
Virtual processor frequency emulation

Christine Mayap and Daniel Hagimont

Institut National Polytechnique de Toulouse

ENSEEIHT, 2 rue Charles Camichel

31000 Toulouse, France

Email: hagimont@enseeiht.fr

Abstract—Nowadays, virtualization is present in almost all
computing infrastructures. Thanks to VM migration and server
consolidation, virtualization helps in reducing power consumption
in distributed environments. On another side, Dynamic Voltage
and Frequency Scaling (DVFS) allows servers to dynamically
modify the processor frequency (according to the CPU load) in
order to achieve less energy consumption. We observe that while
DVFS is widely used, it still generates a waste of energy. By
default and thanks to the ondemand governor, it scales up or
down the processor frequency according to the current load and
the different predefined threshold (up and down). However, DVFS
frequency scaling policies are based on advertised processor
frequencies, i.e. the set of frequencies constitutes a discrete range
of frequencies. The frequency required for a given load will be set
to a frequency higher than necessary; which leads to an energy
waste. In this paper, we propose a way to emulate a precise
CPU frequency thanks to the DVFS management in virtualized
environments. We implemented and evaluated our prototype in
the Xen hypervisor.

Keywords—DVFS, frequency, emulation.

I. INTRODUCTION

Nowadays, cloud computing is one of the widely used IT
solutions for distributed services. Almost 70% of companies
are interested in it and 40% of them plan to adopt it within
one year [1]. Cloud computing can be defined as a way
of sharing hardware or/and software resources with clients
according to their needs. The idea of cloud computing is
to simulate an unlimited set of resources for users and to
guarantee a good Quality of Service(QoS), while optimizing
all relevant costs [2].

Cloud computing mainly relies on virtualization.
Virtualization consists of providing concurrent and interactive
access to hardware devices. Thanks to his live migration
properties, it is possible to migrate applications on a few
number of computers, while ensuring good QoS and security
isolation. This advantage is highly exploited by cloud
computing to effectively manage energy consumption and to
efficiently manage resources [3].

Recent advances in hardware design have made it possible
to decrease energy consumption of computer systems through
Dynamic voltage and frequency scaling (DVFS) [4]. DVFS is
a hardware technology used to dynamically scale up or down
the processor frequency according to the governor policy and
the workload demand.

Knowing that, the processor power consumption is related
to the frequency processor and its voltage [5], increasing
or decreasing processor frequency will influence the general
power consumption of a system. In this context, the choice of
the processor frequency is of great importance.

Furthermore, DVFS aims at setting the CPU frequency to
the first available one capable of satisfying the current load
to avoid wastage. However, there may be situations where the
selected frequency is still the subject of wastage because it is
higher than the required frequency.

In this paper, we explore and propose a way to emulate
a precise desired processor frequency in a virtualized and
single-core environment. After presenting the context and
the motivation of our work in section 2, we will describe
our contributions in section 3. In section 4, we present
experiments to validate our proposal. After a review of related
works in section 5, we conclude the article in Section 6.

II. CONTEXT AND MOTIVATION

In this section, we present some concepts of virtualization,
DVFS and how this later is applied in virtualized systems.

A. Context

1) Virtualization: According to a general observation, the
rate of server utilization was around 20% [6]. Thanks to
virtualization, the rate has increased and allows efficient server
utilization. Indeed, virtualization is a software-based solu-
tion for building and running simultaneously many operating
systems (called guest OS or Virtual Machine) on top of a
”classic” OS (called host OS). A special application, named
Virtual Machine Monitor (VMM) or hypervisor emulates the
underlying hardware and interprets communications between
guests OS and devices.

Among existing virtualization technologies, we adopt par-
avirtualization as the base of our experience. With paravirtu-
alization, the VMM is placed between the hardware and the
host OS. Guest OS is modified to use optimized instructions
(named hypercall) from VMM to access hardware.

Paravirtualization is used because of its good VM
performance and its implementation on all types of processors.
In fact, with full virtualization, VM performance is more
than 30% degraded [7]. Meanwhile Hardware-assisted
virtualization requires specific processors though the

performance of guest OS are close-to-native performance.

