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Abstract: We conjecture a formula for the generating function of virtual χy-genera
of moduli spaces of rank 2 sheaves on arbitrary surfaces with holomorphic 2-form.
Specializing the conjecture to minimal surfaces of general type and to virtual Euler
characteristics, we recover (part of) a formula of C. Vafa and E.Witten. These virtual χy-
genera can bewritten in terms of descendentDonaldson invariants. Using T.Mochizuki’s
formula, the latter can be expressed in terms of Seiberg–Witten invariants and certain
explicit integrals over Hilbert schemes of points. These integrals are governed by seven
universal functions, which are determined by their values on P

2 and P
1 × P

1. Using
localization we calculate these functions up to some order, which allows us to check our
conjecture in many cases. In an appendix by H. Nakajima and the first named author,
the virtual Euler characteristic specialization of our conjecture is extended to include
μ-classes, thereby interpolating betweenVafa–Witten’s formula andWitten’s conjecture
for Donaldson invariants.

1. Introduction

Let S be a smooth projective complex surface with b1(S) = 0 and polarization H . We
denote by

M := M H
S (r, c1, c2)

the moduli space of rank r Gieseker H -stable torsion free sheaves on S with Chern
classes c1 ∈ H2(S, Z), c2 ∈ H4(S, Z). Suppose that no rank r strictly Gieseker H -
semistable sheaves with Chern classes c1, c2 exist. Then M H

S (r, c1, c2) is projective.
T. Mochizuki [Moc] studied a perfect obstruction theory on M with

T vir = Rπ∗ RHom(E, E)0[1], (1)
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where E denotes the universal sheaf on M × S, π : M × S → M is projection, and (·)0
denotes the trace-free part.1

This leads to a virtual cycle on M of degree equal to the virtual dimension

vd(M) = 2rc2 − (r − 1)c21 − (r2 − 1)χ(OS). (2)

The (algebraic) Donaldson invariants are then obtained by capping certain classes with
the virtual cycle ∫

[M]vir
τα1(σ1) · · · ταm (σm), (3)

where σ1, . . . σm ∈ H∗(S, Q), α1, . . . , αm ≥ 0 are the descendence degrees, and the
insertions ταi (σi ) are defined in Sect. 2. One of the main achievements of [Moc] is a
beautiful formula expressing (3) for r = 2 in terms of Seiberg–Witten invariants of S
and certain explicit integrals over S[n1] × S[n2], where S[ni ] denotes the Hilbert scheme
of ni points on S. This formula was used by the first named author, H. Nakajima, and
K. Yoshioka to prove the Witten conjecture for algebraic surfaces [GNY3].

We are interested in the virtual χy-genus of M defined in [FG]

χvir−y(M) :=
∑
p≥0

(−y)pχvir(M,�
p,vir
M ) ∈ Z[y],

where χvir(M, ·) is virtual holomorphic Euler characteristic and �
p,vir
M = �p(T vir

M )∨.2
We will usually use its shifted version

χvir−y(M) := y− vd(M)
2 χvir−y(M),

which is a symmetric Laurent polynomial in y± 1
2 [FG, Cor. 4.9]. The virtual Euler

characteristic is defined as

evir(M) := χvir−1(M) =
∫

[M]vir
cvd(M)(T

vir),

where the last equality is the virtual Hopf index theorem [FG, Cor. 4.8].We are interested
in the coefficients of the generating function

ZS,H,c1(x, y) :=
∑
c2

χvir−y(M H
S (2, c1, c2)) x4c2−c21−3χ(OS),

where the power is vd(M H
S (2, c1, c2)). We will encounter the Dedekind eta function and

three of the Jacobi theta functions

η(q) = q
1
24

∞∏
n=1

(1 − qn), θ1(q, y) =
∑
n∈Z

(−1)nq
(

n+ 1
2

)2
yn+ 1

2

θ2(q, y) =
∑
n∈Z

q
(

n+ 1
2

)2
yn+ 1

2 , θ3(q, y) =
∑
n∈Z

qn2 yn .

(4)

1 Although E may only exist étale locally, Rπ∗ RHom(E, E)0 exists globally [HL, Sect. 10.2].
2 We denote the K -group generated by locally free sheaves on M by K 0(M). Virtual holomorphic Euler

characteristic and the definition of �p E ∈ K 0(M) for an arbitrary element E ∈ K 0(M) are explained in
[FG]. The notation (·)∨ is for derived dual.
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We define

η(q) := q− 1
24 η(q)

and write the corresponding “Nullwerte” by θi (q) = θi (q, 1).
Seiberg–Witten invariants are oriented diffeomorphism invariants of 4-manifolds. For

smooth projective surfaces over C satisfying b1(S) = 0 and pg(S) > 0, Seiberg–Witten
invariants of an algebraic class a ∈ H2(S, Z) can be constructed in terms of a natural
virtual class on the linear system |OS(a)| [Moc, Sect. 6.3].3 Either the virtual class is
zero, in which case one defines SW(a) = 0, or it has virtual dimension zero, in which
case its degree is denoted by SW(a) ∈ Z. A class a ∈ H2(S, Z) is called a Seiberg–
Witten basic class when SW(a) �= 0. Many surfaces only have Seiberg–Witten basic
classes 0 and KS �= 0 with corresponding Seiberg–Witten invariants 1 and (−1)χ(OS).
Such surfaces are for example minimal surfaces of general type with pg(S) > 0 and
b1(S) = 0 [Mor, Thm. 7.4.1].

Conjecture 1.1. Let S be a smooth projective surface with b1(S) = 0 and pg(S) > 0.
Suppose the Seiberg–Witten basic classes of S are 0 and KS �= 0. Let H, c1, c2 be chosen
such that there exist no rank 2 strictly Gieseker H-semistable sheaves with Chern classes
c1, c2. Then χvir−y(M H

S (2, c1, c2)) is the coefficient of x4c2−c21−3χ(OS) of

ψS(x, y) := 8

(
1

2

∞∏
n=1

1

(1 − x2n)10(1 − x2n y)(1 − x2n y−1)

)χ(OS)( 2η(x4)2

θ3(x, y
1
2 )

)K 2
S

.

In this conjecture, we can view ψS(x, y) as generating function for χvir−y(M H
S (2, c1,

c2)) for all c1, c2. As a consequence of the conjecture, ZS,H,c1(x, y) is independent of
the choice of polarization H , which we often omit from our notation. There is actually
a closed formula for ZS,c1(x, y), which we give in Proposition 5.5. Note that the first
factor is related to θ1(q, y) by the Jacobi triple product formula

θ1(q, y) = q
1
4 (y

1
2 − y− 1

2 )

∞∏
n=1

(1 − q2n)(1 − q2n y)(1 − q2n y−1).

Wealso present a generalization of this conjecture toarbitrary smooth projective surfaces
S with b1(S) = 0 and pg(S) > 0 (Conjecture 5.7), but the above conjecture is easier to
state.

Remark 1.2. Replacing x by xy
1
2 , we go from generating functions for χvir−y to gener-

ating functions for χvir−y . Therefore we also get a conjectural generating function for
the non-shifted virtual χy-genera of the moduli spaces. Under the same assumptions,

Conjecture 1.1 gives that χvir−y(M H
S (2, c1, c2)) is the coefficient of x4c2−c21−3χ(OS) of

3 In [DKO], M. Dürr, A. Kabanov, and C. Okonek defined so-called Poincaré invariants of arbitrary smooth
projective surfaces, which they conjectured to concide with Seiberg–Witten invariants from differential geom-
etry. This conjecture is now fully established by the work of H.-l. Chang and Y.-H. Kiem [CK]. More precisely
[DKO], the Seiberg–Witten invariant SW(a) with a ∈ H2(S, Z) constructed in algebraic geometry coincides
with S̃W(2a − KS), where S̃W(b) denotes the Seiberg–Witten invariant for class b ∈ H2(S, Z) constructed
in differential geometry.
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ψS(xy
1
2 , y) = 8

(
1

2

∞∏
n=1

1

(1 − x2n yn)10(1 − x2n yn+1)(1 − x2n yn−1)

)χ(OS)

×
(

2η(x4y2)2

θ3(xy
1
2 , y

1
2 )

)K 2
S

with

η(x4y2) =
∞∏

n=1

(1 − x4n y2n), θ3(xy
1
2 , y

1
2 ) =

∑
n∈Z

y(n+1
2 )xn2 .

This formula also makes it evident that χvir−y(M H
S (2, c1, c2)) is a polynomial.

Next, denote by

ZS,c1(x) := ZS,c1(x, 1)

the generating function of virtual Euler characteristics. When −KS H > 0 or KS = 0
(and some other cases including elliptic surfaces), these are just ordinary topological
Euler characteristics because the obstructions vanish and the moduli space is smooth.
ThenZS,c1(x)was studied bymany people, e.g. [Kly,Got1,Got2,GH,Yos1,Yos2,Yos3].
Conjecture 1.1 implies the following formula which follows by specializing to y = 1.

Corollary 1.3 (Proposition 5.5). Assume Conjecture 1.1. Let S be a smooth projective
surface with b1(S) = 0 and pg(S) > 0. Suppose the Seiberg–Witten basic classes of S
are 0 and KS �= 0. Let H, c1 be chosen such that there exist no rank 2 Gieseker strictly
H-semistable sheaves with first Chern class c1. Then

ZS,c1(x) = 2
3∑

k=0

(i k)c21−χ(OS)

(2η((−1)k x2)12)χ(OS)

(
2η(x4)2

θ3(i k x)

)K 2
S

,

where i = √−1.

From definition (4), we see that θ3(i k x) = θ3(x4) + i kθ2(x4). Therefore we can
rewrite the formula for ZS,c1(x) of Corollary 1.3 as

2

(2η(x2)12)χ(OS)

{(
θ3(x4) + θ2(x4)

2η(x4)2

)−K 2
S

+ (−1)c21−χ(OS)

(
θ3(x4) − θ2(x4)

2η(x4)2

)−K 2
S
}

+
2(−i)c21−χ(OS)

(2η(−x2)12)χ(OS)

{(
θ3(x4) − iθ2(x4)

2η(x4)2

)−K 2
S

+ (−1)c21−χ(OS)

(
θ3(x4) + iθ2(x4)

2η(x4)2

)−K 2
S
}
.

(5)

In [VW], C. Vafa and E. Witten study certain invariants related to S-duality. On P
2 their

invariants are topological Euler characteristics e(M). For surfaces S with smooth con-
nected canonical divisor, they give a formula [VW, Eqn. (5.38)]. Equation (5) coincides
with part of their formula, namely all except the first two terms of [VW, Eqn. (5.38)]
and up to an overall factor x−χ(OS)+K 2

S/3 coming from our choice of normalization.
Likewise, for y = 1, the more general Conjecture 5.7 specializes to (part of) a formula
from the physics literature due to R. Dijkgraaf, J.-S. Park, and B. Schroers [DPS].
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Remark 1.4. Bywork of S. Donaldson, D. Gieseker and J. Li, and others, if we fix S with
b1(S) = 0 and ample class H , then M := M H

S (2, c1, c2) is irreducible and generically
smooth of the expected dimension for sufficiently large vd = 4c2 − c21 − 3χ(OS). It is
then also normal and a local complete intersection. See [HL, Chap. 9] for references.
In this case [FG, Thm. 4.15] implies that evir(M) is the degree of the Fulton Chern
class cF (M), which agrees with the Euler characteristic of any smoothening of M , and
Corollary 1.3 predicts this number. More generally, all virtual Chern numbers of M
coincide with the corresponding Chern numbers of any smoothening [FG, Rem. 4.16].
In particular the virtual χy-genus of M equals the χy-genus of any smoothening and
Conjecture 1.1 predicts these genera.

