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Abstract. The paper introduces a new method for the design of real-
world applications of evolvable hardware using common FPGAs (Field
Programmable Gate Arrays). In order to avoid “reconfiguration prob-
lems” of current FPGAs a new virtual reconfigurable circuit, whose gran-
ularity and configuration schema exactly fit to requirements of a given
application, is designed on the top of an ordinary FPGA. As an example,
a virtual reconfigurable circuit is constructed to speed up the software
model, which was utilized for the evolutionary design of image operators.

1 Introduction

In recent years, researchers have recognised the essential difference between evo-
lutionary circuit design and evolvable hardware [1].

In case of evolutionary circuit design a single circuit is evolved. An evolu-
tionary algorithm is used only during design phase and thus it plays the role
of a “designer”. While quality and implementation cost of the resulting circuit
are main design objectives, the time needed to evolve a satisfactory circuit for
a given application may not be critical. One could imagine that it could be eco-
nomically profitable to evolve a single circuit for one month, provided that it
can be reused for the next five years. Hence the design can be approached using
a circuit simulator in software (that is, in extrinsic evolution).

On the other hand it can be supposed that a noticeable portion of a tar-
get (embedded) system will be implemented in hardware in case of real-world
applications of evolvable hardware (EHW). Such applications typically operate
in time-varying environments. Then EHW ensures either adaptation (e.g. in
robotics) or high performance computation (e.g. in image compression), which
is unreachable using conventional approaches. In contrast to evolutionary cir-
cuit design, the evolutionary algorithm is a part of a target system. However its
role is rather to provide sufficient long-time mean performance (quality) of the
evolved circuits than to find “innovative” circuits. Unlike evolutionary circuit
design, the amount of resources (gates) needed to realize the final circuit is not
usually important because some resources are always devoted for evolutionary
purposes and may be used for free.

While there exist some ASIC-based (perhaps already commercialized) real-
world applications of EHW [2], implementations of FPGA-based real-world ap-
plications of EHW remain practically unexplored. Although FPGAs are widely
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accessible reconfigurable circuits (RC), the following points represent obstacles
for their usage in EHW: (1) In current FPGAs the reconfiguration system is not
sufficient for EHW because the partial reconfiguration is not fully supported (the
XC6200 family is off the market now and the usage of JBits is too complicated
[5]) and FPGAs can only be reconfigured externally. (2) FPGAs are based on
Configuration Logic Blocks (CLBs) whose granularity is too fine for evolution
of complex circuits. And these complex circuits are required in real-world ap-
plications. Hence in addition to the problems mentioned previously, scalability
problems of EHW have to be solved in real-world applications [3,4].

In this paper, we present a method for the design of real-world applications
of EHW using common FPGAs. A new virtual RC, whose granularity and re-
configuration schema exactly fit to the requirements of a given application, will
be designed on the top of a common FPGA. It will enable the implementation
of a target system in a low-cost, commercial off-the-shelf FPGA and to achieve
adaptation to a changing environment. The method will be illustrated in the
design of the virtual RC for an evolvable image pre-processing component.

The design will be approached in two major steps: (1) Circuit software sim-
ulator will be employed during the evolutionary circuit design of some typical
circuits from application domain in order to find “optimal” organization of the
virtual RC and evolutionary algorithm. (2) The virtual RC and evolutionary al-
gorithm will be designed and synthesized into an FPGA according to outcomes
of step 1. Note that this paper deals only with design of the virtual RC.

Section 2 introduces the problem domain and summarizes the results we
obtained from the previous research. The implementation of the virtual RC is
described in Section 3. Section 4 discusses the proposed approach. And finally,
conclusions are given in Section 5.

2 Evolutionary Image Operator Design

In order to ensure the adaptability of a target embedded system (e.g. to a varying
type of noise), we have to find such an organization of the RC and genetic
operators, which will enable us to evolve various image operators and filters in a
reasonable time. Every image operator will be considered as digital circuit of nine
8bit inputs and a single 8bit output, which processes gray-scaled (8bits/pixel)
images. As Fig. 1 shows every pixel value of the filtered image is calculated using
a corresponding pixel and its eight neighbors of the processed image.