Paravirtualization is highly adopted and vulgarized by
Xen [8] and VMWare ESX Server [9]. In this context, our
work is based on Xen platform because it is prevalent in many
computing infrastructures, as well as in the vast majority of
our previous work.

2) Dynamic Voltage and Frequency Scaling (DVFS): To-
day, all processors integrate dynamic frequency/voltage scaling
to adjust frequency/voltage during runtime. The decision to
change the frequency is commanded by the current processor’s
governor. Each governor has its own strategy to perform
frequency scale. According to the configured policy, governor
can decide to scale processor speed to a specific frequency,
the highest, or the lowest frequency.

Several governors are implemented inside the Linux kernel.
Ondemand governor changes frequency depending on CPU
utilization. It changes frequency from the lowest (whenever
CPU utilization is less than a predefined (low therehold) to
the highest and vice-versa. Performance governor always keeps
the frequency at the highest value while slowest CPU speed
is always set by powersave governor. Conservative governor
decreases or increases frequency step-by-step through a range
of frequency values supported by the hardware. Userspace
governor allows user to manually set processor frequency [10].
In order to control CPU frequency, governors use an un-
derlying subsystem inside the kernel called cpufreqq [11].
Cpufreq provides a set of modularized interfaces to allow
changing CPU frequency. Cpufreq, in turn, relies on CPU-
specific drivers to execute requests from governors.

As aforementioned, effectively usage of DVFS brings the
advantage of reducing power consumption by lowering proces-
sor frequency. Moreover, almost all computing infrastructures
possess multi-core and high frequency processors. Thus, the
benefit from using DVFS has been realized and achieved in
many different systems.

The next section describes the motivation of this work.

B. Motivation

During the last decade, several efforts have been made in
order to find an efficient trade-off between energy consump-
tion/resources management and applications performance.
Most of them relies on DVFS, and are highly explored due
to the advent of new modern powerful processors integrating
this technology.

According to the ondemand governor (the default gov-
ernor policy implemented by DVFS), the CPU frequency is
dynamically changed depending on the CPU utilisation. With
this governor, the highest available processor frequency is set
when the CPU load is greater than a predefined threshold
(up threshold). When the load decreases below the threshold,
the processor frequency is decreased step by step until the one
capable of satisfying the current process load is found.

However, in most CPUs, the DVFS technology provides a
reduced number of frequency levels (in the order of 5) [12].
This configuration might not be enough for some experiments.

Suppose a virtualized muti-core processor Intel(R)
Xeon(R) E5520 with 2.261 GHz and the DVFS technology
enable. Consider its six frequencies levels distributed as fol-
lows: 1.596 GHz, 1.729 GHz, 1.862 Ghz, 1.995 Ghz, 2.128
GHz and 2.261 GHz. Assume the host OS with a global load
which needs 1.9285 Ghz to be satisfied. Knowing that the
computation of the best execution time of an application is
made on a basis of the maximum frequency of a processor,
scheduling it with a lower frequency would end up with a
lower than expected performance. From the SLA point of view
and because of the non-existence of the expected frequency, the
ondemand governor will set the CPU frequency to the first one,
higher that the required frequency, capable of satisfying the
current load. Precisely in our example, the ondemand governor
will set the processor frequency to 1.995 GHz.

However, it would be more beneficial in terms of energy to
assign to the processor the exact required frequency. Indeed,
the DVFS technology consists of concurrently lowering the
CPU voltage and the CPU frequency. By lowering them, the
current total energy consumption of the system is globally de-
creased [13]. To improve this well-known energy management,
we will realise some adjustments on the DVFS technology.
Hence, instead of setting the CPU frequency to the first higher
available frequency, we decided to emulate some of the non-
existent CPU frequency according to the system needs.

Concretely, emulating a CPU frequency, in our work, con-
sists of executing the processor successively on the available
frequencies around the desired CPU frequency. Our emulation
process is essentially based on the conventional operation of
the DVFS. The use of the DVFS possesses as asset the fact of
generating no overhead while switching between frequencies
because it has been done in the hardware.

The next section describes our contributions.

