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Abstract—In this paper, we propose a new technique, referred
to as virtual probe (VP), to efficiently measure, characterize,
and monitor spatially-correlated inter-die and/or intra-die vari-
ations in nanoscale manufacturing process. VP exploits recent
breakthroughs in compressed sensing to accurately predict spatial
variations from an exceptionally small set of measurement
data, thereby reducing the cost of silicon characterization. By
exploring the underlying sparse pattern in spatial frequency
domain, VP achieves substantially lower sampling frequency than
the well-known Nyquist rate. In addition, VP is formulated as
a linear programming problem and, therefore, can be solved
both robustly and efficiently. Our industrial measurement data
demonstrate the superior accuracy of VP over several traditional
methods, including 2-D interpolation, Kriging prediction, and k-
LSE estimation.

Index Terms—Characterization, compressed sensing, inte-
grated circuit, process variation.

1. INTRODUCTION

S INTEGRATED circuits (ICs) scale to finer feature

size, it becomes increasingly difficult to control process
variations for nanoscale technologies [2], [3]. The increasing
fluctuations in manufacturing process introduce unavoidable
and significant uncertainties in circuit performance. Hence,
modeling and analyzing these variations to ensure manufac-
turability and improve parametric yield has been identified as
a top priority for today’s IC design.
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Toward this goal, various techniques have been proposed for
statistical IC analysis and optimization, e.g., design centering,
statistical timing analysis [4]-[7] and post-silicon tuning [8]-
[10]. These techniques aim to predict and, consequently, min-
imize circuit-level performance variations in order to create
a robust design with high parametric yield. The efficiency of
these methods relies heavily on the accuracy of the variation
model (e.g., distribution and correlation) that provides the
important information about manufacturing uncertainties.

Accurately extracting the variation model, however, is not
trivial. Silicon wafers/chips must be carefully tested and char-
acterized using multiple test structures (e.g., [-V structures
and ring oscillators) deployed in wafer scribe lines and/or
within product chips [11]-[15]. The traditional silicon char-
acterization suffers from three major issues.

1) Large area overhead: today’s advanced microprocessor
chips typically contain hundreds of on-chip ring oscil-
lators to characterize and monitor parametric variations,
resulting in significant overhead in silicon area [12].

2) Long testing time: physically measuring all test struc-
tures through a limited number of I/O ports consumes a
large amount of testing time [13]. In nanoscale technolo-
gies, IC testing has contributed to a significant portion
of the total manufacturing cost [27].

3) Low testing reliability: IC testing may even damage the
wafer/chip being tested. For instance, wafer probe test
may permanently damage the wafer due to mechanical

stress [13].
The combination of these critical issues results in continu-

ously growing silicon characterization cost, as more and more
test structures must be added to capture the complicated spatial
variations of small devices. Even though silicon characteri-
zation has been extensively studied in the past, there is an
immediate need to revisit this area and develop a more efficient
methodology to reduce cost.

To this end, we ask the following fundamental question:
How many test structures are minimally required to fully
capture the spatial variation information? A quick answer to
this question can be made based on the well-known Nyquist—
Shannon sampling theorem [25]. Namely, if the variations
contain no spatial frequency higher than fyax, the sampling
frequency must be at least 2- fyax, i.€., test structures must
be spaced at most 1/(2- fpax) apart.
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The Nyquist sampling theorem generally assumes that all
frequency components below the maximum frequency fyax
may exist. However, this is not true for most silicon char-
acterization applications. As will be demonstrated by the
industrial measurement data in Section V, spatial variations
typically have a sparse representation in frequency domain
(i.e., a large number of Fourier coefficients are almost zero).
In this case, simply sampling at Nyquist rate generates a large
number of redundant data. Such redundancy has been observed
in many other application domains. For example, the key
idea of image compression is to remove the redundancy and
represent the information in a compact form [30]. However,
our silicon characterization problem is substantially different
from image compression, as we do not want to fully sample
spatial variations at Nyquist rate and then “compress” them.
Instead, we want to avoid redundant sampling in the first
place to reduce characterization cost. The challenging issue
here is how to efficiently sample few test structures on a
wafer/chip and then accurately recover the essential spatial
variation information.

In this paper, we exploit the recent advances in statistics
(known as compressed sensing [20]-[23]) to develop a novel
framework of virtual probe (VP) for low-cost silicon testing
and characterization. Our goal is to accurately predict the
spatial variations of a wafer/chip by measuring very few
test structures at a set of selected locations. The proposed
VP algorithm is derived from maximum a posteriori (MAP)
estimation [29]. It is mathematically formulated as a linear
programming problem that can be solved both robustly and
efficiently. Most importantly, several theoretical studies from
the statistics community have proved that by exploring the
sparse pattern in spatial frequency domain, VP can fully
reconstruct the spatial variations with probability nearly equal
to 1, even if the spatial sampling frequency is much lower than
the Nyquist rate [20]-[23]. As will be demonstrated by the
industrial examples in Section V, VP shows superior accuracy
over several traditional methods including 2-D interpolation
[31], Kriging prediction [16], and k-LSE estimation [17].

The remainder of this paper is organized as follows. In
Section II, we develop the mathematical formulation of VP,
and then discuss the implementation details in Section III.
Next, several possible applications of VP are briefly discussed
in Section IV. The efficacy of VP is demonstrated by a number
of examples with industrial measurement data in Section V.
Finally, we conclude in Section VI

II. VIRTUAL PROBE

The key idea of VP is to deploy and measure very few
test structures at a set of selected locations of a wafer/chip.
The parametric variations at other locations are not directly
measured by silicon testing. Instead, VPs are conceptually
added at these locations to predict the variation information
through the use of a statistical algorithm, as shown in Fig. 1.
In other words, unlike the traditional approach that uses a
large number of test structures, we propose to physically
monitor the variability at very few locations and then apply a
“smart” algorithm to accurately predict the complete spatial
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Fig. 1. Example of the proposed virtual probes. (a) Traditionally, a large
number of test structures are deployed and measured to fully characterize
process variations. (b) We propose to deploy and measure very few test
structures, and virtual probes are conceptually added to fully recover spatial
variations through the use of a statistical algorithm.

variation. In this section, we first derive the mathematical
formulation of VP based on spatial frequency-domain analysis.
Next, we derive a MAP algorithm to solve the VP problem
by exploring the unique sparse pattern in frequency domain.
Finally, the accuracy of the MAP estimation is justified by
studying several important theorems recently developed in the
statistics community [20]-[23].

A. Mathematical Formulation

Mathematically, the spatial variations of a performance
of interest (e.g., the frequency of a ring oscillator) can be
expressed as a 2-D function g(x, y), where x and y represent
the coordinates of a spatial location on a wafer or chip. If
g(x, y) contains no spatial frequency higher than fyax, the
Nyquist-Shannon sampling theorem [25] tells us to sample
g(x,y) with a frequency of 2-fyax in order to perfectly
recover the continuous function g(x, y).