Remark 1.5. Recently,Y.Tanaka andR.P.Thomas [TT1] defined a symmetric perfect ob-
struction theory on themoduli space of stable Higgs pairs (E, φ) on S, where E has fixed
determinant and φ is trace-free.4 Stable Higgs pairs are related by a Hitchin-Kobayashi
correspondence to solutions of the Vafa–Witten equations. There is a C

∗-scaling action
on the Higgs field and Tanaka-Thomas define “SU(r)Vafa–Witten invariants” by virtual
localization with respect to this action. They show that the contribution to the invariant
of the components corresponding to φ = 0 are precisely the virtual Euler characteristics
ZS,c1(x) that we study (though Tanaka-Thomas’s invariants are defined for any rank).
Moreover in the rank 2 case and for S with smooth connected canonical divisor and
b1(S) = 0, they conjecture that the contribution of the other components of the C

∗-
fixed locus corresponds to the first two terms of [VW, Eqn. (5.38)]. Recall that these are
precisely the two terms that we do not see. They gather evidence for this by computing
the contributions of other components for some low orders. Therefore by the calcula-
tions of this paper and their conjecture, their invariant indeed appears to be the correct
mathematical definition of Vafa–Witten’s invariant [VW, Eqn. (5.38)]. Also recently,
A. Gholampour, A. Sheshmani, and S.-T. Yau studied Donaldson-Thomas invariants of
local surfaces [GSY]. Their invariants are closely related to Tanaka-Thomas’s invariants.
The virtual Euler characteristics that we calculate are part of their invariants.

We approach Conjecture 1.1 as follows:

• Weuse the virtual Hirzebruch-Riemann-Roch formula5 to expressχ−y(M) in terms
of certain descendent Donaldson invariants (Proposition 2.1).

• We apply Mochizuki’s formula to these descendent Donaldson invariants. This ex-
presses ZS,c1(x, y) in terms of Seiberg–Witten invariants of S and certain integrals
over S[n1]×S[n2]. AlthoughMochizuki’s formula requires pg(S) > 0, these integrals
make sense for any surface S.

• We show that the integrals over S[n1] × S[n2] can be expressed in terms of seven
universal series A1, . . . , A7 ∈ 1 + q Q[y]((s))[[q]] (Proposition 3.3).

• The universal series Ai are entirely determined by their values on S = P
2 and

P
1 ×P

1. We calculate Ai (s, y, q) to order q7 and Ai (s, 1, q) to order q30 by Atiyah-
Bott localization (Sect. 4 and Appendix 6.7).

• We then verify Conjecture 1.1 up to a certain order in x for examples of the following
types: blow-upsBlp K3, double covers ofP2, double covers ofP1×P

1, double covers
of Hirzebruch surfaces Fa , surfaces in P

3, P2 × P
1 and P

1 × P
1 × P

1, and complete
intersections in P

4 and P
5 (Sect. 6).

4 In [TT1], Tanaka-Thomas consider the case where semistability and stability of Higgs pairs coincide.
They treat the semistable case in a separate paper [TT2].

5 See [FG, Cor. 3.4], or [CFK] in the context of [0, 1]-manifolds.
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The reduction to toric surfaces also allows us to relate ZS,c1(x, 1) to the Nekrasov parti-
tion function with one adjoint matter and one fundamental matter (Appendix 6.7). As a
consequence,ZS,c1(x, 1) canbe expressed in termsof four universal series F0, H, G1, G2
(see Remark B.3 for details). This is not used elsewhere in the paper.

We present two generalizations of Conjecture 1.1:

• Conjecture 5.1 is a statement purely about intersection numbers on Hilbert schemes
of points. Togetherwith a strong formofMochizuki’s formula (Remark3.5), it implies
Conjecture 1.1 (see Proposition 5.3). In addition, the strong form of Mochizuki’s
formula and Conjecture 5.1 imply a version of Conjecture 1.1 for arbitrary blow-ups
of surfaces S with b1(S) = 0, pg(S) > 0, and Seiberg–Witten basic classes 0 and
KS �= 0 (Proposition 5.6). We test Conjecture 5.1 in many cases in Sect. 6.

• Conjecture 5.7 generalizes Conjecture 1.1 to arbitrary surfaces with b1(S) = 0
and pg(S) > 0. This conjecture has two further applications. (1) It implies a blow-
up formula for virtual χy-genera, which is reminiscent of the blow-up formula of
W.-P. Li and Z. Qin (Proposition 5.9). (2) It implies a formula for surfaces with
canonical divisor with irreducible reduced connected components (Proposition 5.11).
For y = 1, the latter recovers another formula ofVafa–Witten [VW, (5.45)].We check
Conjecture 5.7 up to a certain order in x in the following cases (other than the cases
above): K3 surfaces, blow-ups Blp Blq K3, and elliptic surfaces E(n) for various
n ≥ 4.

In Appendix 6.7, the first named author and H. Nakajima conjecture a formula uni-
fying the virtual Euler characteristic specialization of Conjecture 5.7 and Witten’s con-
jecture for Donaldson invariants.

In [GK] we extend these results and conjectures to virtual elliptic genera and virtual
cobordism classes. Besides Mochizuki’s formula [Moc], this paper uses ideas from
[GNY1,GNY2,GNY3]. The physics approach to the calculation of elliptic genera of
instanton moduli spaces was discussed in N. Nekrasov’s PhD thesis [Nek1] and the
papers [LNS,BLN]. We refer to [LLZ] for applications to Gopakumar–Vafa invariants.

2. Mochizuki’s Formula

Let S be a smooth projective surface with b1(S) = 0 and polarization H . Denote by
M := M H

S (r, c1, c2) the moduli space of rank r Gieseker H -stable torsion free sheaves
on S with Chern classes c1, c2. We assume there are no rank r strictly Gieseker H -
semistable sheaves with Chern classes c1, c2. Then M H

S (r, c1, c2) is projective. In this
section, we first show that χvir−y(M) can be expressed in terms of descendent Donaldson
invariants. We then recall Mochizuki’s formula [Moc] and apply it to our setting.

We start with some notation. Assume there exists a universal sheaf E on M × S
(in fact, we get rid of this assumption at the end of this section in Remark 2.4). Let
σ ∈ H∗(S, Q) and α ≥ 0, then we define

τα(σ ) := πM∗
(
ch2+α(E) ∩ π∗

S σ
)
,

where πM : M × S → M and πS : M × S → S denote projections. We refer to τα(σ ) as
a descendent insertion of descendence degree α. The insertions τ0(σ ) are called primary
insertions.
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We introduce some further notation which will be useful later. Suppose X is any
projective C-scheme and E a vector bundle on X , then we define

�y E :=
rk(E)∑
p=0

[�p E] y p ∈ K 0(X)[[y]].

This element is invertible in K 0(X)[[y]], so we can define �y(−E) = 1/�y E . Hence
we can also define�y E for any element E of K 0(X). Next, for any element E of K 0(X)

we define

Ty(E, t) := t− rk E
∑

k

{
ch(�y E∨) td(E)

}
k tk, (6)

where {·}k ∈ Ak(X)Q selects the degree k part in the Chow ring. Since we have

�y(E1 + E2) = �y E1 ⊗ �y E2,

the standard properties of Chern characters and Todd classes give

Ty(E1 + E2, t) = Ty(E1, t)Ty(E2, t). (7)

This multiplicative property will be crucial in Sect. 3. We also note that for a line bundle
L on X with c1(L) = x , we have

Ty(L , t) = x(1 + ye−xt )

1 − e−xt
. (8)

Thevariable t canbe exploited for a convenient normalization. Indeed ifwe take t = 1+y,
then equations (7) and (8) imply

Ty(E − O⊕r
X , 1 + y) = Ty(E, 1 + y) (9)

for all r ≥ 0. This will be used in Sect. 3 as well. Another convenient consequence of
the specialization t = 1 + y is that Ty(E, 1 + y) is a polynomial in 1 + y. Moreover, its
leading coefficient is given by

Ty(E, 1 + y)

∣∣∣
y=−1

= c(E), (10)

where c(·) denotes total Chern class. This essentially follows from [FG, Thm. 4.5(c)].
We come back to M := M H

S (r, c1, c2). The next proposition involves an argument
that appears more generally in the context of stable pairs on 3-folds in [She] (see also
[Pan]).

Proposition 2.1. For every S, H, r, c1, c2 as above, there exists a polynomial expression
P(E) in certain descendent insertions τα(σ ) and y such that

χvir−y(M H
S (r, c1, c2)) =

∫
[M H

S (r,c1,c2)]vir
P(E).
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Proof. By the virtual Hirzebruch-Riemann-Roch theorem [FG, Cor. 3.4]

χvir−y(M) =
∫

[M]vir
T−y(T

vir, 1 − y),

where T−y(T vir, 1 − y) can be expressed as a Q-linear combination of monomials in
ci (T vir) and y. By (1) and Grothendieck-Riemann-Roch, each ci (T vir) can be expressed
as a Q-linear combination of monomials in

πM∗
(
chα(E) chβ(E) ∩ π∗

Sσ
)
, (11)

where σ is one of the components of td(S). Therefore it suffices to show that every
expression of the form (11) is a polynomial in descendent insertions. This will then
define the universal polynomial P(E).

Let πi j and πi be the projections from M × S × S to factors (i, j) and i respectively.
Then (11) equals

π1∗
(
π∗
12 chα(E) π∗

13 chβ(E) ∩ π∗
2 σ π∗

23�
)
, (12)

where� ∈ H4(S×S, Q) is (Poincaré dual to) the class of the diagonal. Nextwe consider
the Künneth decomposition

� =
∑

i+ j=4

θ
(i)
1 ⊗ θ

( j)
2 ,

where θ
(i)
1 ∈ Hi (S, Q) and θ

( j)
2 ∈ H j (S, Q). Substituting this decomposition into (12),

factoring the push-forward as π1 = πM ◦π12, and applying the projection formula gives

πM∗
(
chα(E) chβ(E) ∩ π∗

Sσ
) =

∑
i+ j=4

τα(σθ
(i)
1 ) τβ(θ

( j)
2 ).

Remark 2.2. Note that in this section (and the next) we use χvir−y instead of χvir−y as in
Conjecture 1.1. The reason is that the intermediate formulae of this and the next section
look slightly easier for χvir−y whereas the final formula of Conjecture 1.1 looks more

elegant for χvir−y . One can easily pass from one to the other by Remark 1.2.