III. CONTRIBUTION

As previously mentioned, the main idea of this paper is
to emulate a CPU processor frequency based on periodic
oscillations of frequencies between two levels of successive
frequencies. This extension will suggest a way of decreasing
power consumption in virtualized systems while keeping good
VM performance. The next section will expound our approach
and the implementation we made.

A. Our appraoch

Our approach is two folds: (1) To determine the exact
processor frequency need by the current load and (2) to
emulate it if necessary.

Let’s assume a host with several VMs running on it.
Suppose that they generate a global load of Whost. Consider
that we need our CPU to be running at processor frequency of
fhost to satisfy the current load (Whost). However, the desired
processor frequency fhost is not present among the available
processor frequencies of our host. This frequency need to be
emulated.

A weighted average can be defined as an average in which
each quantity to be averaged is assigned a weight. These
weightings determine the relative importance of each quantity
on the average. Weightings are the equivalent of having that

many similar items with the same value involved in the
average. Indeed, the emulation of CPU processor is based
on weighted average of CPU frequency around the frequency
to emulate. Although it is possible to determine in advance
the neighboring processor frequencies, the computation of the
execution time for each of them is not realistic.

Firstly, we need to determine the required frequency and
later the both frequencies around the desired one. Assume that
fhigh and flow are the frequency above and below the desired
frequency respectively. To emulate fhost, we need to compute
our load during thigh at fhigh and during tlow at flow so that
the required frequency fhost is the weighted-average of fhigh
with thigh as weight and flow with tlow as weight. It means
that:

fhost =
(fhigh × thigh) + (flow × tlow)

thigh + tlow
(1)

Unfortunately, it is not possible to determine beforehand
the exact execution times allowing to fulfill the equation 1.
Instead of considering thigh and tlow as the execution time, we
exploited it as the occurrence count. Meaning that to emulate
fhost, the processor needs to be executed thigh times in higher
frequency fhigh and tlow times in lower frequency flow.

It is important to note that, the real execution time at
each processor frequency level can be computed as follows:
NumberOccur × T ickDuration . Where NumberOccur
represents either thigh or tlow and T ickDuration the duration
of each tick of reconfiguration.

To validate this assumption, let’s consider the small exam-
ple of II-B. By executing our processor, once on the lower
frequency (that means at 1.862 Ghz) and once on the higher
frequency (that means 1.995 Ghz), we will obtain the required
frequency (1.9285 Ghz).
It means that: fhost = 1.995×1+1.862×1

1+1
= 1.9285

As aforementioned, the number of executions at each
processor frequency cannot be known at the beginning of the
experiments. It must be dynamically computed.

The next section presents our implementation.

B. Implementation

In this section, we address the design and the implementa-
tion choices of our frequency emulator, and the conditions of
his exploitation.

Our implementation is two folds: (1) checking the appropri-
ate processor frequency for the current load and (2) emulating
If it is not existing.

1) Appropriate processor frequency: By default DVFS
advertises a discrete range of processor frequencies. It means
that, only a fixed and predefined number of processor frequen-
cies are available.

To fulfill the first aspect of our work (determine the
adequate frequency), we assume that, on each processor, it
is possible to have a continuous range of frequencies. Know-
ing that the difference between two successive frequencies
is practically identical, we virtually subdivided them into 3
(value obtained thanks to analysis and successive experiments).
Indeed, this subdivision allowed the obtaining of the more

moved closer frequencies. This nearness at the level of the
frequencies so allowed to satisfy at best the processor’s loads.

Assuming that the frequency range is now continuous, it is
then always possible to have a precise processor frequency for
a given load. The return of the suitable processor frequency
is made according to the frequency ratio presented in our
proposal in [8].

Indeed, at each tick of the scheduler, a monitoring module
gathers the current CPU load of each VM. It then aggregates
the total Absolute load of all the VM and computes the new
processor frequency and the frequencies surrounding it, as
depicted in the algorithm below (Listing 1) where

• LFreq[]: represents a table of 3 processor frequencies
classified as follows: the required frequency and the
surrounding ones (higher and lower respectively)

• VFreq: value obtained after the division of the interval
between consecutive frequencies by 3. It is used to
obtain some virtual processor frequencies.

• Freq[]: represents the available processor frequencies.
The table is sorted in descending order.

