is also the cost of an optimal tree solution and the value of an
optimal dual for the instance (G, b, c).

Proof. A dual (λ, µ) which is feasible for c′ and F is also feasible for c and E, since c′ ≤ c
on E. Moreover, for any optimal tree solution in F of cost K with respect to c′ (which may
be taken equal to a star S centered in its ‘balance-point’ s) there exists a tree solution in
E of cost at most K with respect to c: replace the star with center s by a shortest path
tree T rooted at s, then

∑
v b(v)dc

T (s, v) =
∑

v b(v)dc′
S (s, v) = K, and the result follows by

Proposition 3.2. 2

The next lemma says that if one of the vertices is “dominant” (in the sense that its b-value
is greater than the sum of the b-values of the other vertices), then Conjecture 3.1 holds.

Lemma 5.2 Let (G, b, c) be an instance such that b(s) ≥
∑

v 6=s b(v) for some s ∈ W . Then
the shortest path tree T rooted at s is an optimal tree solution for this instance. Moreover,
the cost

∑
v b(v)dc

T (s, v) of this tree solution equals the value of an optimal dual.

Proof. By Lemma 5.1, we may assume that G is complete, and that c satisfies the triangle
inequality. Then the optimal tree solution can be taken equal to a star. But the cost of the
star centered at s is at most the cost of any other star. Indeed, by Proposition 3.2, the star
centered at x 6= s has cost∑

v 6=x

b(v)c(xv) = b(s)c(xs) +
∑

x6=v 6=s

b(v)c(xv)

≥
∑
v 6=s

b(v)c(xs) +
∑

x6=v 6=s

b(v)c(xv) (assumption)

= b(x)c(xs) +
∑

x6=v 6=s

b(v)(c(xs) + c(xv))

≥ b(x)c(xs) +
∑

x6=v 6=s

b(v)c(sv) (triangle inequality)

=
∑
v 6=s

b(v)c(sv).

Therefore, the cost of the optimal tree solution is
∑

v 6=s b(v)c(sv).
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Now, define λ and µ as follows:

λe
sv := c(e)b(v), for v 6= s and e ∈ E,

λe
uv := 0, for u 6= s 6= v and e ∈ E,

µsv := c(sv)b(v), for v 6= s,

µuv := 0, for u 6= s 6= v.

Then it is not hard to check (using the assumption and the triangle inequality) that (λ, µ)
is feasible for the dual of MPR. Moreover, the value

∑
uv∈F µuv =

∑
v 6=s c(sv)b(v) of this

solution equals the cost of the optimal tree solution. 2

The next lemma shows that the property that Conjecture 3.1 holds is preserved under
taking 1-sums. A 1-sum of two graphs is the graph obtained by identifying a vertex of one
graph with a vertex of the other graph. More precisely, let G1 = (V1, E1) and G2 = (V2, E2)
be disjoint graphs, take any v1 ∈ V1 and v2 ∈ V2 and identify them, creating a vertex z, which
is then the only vertex common to V1 and V2, i.e., V1 ∩ V2 = {z}. The 1-sum of G1 and G2

in z is then the graph G = (V1 ∪ V2, E1 ∪ E2).

Lemma 5.3 Let G = (V, E) be the 1-sum of G1 = (V1, E1) and G2 = (V2, E2) in a vertex
z. Let b ∈ RV

+, and c ∈ RE
+ be given. Then the cost of an optimal tree solution equals the

value of an optimal dual for the instance (G, b, c) if the same holds for every instance of the
form (G1, b1, c|E1) (where b1 ∈ RV1

+ is arbitrary) and every instance of the form (G2, b2, c|E2)

(where b2 ∈ RV2
+ is arbitrary). Here, c|Ei denotes the restriction of c to Ei, i = 1, 2.