Next we recall Mochizuki’s formula [Moc, Thm. 1.4.6]. His formula is derived by
a beautiful argument involving geometric wall-crossing for moduli spaces of so-called
Bradlow pairs depending on a stability parameter α ∈ Q>0. For α → ∞ the moduli
spaces are empty and for α → 0+ the moduli space is a projective bundle over M . On
a wall, Mochizuki uses a “master space” with C

∗-action, whose fixed locus contains
components corresponding to the moduli spaces of Bradlow pairs on either side of
the wall. Other components of the fixed locus can be seen as contributions from wall-
crossing. They lead to the Seiberg–Witten invariants and integrals over S[n1] × S[n2]
described below. These wall-crossing terms are computed by Graber-Pandharipande’s
virtual localization on the master space. This geometric wall-crossing is very different
from motivic wall-crossing, as in [Joy], which does not work for ample KS due to non-
vanishing Ext2. Among other things, Mochizuki’s formula was used in [GNY3] to prove
Witten’s conjecture for algebraic surfaces.
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There are two ingredients forMochizuki’s formula. Thefirst ingredient is theSeiberg–
Witten invariants SW(a) of S in class a ∈ H2(S, Z) mentioned in the introduction.

The second ingredient is certain integrals over products of Hilbert schemes of points.
On S[n1] × S[n2] × S we have the pull-backs of the universal ideal sheaves I1, I2 from
S[n1] × S, S[n2] × S. For any line bundle L ∈ Pic(S) we denote by L [ni ] the tautological
vector bundle on S[ni ] defined by

L [ni ] := p∗q∗L ,

with p : Zi → S[ni ], q : Zi → S projections from the universal subscheme Zi ⊂
S[ni ] × S.

We consider S[n1] × S[n2] to be endowed with a trivial C
∗-action and we denote the

generator of the character group by s.6 Moreover we write s for the generator of

H∗(BC
∗, Q) = H∗

C∗(pt, Q) ∼= Q[s].
Let P(E) be any polynomial in descendent insertions τα(σ ), which arises from a polyno-
mial in Chern numbers of T vir (e.g. such as in Proposition 2.1). For any a1, a2 ∈ A1(S)

and n1, n2 ∈ Z≥0, Mochizuki defines �(a1, a2, n1, n2) as follows

Coeffs0

(
P(I1(a1) ⊗ s−1 ⊕ I2(a2) ⊗ s)

Q(I1(a1) ⊗ s−1, I2(a2) ⊗ s)

Eu(O(a1)[n1])Eu(O(a2)[n2] ⊗ s2)

(2s)n1+n2−χ(OS)

)
. (13)

Let us explain this notation. Here Eu(·) denotes C
∗-equivariant Euler class and Coeffs0

refers to taking the coefficient of s0.7 The notation Ii (ai ) is short-hand for Ii ⊗π∗
SO(ai ).

Furthermore, for any C
∗-equivariant sheaves E1, E2 on S[n1] × S[n2] × S flat over

S[n1] × S[n2], Mochizuki defines

Q(E1, E2) := Eu(−RHomπ (E1, E2) − RHomπ (E2, E1)),

where π : S[n1] × S[n2] × S → S[n1] × S[n2] denotes projection and

RHomπ (·, ·) := Rπ∗ RHom(·, ·).
Finally, P(·) is the expression obtained from P(E) by formally replacing E by ·. We
define

�̃(a1, a2, n1, n2, s)

by expression (13) but without applying Coeffs0 .
Next, let c1, c2 be a choice of Chern classes and let ch = (2, c1,

1
2c21 − c2) denote the

corresponding Chern character. For any decomposition c1 = a1 +a2, Mochizuki defines

A(a1, a2, c2) :=
∑

n1+n2=c2−a1a2

∫
S[n1]×S[n2]

�(a1, a2, n1, n2). (14)

We denote by Ã(a1, a2, c2, s) the same expression with � replaced by �̃.

6 This action originates from the C
∗-action on the master space mentioned above.

7 This differs slightly fromMochizuki who uses pg(S) instead of χ(OS) and takes a residue. Consequently
our definition differs by a factor 2 fromMochizuki’s. The difference is accounted for by the fact thatMochizuki
works on the moduli stack of oriented sheaves which maps to M via a degree 1

2 : 1 étale morphism [GNY3,
Rem. 4.2].
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Theorem 2.3 (Mochizuki). Let S be a smooth projective surface with b1(S) = 0 and
pg(S) > 0. Let H, c1, c2 be chosen such that there exist no rank 2 strictly Gieseker
H-semistable sheaves with Chern classes c1, c2. Suppose the universal sheaf E exists
on M H

S (2, c1, c2) × S. Suppose the following conditions hold:

(i) χ(ch) > 0, where χ(ch) := ∫
S ch ·td(S) and ch = (2, c1,

1
2c21 − c2).

(ii) pch > pKS , where pch and pKS are the reduced Hilbert polynomials associated to
ch and KS.

(iii) For all Seiberg–Witten basic classes a1 satisfying a1H ≤ (c1−a1)H the inequality
is strict.

Let P(E) be any polynomial in descendent insertions, which arises from a polynomial
in Chern numbers of T vir (e.g. such as in Proposition 2.1). Then

∫
[M H

S (2,c1,c2)]vir
P(E) = −21−χ(ch)

∑
c1 = a1 + a2
a1H < a2H

SW(a1)A(a1, a2, c2).

Remark 2.4. The assumption that E exists on M × S, where M := M H
S (2, c1, c2), is

unnecessary. As remarked in the introduction, T vir = −RHomπ (E, E)0 always exists
globally so the left-hand side of Mochizuki’s formula always makes sense. Moreover,
Mochizuki [Moc] works over the Deligne-Mumford stack of oriented sheaves, which
always has a universal sheaf. This can be used to show that global existence of E on
M × S can be dropped from the assumptions. In fact, when working on the stack, P
can be any polynomial in descendent insertions defined using the universal sheaf on the
stack.

Remark 2.5. Mochizuki’s formula (Theorem 2.3) holds without the assumption that
there are no strictly H -Gieseker semistable sheaves and without assumption (iii). Then∫
[M]vir P(E) is defined via the moduli space of oriented reduced Bradlow pairs [Moc,
Def. 7.3.2]. In this more general setup the definition of A(a1, a2, c2) has to be mod-
ified slightly: when a1H = a2H the sum in (14) is over all n1 > n2 satisfying
n1 + n2 = c2 − a1a2.

Remark 2.6. It is conjectured in [GNY3] that assumptions (ii) and (iii) can be dropped
from Theorem 2.3 and the sum can be replaced by a sum over all Seiberg–Witten basic
classes. We will see in our computations that assumption (i) is necessary.

Remark 2.7. Let the setup be as in Theorem 2.3. Then

χvir−y(M H
S (2, c1, c2)) = −21−χ(ch)

∑
c1 = a1 + a2
a1H < a2H

SW(a1)A(a1, a2, c2),

where P(E) is determined by the following expression

P(E) := T−y(−RHomπ (E, E)0, 1 − y)

with E = I1(a1) ⊗ s−1 ⊕ I2(a2) ⊗ s. We note that the rank of

−RHomπ (I1(a1) ⊗ s−1 ⊕ I2(a2) ⊗ s, I1(a1) ⊗ s−1 ⊕ I2(a2) ⊗ s)0



Virtual Refinements of the Vafa–Witten Formula 11

is given by

χ(OS) + (2n1 + 2n2 − 2χ(OS)) + (n1 + n2 − χ(O(a2 − a1)))

+ (n1 + n2 − χ(O(a1 − a2)))

= 4c2 − c21 − 3χ(OS),

which equals the rank of T vir given by (2).

3. Universality

In this section S is any smooth projective surface. We start with a well-known lemma,
which we include for completeness.

Lemma 3.1. Let π : S[n]z × S → S[n] denote the projection. Then

−RHomπ (I, I)0 ∼= E xt1π (I, I)0 ∼= TS[n] ,

where I denotes the universal ideal sheaf and TS[n] denotes the tangent bundle.

Proof. Since E xt1π (I, I)0 ∼= TS[n] , it suffices to show that for any ideal sheaf I = IZ ⊂
OS we have Hom(I, I )0 = Ext2(I, I )0 = 0. Clearly Hom(I, I )0 = 0 because I is
simple.

Next we consider the trace map

Ext2(I, I ) → H2(OS).

First applying − ⊗ KS and then Hom(I, ·) to
0 → I → OS → OZ → 0 (15)

gives a long exact sequence

0 → Hom(I, I ⊗ KS) → Hom(I, KS) → Hom(I, KS |Z ) → · · · .

The natural map H0(KS) → Hom(I, I ⊗ KS) is Serre dual to the trace map, so our
goal is to show that this map is an isomorphism. It is enough to show that the restriction
map H0(KS) → Hom(I, KS), which factors through Hom(I, I ⊗ KS), is an isomor-
phism. This in turn can be seen by applying Hom(·, KS) to (15) and using that Z is
0-dimensional.

Our main object of study is the following generating function.

Definition 3.2. For any a in the Chow group A1(S) we abbreviate χ(a) := χ(O(a)).
For any a1, c1 ∈ A1(S), we define

ZS(a1, c1, s, y, q) :=
∑

n1,n2≥0

qn1+n2

∫
S[n1]×S[n2]

TC
∗

−y(En1,n2 , 1 − y)Eu(O(a1)[n1])Eu(O(c1 − a1)[n2] ⊗ s2)

Eu(En1,n2 − π∗
1 TS[n1] − π∗

2 TS[n2])
,
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where TC
∗
denotes the C

∗-equivariant analog of (6) and

En1,n2 := −RHomπ (E, E)0 + χ(OS) ⊗ O + χ(c1 − 2a1) ⊗ O ⊗ s2

+ χ(2a1 − c1) ⊗ O ⊗ s−2

with

E = I1(a1) ⊗ s−1 ⊕ I2(a2) ⊗ s.

This can be rewritten as

En1,n2 = π∗
1 TS[n1] + π∗

2 TS[n2] +O(c1 − 2a1)
[n2] ⊗ s2 +O(2a1 − c1 + KS)[n1]∗ ⊗ s2

− RHomπ (OZ1(a1),OZ2(c1 − a1)) ⊗ s2

+O(2a1 − c1)
[n1] ⊗ s−2 +O(c1 − 2a1 + KS)[n2]∗ ⊗ s−2

− RHomπ (OZ2(c1 − a1),OZ1(a1)) ⊗ s−2.

Here we used Serre duality and (·)∗ denotes the dual vector bundle. The complex En1,n2
has rank 4n1 + 4n2. Note that

ZS(a1, c1, s, y, q) ∈ 1 + q Q[y]((s))[[q]]. (16)

For y = 1, using the C
∗-equivariant version of (10), we obtain

TC
∗

−y(En1,n2 , 1 − y)

∣∣∣
y=1

= cC
∗
(En1,n2).

Suppose we have a decomposition c1 = a1 + a2. Then Remark 2.7 implies

∑
c2∈Z

Ã(a1, c1 − a1, c2, s) qc2 = ZS

(
a1, c1, s, y,

q

2s

)

× (2s)χ(OS)

(
1 − e−2s(1−y)

1 − ye−2s(1−y)

)χ(c1−2a1)( 1 − e2s(1−y)

1 − ye2s(1−y)

)χ(2a1−c1)

qa1(c1−a1).

(17)

Besides Remark 2.7, this equality uses the following facts: Lemma 3.1, Eqs. (7), (8),
and (9). For y = 1 the second line of (17) simplifies to

(2s)χ(OS)

(
2s

1 + 2s

)χ(c1−2a1)( −2s

1 − 2s

)χ(2a1−c1)

qa1(c1−a1).