We iterate on the processor frequencies (line 2). Following
our assumption regarding frequencies (it will be validated in
section IV-B1), we compute for each frequency the frequency
ratio (line 3) and check if the computing capacity of the
processor at that frequency can absorb the current absolute
load (line 6). If the current frequency can not satisfy the load,
we iterate on virtual processor frequencies (line 22 to line 29).

1 void computeNewFreq(int LFreq[], int VFreq) {

2 for (i=1; i<=fmin; i++) {

3 int ratio = Freq[i]/Freq[1];

4 int NFreq;

5

6 if(ratio * 100 < Absolute_load){

7 if ((i == 1) || (i == fmin){

8 LFreq[0] = LFreq[1] = LFreq[2] = Freq[i];

9 }

10 else{

11 LFreq[0]= Freq[i] + VFreq;

12 LFreq[1]= Freq[i-1];

13 LFreq[2]= Freq[i];

14 }

15 }

16 else{

17 NFreq= Freq[i] - VFreq;

18 LFreq[1] = Freq[i];

19 LFreq[2] = Freq[i+1];

20 ratio = NFreq/Freq[1];

21

22 while (ratio * 100 > ratio){

23 if (NFreq != Freq[i+1]){

24 NFreq -= VFreq;

25 ratio = NFreq/Freq[1];

26 }

27 else

28 break;

29 }

30 if (ratio * 100 < Absolute_load){

31 NFreq += VFreq;

32 if (NFreq == Freq[i]){

33 LFreq[1] = LFreq[2] = Freq[i];

34 }

35 LFreq[0] = NFreq;

36 }

37 }

38 }

Listing 1. Algorithm for computing the adequate processor frequency and
the surrounding frequencies

By the end of the algorithm, if the required frequency is not
among the known frequency of the processor, it is immediately
emulated.

2) Processor frequency emulation: The emulation is based
on the cumulative functions principle. It is convenient to
describe data flows by means of the cumulative function
f(t), defined as the number of elements seen on the flow
in time interval [0, t]. By convention, we take f(0) = 0,
unless otherwise specified. Function f is always wide-sense
increasing, it means that f(s) ≤ f(t) for all s ≤ t.

Suppose 2 wide-sense increasing functions f and g, the
notation f + g denotes the point-wise sum of functions f and
g.

(f + g)(t) = f(t) + g(t) (2)

Notation f ≤ (=,≥) g means that f(t) ≤ (=,≥) g(t) for
all t [14].

To exploit this notion, we defined 3 cumulative frequency
functions: CumFhigh(t), CumFlow(t) and CumFhost(t).
Where CumFhigh(t), CumFlow(t) and CumFhost(t) repre-
sent the functions for the higher processor frequency , the
lower and the required processor frequency respectively. In
our case, we defined the cumulative frequency corresponding
to a particular value as the sum of all the frequencies up
to and including that value. Meaning that: CumFhigh(t) =∑t

k=0
fhigh.

At each tick of the scheduler and for each frequency
involved (including the emulated frequency) in the emula-
tion of the frequency, we compute its cumulative frequency
(Listing 2). The computation of each cumulative frequency is
executed as follow:

• Initially, the cumulative frequencies functions are
equal to zero (their initial value). This value is reini-
tialized when the current load need a different fre-
quency or when the current one is already emulated
(line 17),

• At each tick, the cumulative frequency of the emulated
frequency (CumFhost(t)) is incremented by its value:
CumFhost(t) + = fhost (line 7 and line13),

• At each tick, only one frequency is set (either fhigh
or flow). The choice of the frequency is carried out as
follows:

◦ The sum of CumFhigh(t) and CumFlow is
computed according to the equation 2 and the
result is compared to CumFhost(t) (line 3),

◦ If the sum is lower than CumFhost(t), then
the processor frequency is set to fhigh during
the next quantum (line 6),

◦ Else, if the sum is higher than CumFhost, the
processor frequency is set to flow during the
next quantum (line 12),

◦ If both are equal, the desired frequency was
emulated and the different cumulative frequen-
cies are reinitialized (line 17).