Proof. Define Bi := b(Vi) for i = 1, 2. Then without loss of generality, B1 ≤ B2. If we look
at the instance (G1, b1, c1), where c1 is the restriction of c to E1, and b1(z) = B2, b1(v) = b(v)
for all other v ∈ V1, then we see that z is a “dominant” vertex for that instance, in the
sense of Lemma 5.2. This means that the shortest path tree T1 rooted at z is a tree solution
of minimum cost K1 :=

∑
v∈V1

b1(v)dc1
T1

(z, v) for this instance. If we define the instance
(G2, b2, c2) in a similar way, there is a tree solution T2 of minimum cost K2 for this instance,
which is a shortest path tree rooted at some r ∈ V2 (not necessarily r = z this time). Now
T := T1 ∪ T2 is a tree solution of (G, b, c) of cost at most K1 + K2: if we compute the cost of
this tree from the root r, we get

∑
v∈V

b(v)dc
T (r, v) =

∑
v∈V2−z

b2(v)dc2
T2

(r, v) + b(z)dc2
T2

(r, z) +
∑

v∈V1−z

b1(v)(dc2
T2

(r, z) + dc1
T1

(z, v))

=
∑

v∈V2−z

b2(v)dc2
T2

(r, v) + B1d
c2
T2

(r, z) +
∑

v∈V1−z

b1(v)dc1
T1

(z, v)

= K2 + K1.

Next, we show that a feasible dual for (G, b, c) with value K1 + K2 (as defined above)
exists. We use the fact that a feasible dual λi, µi of value Ki exists for (Gi, bi, ci), i = 1, 2.
For convenience we write λi

uv(e) instead of (λi)e
uv in the remainder of this proof. Define:
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λe
st := b(t)

B2
λ1

sz(e), for s ∈ V1 − z, t ∈ V2, and e ∈ E1,

λe
st := b(s)

B1
λ2

zt(e), for s ∈ V1, t ∈ V2 − z, and e ∈ E2,

λe
st := λ1

st(e), for s, t ∈ V1 − z, e ∈ E1,

λe
st := λ2

st(e), for s, t ∈ V2 − z, e ∈ E2,

λe
st := 0, otherwise,

µst := µ1
st, for s ∈ V1 − z, t ∈ V1 − z,

µst := µ2
st, for s ∈ V2 − z, t ∈ V2 − z,

µst := b(t)
B2

µ1
sz + b(s)

B1
µ2

zt, for s ∈ V1, t ∈ V2 (where µ1
zz := 0 =: µ2

zz).

Then for s ∈ V1 − z, e ∈ E1:∑
t6=s

λe
st =

∑
t∈V1−z−s

λ1
st(e) +

∑
t∈V2

b(t)

B2
λ1

sz(e) =
∑

t∈V1−s

λ1
st(e) ≤ c1(e)b1(s),

and similarly for s ∈ V2 − z, e ∈ E2. For s ∈ V1, e ∈ E2 we have∑
t6=s

λe
st =

∑
t∈V2−z

b(s)

B1
λ2

zt(e) ≤
b(s)

B1
b2(z)c2(e) = b(s)c(e),

and similarly for s ∈ V2, e ∈ E1. The definition of µ is exactly such that it satisfies the
constraints for µ in (2). Finally, we have

∑
s,t

µst =
∑

s,t∈V1−z

µ1
st +

∑
s,t∈V2−z

µ2
st +

∑
s∈V1−z

∑
t∈V2

b(t)

B2
µ1

sz +
∑
s∈V1

∑
t∈V2−z

b(s)

B1
µ2

zt

=
∑

s,t∈V1−z

µ1
st +

∑
s,t∈V2−z

µ2
st +

∑
s∈V1−z

µ1
sz +

∑
t∈V2−z

µ2
zt

=
∑

s,t∈V1

µ1
st +

∑
s,t∈V2

µ2
st = K1 + K2.

2

We are now ready to prove that Conjecture 3.1 holds for graphs in which any two circuits
are separated by a vertex-cut of size 1, which is a slight extension of Theorem 1.2.

Theorem 5.4 If G is a graph in which any two circuits are separated by a vertex-cut of size
1, then the cost of an optimal tree solution equals the value of an optimal dual for any instance
(G, b, c), where b ∈ RV

+, c ∈ RE
+.