Proposition 3.3. There exist universal functions

A1(s, y, q), . . . , A7(s, y, q) ∈ 1 + q Q[y]((s))[[q]]
such that for any smooth projective surface S and a1, c1 ∈ A1(S) we have

ZS(a1, c1, s, y, q) = A
a21
1 Aa1c1

2 A
c21
3 Aa1KS

4 Ac1KS
5 A

K 2
S

6 Aχ(OS)
7 .
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Proof. Step 1: Universality. For any smooth projective surface S, define S2 := S � S
and denote by S[n]

2 the Hilbert scheme of n points on S2. Then

S[n]
2 =

⊔
n1+n2=n

S[n1] × S[n2].

We endow S[n]
2 with trivial C

∗-action. Denote by I1, I2 the sheaves on S[n]
2 × S whose

restrictions to S[n1] × S[n2] × S are the sheaves I1, I2 pulled back along projection to
S[n1] × S, S[n2] × S respectively. Let L(a1, c1) be the vector bundle whose restriction
to S[n1] × S[n2] is

π∗
1O(a1)

[n1] ⊕ π∗
2O(c1 − a1)

[n2] ⊗ s2.

Let X be any rational function in the following list of Chern classes and with coefficients
in Q[y]((s))

cC
∗

i1 (RHomπ (I1(a1), I2(c1 − a1)) ⊗ s2),

cC
∗

i2 (RHomπ (I2(c1 − a1), I1(a1)) ⊗ s−2),

ci3(TS[n]
2

), cC
∗

i4 (L(a1, c1)).

Of course we assume that only C
∗-moving terms appear in the denominator of X . Then

there exists a polynomial Y in a2
1 , a1c1, c21, a1KS , c1KS , K 2

S , χ(OS) with coefficients
in Q[y]((s)) such that

∫
S[n]
2

X = Y,

for any smooth projective surface S and a1, c1 ∈ A1(S). This is essentially [GNY1,
Lem. 5.5], which in turn is an adaptation of [EGL].

We conclude that for each n ≥ 0, i ∈ Z, there exists a universal polynomial Yn,i in
a2
1 , a1c1, c21, a1KS , c1KS , K 2

S , χ(OS) such that

ZS(a1, c1, s, y, q) =
∑
n≥0

∑
i

Yn,i s
i qn,

for all S, a1, c1. The coefficient of q0 is 1 by (16). Hence there exists a universal power
series

G ∈ Q[y, x1, . . . , x7]((s))[[q]],
such that

ZS(a1, c1, s, y, q) = exp G(a2
1, a1c1, c21, a1KS, c1KS, K 2

S, χ(OS)) (18)

for all S, a1, c1.

Step 2: Multiplicativity. Let S = S′ � S′′, where S′, S′′ are not necessarily connected
smooth projective surfaces. Let a1, c1 ∈ A1(S) be such that

a1|S′ = a′
1, c1|S′ = c′

1, a1|S′′ = a′′
1 , c1|S′′ = c′′

1 .
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Then

S[n]
2 =

⊔
n1+n2=n

S′[n1]
2 × S′′[n2]

2 .

Let I1 = I ′
1 � I ′′

1 , I2 = I ′
2 � I ′′

2 . As observed in [GNY1], we then have

RHomπ (I1(a1), I2(c1 − a1)) =
RHomπ (I ′

1(a
′
1), I ′

2(c
′
1 − a′

1)) � RHomπ (I ′′
1 (a′′

1 ), I ′′
2 (c′′

1 − a′′
1 ))

and similarly with I1 and I2 interchanged. Furthermore

TS[n]
2

=
⊕

n1+n2=n

T
S

′[n1]
2

� T
S

′′[n2]
2

L(a1, c1) = L(a′
1, c′

1) � L(a′′
1 , c′′

1),

χ(c1 − 2a1) = χ(c′
1 − 2a′

1) + χ(c′′
1 − 2a′′

1 ),

χ(2a1 − c1) = χ(2a′
1 − c′

1) + χ(2a′′
1 − c′′

1),

a1(c1 − a1) = a′
1(c

′
1 − a′

1) + a′′
1 (c

′′
1 − a′′

1 ).

Note that Eu(·) and TC
∗

−y(·, 1 − y) are both group homomorphisms from (K 0
C∗(M),+)

to (A∗(M)Q[y]((s)), ·), where “C∗” stands for “C∗-equivariant”. For TC
∗

−y(·, 1 − y) this
follows from the crucial multiplicative property (7). Therefore

ZS(a1, c1, s, y, q) = ZS′(a′
1, c′

1, s, q)ZS′′(a′′
1 , c′′

1 , s, y, q). (19)

We combine (18) and (19) in order to construct the universal functions Ai (s, y, q).
This follows from a cobordism argument similar to [GNY1, Lem. 5.5]. Take seven triples
(S(i), a(i)

1 , c(i)
1 ) such that the vectors

wi := ((a(i)
1 )2, a(i)

1 c(i)
1 , (c(i)

1 )2, a(i)
1 KS(i) , c(i)

1 KS(i) , K 2
S(i) , χ(OS(i) )) ∈ Q

7

form a Q-basis. Now consider an arbitrary triple (S, a1, c1). Then we can decompose
w = (a2

1, . . . , χ(OS)) as w = ∑
i niwi for some ni ∈ Q. If all ni ∈ Z≥0, then (19)

implies

ZS(a1, c1, s, y, q) =
7∏

i=1

(
expG(wi )

)ni = exp
( 7∑

i=1

ni G(wi )
)
. (20)

Denote by W the matrix with column vectors w1, . . . , w7 and let M = (mi j ) be its
inverse. We define

A j (s, y, q) := exp
(∑

i

mi j G(wi )
)
, ∀ j = 1, . . . , 7.

From (20) we obtain

ZS(a1, c1, s, y, q) = A
a21
1 Aa1c1

2 A
c21
3 Aa1KS

4 Ac1KS
5 A

K 2
S

6 Aχ(OS)
7 . (21)

Since the points w = ∑
i niwi , with ni ∈ Z≥0, lie Zariski dense in Q

7, we conclude
that (21) holds for all triples (S, a1, c1).



Virtual Refinements of the Vafa–Witten Formula 15

For a 7-tuple α = (α1, α2, α3, α4, α5, α6, α7) ∈ Z
7 we denote

Aα(s, y, q) := − 2

(
2−1

(
1 − e−2s(1−y)

1 − ye−2s(1−y)

)2( 1 − e2s(1−y)

1 − ye2s(1−y)

)2

q−1A1(s, y, q/s)

)α1

×
(
2

(
1 − e−2s(1−y)

1 − ye−2s(1−y)

)−2( 1 − e2s(1−y)

1 − ye2s(1−y)

)−2

q A2(s, y, q/s)

)α2

×
(
2− 1

2

(
1 − e−2s(1−y)

1 − ye−2s(1−y)

) 1
2
(

1 − e2s(1−y)

1 − ye2s(1−y)

) 1
2

A3(s, y, q/s)

)α3

×
((

1 − e−2s(1−y)

1 − ye−2s(1−y)

)(
1 − e2s(1−y)

1 − ye2s(1−y)

)−1

A4(s, y, q/s)

)α4

×
(
2

1
2

(
1 − e−2s(1−y)

1 − ye−2s(1−y)

)− 1
2
(

1 − e2s(1−y)

1 − ye2s(1−y)

) 1
2

A5(s, y, q/s)

)α5

× A6(s, y, q/s)α6

×
(

s

2

(
1 − e−2s(1−y)

1 − ye−2s(1−y)

)(
1 − e2s(1−y)

1 − ye2s(1−y)

)
A7(s, y, q/s)

)α7

.

(22)

Corollary 3.4. Suppose S satisfies b1(S) = 0 and pg(S) > 0. Let H, c1, c2 be chosen
such that there exist no rank 2 strictly Gieseker H-semistable sheaves with Chern classes
c1, c2. Assume furthermore that:

(i) c2 < 1
2c1(c1 − KS) + 2χ(OS).

(ii) pch > pKS , where pch and pKS are the reduced Hilbert polynomials associated to
ch = (2, c1,

1
2c21 − c2) and KS.

(iii) For all SW basic classes a1 satisfying a1H ≤ (c1 − a1)H the inequality is strict.

Then

χvir−y(M H
S (2, c1, c2))

= Coeffs0qc2

[ ∑
a1 ∈ H2(S,Z)

a1H < (c1 − a1)H

SW(a1)A(a21 ,a1c1,c21,a1KS ,c1KS ,K 2
S ,χ(OS))(s, y, q)

]
.

Proof. This follows from Remark 2.7, Eq. (17), and Proposition 3.3.

Remark 3.5. By Remark 2.6, we conjecture that this corollary holds without assuming
(ii) and (iii) and that the sum can be replaced by a sum over all Seiberg–Witten basic
classes. We refer to this as “the strong form of Mochizuki’s formula”.

4. Toric Calculation

The universal functions A1, . . . , A7 are entirely determined by the generating function
ZS(a1, c1, s, y, q) in the following cases

(S, a1, c1) = (P2,O,O), (P2,O(1),O(1)), (P2,O,O(1)), (P2,O(1),O(2)),

(P1 × P
1,O,O), (P1 × P

1,O(1, 0),O(1, 0)), (P1 × P
1,O,O(1, 0)).
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For these choices the 7 × 7 matrix with rows

(a2
1, a1c1, c21, a1KS, c1KS, K 2

S, χ(OS))

has full rank. In each of these cases S is a toric surface.
Suppose S is a toric surface with torus T = C

∗2. Let {Uσ }σ=1,...,e(S) be the cover of
maximal T -invariant affine open subsets of S. On Uσ we use coordinates xσ , yσ such
that T acts with characters of weight vσ ,wσ ∈ Z

2

t · (xσ , yσ ) = (χ(vσ )(t) xσ , χ(wσ )(t) yσ ).

Here χ(m) : T → C
∗ denotes the character of weight m ∈ Z

2. Consider the integral
over S[n1] × S[n2] of Definition 3.2

∫
S[n1]×S[n2]

TC
∗

−y(En1,n2 , 1 − y)Eu(O(a1)[n1])Eu(O(c1 − a1)[n2] ⊗ s2)

Eu
(
En1,n2 − π∗

1 TS[n1] − π∗
2 TS[n2]

) . (23)

Define T̃ := T × C
∗, where C

∗ denotes the trivial torus factor of Sect. 2. The T -fixed
locus of S[n1] × S[n2] is indexed by pairs (λ,μ) with

λ = {λ(σ)}σ=1,...,e(S), μ = {μ(σ)}σ=1,...,e(S),

where λ(σ), μ(σ) are partitions such that

∑
σ

|λ(σ)| = n1,
∑
σ

|μ(σ)| = n2. (24)

Here |λ| denotes the size of λ. A partition λ = (λ1 ≥ · · · ≥ λ�) corresponds to a
monomial ideal of C[x, y]

IZλ := (yλ1 , xyλ2 , . . . , x�−1yλ�, x�),

where �(λ) = � denotes the length of λ. For λ(σ) we denote the subscheme defined by
the corresponding monomial ideal in variables xσ , yσ by Zλ(σ) and similarly for μ(σ).

In order to apply localization, we make a choice of T -equivariant structure on the
line bundlesO(a1),O(c1−a1). For any T -equivariant divisor a, the restrictionO(a)|Uσ

is trivial with T -equivariant structure determined by some character of weight aσ ∈ Z
2.