Through these iterations and these oscillations, we managed
to emulate our desired frequency. It should be mentioned that,
the emulated frequency and the neighboring frequencies are
obtained with the algorithm presented in Listing 1.These later
(table LFreq[]) are passed as a parameter to the algorithm
below.

For instance, if we consider our example of section II-B,
the goal was to emulate a processor frequency of 1.9285 Ghz.
The surrounding frequencies are 1.995 Ghz and 1.862 Ghz.
The execution of the algorithm of Listing 2 is as follows
(Table I):

Init. CumFH = CumFL = CumF = SumFreq = 0

cpuid = 0 ; NumbFH = NumFL = 0

LFreq[0]=1.9285; LFreq[1]=1.995; LFreq[2]=1.862

Step 1 SetFreq(0, LFreq[1]); CumFL = 0

CumFH = 1.995 ; CumF = 1.9285

NumbFH = 1;NumFL = 0 ; SumFreq= 1.995

Step 2 SumFreq ¿ CumF ⇒ SetFreq(0, LFreq[2]);

CumFL = 1.862 ; NumFL = 1; CumFH = 1.995

CumF = 3.857 ; NumbFH = 1, SumFreq = 3.857

Step 3 SumFreq = CumF ⇒ Init

NumFL = 1 and NumFH = 1

TABLE I. ALGORITHM VALIDATION

This execution validates the number of time needed to
emulate 1.9285 Ghz as presented in section III-A.

1 void EmulateFrequency(int LFreq[], int CumFH,int CumFL,

int CumF,int cpuid) {

2 int SumFreq;

3 SumFreq = CumFH + CumFL;

4

5 if (SumFreq < CumF){

6 SetFreq(cpuid,LFreq[1]);

7 CumF += LFreq[0];

8 CumFH += LFreq[1];

9 }

10 else{

11 if (SumFreq > CumF){

12 SetFreq(cpuid,LFreq[2]);

13 CumF += LFreq[0];

14 CumFL += LFreq[2];

15 }

16 else{

17 CumF = CumFH = CumFL = 0;

18 }

19 }

20 }

Listing 2. Emulate processor frequency

During this execution, we remind that there is a trigger
in charge of the computation of the absolute load and the
notification of the current desired frequency. This situation
also leads to a reinitialization of all the cumulative frequencies
value.

The next section presents some experiments to validate our
proposal.

IV. VERIFICATION OF OUR PROPOSAL

We previously presented our approach and its implementa-
tion in the default Xen credit scheduler. In this section, we will
present the experiment environment, the application scenario
and some experiments to validate our proposition.

A. Experiment environment and scenario

Our experiments were performed on a DELL Optiplex 755,
with an Intel Core 2 Duo 2.66GHz with 4G RAM. We run a
Linux Debian Squeeze (with the 2.6.32.27 kernel) in a single
processor mode. The Xen hypervisor (in his 4.1.2 version)
is used as virtualization solution. The evaluation described
below was performed with an application which computes an
approximation of π. This application is called π-app. In this
scenario, we aim at measuring an execution time.

B. Verification

1) Proportionality: In our validation, we rely on one main
assumption: proportionality of frequency and performance.
This property means that if we modify the frequency of the
processor, the impact on performance is proportional to the
change of the frequency.

This proportionality is defined by:

Fi

Fmax

=
Tmax

Ti

(3)

which means that if we decrease the frequency from
Fmax down to Fi, the execution time will proportionally
increase from Tmax to Ti. For instance, if Fmax is 3000 and
Fi is 1500, the frequency ratio is 0.5 which means that the
processor is running 50% slower at Fi compared to Fmax. So
if we consider an application that runs in 10 mn at Fmax, the
same application will be completed at 10

0.5
= 20mn at Fi.

To validate this proportionality rule, we conducted the
following experiment. We ran different π-app workloads at
different processor frequencies and measured the execution
times, allowing us to verify the proportionality of frequency
ratios and execution time ratios. Figure 1 gives some of the
results we obtained, which shows that frequency ratios and
execution time ratios are very close, as assumed in equation 3.

Fig. 1. Proportionality of frequency and execution time

2) Validation: Our textbed advertises the following pro-
cessor frequency: 2.66GHz, 2.40GHz, 2.13GHz, 1,86GHz and
1.60GHz.