Proof. Directly from Theorem 1.2, from the fact that Conjecture 3.1 holds for trees, and
from Lemma 5.3, since G is a 1-sum of trees and circuits. 2

The next lemma says that if Conjecture 3.1 holds for an instance, it still holds if we add
edges to the graph with cost equal to the length of a shortest path between their endpoints.
It provides a kind of converse to Lemma 5.1.

Lemma 5.5 Suppose for the instance (G = (V, E), b, c) a tree solution of cost K and a
feasible dual of value K exist, and suppose x, y ∈ V , but e := {x, y} /∈ E. Then for the instance
(G′, b, c′) a tree solution of cost K and a feasible dual of value K exist, where G′ := (V, E∪{e}),
c′|E = c, and c′(e) is equal to dc

G(x, y), the distance in G between x and y with respect to the
cost function c.
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Proof. A tree solution for (G, b, c) is also a tree solution for (G′, b, c′), of the same cost.
Moreover, suppose (λ, µ) is a feasible dual for (G, b, c) of value K =

∑
u,v µuv. Define λ̂e

uv as
the length of a shortest path from x to y in G with respect to the length function λuv, let
λ̂f

uv = λf
uv for f ∈ E, and µ̂ := µ. Then (λ̂, µ̂) is a feasible dual for (G′, b, c′) of value K.

Indeed, if Pxy is a shortest x–y path in G with respect to the length function λuv, then we
have ∑

j 6=i

λ̂f
ij =

∑
j 6=i

λf
ij ≤ c(f)b(i) = c′(f)b(i) ∀i ∈ W, ∀f ∈ E

∑
j 6=i

λ̂e
ij =

∑
j 6=i

∑
f∈Pxy

λf
ij =

∑
f∈Pxy

∑
j 6=i

λf
ij ≤

∑
f∈Pxy

c(f)b(i) = dc
G(x, y)b(i) = c′(e)b(i).

2

From the above lemma together with Theorem 1.2, it follows that if the cost function c
on the graph is a “circuit metric”, Conjecture 3.1 holds. (c is a circuit metric if it satisfies
the triangle inequality, and every edge outside some Hamilton circuit has cost equal to the
length of a shortest path, along the circuit, between its endpoints).

For the remaining results in this section, let us rephrase our conjecture as follows. Let Φ(b, c)
denote the minimum value of the LP (1) as a function of b and c. Note that for fixed b,
the function Φ is concave in c. Similarly, Φ is concave in b for fixed c. If the optimal tree
solution for a given instance has nonzero cost, then by scaling the cost function c (Lemma 3.4),
which we assume to be a metric (Lemma 5.1), it is always possible to arrive at the situation
where the optimal star solution (which is an optimal tree solution) has cost 1, without losing
the property that c is a metric. We may also assume that the graph is complete (Lemma
5.1). Therefore, Conjecture 3.1 follows from the statement that for every complete graph
G = (V, E) the minimum over all b and c of Φ(b, c) subject to the following restrictions is at
least 1:

min Φ(b, c),

s.t. b(v) ≥ 0, ∀v ∈ V,∑
v 6=s b(v)c(sv) ≥ 1, ∀s ∈ V,

c(e) ≥ 0, ∀e ∈ E,

c(uw) ≤ c(uv) + c(vw), ∀u, v, w ∈ V.

(14)

For fixed c, the constraints are linear, and the area over which we minimize the concave
function Φ(b, c) is therefore convex, and hence the minimum is attained in a vertex of the
polyhedron determined by (14). Similarly for fixed b.

This allows us to prove that Conjecture 3.1 holds for graphs on at most 4 vertices, by
proving that it holds, when b is fixed, for all vertices c of (14) for such a graph.

Theorem 5.6 Let G be a graph graphs on at most 4 vertices. Then the cost of an optimal
tree solution equals the value of an optimal dual for any instance (G, b, c), where b ∈ RV

+,
c ∈ RE

+.

Proof. We assume that c is a metric. For a graph on 3 or fewer vertices, c is necessarily a
“circuit” or “tree” metric, and the conjecture holds (by Theorem 1.2, and Lemma 5.5). Since
we may assume that the graph is complete, it suffices to prove that the conjecture holds for
K4.