By Atiyah-Bott localization, the integral (23) equals

∑
(λ,μ)

∏
σ

Eu(H0(O(a1)|Z
λ(σ)

))

Eu(TZ
λ(σ)

)

Eu(H0(O(c1 − a1)|Z
μ(σ)

) ⊗ s2)

Eu(TZ
μ(σ)

)

×
TT̃−y(En1,n2 |(Z

λ(σ) ,Z
μ(σ) ), 1 − y)

Eu(En1,n2 |(Z
λ(σ) ,Z

μ(σ) ) − TZ
λ(σ)

− TZ
μ(σ)

)
.

Here Eu(·) denotes T̃ -equivariant Euler class, TT̃ is the T̃ -equivariant version of (6),
and the sum is over all (λ,μ) satisfying (24). Moreover, TZλ denotes the T -equivariant
Zariski tangent space of (C2)[n] at Zλ where n = |λ|. The calculation of the above
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product reduces to the computation of the following elements of the T -equivariant K -
group K T

0 (pt)

H0(O(a)|Z
λ(σ)

),

R HomS(OZ
λ(σ)

,OZ
λ(σ)

),

R HomS(OZ
λ(σ)

,OZ
μ(σ)

(a)),

for various T -equivariant divisors a. By definition we have

Zλ(σ) =
�(λ(σ))−1∑

i=0

λ
(σ)
i+1−1∑
j=0

χ(vσ )i χ(wσ ) j

and similarly for Zμ(σ) . Multiplying by χ(aσ ) gives H0(O(a)|Z
λ(σ)

). Define

χ(m) := χ(−m) = 1

χ(m)
,

for any m ∈ Z
2. This defines an involution on K T

0 (pt) by Z-linear extension.

Proposition 4.1. Let W, Z ⊂ S be 0-dimensional T -invariant subschemes supported on
a chart Uσ ⊂ S and let a be a T -equivariant divisor on S corresponding to a character
of weight aσ ∈ Z

2 on Uσ . Then we have the following equality in K T
0 (pt)

R HomS(OW ,OZ (a)) = χ(aσ ) W Z
(1 − χ(vσ ))(1 − χ(wσ ))

χ(vσ )χ(wσ )
.

Proof. The proof we present is similar to the calculation in [MNOP, Sect. 4.7]. Let
v := vσ , w := wσ , and a := aσ . Write Uσ = Spec R with R = C[xσ , yσ ]. Then

R HomS(OW ,OZ (a)) = R HomUσ (OW ,OZ (a)),

because W, Z are supported on Uσ . We claim

�(Uσ ,O(a)) − R HomUσ (IW , IZ (a))

= χ(a)
(

Z +
W

χ(v)χ(w)
− W Z

(1 − χ(v))(1 − χ(w))

χ(v)χ(w)

)
.

The result of the proposition follows from this using IZ = OUσ −OZ , IW = OUσ −OW ,
because the first term on the right-hand side is H0(Uσ ,OZ (a)) and the second term is

R HomUσ (OW ,OUσ (a)) = H0(Uσ ,OW (−a) ⊗ KUσ )∗

= H0(Uσ ,OW )∗ ⊗ χ(a)

χ(v)χ(w)

by T -equivariant Serre duality. In order to prove the claim, choose T -equivariant graded
free resolutions

0 → Er → · · · → E0 → IW → 0,

0 → Fs → · · · → F0 → IZ → 0,
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where

Ei =
⊕

j

R(di j ), Fi =
⊕

j

R(ei j ).

Then we have Poincaré polynomials

PW =
∑
i, j

(−1)iχ(di j ), PZ =
∑
i, j

(−1)iχ(ei j ),

which are independent of the choice of resolution. Moreover

W = OUσ − IW

= 1 − PW

(1 − χ(v))(1 − χ(w))
,

Z = OUσ − IZ

= 1 − PZ

(1 − χ(v))(1 − χ(w))
.

(25)

Furthermore

R HomUσ (IW , IZ (a)) =
∑

i, j,k,l

(−1)i+k Hom(R(di j ), R(a + ekl))

=
∑

i, j,k,l

(−1)i+k R(a + ekl − di j )

= χ(a)PW PZ

(1 − χ(v))(1 − χ(w))
.

Eliminating PW , PZ using (25) gives the desired result.

We implemented the calculation of (23) into a PARI/GP program (and some parts
into Maple as well). This allows us to compute A1(s, y, q), . . . , A7(s, y, q) up to order
q7, where we calculated the coefficient of qi up to order s29−3i . We also calculated
A1(s, 1, q), . . . , A7(s, 1, q) up to order q30 and any order in s. The latter are listed up
to order q4 in Appendix 6.7.

5. Two More Conjectures and Consequences

InSect. 4,wehavegiven a toric procedure to calculate the universal functions A1(s, y, q),

. . . , A7(s, y, q) and therefore also Aα(s, y, q) defined by (22). Consequently, we could
now go ahead and provide checks of Conjecture 1.1.

Instead we first present two generalizations of Conjecture 1.1. The first conjecture
is a statement about intersection numbers on Hilbert schemes of points. It implies a
formula for arbitrary blow-ups of surfaces S with b1(S) = 0, pg(S) > 0, and Seiberg–
Witten basic classes 0 and KS �= 0. The second conjecture generalizes Conjecture 1.1
to arbitrary surfaces S with b1(S) = 0 and pg(S) > 0. It implies a blow-up formula,
which is reminiscent of the blow-up formula of W.-P. Li and Z. Qin [LQ1,LQ2]. It also
implies a formula for surfaces with canonical divisor with irreducible reduced connected
components. The latter refines a result from the physics literature due to Vafa–Witten
[VW, Eqn. (5.45)].
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5.1. Numerical conjecture. Suppose S is a surface with b1(S) = 0, pg(S) > 0, and
Seiberg–Witten basic classes are 0 and KS �= 0. Then Conjecture 1.1 applies to any
choice of

β = (β1, β2, β3, β4) = (c21, c1KS, K 2
S, χ(OS)),

provided we choose a polarization H for which there are no rank 2 strictly Gieseker H -
semistable sheaves with Chern classes c1, c2. Moreover, as long as the assumptions of
Corollary 3.4 are satisfied, the coefficients of ZS,c1(x, y) are calculated by the universal
functions A1, . . . , A7. This raises the expectation that for any choice of the 4-tuple
β ∈ Z

4 the formula of Corollary 3.4 is determined by the coefficients of the modular
form of Conjecture 1.1. This turns out to be false. Computer calculations show that we
need to impose8

β3 ≥ β4 − 3.

Indeed let β ∈ Z
4 with β1 ≡ β2 mod 2 and β3 ≥ β4 − 3. Let n < 1

2 (β1 − β2) + 2β4.
We conjecture that

Coeffs0x4n−β1−3β4

[
(xy− 1

2 )−β1−3β4A(0,0,β1,0,β2,β3,β4)(s, y, (xy− 1
2 )4)

+ (−1)β4(xy− 1
2 )−β1−3β4A(β3,β2,β1,β3,β2,β3,β4)(s, y, (xy− 1

2 )4)
]

equals the coefficient of x4n−β1−3β4 of

8

(
1

2

∞∏
n=1

1

(1 − x2n)10(1 − x2n y)(1 − x2n y−1)

)β4( 2η(x4)2

θ3(x, y
1
2 )

)β3

.

In fact, we have a stronger conjecture, which arose by attempts to generalize Conjec-
ture 1.1 to blow-ups.

Conjecture 5.1. Let β ∈ Z
4 be such that β1 ≡ β2 mod 2 and β3 ≥ β4 − 3. Let

n < 1
2 (β1 − β2) + 2β4. Let (γ1, γ2) ∈ Z

2. Then

Coeffs0x4n−β1−3β4

[
(xy− 1

2 )−β1−3β4A(γ1,γ2,β1,γ1,β2,β3,β4)(s, y, (xy− 1
2 )4)

+ (−1)β4(xy− 1
2 )−β1−3β4A(β3−γ1,β2−γ2,β1,β3−γ1,β2,β3,β4)(s, y, (xy− 1

2 )4)
]

equals the coefficient of x4n−β1−3β4 of

ψγ1,γ2,β3,β4(x, y) := 8(−1)γ2
(

φ(x, y)

2

)β4( 2η(x4)2

θ3(x, y
1
2 )

)β3( θ3(x, y
1
2 )

θ3(−x, y
1
2 )

)γ1

,

where

φ(x, y) :=
∞∏

n=1

1

(1 − x2n)10(1 − x2n y)(1 − x2n y−1)
.

8 The inequality K 2
S ≥ χ(OS)−3 is reminiscent of the (stronger) Noether’s inequality K 2

S ≥ 2(χ(OS)−3)
for minimal surfaces of general type.
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The evidence for this conjecture is presented in Sect. 6.7. We now discuss its conse-
quences.

Remark 5.2. Let β1 ∈ Z be even, β4 ∈ Z≤3, and n < 1
2β1 + 2β4. Then we conjecture

Coeffs0x4n−β1−3β4

[
(xy− 1

2 )−β1−3β4A(0,0,β1,0,0,0,β4)(s, y, (xy− 1
2 )4)

]
(26)

equals the coefficient of x4n−β1−3β4 of

4

(
φ(x, y

2

)β4

. (27)

In the caseβ4 is even this follows fromConjecture 5.1 by taking γ1 = γ2 = β2 = β3 = 0
because then the two summands on the left-hand side of the conjecture are equal. In the
case β4 is odd this says that (26) is 0, because (27) only contains even powers of x .

Proposition 5.3. Conjecture5.1and the strong form of Mochizuki’s formula (Remark3.5)
imply Conjecture 1.1.

Proof. We only use Conjecture 5.1 for γ1 = γ2 = 0. Suppose S is a surface with
b1(S) = 0, pg(S) > 0, and Seiberg–Witten basic classes 0 and KS �= 0. Choose a
polarization H and c1, c2 such that there are no rank 2 strictly Gieseker H -semistable
sheaves with these Chern classes. By taking

(β1, β2, β3, β4) = (c21, c1KS, K 2
S, χ(OS))

we automatically satisfy β1 ≡ β2 mod 2. The fact that β3 ≥ β4 − 3 can be seen as
follows. If S is not minimal then it is the blow-up of a K3 in one point and the inequality
is trivial. If S is minimal then it is minimal properly elliptic or minimal general type
because pg(S) > 0. For minimal general type the inequality follows from Noether’s
inequality K 2

S ≥ 2(χ(OS) − 3). When π : S → B is minimal properly elliptic, we
have B ∼= P

1 because b1(S) = 0. The canonical bundle KS satisfies K 2
S = 0 and can

be represented by an effective divisor containing π∗D, where D ⊂ P
1 is some effective

divisor of degree

χ(OS) − 2 ≥ 0.

Indeed χ(OS) ≤ 3, because otherwise at least 0, F, KS are distinct Seiberg–Witten
basic classes [FM]. By the strong form of Mochizuki’s formula (Corollary 3.4 and
Remark 3.5), Conjecture 1.1 follows for all

vd < c21 − 2c1KS + 5χ(OS).

If this inequality is not satisfied, then we replace c1 by c1 + t H for some t > 0. Since

ZS,c1(x, y) = ZS,c1+2t H (x, y)

we can compute the coefficients of this generating function for all

vd < c21 − 2c1KS + 5χ(OS) + 4t2H2 + 4t H(c1 − KS).

