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Abstract
In this paper we discuss a new method for the data-
based design of feedback controllers in a linear setting.
The main features of the method are that it is a direct
method (no model identi�cation of the plant is needed)
and that it can be applied using a single set of data
generated by the plant with no need for speci�c experi-
ments nor iterations. It will be shown that the method
searches for the global optimum of the design criterion
and that, in the signi�cant case of restricted complex-
ity controller design, the achieved controller is a sensible
approximation (under some reasonable hypotheses) of
the restricted complexity global optimal controller.
As an extra contribution it is also presented a controller
validation test aiming at ascertain the closed-loop sta-
bility before that the designed controller is applied to
the plant. A numerical example ends the paper.

1 Introduction
The control problem addressed in this paper can be
formally stated as follows. Consider a linear time-
invariant discrete-time SISO plant P (z). P (z) is un-
known and only a �nite set of Input/Output data
fu(t); y(t)gt=1;::;N (possibly corrupted by noise) is
available. Given a set of parameterized controllers
C(z; �) = �T (z)� (�(z) = [�1(z) �2(z) : : : �n(z)]

T

is a vector of linear discrete-time transfer functions and
� = [#1 #2 : : : #n]

T 2 Rn is the n-dimensional vec-
tor of parameters), and a reference model M(z), the
problem consists in �nding the parameter vector, say
��, which minimizes the following model-reference per-
formance index

JMR(�) =






�

P (z)C(z; �)

1 + P (z)C(z; �)
�M(z)

�
W (z)






2

2

(1)

where W (z) is a user-chosen weighting function.
In this paper we approach the above control problem
through a new direct technique called Virtual Reference

Feedback Tuning (VRFT). The roots of this technique
are found in [3, 7, 8], where the "Virtual Reference"

framework was �rst introduced.
A design technique is called "direct" when the I/O data
collected on the plant are used to directly tune a param-
eterized controller, without passing through a plant-
identi�cation step. Direct techniques are conceptually
more natural than indirect ones (where the controller
is designed on the basis of an estimated model of the
plant), since they directly target the �nal goal of tuning
the parameters of a given class of controllers. However,
despite the appeal of direct methods, very few genuine
direct techniques have been proposed in the literature
([3, 4, 10]). In particular (to the best of our knowledge),
the only genuine "direct" data-based technique which
can be compared with VRFT is a method called Iter-

ative Feedback Tuning (IFT), recently developed and
proposed by Hjalmarsson and coauthors ([4]). Even
if IFT and VRFT belong to the same class of design
methods, their peculiar features are quite di�erent:

� IFT is based upon a gradient-descent approach

and it is therefore an iterative technique. It typ-
ically converges to the local minimum closest to
the initial condition (henceforth it is a "local" op-
timization technique). However, it can be shown
that, if the initialization vector falls in the basin
of attraction of the global minimum of (1), IFT
provides an unbiased estimate of the optimal pa-
rameter vector of the controller. IFT can possi-
bly call for a large number of experiments and, in
any case, it requires to perform experiments on
the true plant with speci�c inputs.

� VRFT is a "one-shot" method which searches for
the global minimum of the performance index (1),
with no need for iterations nor initialization. It
makes use of any set of input-output data (i.e.
it does not require speci�c experiments). How-
ever, the VRFT technique is only near-optimal,
in the sense that, in general, it provides a con-
troller which is close, but not equal, to the one
minimizing (1).



Interestingly enough, the application realms of these di-
rect data-based techniques are quite complementary.
Throughout the paper, the frequency-domain interpre-
tation of the performance indices will be used exten-
sively as a main analysis tool, since it allows a deep un-
derstanding of the design techniques. It is interesting
to note that this analysis framework is mainly borrowed
by the recent literature on "iterative control" (see e.g.
[11, 14]), a design approach which has many similarities
with IFT and VRFT, even if it must be classi�ed as an
"indirect" control system design technique.
The structure of the paper is as follows. In Section 2 the
"Virtual Reference" framework is introduced. Starting
from the basic idea of Section 2, the VRFT technique is
developed by addressing two main issues: the problem
of pre-�ltering the data (Section 3), and the problem of
dealing with noise (Section 4). This paper delivers an
extra contributions in terms of a controller validation
test aiming at ascertain the closed-loop stability before
that the controller is actually implemented. This is
discussed in Section 5. A numerical example ends the
paper.