The first part of our validation consists on validate our
approach of emulation. For this validation, we executed our π-
app application initially at 2.4 Ghz. Based on our proposal, we
will execute the same computation by emulating the frequency
2.4 Ghz. We started by a well-known frequency for this

workshop, but others experiences not presented here emulate
the non-existent frequency.

0

1600

1867

2133

2400

2667

 0 100 200 300 400 500
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

P
ro

c
e
s
s
o
u
r

F
re

q
u
e
n
c
y
 (

M
H

z
)

L
o
a
d
 (

%
)

Processor Frequency
VM

Fig. 2. Execution of π-app at 2.4Ghz

0

1600

1867

2133

2400

2667

 0 100 200 300 400 500
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

P
ro

c
e
s
s
o
u
r

F
re

q
u
e
n
c
y
 (

M
H

z
)

L
o
a
d
 (

%
)

Processor Frequency
VM

Fig. 3. Emulation of 2.4Ghz with oscillations

According to figure 2, the execution time of the π-app
is about 410 Units. While emulating the same processor
frequency, we obtained an execution time of 415 Units, as
depicted by the figure 3. Based on this first use case, we can
validate our approach. Furthermore, with similar experiences
(not presented here), we have proved that the oscillation of the
frequency in non intrusive.

The second part consists of validating the emulation of
a non-existent frequency. We executed our π-app application
of the maximum frequency (figure 4)and we recorded its
execution time for future comparisons (Cf. Table II). Then,
we choose two of our virtual processor frequencies (2.222
Ghz and 2.576 GHz); we have emulated them to execute our
application (respectively figure 5 and figure 6). Their execution
time is used for comparison with the expected execution
time according to our proportionality rule (Cf. Table II). The
expected time formula is: Ti =

Fmax×Tmax

Fi

Thanks to this scenario, we can validate our implementa-
tion approach. After execution, we can conclude that the real
execution time are almost equal to the expected time. Further
evaluations are to be done in order to identify the possible
weaknesses/advantages of this proposal.

The next section presents the related works.

0

1600

1867

2133

2400

2667

 0 50 100 150 200 250 300 350 400 450
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
P

ro
c
e
s
s
o
u
r

F
re

q
u
e
n
c
y
 (

M
H

z
)

L
o
a
d
 (

%
)

Processor Frequency
VM

Fig. 4. Execution of π-app at maximum frequency

0

1600

1867

2133

2400

2667

 0 100 200 300 400 500
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

P
ro

c
e
s
s
o
u
r

F
re

q
u
e
n
c
y
 (

M
H

z
)

L
o
a
d
 (

%
)

Processor Frequency
VM

Fig. 5. Execution of π-app at emulated frequency 2.22Ghz

V. RELATED WORKS

Numerous research projects have focused on optimization
of the operating cost of data centers and/or cloud computers.
Most of them concerned efficient power consumption [15].
Proposed solutions are based on either virtualization or DVFS.

In virtualized environment, power reduction is made possi-
ble through servers’ consolidation and live migration. Classic

0

1600

1867

2133

2400

2667

 0 50 100 150 200 250 300 350 400 450
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

P
ro

c
e
s
s
o
u
r

F
re

q
u
e
n
c
y
 (

M
H

z
)

L
o
a
d
 (

%
)

Processor Frequency
VM

Fig. 6. Execution of π-app at 2.578Ghz

Frequency Execution Expected time (s)

(GHz) Time (s)

2.667 108.65

2.222 131.52 Ti =
2.667×108.65

2.222
= 130.41

2.578 112.79 Ti =
2.667×108.65

2.578
= 112.40

TABLE II. EXECUTION TIME RESULTS

consolidation consists on gathered multiples VMs (according
to their load) on top of a reduced number of physical comput-
ers [16].

In [17], Verma et al. aims at minimizing power consump-
tion using consolidation after server workload analysis. They
design two new consolidation approaches based respectively
on, peak cluster load and correlation between applications
before consolidating. Mueen et al. Strategy for power reduction
consists in categorizing servers in pools according to their
workload and usage. After categorizing, server consolidation
is executed on all categories based on their utilization ratio in
the data center [18].