By choosing t � 0 the bound becomes arbitrarily high.
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5.2. Fixed first Chern class.

Proposition 5.4. Assume Conjecture 5.1. Let β ∈ Z
4 be such that β1 ≡ β2 mod 2 and

β3 ≥ β4 − 3 and let (γ1, γ2) ∈ Z
2. Then

Coeffs0
[
(xy− 1

2 )−β1−3β4A(γ1,γ2,β1,γ1,β2,β3,β4)(s, y, (xy− 1
2 )4)

+ (−1)β4(xy− 1
2 )−β1−3β4A(β3−γ1,β2−γ2,β1,β3−γ1,β2,β3,β4)(s, y, (xy− 1

2 )4)
]

= 2(−1)γ2
3∑

k=0

(i k)β1−β4

(
φ(i k x, y)

2

)β4( 2η(x4)2

θ3(i k x, y
1
2 )

)β3( θ3(i k x, y
1
2 )

θ3(−i k x, y
1
2 )

)γ1

+ O(xβ1−2β2+5β4),

where i = √−1 and

φ(x, y) :=
∞∏

n=1

1

(1 − x2n)10(1 − x2n y)(1 − x2n y−1)
.

Proof. Recall the formula for ψ(x, y) := ψγ1,γ2,β3,β4(x, y) of Conjecture 5.1. We see
that the term in the sum on the right-hand side corresponding to k = 0 equalsψ(x, y)/4.
Define coefficients fn(y) by

ψ(x, y) =
∞∑

n=0

fn(y) xn .

Then the right-hand side of the formula of the proposition equals

3∑
k=0

(i k)β1−β4

4
ψ(i k x, y) =

3∑
k=0

∞∑
n=0

(i k)β1−β4+n

4
fn(y) xn

=
∞∑

n=0

(
1

4

3∑
k=0

(
iβ1−β4+n)k) fn(y) xn

=
∑

n≡−β1+β4 mod 4

fn(y) xn .

Therefore we conclude that the right-hand side of the formula of the proposition is
obtained from ψ(x, y) by extracting all terms xn for which n ≡ −β1 −3β4 mod 4 and
up to order O(xβ1−2β2+5β4). The result follows from Conjecture 5.1.

The same type of proof applied to Conjecture 1.1 implies the following.

Proposition 5.5. Assume Conjecture 1.1. Let S be a smooth projective surface with
b1(S) = 0 and pg(S) > 0. Suppose the Seiberg–Witten basic classes of S are 0 and
KS �= 0. Let H, c1 be chosen such that there are no rank 2 strictly Gieseker H-semistable
sheaves with first Chern class c1. Then

ZS,c1(x, y) = 2
3∑

k=0

(i k)c21−χ(OS)

(
φ(i k x, y)

2

)χ(OS)( 2η(x4)2

θ3(i k x, y
1
2 )

)K 2
S

.

In particular, Corollary 1.3 in the introduction follows.
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Using Conjecture 5.1 we can do better:

Proposition 5.6. Assume Conjecture 5.1 and the strong form of Mochizuki’s formula
(Remark 3.5). Let S0 be a smooth projective surface with b1(S0) = 0 and pg(S0) > 0.
Suppose the Seiberg–Witten basic classes of S0 are 0 and KS0 �= 0. Suppose S is
obtained from an iterated blow-up (possibly at infinitely near points) of S0 and let
E1, · · · , Em denote the total transforms of the exceptional divisors. Suppose furthermore
that K 2

S ≥ χ(OS)−3. Let H, c1 be chosen such that there exist no rank 2 strictly Gieseker
H-semistable sheaves on S with first Chern class c1. Then

ZS,c1(x, y) = 2
3∑

k=0

(i k)c21−χ(OS)

(
φ(i k x, y)

2

)χ(OS)( 2η(x4)2

θ3(i k x, y
1
2 )

)K 2
S

×
m∏

j=1

(
1 + (−1)c1E j

θ3(−i k x, y
1
2 )

θ3(i k x, y
1
2 )

)
.

Proof. The surface S is obtained from S0 by an iterated blow-up in (possibly infinitely
near) points π : S → S0. We denote by E1, . . . , Em the total transforms on the blow-
ups. Write M := {1, . . . , m}, and for a subset I ⊂ M write EI = ∑

i∈I Ei . Then
KS = KS0 + EM . Moreover the Seiberg–Witten basic classes are the EI (with Seiberg–
Witten invariant 1) and the KS0 + EI = KS − EM−I (with Seiberg–Witten invariant
(−1)χ(OS)) for all I ⊂ M . E.g. see [Mor, Thm. 7.4.6] for Seiberg–Witten invariants of
blow-ups. We denote by |I | the number of elements of I . Now note that

KS(KS − EI ) = (KS − EI )
2 = K 2

S − E2
I .

By the strong form of Mochizuki’s formula (Corollary 3.4 and Remark 3.5) and Propo-
sition 5.4, we obtain the following equation modulo xc21−2c1KS+5χ(OS)

ZS,c1(x, y) =
∑
I⊂M

Coeffs0
[(

(xy− 1
2 )−c21−3χ(OS)

× A(E2
I ,EI c1,c21,EI KS ,c1KS ,K 2

S ,χ(OS))(s, y, (xy− 1
2 )4) + (−1)χ(OS)(xy− 1

2 )−c21−3χ(OS)

× A(K 2
S−E2

I ,c1KS−c1EI ,c21,K
2
S−E2

I ,c1KS ,K 2
S ,χ(OS))(s, y, (xy− 1

2 )4)
]

= 2
∑
I⊂M

3∑
k=1

(i k)c21−χ(OS)

(
φ(i k x, y)

2

)χ(OS)( 2η(x4)2

θ3(i k x, y
1
2 )

)K 2
S

(−1)c1EI

×
(

θ3(−i k x, y
1
2 )

θ3(i k x, y
1
2 )

)|I |
,

where we replaced EM−I by EI for all terms with Seiberg–Witten invariant (−1)χ(OS).
After interchanging the sums we get the formula of the proposition.
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5.3. Arbitrary surfaces with holomorphic 2-form. We present the following conjecture
about virtual χy-genera of moduli spaces of rank 2 sheaves on arbitrary smooth pro-
jective surfaces S with b1(S) = 0 and pg(S) > 0. Although this conjecture is strictly
stronger than Conjecture 1.1, the latter is a little easier to state and was therefore the
focus of the introduction.We provide some evidence for this conjecture in Sects. 6.1, 6.2,
and 6.3 .

Conjecture 5.7. Let S be a smooth projective surface with b1(S) = 0 and pg(S) > 0.
Let H, c1, c2 be chosen such that there are no rank 2 strictly Gieseker H-semistable
sheaves with Chern classes c1, c2 and let M := M H

S (2, c1, c2). Then χvir−y(M) equals

the coefficient of xvd(M) of

ψS,c1(x, y) := 4

(
φ(x, y)

2

)χ(OS)( 2η(x4)2

θ3(x, y
1
2 )

)K 2
S

×
∑

a∈H2(S,Z)

SW(a)(−1)c1a
(

θ3(x, y
1
2 )

θ3(−x, y
1
2 )

)aKS

,

where

φ(x, y) :=
∞∏

n=1

1

(1 − x2n)10(1 − x2n y)(1 − x2n y−1)
.

Assuming this conjecture and when there are no strictly Gieseker H -semistable
sheaves with first Chern class c1, the same calculation as in Sect. 5.2 gives

ZS,c1(x, y) = 1

2
ψS,c1(x, y) +

1

2
i c21−χ(OS)ψS,c1(i x, y), (28)

where i = √−1. Specializing to y = 1 gives (part of) a formula from the physics litera-
ture due to Dijkgraaf-Park-Schroers, namely terms two and three of [DPS, Eqn. (6.1)].9

This involves a bit of rewriting using

θ3(i
k x) = θ3(x4) + i kθ2(x4), (29)

SW(a) = (−1)χ(OS)SW(KS − a) [Mor, Cor. 6.8.4], and a2 = aKS for Seiberg–Witten
basic classes [Moc, Prop. 6.3.1].

Remark 5.8. Astraight-forward calculation shows that this conjecture implies bothPropo-
sition 5.5 (without assuming Conjecture 1.1) and Proposition 5.6 (without assuming
Conjecture 5.1 and without assuming K 2

S ≥ χ(OS)− 3). In fact, this conjecture implies
Conjecture 1.1.

The first application of Conjecture 5.7 is the following blow-up formula.

Proposition 5.9. Assume Conjecture 5.7 holds. Let π : S̃ → S be the blow-up in a point
of a smooth projective surface S with b1(S) = 0, pg(S) > 0. Suppose H, c1 are chosen
such that there are no rank 2 strictly Gieseker H-semistable sheaves with first Chern
class c1. Let c̃1 = π∗c1 − εE with ε = 0, 1 and suppose H̃ is a polarization on S̃ such

9 Up to an overall factor x−χ(OS )+K 2
S/3 coming from our choice of normalization.
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that there are no rank 2 strictly Gieseker H̃ -semistable sheaves on S̃ with first Chern
class c̃1. Then

ZS̃,̃c1(x, y) =
⎧⎨
⎩

θ3(x4,y)

η(x4)2
ZS,c1(x, y), ε = 0

θ2(x4,y)

η(x4)2
ZS,c1(x, y), ε = 1.

Proof. The Seiberg–Witten basic classes of S̃ are π∗a, π∗a + E , where a is a Seiberg–
Witten basic class of S and the corresponding Seiberg–Witten invariants are [Mor,
Thm. 7.4.6]

SW(π∗a) = SW(π∗a + E) = SW(a).

Using χ(OS̃) = χ(OS), KS̃ = π∗KS + E , K 2
S̃

= K 2
S − 1, Conjecture 5.7 implies

ψS̃,̃c1(x, y) = 1

2

(
θ3(x, y

1
2 )

η(x4)2
+ (−1)ε

θ3(−x, y
1
2 )

η(x4)2

)
ψS,c1(x, y).

Specializing to ε = 0, 1 and using (29) the result follows.

For y = 1 this blow-up formula appears in a physics context in [VW, Sect. 4.3].

Remark 5.10. Let π : S̃ → S be the blow-up in a point of a simply connected smooth
projective surface S. Let H, c1 be chosen on S such that c1H is odd. Let H̃ = rπ∗H − E
for r � 0 and c̃1 = π∗c1 − εE for ε = 0, 1 such that c̃1 H̃ is odd as well. One can show
that the moduli spaces M H̃

S̃
(2, c̃1, c2) do not depend on the choice of such H̃ [LQ1].

In this setting Li-Qin [LQ1,LQ2] derived a blow-up formula for the virtual Hodge
polynomials of these moduli spaces10

h(M H
S (2, c1, c2), x1, x2), h(M H̃

S̃
(2, c̃1, c2), x1, x2).

Normalize the virtual Hodge polynomials as follows

h(M H
S (2, c1, c2), x1, x2) = (x1x2)

− vd(M H
S (2,c1,c2))/2h(M H

S (2, c1, c2), x1, x2),

h(M H̃
S̃

(2, c̃1, c2), x1, x2) = (x1x2)
− vd(M H̃

S̃
(2,̃c1,c2)/2h(M H̃

S̃
(2, c̃1, c2), x1, x2).