2 The Virtual Reference framework
The Virtual Reference framework permits one to recast
the problem of designing a model-reference feedback
controller into a standard system-identi�cation prob-
lem. The rationale behind the Virtual Reference frame-
work can be phrased as follows.
Suppose that a controllerC(z; �) results in a closed-loop
system whose transfer function is M(z). Then, if the
closed-loop system is fed by any reference signal r(t), its
output equals M(z)r(t). Hence, a necessary condition
such that the closed-loop system has the same transfer
function as the reference model is that the output of
the two systems is the same for a given �r(t). An usual
approach in model reference control to impose the lat-
ter (necessary) condition is to �rst select �r(t) and then
choose C(z; �) such that the condition is in fact satis-
�ed. However, for a general selection of �r(t), the above
task may turn out to be complex. The basic idea behind
the virtual reference approach consists in performing a
wise selection of �r(t) as explained next.
Given the measured y(t) (i.e. the actual signal mea-
sured at the output of the plant), consider a reference
�r(t) such that M(z)�r(t) = y(t). Such a reference is
called "virtual" because it does not exist in reality and
in fact it was not used in the generation of y(t). Notice
that y(t) is the desired output of the closed-loop sys-
tem when the reference signal is �r(t). Next, compute
the corresponding output error e(t) = �r(t)� y(t). Even
though plant P (z) is not known, we know that when
P (z) is fed by u(t) (the actually measured input sig-
nal), it generates y(t) as an output. Therefore, a good
controller (at least in the condition when the reference
signal is the virtual reference �r(t)) is one that generates
u(t) when fed by e(t). The idea is then to search for
such a controller. What is important to note here is

that since both signals u(t) and e(t) are known, this
task reduces to the identi�cation problem of describing
the existing dynamical relationship between these two
signals. We also note that all the signals involved in
the identi�cation procedure can be pre-processed with
a �lter L(z), whose choice and shaping is left to the
designer.
The above idea can be implemented in a simple al-
gorithm, which represents the "bulk" of the VRFT
method. It can be formally stated in the following three
steps:

1. Pre-�lter the measured I/O data
fu(t); y(t)gt=1;::;N with a suitable �lter L(z):

yL(z) = L(z)y(t); uL(z) = L(z)u(t): (2)

2. Find a reference input �rL(t) such that the output
of the reference modelM(z) is exactly yL(z) when
fed with �rL(t), namely yL(t) =M(z)�rL(t).

3. Select the controller parameter vector, say �̂N ,
that minimizes the following performance index
JNV R(�):

JNVR(�) =
1

N

NX
t=1

(uL(t)� C(z; �)eL(t))
2 (3)

eL(t) = �rL(t)� yL(t):

Speci�cally, if the controller has the form C(z; �) =
�T (z)�, the performance index (3) can be given the
form

JNVR(�) =
1

N

NX
t=1

(uL(t)� 'TL(t)�)
2 (4)

'L(t) = �(z)eL(t);

since (4) is quadratic in �, the parameter vector �̂N
which minimizes (4) is an explicit function of the data:

�̂N =

"
NX
t=1

'L(t)'L(t)
T

#�1
NX
t=1

'L(t)uL(t): (5)

As it will be shown in forthcoming sections, the Virtual
Reference approach provides an approximate solution
to the design problem stated in the Introduction (the
data-based minimization of JMR(�)). This is appealing
since the Virtual Reference approach is based upon a
performance index JNVR(�), characterized by the follow-
ing attractive features:

� it is quadratic in �;

� it can be numerically computed directly from the
measured I/O data (it does not requires the a-
priori estimation of a mathematical model of the
plant). Moreover, the I/O data are not required
to be collected in speci�c operating conditions.