Mathematically, the function g(x, y) can be mapped to the
frequency domain by a number of 2-D linear transforms such
as Fourier transform [25], discrete cosine transform (DCT)
[30], and wavelet transform [30]. In this paper, we use DCT
to illustrate the basic idea of VP. It should be noted, however,
that the proposed VP framework can also be implemented with
other linear transformations.

We discretize the 2-D function g(x, y) at a spatial frequency
higher than the Nyquist rate. Without loss of generality, we

denote the coordinates x and y as integers x € {1,2,..., P}
and y € {1, 2, ..., Q} after discretization. The DCT transform
can be represented as [30]
Gu,v) = Y7, 5% a0 B g(x.y)
7-Qx—1)-(u—1)
08 2. P (1)
T-Qy—-D-(w—1)
cos
2.0
where
\J1/P (u=1)
oy = / (2)
\/2/P 2<u=<P)
8, = ,/I/Q (v=1 3
2/ esv=o.



1816

In (1), {Gu,vy;u = 1.,2,....,Pv = 1,2,...,0}
represents a set of DCT coefficients. Equivalently, the
sampling values {g(x,y);x = 1,2,..., P,y = 1,2,..., 0}
can be expressed as the linear combination of
{Gu,v)u = 1,2,...,P,v = 1,2,..., Q} by the inverse
discrete cosine transform (IDCT) [30]

P 0
g(x’y):;ﬂ:;au'ﬂu'G(u,v)~cosn'(2x_2.l)P'(”_1)

Sﬂ-(2y—1)-(v—1)
2.0 '
(€]

From (1)—(4), it is easy to verify that once the sampling values
{g(x,y); x = 1,2,...,P,y = 1,2,..., Q} are known, the
DCT coefficients {G(u,v);u = 1,2,...,P,v=1,2,...,0}
are uniquely determined, and vice versa.

The proposed VP framework, however, will go one step
further. Our objective is to accurately recover {g(x,y); x =
1,2,....,Py = 1,2,...,Q} from a very small number of
(say, M) samples at the locations {(x,,, y,,);m=1,2,..., M}
where M << PQ. In other words, the recovery can be
formulated as the following linear equation:

A-n=B %)
where
Al A Aipo
Arin Azin Az po
A= . ) ) (6)
Ay Ami2 Az po

7T 2xp—1)(m—1) TCyn—D@W-=1
-COS
2. P 2.0

Am,u,v = oy, fy-cos

(N

n=[G1,1) G(,2) G0l (8)

T

B=[ gx1,y1) g2, y2) g Cears )| ©)

In (5)-(9), the DCT coefficients {G(u, v); u =1,2,..., P,v=

1,2,..., Q} are the problem unknowns. In other words, we
need to determine {G(u, v); u=1,2,...,Pv=1,2,..., 0}
based on the measurement data {g(x,,, yn); m=1,2,..., M}.

Once the DCT coefficients {G(u, v); u = 1,2,...,Pv =
1,2,..., Q} are known, the function {g(x, y); x=1,2,..., P,
y=1,2,..., Q} can be easily calculated by the IDCT in (4).

Solving the linear equation A-n = B in (5), however, is
not trivial, since M (i.e., the number of equations) is vastly
less than PQ (i.e., the number of unknowns). Namely, the
linear equation in (5) is profoundly underdetermined. While
(5) cannot be uniquely solved by a simple matrix inverse,
its solution can be statistically determined by considering
additional prior information via Bayesian inference, as will
be discussed in the next subsection.
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Fig. 2. Histogram of the normalized DCT coefficients calculated from 17
wafers for an industrial IC design example.

B. MAP Estimation

In this subsection, we describe an efficient algorithm using
MAP estimation to statistically solve the linear equation in
(5). Although the result of this subsection can be derived by
applying a number of elegant statistics theorems [19]-[23],
[29], we attempt to describe the MAP algorithm at a level
that is intuitive to the CAD community. More mathematical
details of MAP can be found in [19]-[23] and [29].

To solve (5), we first define a so-called prior distribution
for n [29]. Intuitively, the prior distribution represents our
prior knowledge about n without seeing any measurement
data. Such prior information helps us to further constrain
the underdetermined linear equation A-n = B in (5) so
that a meaningful solution can be uniquely found. At first
glance, this seems impossible, since we would expect that the
spatial variations and, hence, the DCT coefficients in 1 are
substantially different from wafer to wafer and from chip to
chip. However, we will show in this paper that n has a unique
property that we can exploit to define the prior distribution.

Before moving forward, let us first examine the following
example of an industrial IC design. We measure the flush delay
of this circuit from 17 wafers, each containing 282 chips.
Flush delay is the time for a transition to propagate across
a scan chain. We calculate the DCT coefficients and plot the
histogram of them in Fig. 2. We notice that the distribution has
a sharp peak at zero. This implies that most DCT coefficients
are close to zero. In general, if the performance variations
{gx,y); x=1,2,..., P, y=1,2,..., Q} present a spatial
pattern, i.e., the variations are spatially correlated, the vector
n that contains the corresponding DCT coefficients {G(u, v);
u=12,...,P,v=12...,0} is sparse. This unique
property of sparseness has been observed in many image
processing tasks [30], and has motivated the compressed
sensing research for image recovery using a minimum number
of samples [19]-[23]. The previous research in compressed
sensing shows that if most of these DCT coefficients are
expected to be zero, we can reconstruct the image from a
surprisingly small (i.e., “compressed”) set of samples. As will
be demonstrated by several industrial examples in Section V,
this assumption of sparseness is also valid for our silicon
characterization application.

While we assume that a large number of DCT coefficients
are close to zero, we do not know the exact locations of these
zeros. Otherwise, solving n from the linear equation A-n = B
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Fig. 3. Optimally-fitted Laplace distribution for the normalized DCT coef-
ficients calculated from 17 wafers for an industrial IC design example.

in (5) becomes trivial. To find the unique solution 7 of the
under determined linear equation A-n = B, we need to statis-
tically model the histogram in Fig. 2 by using a zero-mean
Laplace distribution to approximate the probability density
function (PDF) of each DCT coefficient {n;; i =1,2,..., PQ}
[29]

1 |7 .
pdf (ni) = 7 -exp< \ ) (i=1,2---,PQ) (10)
where pdf(n;) stands for the PDF of n;, and A > 0 is a
parameter that controls the variance of the distribution. The
parameter A in (10) can be optimally found by maximum
likelihood estimation [29]. Fig. 3 shows the optimally-fitted
Laplace distribution for the data set in Fig. 2. In practice,
however, it is not necessary to know the value of A. As will
be shown in (17), the solution 5 is independent of the actual
value of A.
To completely define the prior distribution, we further
assume that all DCT coefficients in the vector n € RF? are
mutually independent. Hence, the joint PDF of 5 is represented

as
1\ 2 i)
() ew(-7)

() oo (-2)

where ||e||; denotes the L1-norm, i.e., the summation of the
absolute value of all elements in the vector. The prior PDF in
(11) has a three-fold meaning.