So G = K4, and c is a metric on G. First of all, we may assume that c > 0, since otherwise,
by Lemma 3.5, we are back in the case where the graph has 3 vertices. In the case of K4, there
are in (14) four constraints saying that every star solution has cost at least 1, and 12 triangle
inequalities. For fixed b ≥ 0 (chosen such that there exists at least one nonzero metric c such
that the optimal star solution has cost 1), the polyhedron determined by (14) is contained in
R6. So in a vertex of the polyhedron, 6 linearly independent constraints for c should be tight.
Since we may assume that c > 0, this means that in any case, at least 2 triangle inequalities
are tight for a cost function c minimizing Φ(b, c) over (14). We discern 4 cases.
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Case 1. There are two tight triangle inequalities on the same triangle. That is, after suitably
renaming the vertices 1, 2, 3, 4, we have c(12) = c(13) + c(23) and c(13) = c(12) + c(23). It
follows that c(23) = 0, contradicting our assumption that c > 0.

So this case does not occur; only distinct triangles can be tight for the triangle inequality.
Note that in K4, any two distinct triangles intersect in precisely one edge.
Case 2. The edge on which two distinct tight triangles intersect is on the left hand side in one
of the tight inequalities, on the right hand side in the other. That is, possibly after renaming
vertices, we have c(12) = c(13) + c(23) and c(23) = c(24) + c(34). It can be derived that
c(12) = c(13) + c(24) + c(34) and c(14) = c(13) + c(34). This means that c is a “tree-metric”
completely determined by its value on only the edges 13, 24 and 34. Since the conjecture is
true for trees, by Lemma 5.5 it is also true for K4 in this case.
Case 3. The edge on which two distinct tight triangles intersect is on the right hand side in
both tight inequalities. That is, possibly after renaming vertices, we have c(12) = c(13)+c(23)
and c(14) = c(13) + c(34), or c(12) = c(13) + c(23) and c(34) = c(13) + c(14). In the latter
case, c is a circuit metric, completely determined by its value on the edges 13, 23, 24 and 14;
the result follows from Theorem 1.2, using Lemma 5.5. In the former case, c is determined by
its value on the edges 13, 23, 24, 34, and hence is a “tree plus edge” metric; the result follows
from Theorem 5.4, using Lemma 5.5.
Case 4. The edge on which two distinct tight triangles intersect is on the left hand side in
both tight inequalities. That is, possibly after renaming vertices, we have

c(12) = c(13) + c(23),

c(12) = c(14) + c(24).

If any other triangle inequality is tight, we are back in one of the previous cases. So we may
assume that the set of six linearly independent tight constraints consists of the above two
triangle inequalities together with all four star-inequalities. Hence, the stars centered at all
four vertices have the same cost of 1:

c(12)b2 + c(13)b3 + c(14)b4 = 1,

c(12)b1 + c(23)b3 + c(24)b4 = 1,

c(13)b1 + c(23)b2 + c(34)b4 = 1,

c(14)b1 + c(24)b2 + c(34)b3 = 1.

The determinant of the matrix of coefficients of the above set of 6 equations is 2b3b4(b1 −
b2)(b1 + b2 + b3 + b4). As the equations are linearly independent, this determinant is nonzero.
This implies that the system has a unique solution for c, where every c(ij) is an expression
in the bv’s. For this unique solution c the following can be calculated:

c(13) + c(14)− c(34) =
(b1 − b2 + b3 − b4)(b1 − b2 − b3 + b4)(b1 − b2 + b3 + b4)

2(b1 − b2)b3b4(b1 + b2 + b3 + b4)
,

and

c(23) + c(24)− c(34) =
(b1 − b2 − b3 − b4)(b1 − b2 + b3 − b4)(b1 − b2 − b3 + b4)

2(b1 − b2)b3b4(b1 + b2 + b3 + b4)
.