Hence, using JNVR(�), the original performance index
JMR(�) can be easily "directly" minimized, at the ex-
pense of a little sub-optimality.
The rest of the paper is devoted to the development of
a technique (which we call VRFT) which exploits the
Virtual Reference idea so as to give rise to an e�ective
and useful design algorithm. This can be done by ad-
dressing the following two main open issues: selection
of a pre-�lter L(z) in order to achieve a nearly optimal
performace and care for the presence of noise.

3 Shaping the pre-�lter
Consider the performance index JMR(�) of the model
reference control problem (eqn.(1)) and the one of the
virtual reference approach (eqn.(3)): they appear to be
di�erent. Yet, in this section it will be shown that their
minimum arguments can in fact be made close to each
other by a suitable selection of the pre-�lter L(z).
The analysis presented in this section is performed un-
der the assumption that the measured signals u(t) and
y(t) are not corrupted by noise. The treatment of noise
is postponed to Section 4.
To start with, note that, using the de�nition of 2-norm
of a discrete-time linear transfer function, JMR(�) can
be given the following frequency-domain form:

JMR(�) =
1

2�

Z �

��

���� PC(�)

1 + PC(�)
�M

����
2

jW j2d!; (6)

(we drop the argument ej! of transfer functions where
this is not a source of confusion).
Introduce now the rational function C0(z) which ex-
actly solves the model-matching problem, namely C0(z)
is such that

P (z)C0(z)

1 + P (z)C0(z)
=M(z): (7)

Notice that, in general, C0(z) does not belong to the
family of parameterized controllers fC(z; �)g. Even
more so, it is not required to be proper. Throughout the
paper we will refer to C0(z) as the "ideal controller".
Using C0(z), after some manipulations the performance
index (6) can be rewritten as:

JMR(�) =
1

2�

Z �

��

jP j2
jC(�) � C0j2

j1 + PC(�)j2
jW j2

j1 + PC0j2
d!:

(8)
Consider now the performance index JNVR(�). If the
measured signals u(t) and y(t) can be considered real-
izations of stationary and ergodic stochastic processes,
when the number of available data grows (N �! 1),
the following holds:

JNVR(�) �! JV R(�) = E[(uL(t)� C(z; �)eL(t))
2] =

= E

"�
L(z)

�
1�

1�M(z)

M(z)
C(z; �)P (z)

�
u(t)

�2
#
:

JV R(�) is the asymptotic counterpart of JNV R(�), namely

the performance index to which JNV R(�) tends as the
number of available data goes to in�nity. Accordingly,
as N �!1, the minimum �̂N of JNV R(�) will converge

to the minimum of JV R(�), say �̂. In the rest of the
paper, for analysis purposes, JV R(�) will be used ex-
tensively in place of JNV R(�).
Finally, using the Parseval theorem (see e.g.[6]) and
the equation (7), JV R(�) can be given the following
frequency-domain representation:

JV R(�) =
1

2�

Z �

��

jP j2jC(�)�C0j
2j1�M j2

jLj2

jM j2
�ud!;

(9)
where �u is the power density spectrum of u(t).
By comparing the frequency-domain expression of
JMR(�) and JV R(�) (eqn.(8) and eqn.(9), respectively),
the following two observations can be made.
If C0(z) 2 fC(z; �)g, and both JV R(�) and JMR(�) have

a unique minimum, it is always true that �̂ = ��, namely
the minimum of JV R(�) coincides with the minimum of
JMR(�), whatever L(z), W (z), M(z) and P (z) are.
Suppose instead that C0(z) 62 fC(z; �)g: if the follow-
ing identity holds

jLj2 =
jM j2jW j2

�uj1 + PC(�)j2
8! 2 [��;�] (10)

then JV R(�) = JMR(�). As a consequence, �̂ = ��.
Clearly, the choice of the �lter L(z) suggested by equa-
tion (10) is not feasible since P (z) is not known.
Here, the following choice of L(z) is instead proposed:
select L(z) such that

jLj2 =
j1�M j2jM j2jW j2

�u

8! 2 [��;�]: (11)