1) The DCT coefficients {n;;i = 1,2,..., PQ} have a
high probability to equal zero. This, in turn, implies the
sparseness of 7.

2) The prior PDF in (11) treats each »; equally. In other
words, the prior PDF does not tell us which »; is zero or
non-zero. We need a “smart” algorithm to automatically
find the non-zero coefficients based on a limited number
of sampling points {g(x,,, yn);m=1,2,..., M}.

3) The independence assumption in (11) simply means that
we do not know the correlation of n in advance. The
correlation information will be taken into account by the
posterior distribution [see (14)], once the measurement
data are available.

pdf (n)

(11

Next, to derive the MAP algorithm, we need to introduce
another important terminology, likelihood function, that is

mathematically defined as the conditional probability pdf
(B |n). It models the relationship between the measurement
data in B and the unknown DCT coefficients in 1. Given the
linear equation A-n = B in (5), the measurement data in B
and the DCT coefficients in n must satisfy the linear equation
A-n = Bin (5). In other words, it is impossible to observe a set
of variables n and B for which the equation A-n = B does not
hold. Hence, the likelihood function is a Dirac delta function
where the conditional probability pdf(B |n) is non-zero if and
only if A-n equals B

_Joo (A-n=B)
where
/ pdf (B|n)-dB =1. (13)

A-n=B

After defining the prior distribution in (11) and the like-
lihood function in (12), we are now ready to describe the
MAP algorithm to uniquely determine the unknown DCT
coefficients in 7. The key idea of MAP is to find the optimal
solution 7 that maximizes the posterior distribution, i.e., the
conditional PDF pdf (5 |B). Namely, it aims to find the solution
n that is most likely to occur. Based on Bayes’ theorem [29],
the posterior distribution pdf(n|B) is proportional to the prior
distribution pdf(n) and the likelihood function pdf(B|n)

pdf (n|B) oc pdf (n) - pdf (Bln).

Hence, the MAP algorithm attempts to solve the following
optimization problem:

(14)

maxinmize pdf (n) - pdf (Bn). (15)

In our case, the likelihood function is a Dirac delta function,
as shown in (12). Therefore, maximizing the posterior proba-
bility in (14) is equivalent to maximizing the prior probability
in (11) subject to the linear constraint A-n = B

maximize 1/(24)"2 - exp (= lInll; /2)
1

subjectto A -n=B.

(16)

Since the exponential function exp(—||n||;/A) where A > 0
monotonically decreases in ||5||;, the optimization in (16) can
be re-written as
minimize |5l
" a7
subjectto A -n=B.
Note that the optimization in (17) is independent of the
parameter A in (11).

Equation (17) is referred to as L1-norm regularization in the
literature [19]-[23]. To illustrate the connection between L1-
norm regularization and sparse solution, we consider a simple
2-D example (i.e., n = [n; n217), as shown in Fig. 4. In this
example, the equality constraint only consists of one linear
equation and, hence, the feasible space of the constrained
optimization problem can be represented by a line A-n = B
in the 2-D space. On the other hand, the contour lines of the
cost function ||n||; correspond to a number of rotated squares.
It can be seen from Fig. 4 that the optimal solution solved
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Fig. 4. Proposed L1-norm regularization results in a sparse solution 7, as
illustrated by the simple 2-D example.

by Ll-norm regularization is located at one of the vertices
of the contour lines. This observation implies that one of
the coefficients (i.e., n; in this example) is exactly zero and,
therefore, a sparse solution 7 is achieved.

Equation (17) can be converted to an equivalent linear
programming problem and solved both robustly (i.e., with
guaranteed global optimum) and efficiently (i.e., with low
computational cost). The detailed algorithm of solving (17), as
well as several other implementation issues, will be discussed
in Section III.

C. Accuracy of MAP Estimation

Given the prior distribution in (11), the MAP estimation,
i.e., the L1-norm regularization in (17), is statistically optimal,
since it finds the solution 7 that maximizes the posterior prob-
ability, as shown in (15). However, it remains an open question
if the accuracy of the MAP estimation can be quantitatively
measured. In other words, we need to answer the following
two questions.

1) Can the MAP estimation find the exact solution n for

the underdetermined linear equation A-n = B?
2) If the answer is yes, what are the sufficient conditions
to guarantee the finding of the exact solution 7n?
In this subsection, we will answer these open questions by
studying several important statistics theorems.

It has been proven in [20]-[23] that given the linear equation
A-n = B in (5), the accuracy of the MAP estimation depends
on the orthonormality of the column vectors of the matrix A €
RM>*PC To intuitively illustrate this concept, we first consider
a trivial case where the number of equations (i.e., M) equals
the number of unknowns (i.e., PQ) and, hence, A is a square
matrix. Furthermore, we assume that all column vectors of A
are orthonormal, i.e., A is an orthogonal matrix with AT A=1
where [ is an identity matrix. In this trivial case, the exact
solution n of A-n = B can be accurately determined as

n=A" . B. (18)

In practice, since VP aims to predict the spatial variations
from very few samples, the linear equation A-n = B in (5)
is under determined and the matrix A € RM*PC has more
columns than rows (i.e., M < PQ). It is impossible for all
columns of A to be orthonormal. In this case, it turns out
that the solution n can be accurately found if the columns
of A are approximately orthonormal. Based on the theorems
of compressed sensing [20]-[23], the “orthonormality” of a
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matrix A can be quantitatively measured by its restricted
isometry property (RIP).

Definition 1: A matrix A satisfies the restricted isometry
property (RIP) of order K with constant 6 < 1, if the
inequality

(I=8k) -3 < IA-nl3 <A +8k)-Inl3  (19)

holds for every vector n that contains only K non-zero
elements. In (19), || e ||, denotes the L2-norm, i.e., the square
root of the summation of the squares of all elements in the
vector.

If all columns of the matrix A € RM*PC are almost
orthonormal, RIP should be satisfied with a large K and a
small é¢. In the extreme case where A is exactly an orthogonal
matrix, ||A.n||, is equal to ||n||> for every vector n € R,
since the linear transformation by an orthogonal matrix does
not change the L2-norm of the vector n [26]. Hence, RIP is
satisfied with K = PQ and §x = 0.

The concept of RIP has been successfully applied to assess
the inherent difficulty of finding the exact solution 1 from
the under determined linear equation A-n = B in (5). From
example, the following theorem has been shown in [21].

Theorem 1: The L1-norm regularization in (17) guarantees
to find the exact solution 1 of the underdetermined linear
equation A-n = B in (5), if the following three conditions
are all satisfied.

1) The solution vector n contains at most S non-zeros.

2) The matrix A satisfies the RIP of order 2S5 with constant
825 < 1 and the RIP of order 3§ with constant é35 < 1.