Since both expressions are positive (no more triangle inequalities are tight), their product
is also positive. It follows that

(b1 − b2 − b3 − b4)(b1 − b2 + b3 + b4) > 0,

since the other factors of the product are squares. So either the factors b1 − b2 − b3 − b4 and
b1 − b2 + b3 + b4 are both positive, or they are both negative. In the first case, we have that
b1 > b2 + b3 + b4; in the second case, b2 > b1 + b3 + b4 holds. So in either case, b is such that
there is a “dominant” vertex, and the conjecture follows from Lemma 5.2. 2

Conjecture 3.1 also holds if G is a complete graph, and the unit cost of all edges is the
same.
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Theorem 5.7 If G = Kn (n ≥ 1) and c(e) = 1 for every e ∈ E, then the cost of an optimal
tree solution equals the value of an optimal dual for any instance (G, b, c), where b ∈ RV

+.

Proof. Since c ≡ 1, c satisfies the triangle inequality, but no triangle inequality is tight. We
may assume that b is such that the cost of an optimal tree solution is greater than zero. Then,
by scaling b instead of c (Lemma 3.4), it is still possible to arrive at a situation where the star-
solution of minimal cost has a cost of 1. So we are now studying the minimization problem
(14) for fixed c. The minimum is attained in a vertex of the polyhedron in Rn determined by

bi ≥ 0, ∀i ∈ {1, . . . , n},∑
j 6=i bj ≥ 1, ∀i ∈ {1, . . . , n}.

(15)

Here, we identify the vertex set of G with {1, . . . , n}.
In a vertex of this n-dimensional polyhedron, n independent inequalities should be tight.

Choose a vertex minimizing Φ(b, 1) over (15). Then for some index-sets I and J from
{1, . . . , n}, with |I|+ |J | = n,

bi = 0, ∀i ∈ I,∑n
j=1 bj − bi = 1, ∀i ∈ J,

is a set of n independent equalities. We have that bi = bj for every i, j ∈ J , since
∑n

j=1 bj − 1
is a constant. We will argue that we may assume that I ∩ J = ∅.

First, note that |I ∩ J | ≤ 1, since if {i, j} ⊆ I ∩ J , i 6= j, then the four equalities bi = 0,
bj = 0,

∑n
k=1 bk − bi = 1,

∑n
k=1 bk − bj = 1 are not independent. Suppose next that i is the

unique index with i ∈ I ∩ J . Then bj = bi = 0 for every j ∈ J . As |I ∪ J | = n − 1, there is
exactly one vertex k 6∈ I ∪ J , and from the equation for i ∈ J we know that bk = 1. But then∑

j 6=k bj = 0 6≥ 1, so this solution is not feasible for (15).
So we may assume that I ∩ J = ∅, or in other words, that bi = b > 0 for k vertices of the

graph, and bi = 0, for n− k vertices of the graph. Feasibility for (15) requires k > 1. We will
explicitly construct a tree solution of minimum cost and a dual of the same positive value for
this special case.

First, note that since c satisfies the triangle inequality, the optimal tree solution may be
taken equal to a star. The star centered at a vertex i with bi = 0 has cost kb, whereas the
star centered at a vertex i with bi = b has cost (k − 1)b. Therefore, an optimal tree solution
has cost (k − 1)b, and we have to construct a dual of this value. Define:

λe
st := 2b

k
, if bs = bt = b, and e = {s, t},

λe
st := b

k
, if bs = bt = b, and e 6= {s, t},

λe
st := 0, if bs = 0 or bt = 0,

µst := 2b
k

, if bs = bt = b,

µst := 0, if bs = 0 or bt = 0.

Then, it is not hard to check that (λ, µ) is a feasible dual, with value∑
s,t

µst =
k(k − 1)

2
· 2b

k
= (k − 1)b.

2

For completeness, we now formulate the most general statement we can obtain by com-
bining all the results in this section. We use the following definitions. The connectivity of a
graph G = (V, E) is the minimum size of a subset U of V for wich G − U is not connected.
If no such U exists (or equivalently, if G is complete), then the connectivity is ∞. A graph
is k-connected if its connectivity is at least k. Now, a k-connected component of a graph
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G = (V, E) is an inclusionwise maximal subset U of V for which G[U ] (the subgraph of G
induced by the vertices in U) is k-connected. A block is a 2-connected component U with
|U | ≥ 2. We identify the blocks of a graph with the subgraphs they induce. Then distinct
blocks of a graph can be seen to have at most one vertex in common. A connected graph may
therefore be obtained from its blocks by taking repeated 1-sums.