We approached the problem using Cartesian Genetic Programming (CGP)
[6]. However after a number of experiments we claim that it is practically impos-
sible to evolve a gate-level image operator of 72 input and 8 output bits, which
is able to compete against conventional solutions. In order to allow the design
of such complex circuits, we extended CGP to functional level [7]. Instead of
CLBs and 1 bit connection wires, Configurable Functional Blocks (CFBs) and
8bit datapaths are utilized (see Fig. 1 and Fig. 3).

Similarly to conventional CGP, only very simple variant of the evolutionary
algorithm is employed. Population size is 16. The initial population was gener-
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Fig. 1. A typical arrangement of an experiment for evolutionary design of image oper-
ators. A sample chromosome (circuit) is uploaded and the active CFBs are marked.

ated randomly, however only function “C” (see Fig. 3) was used in some runs. In
case of evolutionary circuit design, the evolution was typically stopped (1) when
no improvement of the best fitness value occurs in the last 50000 generations, or
(2) after 500000 generations.

Only mutation of two randomly selected active CFBs is applied per circuit.
Four individuals with the highest fitness are utilized as parents and their mutated
versions build up the new population. In order to evolve a single filter (digital
circuit), which suppresses a given type of noise, we need an original image to
measure the fitness of the evolved filter. The generality of the evolved filters (i.e.
whether the filter operates sufficiently also for other images of the same type of
noise) is tested using a test set.

The design objective is to minimize the difference between the corrupted
image and the original image. We chose to measure mean difference per pixel
since it is easy for hardware implementation. Let u denote a corrupted image
and let v denote a filtered image. The original (uncorrupted) version of u will
be denoted as w. The image size is K × K (K=256) pixels but only the area of
254 x 254 pixels is considered because the pixel values at the borders are ignored
and thus remain unfiltered. The fitness value of a candidate filter is obtained as
follows: (1) the circuit simulator is configured using a candidate chromosome,
(2) the circuit created is used to produce pixel values in the image v, and (3)
fitness is calculated as

fitness = 255.(K − 2)2 −
K−2∑

i=1

K−2∑

j=1

|v(i, j) − w(i, j)|.

Now we can summarize CGP parameters that lead to efficient evolutionary
design: RC consists of 2-input CFBs placed in array of 10 columns and 4 rows.
An input of each CFB may be connected to circuit’s inputs or to the output of a
CFB, which is placed in the previous two columns (i.e. CGP’s L-back parameter
is L=2). After statistical analysis of the functions utilized in the evolved circuits,
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we recognized that CFB should support functions listed in Fig. 3. Let us note
that functions “C”, “E”, and “F” are the most important for successful evolution.

A number of unique image filters for Gaussian, uniform, block-uniform and
shot noise was reported [7,9]. These filters typically consist of 10-25 CFBs and
show better quality in comparison with typical conventional filters (such as mean
and median filters). Surprisingly in some cases the number of equivalent gates
needed for implementation in FPGA XC4028XLA was also lower than in case of
conventional filters. The very efficient edge detectors were also evolved using the
same system. Furthermore, the system was able to produce sequences of very
good filters in simulated time varying environment (changing types of noise)
where only 20000 populations were generated per circuit [10].

3 Virtual RC for Evolution of Image Operators

The previous section dealt with an evolutionary image operator design prob-
lem in which it was not any problem to spend 1 day with a single filter design
on common PC. However if an application is operating in a dynamic environ-
ment (e.g. an embedded system) it should be considered the software approach
becomes slow. The speed at which the approach is able to evolve the efficient
image operators automatically, determines a class of applications for which the
approach is suitable for. The evolutionary image operator design has clearly
demonstrated that very time consuming fitness calculation is the most painful
problem of EHW. As soon as we are able to perform (at least) fitness calculation
in hardware, we are also able to reduce design time substantially and potentially
to support the continuous adaptation.