3) The two RIP constants 5 and 835 further satisfy the
inequality &5 + 835 < 1.

Note that the conditions in Theorem 1 are sufficient but not
necessary. A number of other sufficient conditions have also
been derived in the literature. More details can be found in
[21].

While RIP offers a solid theoretical foundation to assess the
accuracy of the MAP estimation, computing the RIP constant
8k for a given matrix A is an NP-hard problem [20]-[23].
For this reason, an alternative metric, coherence, has been
proposed to measure the orthonormality of a matrix A [22].

Definition 2: Given a matrix A for which every column
vector has unit length (i.e., unit L2-norm), its coherence is
defined as

w=max[(A;, Aj)| (20)
where A; and A; denote the ith and jth columns of A,
respectively, and <e, > stands for the inner product of two
vectors.

Similar to RIP, the coherence value p in (20) offers a
quantitative criterion to judge if the columns of the matrix
A are approximately orthonormal. For instance, if all columns
of A are orthonormal, the coherence value u researches the
minimum (i.e., zero); otherwise, the coherence value wu is
always greater than zero.

While the RIP constant §x in (19) is difficult to compute,
the coherence value p in (20) can be easily calculated by the
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inner product of column vectors. Once u is known, the RIP
constant §x is bounded by [22]

Sk < (K=1) 1)
where K denotes the order of RIP. In other words, while the
exact value of the RIP constant §x is unknown, its upper
bound can be efficiently estimated by coherence. This, in turn,
offers a computationally tractable way to verify the sufficient
conditions in Theorem 1. More details on coherence and its
applications can be found in [22].

The aforementioned discussions summarize the theoretical
framework to justify the accuracy of the MAP estimation. It
demonstrates a number of sufficient conditions which guar-
antee to find the exact sparse solution n from the under
determined linear equation A-n = B. In our application of
spatial variation characterization, the number of non-zeros in
the vector 7 is not known in advance. Hence, it can be difficult
to verify the conditions in Theorem 1 and then determine
if the exact solution n is accurately solved. However, the
theoretical results summarized in this subsection demonstrate
the importance of column orthonormality for the matrix A in
(5). This, in turn, motivates us to develop efficient techniques
to improve the column orthonormality and, hence, enhance the
accuracy of VP. The details of these implementation issues will
be discussed in Section III.

III. IMPLEMENTATION DETAILS

Our proposed VP technique is made of practical utility by
carefully addressing several important implementation issues,
including the following:

1) a column normalization scheme to improve the orthonor-
mality of the matrix A for the underdetermined linear
equation A-n = B in (5);

2) alinear programming formulation to efficiently solve the
L1-norm regularization problem in (17);

3) a modified Latin hypercube sampling (M-LHS) scheme
to randomly select the spatial sampling locations with
small coherence;

4) a DCT coefficient pre-selection scheme to further im-
prove the prediction accuracy by carefully removing
non-critical high-frequency DCT coefficients.

In this section, we describe these implementation details and
highlight their novelties.

A. Normalization

As discussed in Section II-C, all columns of the matrix A
of the linear equation A-n = B should be approximately or-
thonormal so that the MAP estimation is capable of accurately
finding the solution 5. The requirement on orthonormality
has a two-fold meaning. First, the columns of the matrix
A should be approximately orthogonal. Second, all these
columns should have unit length (i.e., unit L2-norm).

It is important to note that the column orthogonality of the
matrix A cannot be enhanced by applying a simple orthogo-
nalization algorithm, e.g. the Gram—Schmidt orthogonalization

[26]. Such an orthogonalization process will change the solu-
tion vector n and compromise its unique sparse pattern.

The requirement on unit length, however, can be easily
satisfied, if we normalize each column of the matrix A by
its L2-norm. It has been demonstrated by the statistics com-
munity that the aforementioned normalization can efficiently
improve the accuracy of the MAP estimation [22]. Hence, it is
adopted in this paper and applied to (17), before the L1-norm
regularization problem is solved by a numerical solver.

B. Linear Programming

Once all columns of the matrix A are normalized to unit
length, a numerical solver should be applied to solve the L1-
norm regularization problem in (17) and find the optimal solu-
tion n. From (17), we would notice that the cost function ||7||;
is not smooth and, hence, it cannot be easily minimized by a
simple gradient-based algorithm [28]. To address this issue,
we introduce a set of slack variables {6;;i = 1,2,..., PQ}
and re-write (17) as

minimize 6 +6,+---+0pg

1,0
subjectto A-n=B (22)
—0; < <06 @=1,2,---, PO).
Intuitively, by minimizing the cost function in (22), all
constraints {—6; < n; < 6,51 =1,2,..., PQ} will become
active, i.e., {|ni|= 6;; i = 1,2,..., PQ}. For this reason,

the optimizations in (17) and (22) are equivalent, i.e., they
share the same optimal solution 7. This conclusion can be
formally proven based on the Karush—Kuhn-Tucker condition
from optimization theory [28].

Note that both the cost function and the constraints in
(22) are linear. Therefore, it is a linear programming problem
and can be solved both robustly (i.e., with guaranteed global
optimum) and efficiently (i.e., with low computational cost),
e.g., by using the interior-point method [28]. For large-scale
problems, there exist a number of fast algorithms (e.g., [18])
that can solve (22) with millions of variables in a few minutes.

C. Latin Hypercube Sampling

The study in Section II-C shows that the accuracy of
the MAP estimation depends on the orthonormality of the
matrix A in (5). According to the definition of the matrix
A, it can be easily seen that the value of A is determined
by the sampling locations {(x,, y.); m = 1,2,..., M}.
In other words, different choices of sampling locations will
provide different values of the matrix A and, hence, different
results of the MAP estimation. It, in turn, motivates us to
develop an efficient algorithm to find a set of “good” sampling
locations. As such, the orthonormality of the matrix A is well
approximated, thereby resulting in high prediction accuracy
for the MAP estimation.

While directly optimizing the orthonormality of the matrix
A, e.g., minimizing the coherence value p in (20), is not
trivial, it has been proven that random sampling is able
to result in a good matrix A [20]-[23]. In particular, the
theoretical results in [20]-[23] demonstrate that if the vector
n € RPC contains at most S (S << PQ) non-zeros and M
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Fig. 5. Simple partition example for the M-LHS algorithm where 13 possible
sampling locations are labeled as {(x,, yn), n = 1,2,...,13} and divided
into four subsets {(xp, y»), n = 1,2, 3}, {(xn, yu),n =4,5,6}, {(xp, yn),n =
7,8,9}, and {(xp, yn), n=10,11,12,13}.

sampling locations are randomly selected where M is in the
order of O(S-log(PQ)), the sufficient conditions in Theorem
1 are almost guaranteed to hold (i.e., with probability nearly
equal to 1), implying that the exact value of n can be
accurately determined with extremely high probability. To the
best of our knowledge, there is no other sampling scheme
that clearly outperforms random sampling.