Note �rst that all quantities in the right-hand-side of
equation (11) are known and therefore L(z) can be ac-
tually computed (notice that �u may be considered
known only in certain situations where the input signal
has been selected by the designer, otherwise, �u can
be estimated using many di�erent techniques, among
which a high-order AR or ARX model [6], or a high-
order state-space model [12]). Moreover, by using equa-
tion (7), it is readily seen that expression (11) is equiv-
alent to

jLj2 =
jM j2jW j2

�uj1 + PC0j2
8! 2 [��;�]

Hence, choice (11) corresponds to substitute j1 +
PC(�)j2 with j1 + PC0j2 in equation (10), which ap-
pears to be a sensible selection since we expect that
j1 + PC(�)j2 � j1 + PC0j2 for � = ��, where �� is the
minimum of JMR(�).
In Proposition 1 below, we show that choice (11) is in
fact optimal in a certain sense. Before stating this re-
sult, some notations must be preliminary settled.
Set

�C(z) = C0(z)� �T (z)��



�+(z) = [�1(z) �2(z) ::: �n(z) �C(z)]T

�+ = [#1 #2 ::: #n #n+1]
T

(�� being the parameter vector which minimizes
JMR(�)). Then de�ne an extended family of controllers
as follows:

C+(z; �+) = �+(z)T �+:

Finally, consider the extended performance index

J+MR(�
+) =






�

P (z)C+(z; �+)

1 + P (z)C+(z; �+)
�M(z)

�
W (z)






2

2

(note that the di�erence between JMR(�) and J
+
MR(�

+)
is that J+MR(�

+) is parameterized by the family of ex-
tended controllers fC+(z; �+)g). The second order Tay-
lor expansion around its global minimizer ��+ is denoted
by ~J+MR(�

+), namely:

J+MR(�
+) = ~J+MR(�

+) + o(k�+ � ��+k22):

Using the above de�nitions, Proposition 1 can now be
stated.

Proposition 1. The parameter vector �� which mini-
mizes the performance index JMR(�), and the param-

eter vector �̂ which minimizes the performance index
JV R(�) when L(z) is selected as in (11) ful�ll the fol-
lowing relationships:

�� = argmin
�

J+MR([�
T 0]T ):

�̂ = argmin
�

~J+MR([�
T 0]T ):

proof: see [2] 2

The above result is interesting since it provides a
formal relationship between the parameter vector �̂
obtained using the Virtual Reference approach (in the
special case when L(z) is selected according to (11)),
and the "optimal" parameter vector ��, which minimizes
the original performance index JMR(�). Based on
this result, we conclude that if the transfer function
�C(z) plays a marginal role in determining C0(z),
namely the family of controllers fC(z; �)g is only
slightly under-parameterized given a certain reference
model, then C(z; �̂) is a good approximation to C(z; ��)
since J+MR(�

+) is well approximated in a neighborhood

of its minimum by its second order expansion ~J+MR(�
+).

4 Dealing with noisy data
In this section we discuss the case in which the plant
output y(t) is a�ected by additive noise �(t), namely

~y(t) = P (z)u(t) + �(t) = y(t) + �(t);

�(�) being an unknown stationary process. We make the
hypothesis that the processes u(�) and �(�) are uncorre-
lated. Note that, in practice, this means that the data
are collected when the plant is working in open-loop
con�guration. This assumption has been introduced

for simplicity but the extension to the closed-loop set-
ting is straightforward (see [2] for details).
If the Virtual Reference algorithm (eqns.(2)-(5)) is ap-
plied to the data-set fu(t); ~y(t)gt=1;::;N , one obtains

a parameter vector, say ~�N , whose limit when N !
1 di�ers from �̂ estimated using the noise-free data
fu(t); y(t)gt=1;::;N (we say that ~�N is "biased").
We propose a simple procedures aiming at eliminating
the in
uence of the noise on the estimated controller
which is nothing but an instrumental variable method.
This procedure guarantees the unbiasedness of the es-
timated parameter vector (namely the parameter vec-
tor estimated from noisy data asymptotically coincides
with the parameter vector estimated from noise-free
data), but requires two sets of independent measure-
ments, characterized by the same input signal.