The idea of virtual RC initially appeared in [8], and was developed in the pa-
per [11]. Some other authors have applied similar methods: Slorach and Sharman
designed a simple fine-grained programmable logic array on top of an FPGA [12]
and Torresen’s group approached a problem of context switching in this way too
[13]. Macias has also implemented an 8 × 8 Cell Matrix using Xilinx Spartan-
2 XC2S-200 FPGA. Other types of specialized platforms have been developed
[14,15]. Note that none of these approaches deal with real-world applications of
EHW operating in time-varying environments.

3.1 Description of the Virtual RC

The CGP instance (introduced in Section 2) is in fact implemented in an FPGA.
As Fig. 2 shows the RC under design operates with nine 8 bit inputs (I0 – I8) and
a single 8 bit output. It consists of 29 CFBs allocated in a grid of 8 columns and
4 rows. The last column contains only a single CFB, which is always connected
to circuit output (a connection of the circuit output is not evolved). Every CFB
has two inputs and can be configured to perform one of 16 functions listed in
Fig. 3. Examples of a hardware implementation of some typical functions are
obvious from the same figure.

Every CFB is also equipped with a register to support pipeline processing.
A column of CFBs is considered as a single stage of the pipeline. In order to
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Fig. 2. A reconfigurable device for the evolutionary design of image operators.

synchronize CFBs with the processed inputs, we have to insert 72 bit (9 × 8
bits) registers R0 – R6 between neighboring columns. The CFBs’ inputs are not
connected to circuit inputs directly, but they are connected to the appropriate
registers. It is more economical in hardware to allow a CFB’s input is connected
to one of 8 data sources than to one of 9 data sources because then only 3 address
bits are needed for the routing multiplexer. Hence the following restrictions of
conventional CGP (which are taken in account simultaneously) were introduced
for this application to reduce the number of configuration bits:

– An input of each CFB placed in an odd row may be only connected to
circuit’s inputs I0 – I7 (via registers R0 – R6).

– An input of each CFB placed in an even row may be only connected to
circuit’s inputs I1 – I8 (via registers R0 – R6).

– An input of each CFB placed in the first (the second) column may be only
connected to circuit’s inputs via register R0 (R1, respectively).

– An input of each CFB placed in column 3 (4, 5, 6 or 7) may be connected
to circuit’s inputs via registers R1 and R2 (R2 and R3, R3 and R4, R4 and
R5, R5 and R6, respectively) or to the output of a CFB, which is placed in
some of the previous two columns.

– An input of the last CFB may be only connected to the output of a CFB,
which is placed in the previous two columns.

Now we can derive the theoretical length of the configuration bitstream. Four
bits are needed to determine the function in each CFB. Four bits also encode
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connection of every CFB’s input in columns 3 – 7. We will utilize only three
bits to do the same with inputs in columns 1, 2, and 8. In total, the length is:
9(3 + 3 + 4) + 20(4 + 4 + 4) = 330 bits.

3.2 Routing Logic and Configuration Memory

The routing circuits are constructed using multiplexers that are controlled via
bits of the configuration memory. Sixteen 16-input multiplexers are needed for
selection of CFB’s inputs. These inputs are usually taken either from the outputs
of the eight CFBs in the previous two columns or from the previous two registers.
Only 8-input multiplexers are required for CFBs of the first, the second, and the
last columns since these CFBs utilize only eight possible inputs.

The configuration memory is implemented using flip-flops that are available
in CLBs. Thus a two output CLB is employed as a two bit memory. Then all
outputs of CLBs utilized for the configuration memory are connected to multi-
plexers that control the routing of CFBs. The configuration memory is depicted
in Fig. 4. Four CFBs of a single column are configured simultaneously and their
configuration is stored in a cnfBank configuration register. A column is selected
via addr and a new configuration is uploaded using gbank configuration port and
WR signal. Although the number of configuration bits needed for columns 1, 2
and 8 is lower than 48 bits, the configuration memory employs 48 bits per column
in our prototype (in order to make the design easier). Hence the configuration
memory consists of 48 × 8 = 384 bits.