Based on these observations, we adopt the random sampling
strategy in this paper. Our objective is to evenly distribute M
random sampling points over the entire wafer/chip. To achieve
this goal, we borrow the idea of Latin hypercube sampling
(LHS) from the statistics community [24] and develop a M-
LHS algorithm to generate well-controlled random samples.

Starting from N possible sampling locations on a
wafer/chip, we first label each sampling location by an index
n € {1,2,..., N}. For illustration purposes, Fig. 5 shows a
simple example where 13 sampling locations are sequentially
labeled. This simple example reveals two important proper-
ties of our labeling scheme. First, if two different sampling
locations (x;, y;) and (x;, y;) are in the same neighborhood,
their indexes i and j should be close to each other. Second,
the number of possible sampling locations (i.e., N) can be less
than the total number of DCT coefficients (i.e., PQ), since the
shape of a wafer is close to a circle, instead of a rectangle.

Next, to evenly distribute the M sampling locations among
the N possible choices, we partition the index set {1, 2, ..., N}
into M non-overlapped subsets. There are two possible scenar-
ios when we construct these subsets.

1) M is a factor of N (i.e., M divides N without leaving
a remainder). In this case, the partition of the set
{1,2,..., N} is simply determined by the order of the
indexes. Namely, the M subsets are: {1,2,..., N/M},
{N/M+1,N/M+2,...,2.N/M}, and so on.

2) M is not a factor of N and M divides N leaving a non-
zero remainder R. In this case, we again divide the set
{1,2,..., N} into M non-overlapping subsets based on
the order of the indexes. However, the sizes of all subsets
are different: either | N/M |(the largest integer that is
less than or equal to N/M) or [ N/M] + 1. The choices
between |[N/M| and |[N/M]| + 1 are randomly selected
for each subset with the constraint that only R subsets
have the size of | N/M|+1 and the other M — R subsets
have the size of [ N/M|. Hence, each of the N possible
sampling locations belongs to one of the M subsets.
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Algorithm 1 Modified Latin hypercube sampling (M-LHS)

1: Start from N possible sampling locations on a wafer/chip.

2: Label each sampling location by an index n €
{1,2,..., N} so that the indexes i and j of two different
sampling locations (x;, y;) and (x;, y;) are close to each
other if (x;, y;) and (x;, y;) are in the same neighborhood.

3: Partition the index set {1,2,...,N} into M non-
overlapped subsets. If M is a factor of N, the partition is
simply determined by the order of the indexes. Otherwise,
if M divides N leaving a non-zero remainder R, the set
{1,2,..., N} is divided into M non-overlapped subsets
based on the order of the indexes where only R subsets
have the size of |[N/M| + 1 and the other M — R subsets
have the size of [N/M].

4: Randomly select one sampling location from each of the
M subsets, resulting in M sampling locations in total.

Fig. 5 shows a simple partition example with 13 possible
sampling locations and four subsets. In this case, since M =4
is not a factor of N = 13, the sizes of these four subsets are
not identical. Studying Fig. 5, we would notice that each of
the M subsets generated by our partition scheme contains the
sampling locations in the same neighborhood. In other words,
the M subsets conceptually represent M local clusters spatially
distributed over the wafer/chip.

As the final step of the proposed M-LHS algorithm, we
randomly select one sampling location from each of the M
subsets, thereby resulting in M sampling locations in total.
Algorithm 1 summarizes the major steps of our M-LHS
algorithm. Unlike the traditional LHS algorithm that aims to
sample continuous random variables [24], Algorithm 1 has
been particularly tuned to randomly select M choices out of
N possible candidates. Hence, it is referred to as M-LHS in
this paper.

Compared to brute force random sampling, M-LHS guaran-
tees to distribute the M sampling locations over different local
regions on the wafer/chip. Namely, it eliminates the possibility
that many sampling locations are selected from the same local
space. This, in turn, leads to superior prediction accuracy over
brute-force random sampling, as will be demonstrated by the
numerical examples in Section V.

D. DCT Coefficient Pre-Selection

It is shown in the previous subsection that the number of
samples required for VP depends on the logarithm of the total
number of DCT coefficients, i.e., log(PQ). If we know that a
subset of DCT coefficients must be zero, we no longer need to
consider these DCT coefficients as problem unknowns. Given
a limited number of sampling points, such a pre-selection
strategy for DCT coefficients can further improve the accuracy
of the proposed VP algorithm.

As is demonstrated in the literature [15], spatial patterns of
process variations are often smooth. It, in turn, implies that the
spatial variation patterns may be accurately represented by a
few dominant DCT coefficients at low frequencies. Namely,
the low-frequency DCT coefficients are more important than
the high-frequency ones when predicting spatial variations.
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Fig. 6. Importance ranking of DCT coefficients defined in [17] where the
rank “1” corresponds to the most important DCT coefficient.

Motivated by this observation, we follow the idea proposed
in [17] to rank the importance of all DCT coefficients, as
shown in Fig. 6. When solving the linear equation A-n = B
by (17), we only consider the first K low-frequency DCT
coefficients as problem unknowns. All other high-frequency
DCT coefficients are simply set to zero. In other words, the
optimization in (17) only needs to solve the sparse solution
for K (instead of PQ) problem unknowns.

In our implementation, cross-validation [29] is further used
to estimate the optimal value of K. An F-fold cross-validation
partitions the sampling points into F groups. Prediction error
is estimated from F independent runs. In each run, one of
the F groups is used to estimate the prediction error and
all other groups are used to solve the L1-norm regularization
problem in (17) to determine the unknown DCT coefficients.
Note that the training data for coefficient estimation and the
testing data for error estimation are not overlapped. Hence,
over-fitting can be easily detected. In addition, different groups
are selected for error estimation in different runs. As such,

each run results in an error value e, (f =1,2,..., F) that is
measured from a unique set of testing data. The final prediction
error is computed as the average of {es; f=1,2,..., F}, ie,

e=(g1+&+...+¢ep)/F. The optimal value of K is determined
to minimize the cross-validation error &.

E. Summary

Algorithm 2 summarizes the major steps of the proposed VP
method. It starts from very few (i.e., M) sampling locations
{g(xm, ym);m =1,2,..., M} determined by M-LHS. Next, it
formulates an underdetermined linear equation based on these
measurement data, and solves all DCT coefficients. Finally, the
spatial variations {g(x, y);x=1,2,..., P,y=1,2,..., Q} are
recovered by the IDCT in (4).

In summary, the proposed VP method offers a number of
important advantages over other traditional techniques.

1) Low cost: VP is developed to minimize the number
of test structures required to fully extract the spatial
variation information. It, in turn, reduces the testing
and measurement cost, e.g., area overhead, testing and
characterization time, yield loss during testing, etc. In
addition, the VP formulation in (22) is a linear program-
ming problem and it can be solved both robustly (i.e.,
with guaranteed global optimum) and efficiently (i.e.,
with low computational cost).