Procedure 1.

(i) Collect two independent sets of I/O measure-
ments using the same input signal, namely
fu(t); ~y(1)(t)gt=1;::;N and fu(t); ~y(2)(t)gt=1;::;N ,
where ~y(1)(t) = y(t) + �(1)(t), and ~y(2)(t) =
y(t) + �(2)(t). (The additive noises �(1)(�) and
�(2)(�) in the two experiments are assumed to be
uncorrelated).

(ii) Compute

~'
(1)
L (t) = �(z)~e

(1)
L (t) = �(z)(M(z)�1� 1)L(z)~y(1)(t)

~'
(2)
L (t) = �(z)~e

(2)
L (t) = �(z)(M(z)�1� 1)L(z)~y(2)(t)

(iii) Compute �̂P1N according to the relation:

�̂P1N =

"
NX
t=1

~'
(1)
L (t) ~'

(2)T
L (t)

#�1
NX
t=1

~'
(1)
L (t)uL(t):

Remark. (i) Procedure 1 can be simply extended to
a closed-loop setting as shown in [2]. (ii) In the case
in which only one set of data is available the second
experiment can be replaced by a simulation of an ac-
curate (high-order) model of the plant (which can be
estimated from the available data). In general, in this
way the unbiasedness of the estimated parameter vector
is not guaranteed, however, the residual bias is expected
to be very small.

5 A controller validation test
In this section we address the issue of ascertain the sta-
bility of the closed-loop control system formed by P (z)
with the loop closed by C(z) before the controller C(z)
is actually implemented. This issue is of course of in-
terest in its own right and it �nds a speci�c application
in the context of the VRFT procedure presented in this
paper.
The same precise problem has been addressed in [1].
However, our method has a major departure from [1]



in that it is directly based on the computation of the
probability that C(z) destabilizes P (z) and we make no
use of ellipsoidal con�dence regions as in [1]. Similarly
to [1], we start by identifying P (z) by means of a pre-
diction error identi�cation method.
Let us consider a set of linear models fP (z; �)g param-
eterized by the vector �. We assume that the class
fP (z; �)g is rich enough so that P (z) = P (z; �0) for
some �0 (this assumption is the same as in [1]). The
true �0 is not known and an estimate of it is carried out
with a Prediction Error identi�cation algorithm: the es-
timated parameter is named as �̂. It is well known that,
under general conditions, �̂ is asymptotically normally
distributed around �0 (see [6] Chapter 9):

�̂ � N (�0;��̂): (12)

Therefore, the error between P (z) and P (z; �̂) is a vari-
ance error only, moreover the variance matrix ��̂ can
be estimated from data.
In [1] an uncertainty set is constructed around the iden-
ti�ed model. This uncertainty set is chosen to be the el-
lipsoidal region in the parameter space of a pre-speci�ed
level of con�dence centered at �̂. Then, the criterion for
controller validation is stated as: if C(z) stabilizes all
the models in the uncertainty set, then it is validated.
In our method, uncertainty is directly used as it is gen-
erated by data without any arti�cial use of con�dence
regions. We consider convenient to adopt a Bayesian
setting. We assume that, prior to the identi�cation ex-
periment, �0 is distributed according to the distribution
p(�0):

�0 � p(�0): (13)

This prior distribution should express the information
on �0 which is available prior that �̂ has been estimated.
For the moment let us assume that p(�0) is given, later
on we will discuss its actual choice. In this setting the
distribution of �̂ given in (12) makes sense as the con-
ditional distribution of �̂ given �0. Therefore we can
write:

p(�̂j�0) = N (�0;��̂): (14)