The proposed configuration approach is a kind of partial reconfiguration that
may be performed either form outside (if configuration signals are connected to
circuit’s pins) or from some internal circuits. Obviously, it is impossible to destroy
the chip when a randomly generated configuration is uploaded.
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3.3 Configuration Options

The virtual RC was described using VHDL at structural level but some elemen-
tary circuits (such as “Max” circuit) were defined behaviorally. Its functionality
was tested in the Active HDL v.3.6 environment.

Assume that the RC has been already configured and L = 1. Then the inputs
(I0 – I8) are processed via the array of CFBs, and simultaneously, the inputs go
through the register array R0 – R6. The first valid output is available in 9 clocks
(a delay of R0 plus 8 CFBs), and the other ones each per a clock. Hence K × K
pixels can be processed in 9+(K×K−1) clocks. Maximal operational frequency
is determined by a delay of a CFB and a delay of routing circuits (which is a
single multiplexer).

It takes 8 clocks to configure the entire RC at the beginning of the com-
putation. However, the reconfiguration process can be hidden totally. We can
configure the first stage in the same time in which the first input values are
stored into R0. Then every next stage can be configured while the previous
stage processes data. Hence such a pipelined approach requires only 1 clock to
reconfigure the entire device as seen in Fig. 5.

The RC in fact supports L = 1 as well as L = 2 setting. However if L = 2
is considered, every pixel must be sent to the RC two times to ensure synchro-
nization of CFBs. Note that CFB’s inputs may be connected to registers in two
different stages (i.e. to values registered at two different moments) but a CFB
must operate with the inputs registered at the same moment to produce a correct
output. This leads to decreasing of the maximal frequency to a half if L = 2.
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Fig. 5. An example of simultaneous pipelined reconfiguration and execution of the RC
under design. We can observe the outputs of CFBs placed in the first row (PEc*e1)
and the constant input I4 = 4, which goes via the register array (reg*out4). In the first
clock, I4 is stored into reg0out4, and the first column of CFBs is configured using gbank,
addr and wr. In the second clock, PEc1e1 is calculated, I4 is stored into reg1out4, and
the second column of CFBs is configured. The entire RC is configured in 8 clocks and
the first output (outval = 0D) is available in the ninth clock.

3.4 Implementation Costs

In order to find out whether the design can be physically realized, we have
tried to synthesize the RC into various FPGAs using Xilinx Integrated Software
Environment. The results summarized in Table 1 qualify us to claim that it is
possible to construct virtual reconfigurable devices for real-world applications.
Furthermore it seems that genetic operators and fitness evaluation can be placed
on the same FPGA (e.g. 77% XCV2000E’s resources remain unused) and thus
the entire application could be implemented in a single chip.

While we reached a sufficient operational frequency (at least for L = 1),
higher implementation costs are main problem of the approach. If a fixed (either
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Table 1. The results of the synthesis into various Xilinx Virtex FPGAs. Note that
no timing constrains were defined for the synthesis program. The maximal operational
frequency fm is valid only for L = 1.

Family Chip Optimized for Slices Slices [%] Equivalent gates fm [MHz]
Virtex E XCV2000E speed 4424 23 67937 96.4
Virtex 2 XC2V1000 speed 4879 95 74357 134.8
Virtex XCV1000 speed 4489 36 68744 86.7
Virtex XCV1000 area 4085 33 63773 81.3

conventional or evolved) operator is considered, about 2000 equivalent gates
are needed for its implementation. The virtual RC (which can be configured to
implement the same operator) requires 30 times more equivalent gates. A single
CFB costs 1009 equivalent gates. So far our design consists of 29 CFBs, 55%
gates needed to realize the entire virtual RC are devoted for implementation of
routing multiplexers, configuration memory and the register array R0 – R6.