2) High accuracy: the accuracy of VP is guaranteed by the
theoretical studies from the statistics community [19]-
[23], as discussed in Section II-C. Namely, with several

Algorithm 2 Virtual probe (VP)

1: Select M sampling locations {(x,,, ym); m=1,2,..., M}
by M-LHS (i.e., Algorithm 1).

2: Collect the measurement data {g(xy, ym); m=1,2, ...,
M} at these locations.

3: Formulate the underdetermined linear equation A-n = B
in (5)-(9) for the first K DCT coefficients where the
optimal value of K is determined by cross-validation (see
Section III-D).

4: Normalize all columns of the matrix A (see Section III-A)
and formulate the linear programming problem in (22).

5: Solve the optimization problem in (22) to determine 7, i.e.,
the first K DCT coefficients. All other DCT coefficients
are set to zero.

6: Apply the IDCT in (4) to recover the spatial variations
{g(x,y); x = 1,2,...,P, y = 1,2,..., Q} across the
wafer/chip.

general assumptions, VP can fully reconstruct the spatial
variations with probability nearly equal to 1. In addition,
the accuracy of VP can be verified in real time by
the cross-validation method mentioned in Section III-
D. This error estimation scheme is extremely important,
since it provides a practical, quantitative criterion to
determine whether the result of VP is sufficiently ac-
curate or not. Additional sampling points can be further
collected to improve accuracy, until the prediction error
is sufficiently small.

3) General purpose: VP can be used to predict the spatial
pattern of both inter-die and spatially-correlated intra-
die variations. The prediction by VP is based on the
measurement data collected from the current wafer/chip
only. It does not require any historical data for training
and, hence, can efficiently handle the non-stationary
effects, e.g., process drifting caused by equipment aging.
The only assumption posed by VP is that the spatial
variations must have a sparse representation in frequency
domain. This assumption is valid for spatially-correlated
process variations. In other words, the variations of
interest are not dominated by independent random mis-
matches (e.g. random dopant fluctuations). As will be
demonstrated by the experimental examples in Sec-
tion V, such a sparseness assumption holds for a number
of performance variations (e.g., ring oscillator delay,
full-chip leakage, and so on). The impact of independent
random mismatches on these performance metrics is
averaged out and, hence, becomes non-dominant. In
practice, the sparseness assumption can be verified by
the error estimation scheme we previously mentioned.
Namely, if the frequency-domain representation is not
sparse, we will observe a large prediction error reported
by VP.

IV. APPLICATIONS OF VP

The proposed VP method can be applied to a broad range
of applications related to integrated circuits. In this section,



1822

Chip
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Fig. 7. Test structures are deployed in wafer scribe lines to measure and
characterize inter-die variations at wafer level.

we will briefly discuss these possible applications, including:
1) wafer-level silicon characterization (for inter-die variations);
2) chip-level silicon characterization (for intra-die variations);
and 3) testing and self-healing of integrated circuits. Note that
the main objective of this section is to motivate several pos-
sible future research directions based upon our VP technique.
The details of these new research problems are beyond the
scope of this paper and, hence, are not discussed here.

A. Wafer-Level Silicon Characterization

To characterize parametric variations at wafer level (i.e.,
inter-die variations), test structures are deployed in wafer
scribe lines [11]-[13], as shown in Fig. 7. These test structures
do not have area overhead, as they are not within a product
chip. However, it does not simply mean that the characteriza-
tion is free. Instead, wafer-level characterization can still be
expensive due to the following two reasons.

First, test structures in scribe lines must be measured by
wafer probe test, as these devices will be completely destroyed
during wafer dicing before packaging. Within this testing
process, a probe card will contact the I/O pads of the test
structures to measure currents, voltages or frequencies. Such
a wafer probe testing, however, is not perfectly safe. It may
break the wafer being tested due to mechanical stress, create
additional yield loss, and eventually increase manufacturing
cost. Second, wafer probe test (e.g., aligning the probe card
with the I/O pads and collecting all measurement data) is time-
consuming. This, in turn, further increases manufacturing cost,
as the overall manufacturing time is increased.

For these two reasons, it is crucial to reduce the number
of measured test structures so that the overall testing and
characterization cost is minimized. Our proposed VP method
perfectly fits this need. Namely, we propose to deploy and
measure very few test structures randomly distributed over
the scribe lines of a wafer. Once the measurement data are
collected, Algorithm 2 is applied to reconstruct the spatial
variations across the wafer. Note that since the test structures
are constrained within scribe lines, the aforementioned wafer-
level characterization may not provide sufficient resolution to
predict intra-die variations. It, therefore, implies that additional
test structures are required for chip-level silicon characteriza-
tion, as will be discussed in the next subsection.

B. Chip-Level Silicon Characterization

On-chip test structures are typically used to characterize
intra-die variations at chip level [11]-[13], as shown in Fig. 8.
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Fig. 8. Test structures are deployed within a product chip to measure and
characterize intra-die variations at chip level.

The cost of chip-level characterization consists of two major
portions: 1) area overhead, and 2) testing time.

First, on-chip test structures are deployed within a product
chip at a number of pre-selected locations. If too many test
structures are used, they lead to significant area overhead and,
hence, become financially intractable. Second, all on-chip test
structures must be measured through a limited number of
I/O pads. This testing process is time-consuming and directly
increases manufacturing cost.

Motivated by these observations, we propose to deploy and
measure very few on-chip test structures and then apply VP to
reconstruct the complete spatial variation pattern at chip level.
As such, the characterization cost is substantially reduced.

C. Beyond Silicon Characterization

The silicon characterization results extracted by VP can be
efficiently applied to a number of practical applications. In
this subsection, we briefly discuss two important application
examples: 1) speed binning, and 2) post-silicon tuning.

In traditional speed binning, all manufactured chips are
tested individually to determine the maximum operation fre-
quency [27]. This is expensive, since each chip must be repeat-
edly tested with different speed setups. Given the proposed VP
framework, we can potentially test a small number of chips to
find their speed bins, and then use VP to predict the speed of
other chips on the same wafer. Note that even if the prediction
by VP is not exact, it can still be used to optimize the testing
scheme to reduce cost. For instance, if the speed of an untested
chip is estimated by VP, the speed test should start from the
nearest bin since this chip is most likely to fall in that speed
bin. Such a strategy helps us to find the appropriate speed bin
quickly and, hence, reduce testing cost.

On the other hand, post-silicon tuning is a recently-
developed technique to improve parametric yield in the pres-
ence of large-scale process variations [8]-[10]. It adaptively
configures a number of tunable parameters (e.g., supply volt-
age, body bias, and so on) so that a given circuit can work
properly under different process conditions. An important
component of post-silicon tuning is to accurately measure
the process condition of a given chip so that the tunable
parameters can be appropriately configured to adjust the circuit
behavior. Such measurement, however, is not trivial, since it
often requires a large number of on-chip “sensors.” We believe
that the proposed VP framework can be used to predict the
process condition from a significantly reduced number of on-
chip sensors. By minimizing the number of required sensors,
both the design complexity and the manufacturing cost can be
reduced.
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Fig. 9. Measured flush delay values (normalized by a randomly selected
constant) of 282 industrial chips from the same wafer show significant spatial
variations.