As for the live migration, it consists of migrating a VM
from a physical host to another without shutting down the
VM. Korir et al [19] proposes a secure solution of power
reduction based on live migration and server consolidation.
Their security constraints are related to VM migration. Indeed,
critical challenge of VM live migration appears when VM is
still running when migration is in process. Well known attacks,
such as Time-of-heck to time-of-use (TOCTTOU) [20] and
replay attack, can be launched. In their solution, they design a
live migration solution capable of avoiding VM to be exposed
to eventual attacks.

One of the most rising approaches in power reduction is
Dynamic voltage and frequency scaling(DVFS) [21], where
voltage/frequency can be dynamically modified according to
the CPU load. In [22], the authors design a new scheduling
algorithm to allocate VMs in a DVFS-enabled cluster by
dynamically scaling the voltage. Precisely, Laszewski et al.
minimizes the voltage of each processor of physical machine
by scaling down their frequency. In addition, they schedule
the VMs on those lower voltage processors while avoiding to
scale physical machine to high voltage.

In general, those previous approaches only are focused
on well-known processor frequency. In [12], Blucher et al.
suggests some approaches of the CPU performance emulator.
Precisely, they propose and evaluate three approaches named
as : CPU-Hogs, Fracas and CPU-Gov. CPU-Hogs consists of a
CPU-burner process which burn and degrades the initial CPU
processor according to a predefined percentage. CPU-Hogs
has the disadvantage of being responsible for deciding when
CPUs will be available for user processes. With Fracas, every
decision is made by the scheduler. With Fracas, one CPU-
intensive process is started on each core. Their scheduling
priorities are then carefully defined so that they run for the
desired fraction of time. CPU-Gov is a hardware based solution
base. It consists on leveraging the hardware frequency scaling
to provide emulation by switching between the two frequencies
that are directly lower and higher than the requested emulate.

Although, those approaches are related to the CPU perfor-
mance, they aim at emulating a predefined known processor
frequency. Concretely, their goal is the answer this question:
Given a CPU (characterized by its CPU performance for
example), how can we emulate another CPU with a pre-
cise characteristics? Their emulation is done once and ex-
periments are executed on it. In our case, it consists of a real-
time emulation of CPU and it constitutes a base for an energy
aware resources management.

VI. CONCLUSION AND PERSPECTIVES

With the emergence of cloud computing environments,
large scale hosting centers are being deployed and the energy
consumption of such infrastructures has become a critical
issue. In this context, two main orientations have been suc-
cessfully followed for saving energy:

• Virtualization which allows to safely host several guest
operating systems on the same physical machines
and more importantly to migrate guest OS between
machines, thus implementing server consolidation,

• DVFS which allows adaptation of the processor fre-
quency according to the CPU load, thus reducing
power usage.

We observe that DVFS is mainly used, but still generates a
waste of energy. In fact, the DVFS frequency scaling policies
are based on advertised processor frequency. By default and
thanks to the ondemand governor, it scales up or down the
processor frequency according to the current load and the
different predefined threshold (up and down). However, the
set of frequency constitutes a discrete range of frequency. In
this case, the frequency required for a specific load will almost
be scaled to a frequency higher than expected; which leads to
a non-efficient use of energy.

In this paper, we proposed a technique which addresses this
issue. With our approach, we are able to determine and allocate
a more precise processor frequency according to the current
load. We subdivided the interval between two frequencies of
the processor into tinier virtual frequencies. This leads to
simulate a continuous processor frequency range. With this
configuration and the ratio proportionality rule, it is thus
almost possible to set the suitable frequency for a given load.
Furthermore, thanks to oscillations, made possible through the
principle of cumulative frequency, between the frequencies
surrounding the desired one, it was possible to emulate a non-
existent frequency.

Our proposal was implemented in the Xen hypervisor
running with its default Credit scheduler. Different scenarios
were used to validate our assumptions and our proposal.

Our main perspective is to sustain this proposal with a real
world benchmark before a complete validation. Furthermore,
we aim to investigate and address the issue of energy conserv-
ing while eventually exploiting this operation.