Then Li-Qin’s formula reads (see also [Got2, Rem. 3.2])∑
c2

h(M H̃
S̃

(2, c̃1, c2), x1, x2)x4c2−c̃21

=
⎧⎨
⎩

θ3(x4,x1x2)
η(x4)2

∑
c2 h(M H

S (2, c1, c2), x1, x2)x4c2−c21 , ε = 0

θ2(x4,x1x2)
η(x4)2

∑
c2 h(M H

S (2, c1, c2), x1, x2)x4c2−c21 , ε = 1.

When specializing to x1 = y and x2 = 1, this gives the ratios of Proposition 5.9. Hence
the blow-up formula for virtual χy-genera (virtual in the sense of virtual classes) and
the blow-up formula for χy-genera (defined via virtual Hodge polynomials) coincide.
In particular, the blow-up formula for virtual Euler characteristics and classical Euler
characteristics involve the same ratio as well.
10 Here the adjective “virtual” does not refer to virtual cycles. The definition of virtual Hodge polynomials

involves Deligne’s weight filtration. They coincide with ordinary Hodge polynomials for smooth projective
varieties.
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The second application of Conjecture 5.7 is to surfaces with canonical divisor with
irreducible reduced connected components.

Proposition 5.11. Assume Conjecture 5.7 holds. Let S be a smooth projective surface
with b1(S) = 0, pg(S) > 0, and suppose C1 + · · · + Cm ∈ |KS|, where C1, . . . , Cm are
mutually disjoint irreducible reduced curves. Suppose H, c1 are chosen such that there
are no rank 2 strictly Gieseker H-semistable sheaves with first Chern class c1. Then

ZS,c1(x, y) = 2

(
φ(x, y)

2

)χ(OS)

×
m∏

j=1

{(
2η(x4)2

θ3(x, y
1
2 )

)C2
j

+ (−1)c1C j+h0(NC j /S)

(
2η(x4)2

θ3(−x, y
1
2 )

)C2
j
}

+ 2(−i)c21−χ(OS)

(
φ(−i x, y)

2

)χ(OS)

×
m∏

j=1

{(
2η(x4)2

θ3(−i x, y
1
2 )

)C2
j

+ (−1)c1C j+h0(NC j /S)

(
2η(x4)2

θ3(i x, y
1
2 )

)C2
j
}

where i = √−1 and NC j /S denotes the normal bundle of C j ⊂ S.

Specializing to y = 1 and using θ3(i k x) = θ3(x4) + i kθ2(x4) gives a more explicit
version of [VW, Eqn. (5.45)].11 Before we prove this proposition, we need three lemmas
about disconnected curves and their Seiberg–Witten invariants.

Lemma 5.12. Let C, D be irreducible reduced mutually disjoint curves on a smooth
projective surface S with b1(S) = 0. Then precisely one of the following is true:

• C or D is rigid, i.e. |C | or |D| is 0-dimensional.
• |C | = |D| ∼= P

1 is a pencil.

Proof. Suppose neither ofC, D is rigid. Then their linear systems sweep out S. Therefore
|C | contains an element F which intersects D. Note that F is connected because C is
irreducible reduced. The intersection cannot be only in dimension 0, because C D = 0.
Therefore F = D +

∑
i∈I ni Fi , where I is a finite index set, ni > 0, and D, {Fi }i∈I are

all mutually distinct prime divisors. Suppose |I | > 0. Then

0 = C D = F D = D2 +
∑
i∈I

ni Fi D > D2.

Hence D2 < 0, so H0(ND/S) = 0 contradicting the assumption that D is not rigid.
Therefore I = ∅ and D ∈ |C |. Furthermore, |C | is base-point free andC ′C ′′ = C D = 0
for all C ′, C ′′ ∈ |L| so |L| ∼= P

1.

Suppose C1, . . . , Cm are irreducible reduced mutually disconnected curves on a
smooth projective surface S with b1(S) = 0 and let M := {1, . . . , m}. Then for any
I = {i1, . . . , ik} ⊂ M , we define

CI :=
∑
i∈I

Ci .

11 Up to an overall factor x−χ(OS )+K 2
S/3 coming from our choice of normalization.
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For I, J ⊂ M we write I ∼ J whenever CI ∼lin CJ . This defines an equivalence
relation. We denote the equivalence class corresponding to I by [I ] and denote its
number of elements by |[I ]|.
Lemma 5.13. For any I ⊂ M, we have |[I ]| = (dim |CM |

dim |CI |
)
.

Proof. Since b1(S) = 0, any effective divisor D ⊂ S satisfies dim |D| = h0(ND/S). In
particular we have

dim |CI | = h0(NCI /S) =
∑
i∈I

h0(NCi /S) =
∑
i∈I

dim |Ci |. (30)

Suppose, possibly after relabeling, that C1, . . . , Ca are the rigid curves (i.e. their linear
systems are 0-dimensional). ThenCa+1, . . . , Cm are all linearly equivalent (Lemma5.12).
Moreover, if m > a + 1, then their linear systems are pencils (Lemma 5.12). There are
three cases:

Case 1: m = a. Then all curves Ci are rigid, so I ∼ J if and only if I = J and the
statement follows from (30).

Case 2: m = a + 1. Then only Cm is not rigid and it is again easy to see that I ∼ J if
and only if I = J . By (30), we have that dim |CI | = dim |Cm | if m ∈ I and
zero otherwise. The statement follows.

Case 3: m > a + 1. Then C1, . . . , Ca are rigid and |Ca+1| = · · · = |Cm | ∼= P
1.

Let A := {1, . . . , a} and B := {a + 1, . . . , m}. Then I ∼ J if and only if
A ∩ I = A ∩ J and |B ∩ I | = |B ∩ J |. Therefore |[I ]| = ( |B|

|B∩I |
)
. The result

follows from Eq. (30) as follows

dim |CI | =
∑

i∈A∩I

dim |Ci | +
∑

i∈B∩I

dim |Ci | = |B ∩ I |.

Lemma 5.14. Let S be a smooth projective surface with b1(S) = 0, pg(S) > 0, and
suppose C1 + · · · + Cm ∈ |KS|, where C1, . . . , Cm are mutually disjoint irreducible
reduced curves. Then the Seiberg–Witten basic classes of S are {CI }I⊂M and

SW(CI ) = |[I ]|
∏
i∈I

(−1)h0(NCi /S).

Proof. The proof combines Lemma 5.13 and the proof of [Moc, Prop. 6.3.1]. We first
note that all Seiberg–Witten basic classes must be of the form {CI }I⊂M (this can be
seen most easily from the cosection localization of Chang-Kiem [CK, Lem. 3.2]). Let
∅ �= I ⊂ M . Then Mochizuki shows that

SW(CI ) = ctop(Ob) ∩ |CI |,
where Ob is a rank h1(NCI /S) vector bundle with total Chern class

(1 + h)h1(NCI /S)−pg(S)

where h denotes the hyperplane class on |CI |. Hence

SW(CI ) =
(

h1(NCI /S) − pg(S)

h1(NCI /S)

)
= (−1)h1(NCI /S)

(
pg(S) − 1

h1(NCI /S)

)
.
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By Serre duality and adjunction KCi = (CM + Ci )|Ci = 2Ci |Ci

h1(NCI /S) =
∑
i∈I

h1(OCi (Ci )) =
∑
i∈I

h0(OCi (Ci )) = h0(NCI /S).

Therefore Lemma 5.13 implies(
pg(S) − 1

h1(NCI /S)

)
=
(
dim |CM |
dim |CI |

)
= |[I ]|.

Proof of Proposition 5.11. Combining Conjecture 5.7 and Lemma 5.14 gives

ψS,c1(x, y) = 4

(
φ(x, y)

2

)χ(OS)( 2η(x4)2

θ3(x, y
1
2 )

)K 2
S

×
∑
[I ]

|[I ]|(−1)h0(NCI /S)+c1CI

(
θ3(x, y

1
2 )

θ3(−x, y
1
2 )

)C2
I

= 4

(
φ(x, y)

2

)χ(OS)( 2η(x4)2

θ3(x, y
1
2 )

)K 2
S

×
∑

I

(−1)h0(NCI /S)+c1CI

(
θ3(x, y

1
2 )

θ3(−x, y
1
2 )

)C2
I

= 4

(
φ(x, y)

2

)χ(OS)( 2η(x4)2

θ3(x, y
1
2 )

)K 2
S

×
m∏

i=1

(
1 + (−1)h0(NCi /S)+Ci c1

(
θ3(x, y

1
2 )

θ3(−x, y
1
2 )

)C2
i
)

.

The formula for ZS,c1(x, y) follows from (28) after re-organizing the terms.

6. Verification of the Conjectures in Examples

In this section we check Conjectures 1.1, 5.1, and 5.7 in many cases. We recall that we
calculated A1(s, y, q), . . . , A7(s, y, q) up to order q7, where we calculated the coeffi-
cient of qi up to order s29−3i . We computed A1(s, 1, q), . . . , A7(s, 1, q) up to order q30

and any order in s (see Sect. 4). The latter are listed up to order q4 in Appendix 6.7.

6.1. K3 surfaces. Let S be a K3 surface. The canonical class is trivial and b1(S) = 0
so we are in the setting of Conjecture 5.7, which states

ZS,c1(x, y) = 1

2

(
φ(x, y)2 − i c21φ(i x, y)2

)
. (31)

This can be restated as saying that χvir−y(M H
S (2, c1, c2)) is the coefficient of 4c2 − c21 −6

of

φ(x, y)2 =
∞∏

n=1

1

(1 − x2n)20(1 − x2n y)2(1 − x2n y−1)2
,
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when there are no rank 2 strictly H -semistable sheaves with Chern classes c1, c2. This
looks very similar to Conjecture 1.1, which does not apply, and which would be off by
a factor 2.

In the absence of strictly Gieseker H -semistable sheaves, the moduli space M H
S (2,

c1, c2) is smooth of expected dimension. If in addition c1 is primitive, big, and nef, then
in [GH] it is shown that

χ−y(M S
H (2, c1, c2)) = χ−y(S[2c2−c21/2−3]).

More generally, in [Huy, Cor. 4.8], when c1 is primitive, and in [Yos4, Thm. 0.1]
in general, it is shown that in the absence of strictly Gieseker H -semistable sheaves
M H

S (r, c1, c2) is deformation equivalent to the Hilbert scheme S[vd /2]. In particular they
have the same Hodge numbers. In turn, χy-genera of Hilbert schemes of points on K3
surfaces were computed by the first named author and W. Soergel in [GS]. Combining
this formula with the result above implies that (31) holds for K3 surfaces.

The only Seiberg–Witten basic class of S is 0 with corresponding Seiberg–Witten
invariant 1. Suppose c1 is a choice of first Chern class such that c21 = c, then c ∈ 2Z.
Then we see that (31) also follows from Conjecture 5.1. We put (γ1, γ2) = (0, 0)
and (β1, β2, β3, β4) = (c, 0, 0, 2). Then the two summands in Coeffs0xn [·] in Conjec-
ture 5.1 are equal, and each equals the contribution of the Seiberg–Witten basic class
0 = KS . Therefore, if c2 satisfies the assumptions of Conjecture 5.1, it gives that
χvir−y(M H

S (2, c1, c2)) is the coefficient of x4c2−c21−6 of

1

2
ψ0,0,0,2(x, y) = φ(x, y)2.