V. NUMERICAL EXPERIMENTS

In this section, we demonstrate the efficacy of VP using
several examples based on industrial measurement data. All
numerical experiments are performed on a 2.8 GHz Linux
server.

A. Flush Delay Measurement Data

We consider the flush delay values measured from 282
industrial chips on the same wafer, as shown in Fig. 9. In
this example, the measured delay significantly varies from
chip to chip due to process variations. Our goal is to capture
these wafer-level delay variations. We use a 2-D function
g(x,y) to model the delay, where x € {1,2,...,18} and
y € {1,2,...,19}. Each coordinate point (x, y) corresponds
to a chip. Next, we apply a 2-D DCT to g(x, y), yielding the
frequency-domain components G(u, v) shown in Fig. 10.

Two important observations can be made from the result
in Fig. 10. First, G(u, v) contains substantial high-frequency
components, implying that the spatial sampling rate cannot
be drastically reduced according to the well-known Nyquist—
Shannon sampling theorem. Second, G(u, v) is sparse, as its
magnitude is almost zero at a large number of frequencies.
This sparse pattern is the essential necessary condition that
makes the proposed VP framework applicable to this example.

In what follows, we first use the data set in Fig. 9 to
compare the modified Latin hypercube sampling algorithm
(i.e., M-LHS summarized in Algorithm 1) with two brute-force
sampling methods (i.e., grid sampling and random sampling),
thereby demonstrating the superior accuracy achieved by M-
LHS. Next, we further apply the proposed VP technique (i.e.,
Algorithm 2) and several traditional methods to predict the
spatial delay variations and compare the accuracy of these
different approaches.

1) Spatial Sample Generation: For testing and comparison
purposes, we implement three different sampling schemes to
select the spatial locations for silicon testing: 1) grid sam-
pling; 2) brute-force random sampling; and 3) M-LHS. Grid
sampling deterministically picks up a set of spatial locations
from a uniform 2-D grid. Brute-force random sampling simply
selects random spatial locations by using a pseudo-random
number generator. Finally, M-LHS follows the partition and
selection steps summarized in Algorithm 1 to determine ran-
dom sampling locations.

DCT Coeff (Mag)

Fig. 10. DCT coefficients (magnitude) of the normalized flush delay mea-
surement show a unique sparse pattern.
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Fig. 11. Coherence and average error calculated from 128 chips with 1000
repeated runs for three different sampling techniques: 1) grid sampling (grid);
2) brute-force random sampling (random); and 3) M-LHS.
TABLE I
STATISTICS OF COHERENCE AND AVERAGE ERROR CALCULATED FROM
128 CHIPS WITH 1000 REPEATED RUNS

Method Coherence Average Error (%)
Mean Std Mean Std
Grid 1.000 N/A 10.96 N/A
Random 0.545 0.040 1.90 0.41
M-LHS 0.521 0.020 1.54 0.20

We apply the aforementioned three sampling schemes to
select 128 chips out of 282 possible candidates on the same
wafer. Next, we collect the flush delay data for these 128
selected chips and apply the MAP estimation (see Algorithm
2) to predict the spatial variations of the entire wafer. In Step 5
of Algorithm 2, the linear optimization is efficiently solved by
the 11-MAGIC package developed by the California Institute
of Technology, Pasadena, taking about 8s to finish in this
example. Such an experiment is repeated for 1000 times in
order to accurately estimate the statistics of prediction error.

Fig. 11 shows the coherence (see Definition 2) and the
average error for these 1000 repeated runs. As discussed in
Section II-C, the value of coherence provides a quantitative
measure to assess the orthonormality of the matrix A in (5).
On the other hand, the average error of the MAP estimation
is calculated by

S ey -z )]
x oy

Y e y)’

x oy

Errorayg = (23)

where g(x,y) and g(x, y) denote the exact value and the
estimated value of the flush delay at the location (x, ),
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Fig. 12. Average prediction error (both mean and standard deviation) of
different algorithms estimated by 100 repeated runs.

respectively. Note that since grid sampling is deterministic, all
1000 runs yield the same result. Hence, only one data point is
plotted in Fig. 11. Table I further shows the statistics of both
coherence and error calculated from these 1000 repeated runs.

Studying Fig. 11 and Table I, we would have two important
observations. First, grid sampling results in a large coherence
value. It, in turn, implies that the columns of the matrix
A in (5) are not approximately orthonormal. According to
the discussions in Section II-C, the MAP estimation cannot
accurately predict the spatial variations in this case. This
conclusion is consistent with the results in Fig. 11 where the
average error associated with grid sampling is extremely large.

Second, both brute-force random sampling and M-LHS
yield small coherence values and, consequently, small predic-
tion errors. These results demonstrate the fact that a random-
ized algorithm can efficiently generate good spatial samples.
In addition, comparing brute-force random sampling with M-
LHS, we would notice that both methods result in similar
mean values for coherence and error. However, M-LHS is able
to reduce the standard deviation of both coherence and error
by about 2x in this example. Such a reduction in standard
deviation occurs, because M-LHS well controls the random
samples by the partition and selection steps summarized in
Algorithm 1. This is an important benefit offered by M-LHS,
since it reduces the probability that a set of “bad” samples are
randomly selected and, hence, result in large prediction error.

2) Spatial Variation Prediction: To quantitatively evaluate
the accuracy of the proposed VP technique, we repeatedly
apply Algorithm 2 with M-LHS to predict the wafer-level spa-
tial variations with different numbers of spatial samples. For
testing and comparison purposes, we implemented a number
of traditional methods: 1) the 2-D interpolation method with
uniform grid sampling [31]; 2) the Kriging method with expo-
nential correlation function [16]; 3) the k-LSE method based
on DCT analysis [17]; and 4) the simple VP implementation
without DCT coefficient pre-selection [1].

Fig. 12 shows the average error calculated by (23) as a
function of the number of samples (i.e., M) for different
algorithms. M-LHS is applied to select the sampling locations
for all methods except 2-D interpolation. To account for the
inherent randomness of M-LHS sampling, we repeatedly run
each algorithm for 100 times and plot the mean and the
standard deviation of the average error in Fig. 12. Note that
Algorithm 2 achieves the highest accuracy in this example.
Compared to the simple VP implementation developed in [1],
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Fig. 13. Flush delay values predicted from 60 tested chips by the proposed
VP algorithm.
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Fig. 14. Proposed VP algorithm accurately captures the low-frequency and
high-frequency DCT coefficients by using 60 tested chips.

our new implementation (i.e., Algorithm 2) achieves superior
accuracy by carefully pre-selecting the important DCT coef-
ficients at low frequencies. Such a pre-selection scheme is
particularly important, if the number of available samples (i.e.,
M) is small and, hence, it is difficult to accurately find the non-
zeros from all DCT coefficients by L1-norm regularization.
On the other hand, the proposed VP algorithm outperforms
other traditional techniques (i.e., 2-D interpolation, Kriging
prediction, and k-LSE estimation), because all these traditional
methods assume a smooth spatial variation pattern and, there-
fore, cannot accurately capture the high-frequency components
of our measurement data shown in Fig. 10.