Then, from (13) and (14) we can �nd, by means of the
Bayes theorem, the conditional distribution of �0 given
�̂. Such distribution is given by:

p(�0j�̂) = p(�̂j�0)
p(�0)

p(�̂)
(15)

and its expression is given in the following proposition.
Proposition 2. If p(�0) = N (m�0 ;��0) and p(�̂j�0) is
given by (14), then

p(�oj�̂) = N (m�0j�̂;��0j�̂) (16)

where ��0j�̂ =
�
��1�̂ +��1�0

��1
and m�0j�̂ =

��0j�̂

�
��1�̂ �̂ +��1�0 m�0

�
: 2

In some cases, one could �nd diÆcult to assign any

prior distribution for �0. In this event, with the aim
of expressing the absence of any a-priori information,
it is a common procedure (see [9] pag. 20-21 and the
works cited therein) to take the posterior distribution
in the limit as the prior distribution spreads over the
parameter space. In our case, we have:

�p(�0j�̂) = lim
��1�0

!0
p(�0j�̂) = N (�̂;��̂): (17)

Therefore, (16) can be used in case a prior p(�0) is
given, while (17) can be adopted in the case when no
prior information is available.
The posterior probability that C(z) destabilizes P (z) is
given by:

pd =

Z
I(�0)p(�0j�̂)d�0 (18)

where I(�0) is an indicator function de�ned as

I(�0) =

8<
:

1 if C(z) destabilizes P (z; �0)

0 otherwise

Suppose for a moment that we are able to compute
pd. Then, we can compare its value with a previously
chosen (small) maximal threshold �pd and validate C(z)
if pd < �pd. On the other hand, the actual calculation
of pd may be very diÆcult. As a matter of fact �0 is
typically of high dimension and a standard numerical
computation could be excessive.
Computing pd
Notice that pd = E[I(�0)j�̂]. Let us introduce some
terminology.
Given a sample �m0 = f�01 �02 � � � �0mg of parameter
vectors independently extracted according to p(�0j�̂), a
sample estimate of E[I(�0)j�̂] is:

p̂d =
1

m

mX
i=1

I(�0i): (19)

We say that: (i) p̂d has accuracy � if jp̂d � pdj < �.
(ii) p̂d has accuracy � with con�dence Æ if the proba-
bility of drawing a sample �m0 such that jp̂d � pdj > �
is smaller than Æ. Notice that, since the distribution of
probability p(�0j�̂) is a known normal distribution, we
are able to extract the sample �m0 and then employ (19)
to obtain p̂d. An interesting fact is that the number m
of random extractions can be easily computed for given
values of � and Æ through the following result (see [13]).
Hoe�ding's inequality. Let x be a random vari-
able valued in [0; 1] with distribution p. Given a sam-
ple xm = fx1 x2 � � �xmg of points independently ex-
tracted according to p, let

Ê[x] =
1

m

mX
i=1

xi

be the corresponding sample estimate of E[x] based on

xm. Then, pmfxm : jÊ[x]�E[x]j > �g � 2e�2m�2
2



The Hoe�ding's inequality establishes a link between
the size m of the sample �m0 and the accuracy and con-
�dence of p̂d. As a matter of fact, after some simple
calculations, we can state that: if we choose m such
that

m >
1

2�2
ln
2

Æ
(20)

then the corresponding sampling estimate p̂d is guaran-
teed to have accuracy � and con�dence Æ. At this point,
p̂d can be actually used as an estimate of pd since its
dependability is known and can be �xed a-priori.