Theorem 5.8 Suppose G = (V, E) is a connected graph and c ∈ RE
+ is a cost function such

that every block H = (V ′, E′) of G endowed with the cost function c|E′ is either a circuit, or
a graph on at most 4 vertices, or a complete graph with uniform edge costs. Then the cost of
an optimal tree solution equals the value of an optimal dual for the instance (G, b, c), for any
b ∈ RV

+.

Proof. This follows directly from Theorem 1.2, Theorem 5.6, Theorem 5.7 and Lemma 5.3,
since G can be obtained from its blocks by taking repeated 1-sums. 2

Note that Theorem 5.8 extends Theorem 5.4, since every block of a tree on two or more
vertices is an edge (a complete graph on two vertices).

6 The asymmetric VPN

In this section, we give a compact LP-formulation for the MPR variant of the asymmetric
VPN. An LP-formulation of exponential size for this problem (which did prove polynomial
time solvability of MPR by the ellipsoid method) has been given by [3]. By using the dual
variables as we did in Section 2, below we are able to obtain a formulation of polynomial size.
Something similar is done (independently) in [1].

We now describe the most general asymmetric setting of the VPN problem. We are given a
graph G = (V, E) and a subset W ⊆ V of the vertices of users. We are given a unit edge cost
vector c, with possibly cuv 6= cvu for edges {u, v} ∈ E. For communication from i ∈ W to
j ∈ W , a routing is a vector describing a number of directed paths from i to j, together with
fractions that tell how communication from i to j is split over these paths. Let variable ρuv

ij

denote the fraction of traffic from i to j, making use of edge {u, v} in the direction from u
to v. In graph terminology, ρij describes a flow of value 1 from i to j, in the directed graph
obtained from G by replacing each edge {u, v} by two arcs (u, v) and (v, u). It satisfies the
following constraints:

∑
v:{u,v}∈E

(ρuv
ij − ρvu

ij ) =


1 if u = i;

−1 if u = j;
0 otherwise,

for all u ∈ V

We are furthermore given bounds on the amount of traffic leaving i: b+
i , and on the amount

of traffic towards i: b−i . Possibly, b+
i 6= b−i . Given the routing ρ, we have to find capacities xuv

for the directed edge (u, v) such that for any communication scenario D (possibly asymmetric)
that satisfies

∑
j∈W dij ≤ b+

i , and
∑

j∈W dji ≤ b−i , the edge (u, v) is used within its capacity.
Evidently, we choose xuv to be as small as possible, which means that

xuv = max
∑

i∈W

∑
j∈W,j 6=i dijρ

uv
ij = min

∑
i∈W (yuv

i b+
i + zuv

i b−i )

s.t.
∑

j∈W dij ≤ b+
i∑

i∈W dij ≤ b−j
dij ≥ 0

s.t. yuv
i + zuv

j ≥ ρuv
ij , i, j ∈ W, j 6= i

yuv
i , zuv

j ≥ 0

Here, the second equation follows from strong duality. The purpose is to minimize total cost∑
u

∑
v:{u,v}∈E cuvxuv, hence the general problem is described by the following linear program

min
∑

u

∑
v:{u,v}∈E

∑
i∈W (yuv

i b+
i + zuv

i b−i )cuv,

s.t.
∑

v:{u,v}∈E(ρuv
ij − ρvu

ij ) =


1 if u = i;

−1 if u = j;
0 otherwise,

u ∈ V, i, j ∈ W, j 6= i,

yuv
i + zuv

j − ρuv
ij ≥ 0, i, j ∈ W, j 6= i; u, v ∈ V, {u, v} ∈ E,

yuv
i , zuv

i , ρuv
ij ≥ 0, i, j ∈ W, j 6= i; u, v ∈ V, {u, v} ∈ E.