Fig. 13 shows the flush delay values predicted from 60
tested chips (i.e., M = 60) by the proposed VP algorithm.
In this example, 120 DCT coefficients are pre-selected by
the cross-validation algorithm in Section III-D, before the
final L1-norm regularization step is applied. Fig. 14 further
plots the DCT coefficients associated with the spatial variation
pattern in Fig. 13. Comparing Figs. 10 and 14, we would
notice that both the low-frequency and the high-frequency
DCT coefficients are accurately captured in this example.

To quantitatively assess the prediction accuracy of each
chip, we calculate the following relative error:

glx,y)—g(x,y)

24
g(x,y) &

Errorger (x,y) =
where g(x, y) and 2(x, y) are similarly defined as those in (23).
The error metric in (24) measures the difference between the
measurement data (i.e., Fig. 9) and the prediction results (i.e.,
Fig. 13) for every chip. Fig. 15 shows the histogram of the
relative error calculated for all chips on the same wafer. Note
that the relative error is less than 10% for most chips in this
example.
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Fig. 15. Histogram of the relative error of the proposed VP algorithm
calculated by (24) for all chips on the same wafer.
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Fig. 16. Measured leakage current values log;o(ILgak) (normalized by a
randomly selected constant) of 282 industrial chips from the same wafer show
significant spatial variations.
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Fig. 17. DCT coefficients (magnitude) of the normalized leakage current
measurement log;((ILeak) show a unique pattern that is approximately sparse.

B. Leakage Current Measurement Data

We consider the leakage current measurement data collected
by IDDQ test for the same industrial circuit design. Fig. 16
shows the normalized leakage current values log,,(ILeak) (af-
ter logarithmic transform) as a function of the location (x, y).
Fig. 17 further shows the frequency-domain components after
DCT. Similar to the flush delay example, the DCT coefficients
contain important high-frequency components. In addition, a
large number of small DCT coefficients are observed and,
hence, the frequency-domain representation is approximately
(but not exactly) sparse. This observation is consistent with
the fact that the full-chip leakage current partially depends on
Vry mismatches that are not spatially correlated.

We apply different algorithms to predict the spatial varia-
tions based on a few (i.e., M) sampling points. Fig. 18 shows
the average error calculated by (23). Similar to the previous
example, both the mean and the standard deviation of the
average error are calculated from 100 repeated runs and they
are plotted in Fig. 18. Note that the proposed VP method (i.e.,
Algorithm 2) achieves better accuracy than three traditional
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Fig. 18. Average prediction error (both mean and standard deviation) of
different algorithms estimated by 100 repeated runs.
] o 10
15 o 9
o [ o
< 10 o 8
> =]
= 7
T u
S = 6
] o
T T T & [T 11
5 10 15 5
X Axis

Fig. 19. Leakage current values log;,(ILeak) predicted from 100 tested
chips by the proposed VP algorithm.
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Fig. 20. Histogram of the relative error of the proposed VP algorithm
calculated by (24) for all chips on the same wafer.

techniques: 1) 2-D interpolation; 2) k-LSE estimation; and
3) the simple VP implementation in [1]. However, the accuracy
of VP is slightly worse than Kriging prediction, because the
frequency-domain representation is not exactly sparse in this
example.

Fig. 19 shows the leakage current values log,,(ILgak) (af-
ter logarithmic transform) predicted from 100 tested chips
by the proposed VP algorithm. In this example, 240 DCT
coefficients are pre-selected by the cross-validation algorithm
in Section III-D, before the final L1-norm regularization step
is applied. Fig. 20 further shows the histogram of the relative
error calculated for all chips using (24). Note that the relative
error is less than 10% for most chips in this example.

C. Ring Oscillator Period Measurement Data

We consider the ring oscillator (RO) period measurement
data collected from a wafer at an advanced technology node.
These RO measurement data are strongly correlated with the
final chip performance and, hence, are often used for process
monitoring and control [11], [12]. Our wafer contains 117
ROs distributed over different spatial locations. Fig. 21 shows
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Fig. 21. Measured RO period values (normalized by a randomly selected
constant) of 117 ROs from the same wafer show significant spatial variations.
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Fig. 22. DCT coefficients (magnitude) of the normalized RO period show a
unique pattern that is approximately sparse.
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Fig. 23. Average prediction error (both mean and standard deviation) of
different algorithms estimated by 100 repeated runs.

the normalized RO period values as a function of the location
(x, ). Fig. 22 further shows the frequency-domain components
after DCT. Similar to the leakage current example, the DCT
coefficients are approximately sparse and contain significant
high-frequency components.

We apply different algorithms to recover the spatial vari-
ations based on a few (i.e., M) sampling points. Fig. 23
compares the average error calculated by (23) for different
methods. Both the mean and the standard deviation of the
average error are calculated from 100 repeated runs and they
are plotted in Fig. 23. Note that the proposed VP technique
(i.e., Algorithm 2) achieves the best accuracy in this example.
The Kriging method shows large error, because it assumes
an exponential correlation model while the actual spatial
correlation does not match the model template. In general,
the Kriging method needs to know the correlation template in
advance. If the prior knowledge of the correlation function is
not correct, the Kriging method may fail to predict the spatial
variations accurately.
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Fig. 24. RO period values predicted from 40 tested ROs by the proposed
VP algorithm.
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Fig. 25. Histogram of the relative error of the proposed VP algorithm
calculated by (24) for all ring oscillators on the same wafer.

Fig. 24 further shows the RO period values predicted from
40 tested ROs by the proposed VP algorithm. The cross-
validation algorithm in Section III-D pre-selects all DCT
coefficients in this example. Fig. 25 shows the histogram
of the relative error calculated for all ROs using (24). Note
that the relative error is less than 5% for most chips in this
example.

VI. CONCLUSION

In this paper, we proposed a novel VP framework to effi-
ciently and accurately recover full-wafer/chip spatial variations
from an extremely small set of measurement data, thereby
reducing the cost of silicon characterization and testing. VP
exploits recent breakthroughs in compressed sensing [20]-
[23]. It is formulated as a MAP problem and can be effi-
ciently solved via linear programming. Our numerical exam-
ples based on industrial measurement data demonstrate that
VP provides superior accuracy over other traditional methods,
including 2-D interpolation, Kriging prediction, and k-LSE
estimation.
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