6 A numerical example
We conclude the paper with an illustrative numeri-
cal example. The transfer function P (z) is: P (z) =
z�2B(z)=A(z) where A(z) = 1 � 1:41833z�1 +
1:58939z�2 � 1:31608z�3 + :88642z�4 and B(z) =
:28261z�1+ :50666z�2. P (z) is the discrete-time model
(sampling time Ts = 0:05s) of a 
exible transmis-
sion system which was proposed in [5] as a bench-
mark for digital control design. The reference model
is: M(z) = z�3(1� �)2=(1� �z�1)2 where � = e�Ts �!

and �! = 6. The magnitudes of P (z) and M(z) are
shown in �g.(1). The class of controllers is: C(�; z) =
(#0 + #1z

�1 + #2z
�2 + #3z

�3 + #4z
�4)=(1 � z�1). In

order to compute �̂N via the VRFT method, a set of
data have been obtained by feeding P (z) withN = 2000
samples of a zero-mean Gaussian white noise (�u = 1).
In the following, we will present three di�erent VRFT
design cases for this speci�c control problem. Before
starting, let us notice that the argument of the de-
sign criterion (9) can be written as jPC(�)�PC0j2jT j2

(where jT j2 = j1�M j2jLj2jM j�2�u) from which it can
be clearly seen that such argument is the weighted mis-
match between the open-loop transfer function PC(�)
and the ideal open-loop transfer function PC0. In the
�rst two cases, we will show how the shape of jT j2 af-
fects the design. The third design case is instead char-
acterized by the presence of noise.

Case 1: L = 1.
The designed control system is shown in �g.(2.a). We

obtain JMR(�̂
1
N ) = 0:0472. In �g.(2.b) the open-loop

transfer function PC(�̂1N ), the "ideal" open-loop trans-
fer function PC0 and the weighting factor jT1j2 =
j1�M j2jM�1j2 are shown. The step response is shown
in �g.(5.a). Notice how the designed control system
does not reproduce the desired reference-model with
high accuracy. The reason is that we deliberately have
not made use of the �lter L(z). This choice results in
a weighting term which emphasizes the high-frequency
region (see. �g.(2.b)). This shows that a wise choice of
the �lter L(z) is crucial for a successful design.

Case 2: L =M(1�M).
In this case the �lter L(z) has been chosen according
to (11) with W (z) = 1. The designed control system
is shown in �g.(3.a). In �g.(3.b) the open-loop transfer

function PC(�̂2N ), the "ideal" open-loop transfer func-

tion PC0 and the weighting factor jT2j2 = j1�M j4 are
shown. The step response is shown in �g.(5.b).
The result obtained through the choice of L(z) as sug-
gested in equation (11) can be compared with the op-
timal solution ��. In �g.(4) the solution �� is illustrated.
From a comparison of �g.(3) and �g.(4) it is clear that

the solution �̂2N is very close to the global solution ��.

As a matter of fact the JMR value for �̂2N and �� is:

JMR(�̂
2
N ) = 0:0280, JMR(��) = 0:0276.

Case 3: L =M(1�M), noisy data.
In this case the output signal has been corrupted by
a zero mean white disturbance such that the signal to
noise ratio is SNR = �2yn:f:=�

2
� = 10 (SNR is the ra-

tio between the variance of yn:f:(t) = P (z)u(t) and the
variance of the noise signal). The �lter L(z) has been
chosen as in Case 2. First the controller parameter
vector �̂3N is estimated without paying attention to the
presence of noise (i.e. the same procedure as in Case
2 has been used). The step response of the achieved
control system is shown in �g.(6.a). Notice how the
performance degrades dramatically with respect to the
noise-free case (Case 2). The in
uence of noise can be
counteracted by means of Procedure 1 proposed in Sec-
tion 4. The parameter vector �̂4N estimated through
Procedure 1 gives rise to the step response shown in
�g.(6.b).
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Figure 1: Magnitude plots. The plant (thin line) and the
reference-model (bold line).
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Figure 2: Magnitude plots. (a) the control system given
by �̂

1

N (thin line) and the reference-model (bold line); (b)
PC(�̂1N ) (thin line), PC0 (bold line) and jT1j2 (dashed line).
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Figure 3: Magnitude plots. (a) the control system given
by �̂

2

N (thin line) and the reference-model (bold line); (b)
PC(�̂2N) (thin line), PC0 (bold line) and jT2j2 (dashed line).
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Figure 4: Magnitude plots. (a) the control system given
by �� (thin line) and the reference-model (bold line); (b)
PC(��) (thin line) and PC0 (bold line).
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