3.5 Fitness Calculation in Hardware

If L = 1 then the (virtual) RC can operate at fm = 134.8 MHz. Thanks to
pipelining, the RC is able to process each pixel at 134.8 MHz too. But fur-
thermore, the entire evolvable system can operate at this frequency. Recall that
a deterministic selection mechanism is applied in the evolutionary algorithm.
Hence a new candidate circuit can always be generated simultaneously with fit-
ness calculation of another circuit. As soon as the fitness calculation takes a
half millisecond (e.g. it is 0.48 ms for 254 × 254 pixels), there is plenty of time
to generate a new candidate circuit if the genetic unit takes place in the same
FPGA. Because the reconfiguration time of the virtual RC is practically zero,
the time of evolution is determined as

te =
(K − 2)2.µ.ρ

fm

where (K −2)2 is the number of processed pixels, µ denotes population size, and
ρ is the number of generations.

Fig. 6 shows that pipelining of the RC can be extended to pipelining of
the entire evolvable system. Every output value of the RC is compared with
the corresponding pixel value of the original image. Then an absolute value of
the difference is added to the content of an accumulator (which corresponds
to fitness) in next clock. The circuit, which selects neighboring values of each
pixel, is taken from [16]. FIFO is a K-pixel data structure that may be easily
implemented in an FPGA. The original image has to be synchronized in similar
way as seen in Fig. 6.

We can estimate how much time is needed to evolve a single image operator.
Assume the setting K = 256, µ = 16, ρ = 160000, which requires 1 day on
PentiumIII/800 MHz in average. If fm = 134.8 MHz, then a filter can be designed
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in te = 20.4 minutes in average using virtual RC. We obtained a speeding up
more than 70. Some operators were evolved with ρ = 20000. If such a system
is implemented in an FPGA, the adaptation time would be about te = 2.6
minutes. Assume that only (K−2)2

2 pixels and ρ = 10000 are sufficient. Then
we obtain the adaptation time te = 38.3 seconds which can be considered as a
real-time adaptation in some applications. And finally, we can expect that it will
be possible to implement in the future 16 virtual RCs in a single FPGA. Then
all circuits of the population could be evaluated at the same time. Note that the
fitness accumulator will have to be replicated 16 times, however only a single
implementation of input FIFOs and registers is necessary. Such a system would
be able to adapt to changing fitness function in 2.4 seconds.

4 Discussion

We did not implement the virtual RC in a physical FPGA yet. However, there
is a company, which is interested to do it. Nevertheless the presented results
show that an adaptive system for image pre-processing can be implemented in
a common FPGA. If the approach is used only to speed up the evolutionary
image operator design, then it should take several minutes to find a sufficient
operator. If generality of the evolved operators is not required, it is possible to
reduce the design time to tens of seconds. And that could be attractive for some
real-time applications. Let us summarize the advantages of the proposed method
for design of virtual reconfigurable devices:
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– An architecture, which exactly fits to application requirements, can be devel-
oped for a given problem. It is mainly important for EHW, since hardware
can reflect the representation used in the evolutionary algorithm.

– A style and granularity of reconfiguration may be defined according to the
need of a given application.

– A virtual RC is described in a platform independent way. Hence it can be
synthesized into various target devices and with various constraints.

– The process of a virtual RC design (i.e. its VHDL description) can be fully
automatic. One can imagine a design environment, in which a designer is
to press a button and a new virtual RC will be generated automatically
according to the best parameters of RC and evolutionary algorithm found
so far for a given EHW-based application.

– A description of a virtual RC can be offered as an IP macro.
– It is possible to implement very efficient context switching in Virtex FPGAs

as it is evident in [13].

Higher implementation costs are the main disadvantages of the proposed
method. Most resources available on an FPGA are wasted on configuration mem-
ory and routing logic implementation. It seems that the approach is suitable only
for coarse-grained architectures since the scaling problem is not so painful. The
scalability problem can be approached by reduction of configuration options (e.g.
only local connection could be enabled only). The number of functions supported
in a programmable element is not critical from a scalability viewpoint.

5 Conclusions

We have clarified that it is possible in principle to implement real-world appli-
cations of EHW in common FPGAs. We are going to realize the proposed RC in
Virtex FPGA and to apply the method for design of other applications of EHW.

We have introduced a new level of abstraction to the hardware design. Virtual
RCs are supposed to be beneficial not only for EHW, but also for the other
research domains, e.g. reconfigurable computing.
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