VII. ACKNOWLEDGEMENT

The work presented in this article benefited from the
support of ANR (Agence Nationale de la Recherche) through
the Ctrl-Green project.

REFERENCES

[1] Y. Ezaki and H. Matsumoto, “Integrated management of virtualized
infrastructure that supports cloud computing: Serverview resource or-
chestrator,” Fujitsu Sci. Tech. J., vol. 47, no. 2, 2011.

[2] A. J. Young, R. Henschel, J. T. Brown., G. von Laszewski, J. Qiu, and
G. C. Fox, “Analysis of virtualization technologies for high performance
computing environments,” in IEEE International Conference on Cloud

Computing, 2011.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Communications of the ACM, vol. 53, no. 4, 2010.

[4] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
reduced cpu energy,” in Proceedings of the 1st USENIX conference on

Operating Systems Design and Implementation, 1994.

[5] E. Seo, S. Park, J. Kim, and J. Lee, “Tsb: A dvs algorithm with quick
response for general purpose operating systems,” Journal of Systems

Architecture, vol. 54, no. 1-2, 2008.

[6] D. Gmach, J. Rolia, L. Cherkasova, G. Belrose, T. Turicchi, and
A. Kemper, “An integrated approach to resource pool management:
Policies, efficiency and quality metrics,” in IEEE International Con-

ference on Dependable Systems and Networks, 2008.

[7] D. Marinescu and R. Krger, “State of the art in autonomic computing
and virtualization,” 2007.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
Proceedings of the nineteenth ACM symposium on Operating systems

principles, 2003.

[9] “Vmware esx web site.” [Online]. Available:
http://www.vmware.com/products/vsphere/esxi-and-esx/index.html

[10] D. Miyakawa and Y. Ishikawa, “Process oriented power management,”
in International Symposium on Industrial Embedded Systems, 2007.

[11] V. Pallipadi and A. Starikovskiy, “The ondemand governor: past, present
and future,” in Proceedings of Linux Symposium, vol. 2, 2006.

[12] T. Buchert, L. Nussbaum, and J. Gustedt, “Accurate emulation of CPU
performance,” in 8th International Workshop on Algorithms, Models

and Tools for Parallel Computing on Heterogeneous Platforms, 2010.

[13] M. F. Dolz, J. C. Fernández, S. Iserte, R. Mayo, and E. S. Quintana-
Ortı́, “A simulator to assess energy saving strategies and policies in hpc
workloads,” ACM SIGOPS Operating Systems Review, vol. 46, no. 2,
2012.

[14] J.-Y. L. Boudec and P. Thiran, Network calculus: a theory of determin-

istic queuing systems for the internet. LNCS 2050, Springer-Verlag,
2001.

[15] M. Poess and R. O. Nambiar, “Energy cost, the key challenge of
today’s data centers: a power consumption analysis of tpc-c results,”
Proceedings of the VLDB Endowment, vol. 1, no. 2, 2008.

[16] W. Vogels, “Beyond server consolidation,” ACM Queue magazine,
vol. 6, no. 1, 2008.

[17] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari, “Server
workload analysis for power minimization using consolidation,” in
Proceedings of the 2009 conference on USENIX Annual technical

conference, 2009.

[18] M. Uddin and A. A. Rahman, “Server consolidation: An approach to
make data centers energy efficient and green,” International Journal of

Scientific and Engineering Research, vol. 1, no. 1, 2010.

[19] W. C. Sammy Korir, Shengbing Ren, “Energy efficient security pre-
serving vm live migration in data centers for cloud computing,” Inter-

national Journal of Computer Science Issues, vol. 9, no. 3, 2012.

[20] M. Bishop and M. Dilger, “Checking for race conditions in file
accesses,” in Computing Systems, vol. 2, 1996.

[21] S. Lee and T. Sakurai, “Run-time voltage hopping for low-power real-
time systems,” in Proceedings of the 37th Annual Design Automation

Conference, 2000.

[22] G. von Laszewski, L. Wang, A. Younge, and X. He, “Power-aware
scheduling of virtual machines in dvfs-enabled clusters,” in IEEE

International Conference on Cluster Computing, 2009.