(16)
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The routing can be made unsplittable, by adding the constraint ρuv
ij ∈ {0, 1}. It can be

made symmetric by adding ρuv
ij = ρvu

ji . If we do both, we force a single path routing. Note
that if, in addition, the data has the property that communication bounds are symmetric,
that is b+

i = b−i , for all i ∈ W , it follows that xuv = xvu. This can be seen by observing that
if (y, z) is feasible for the dual of xuv, then (z, y) is feasible for the dual of xvu, and has the
same objective value. Hence xvu ≤ xuv, and by symmetry the converse also holds. Then the
total cost equals

∑
u,v cuvxuv =

∑
u,v,u<v xuv(cuv + cvu) =

∑
u,v xuv(cuv + cvu)/2. Hence, for

single path routing with symmetric bounds, we may assume without loss of generality, that
edge costs are symmetric, cuv = cvu.

Polynomial time solvability of the asymmetric MPR problem is all the more interesting, as
the asymmetric TR problem has been shown to be NP-complete [5]. The asymmetric TR
problem becomes solvable in polynomial time however if

∑
i∈W b+

i =
∑

i∈W b−i [7]. This is
no longer true if one considers another variant of the VPN problem where upper bounds are
given on the capacities that can be reserved on the edges. In fact, as was claimed (without
proof) in [5], in this last mentioned VPN variant it is already NP-hard to decide whether a
feasible solution to TR or SPR exists (for both the symmetric and the asymmetric case), even
if all capacities are at most 2.

Our compact LP-formulation for the asymmetric MPR problem however can be easily
extended to the case where upper bounds on the available edge capacities are given (just add
constraints

∑
i yuv

i b+
i + zuv

i b−i ≤ Cuv to the program (16), where Cuv is the capacity upper
bound on edge uv). So the MPR problem remains solvable in polynomial time for this variant,
as was also observed in [3].

In [5] and [6] approximation algorithms are studied for NP-hard versions of the VPN prob-
lem.

Note the difference between the asymmetric setting with the bidirected graph, and the sym-
metric problem discussed in the paper. In the symmetric case, edge traffic is counted regardless
of its direction, and the bounds on incoming and outgoing traffic are also aggregated. For a
given routing vector ρ the required edge capacities are computed by

x{u,v} = max
∑

i∈W

∑
j∈W−i dij(ρ

uv
ij + ρvu

ij )

s.t.
∑

j∈W (dij + dji) ≤ bi,

dij ≥ 0.

Note that, under symmetric routing conditions (ρuv
ij = ρvu

ji ), variables dij and dji have the
same cost coefficients, and hence the optimum is achieved by symmetric matrix (dij). As a
consequence, the value x{u,v} above then equals

xuv + xvu := max
∑

i∈W

∑
j∈W−i dijρ

uv
ij + max

∑
i∈W

∑
j∈W−i dijρ

vu
ij

s.t.
∑

j∈W dij ≤ bi/2∑
i∈W dij ≤ bj/2

dij − dji = 0
dij ≥ 0

s.t.
∑

j∈W dij ≤ bi/2∑
i∈W dij ≤ bj/2

dij − dji = 0
dij ≥ 0

As the optimal values for x{u,v} are attained by symmetric communication patterns dij , we
may write for e = {u, v},

xe = max
∑

i,j∈W,i<j d{i,j}(ρ
uv
ij + ρvu

ij ) = min
∑

i∈W ye
i bi

s.t.
∑

j∈W,j 6=i d{i,j} ≤ bi

d{i,j} ≥ 0

s.t. ye
i + ye

j ≥ ρuv
ij + ρvu

ij

ye
i ≥ 0

20



and we have the following, polynomially sized reformulation of MPR for the symmetric VPN:

min
∑

e={u,v}∈E

∑
i∈W ye

i bice,

s.t.
∑

v:{u,v}∈E(ρuv
ij − ρvu

ij ) =


1 if u = i,

−1 if u = j,
0 otherwise,

u ∈ V, i, j ∈ W, i < j,

ye
i + ye

j − ρuv
ij − ρvu

ij ≥ 0, i, j ∈ W, i < j, e = {u, v} ∈ E,
ye

i , ρuv
ij , ρvu

ij ≥ 0, i, j ∈ W, i < j, e = {u, v} ∈ E.
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