The same argument as in the proof of Proposition 5.3 shows that (31) follows from
Conjecture 5.1 and the strong form of Mochizuki’s formula.

All the same, we want to calculate terms of (31) directly by applying Corollary 3.4
and our explicit knowledge of the universal functions Ai as described in Sect. 4. We use
the conjectured strong form of Mochizuki’s formula (Remark 3.5), so our calculations
can also be viewed as an additional test of Remark 3.5. The easiest way to satisfy all
assumptions of Corollary 3.4 is by choosing c1 and H such that c1H > 0 is odd (though
this is unnecessarily strong). According to Theorem 2.3 (i), we can calculate modulo

mod xc+10.

In addition we have a bound given by the accuracy to which we calculated the univer-
sal functions Ai (s, y, q) and Ai (s, 1, q). For Ai (s, 1, q) this bound is q30, which for
ZS,c1(x, 1) means we can calculate modulo

mod x−c+118.

For y = 1, i.e. the case of virtual Euler characteristics, we tested Conjecture 5.7 for all
even c ∈ {−6, . . . , 116} up to the above accuracies. In conclusion, for K3 surfaces and
y = 1, we verified Conjecture 5.7 by direct calculation for:

• c1 such that c21 = c ∈ {−6, . . . , 116} is even, modulo xc+10 (bound from Corol-
lary 3.4 (i)) andmodulo x−c+118 (bound from Ai ). Here “and”means that both bounds
apply, in other words “modulo xmin(c+10,−c+118).

For virtual χy-genus, we tested Conjecture 5.7 for:

• c1 such that c21 = c ∈ {−6, . . . , 32} is even,modulo xc+10 (bound fromCorollary 3.4
(i)) and modulo x−c+26 (bound from Ai ).
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6.2. Elliptic surfaces. Let S → P
1 be a non-trivial elliptic surfacewith section, 12n > 0

rational nodal fibres, and no other singular fibres, i.e. an elliptic surface of type E(n).
The canonical class is given by KS = (n − 2)F , where F denotes the class of the
fibre. Note that χ(OS) = n. Moreover, choose a section B ⊂ S, then its class satisfies
B2 = −n.

We assume n ≥ 2, then E(n) has a smooth canonical divisor which has m = n − 2
connected components Fj ; each a smooth elliptic fibre of S. The surface E(3) can
be used to test Conjecture 1.1 and the surfaces E(n) with n ≥ 2 can be used to test
Conjecture 5.7. Note that E(2) is K3, which was discussed in Sect. 6.1, so we take
n ≥ 3.

Let c1 = εB + d F , for ε, d ∈ Z and B the class of the section. Since F2
j = 0 and

c1Fj = ε, Conjecture 5.7 gives

ZS,c1(x, y) =
{

1
2

(
φ(x, y)n + (−i)c21−nφ(−i x, y)n

)
, ε odd

0, ε even.
(32)

In the case n = 3, this can be restated as saying thatχvir−y(M H
S (2, c1, c2)) is the coefficient

of 4c2 − c21 − 9 of φ(x, y)3, which is the statement of Conjecture 1.1.
In [Yos3],Yoshiokafixes c1, c2 such that c1F is odd and an ample divisor H = B+βF

with β � c2. By choosing β of the right parity c1H is odd, so there are no rank 2
strictly μ-semistable sheaves with Chern classes c1, c2. Then M := M H

S (2, c1, c2) is
smooth irreducible of expected dimension and independent of H . In this setting, the Betti
numbers and Euler characteristics of M := M H

S (2, c1, c2)were calculated in [Yos3] and
are indeed given by the specialization y = 1 of (32).

Next we want to calculate terms of (32) directly by applying Corollary 3.4 and our
explicit knowledge of the universal functions Ai as described in Sect. 4. There are
numerous choices for the polarization H for which the conditions of Corollary 3.4 are
satisfied. Specifically, let H = αB + βF with α > 0 and β > αn be a polarization.
When

c1H = (β − αn)ε + αd > 2α(n − 2) = 2KS H,

c1H = (β − αn)ε + αd odd,

all conditions are satisfied. For fixed ε > 0 and d ∈ Z not both even, there are many
solutions α > 0 and β > αn to these equations. By [FM], the Seiberg–Witten basic
classes are 0, F . . . , (n − 2)F and

SW(pF) = (−1)p
(

n − 2

p

)
.

For y = 1, we verified Conjecture 5.7 in the following cases:

• E(n) such that n = 3, . . . , 8, c1 = εB+d F such that ε = 1, 2 and d = 0, . . . , 8 not
both even, modulo x−ε2n+2εd−2εn+4ε+5n (bound from Corollary 3.4 (i)) and modulo
xnε2−2εd−3n+4min{0,ε(n−2)}+124 (bound from Ai ).

For virtual χy-genus, we tested Conjecture 5.7 for:

• E(n) such that n = 3, . . . , 6, c1 = εB +d F such that ε = 1, 2 and d = 4 . . . , 8 not
both even, modulo x−ε2n+2εd−2εn+4ε+5n (bound from Corollary 3.4 (i)) and modulo
xnε2−2εd−3n+4min{0,ε(n−2)}+32 (bound from Ai ).
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6.3. Blow-ups. Letπ : S̃ → S be the blow-up of a K3 surface S in a point and denote the
exceptional divisor by E . Then KS̃ = E is a smooth canonical divisor.Wewant to gather
evidence for Conjecture 1.1 by applying Corollary 3.4 and our explicit knowledge of the
universal functions Ai as described in Sect. 4. Let c̃1 = π∗c1 + εE and c21 = c ∈ 2Z.
The easiest way to satisfy the conditions of Corollary 3.4 is to take a polarization H on
S such that c1H > 0 is odd and taking H̃ = r H − E with r � 0 and r + ε odd, but
more general choices are possible. The blow-up formula for Seiberg–Witten invariants
implies that S̃ has Seiberg–Witten basic classes 0, E and SW(0) = SW(E) = 1 [Mor,
Thm. 7.4.6]. For y = 1, we verified Conjecture 1.1 in the following cases:

• c̃1 = π∗c1 + εE with c21 = c, ε = −3, . . . , 3, c = −10, . . . , 80 even, modulo

xc−ε2+3ε+10 (bound from Corollary 3.4 (i)) and modulo x−c+ε2+4min{0,−(ε−1)}+118
(bound from Ai ).

For virtual χy-genus, we tested Conjecture 1.1 for:

• c̃1 = π∗c1 + εE with c21 = c, ε = 0, . . . , 3, c = −10, . . . , 26 even, modulo

xc−ε2+3ε+10 (bound from Corollary 3.4 (i)) and modulo x−c+ε2+4min{0,−(ε−1)}+26
(bound from Ai ).

Next we consider the blow-up of a K3 surface S in two distinct points

π : S̃ → S

andwe denote the exceptional divisors by E1, E2.We gather evidence for Conjecture 5.7
by applying Corollary 3.4 and our explicit knowledge of the universal functions Ai as
described in Sect. 4. By the blow-up formula for Seiberg–Witten invariants, the Seiberg–
Witten basic classes are

0, E1, E2, E1 + E2

and the invariant is 1 in each case. We consider classes

c̃1 = π∗c1 + ε1E1 + ε2E2.

Asbefore the easiestway to satisfy the conditions ofCorollary 3.4 is to take a polarization
H on S such that c1H > 0 is odd and taking H̃ = r H − E1 − E2 with r � 0 and parity
such that r + ε1 + ε2 is odd, though other choices are possible. For y = 1, we verified
Conjecture 5.7 in the following cases:

• c̃1 = π∗c1 + ε1E1 + ε2E2 with c21 = c, ε1, ε2 = −2, . . . , 2, c = −10, . . . , 126

even, modulo xc−ε21−ε22+2ε1+2ε2+10 (bound coming fromCorollary 3.4 (i)) andmodulo
x−c+ε21+ε22+4min{0,−(ε1−1),−(ε2−1),−(ε1+ε2−2)}+118 (bound from Ai ).

For virtual χy-genus, we tested Conjecture 5.7 for:

• c̃1 = π∗c1 + ε1E1 + ε2E2 with c21 = c, ε1, ε2 = 0, 1, 2, c = −10, . . . , 30 even,

modulo xc−ε21−ε22+2ε1+2ε2+10 (bound from Corollary 3.4 (i)) and in addition modulo
x−c+ε21+ε22+4min{0,−(ε1−1),−(ε2−1),−(ε1+ε2−2)}+26 (bound from Ai ).
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6.4. Double covers. Next, we consider double covers

π : Sd → P
2

branched over a smooth curve C of degree 2d. Then KSd = (d − 3)L , where L is the
pull-back of the class of a line on P

2. These surfaces satisfy b1(Sd) = 0. It is easy to
calculate

K 2
Sd

= 2(d − 3)2,

χ(OSd ) = 1

2
d(d − 3) + 2.

Since αL is base-point free for all α > 0, the canonical linear system |KSd | contains
smooth connected canonical divisors when d ≥ 4, which we assume from now on.
Let c1 = εL . As before, we want to gather evidence for Conjecture 1.1 by applying
Corollary 3.4 and our explicit knowledge of the universal functions Ai as described in
Sect. 4. The Seiberg–Witten basic classes are 0, KS �= 0 with Seiberg–Witten invariants

1, (−1)χ(OSd ).

We first take H = L as the polarization on S. Then conditions (ii), (iii) of Corollary 3.4
require

c1H = 2ε > 4(d − 3) = 2KS H,

i.e. ε > 2(d −3). In the case ε = 2k is even, we can ensure the absence of rank 2 strictly
Gieseker H -semistable sheaves with Chern classes c1, c2 by choosing c2 such that

1

2
c1(c1 − KS) − c2 = ε(ε − (d − 3)) − c2

is odd [HL, Rem. 4.6.8].
Now assume that ε = 2k + 1 is odd. If L generates the Picard group of Sd , then there

are no rank 2 strictly μ-semistable sheaves with Chern classes εL and c2. In general
the Picard group of Sd can have more generators, but L is still ample and primitive. In
this case we take the polarization H general and sufficiently close to L (i.e. of the form
nL + B for n sufficiently large), so that conditions (ii) and (iii) of Corollary 3.4 still hold
when ε > 2(d − 3), and so that there are no rank 2 strictly μ-semistable sheaves with
Chern classes εL and c2.

Recall that conjecturally conditions (ii), (iii) of Corollary 3.4 are not necessary (see
Remark 3.5). Therefore we will also test Conjecture 1.1 for ε, d which do not satisfy
ε > 2(d − 3).

Note that μ-stability is invariant under tensorizing by a line bundle and that Gieseker
stability with respect to H is invariant under tensorizing by a power of H . There-
fore we know that M H

Sd
(2, L , c2) together with its virtual structure is isomorphic to

M H
Sd

(2, (2k + 1)L , c2 + 2(k2 + k)), and when c2 is odd, the same holds for M L
Sd

(2, 0, c2)

and M L
Sd

(2, 2kL , c2 + 2k2).
For y = 1, we verified Conjecture 1.1 in the following cases:

• Sd such that d = 4, . . . , 7, c1 = εL with ε = −3, . . . , 6, modulo
x

5
2 d(d−3)−4ε(d−3)+2ε2+10 (bound from Corollary 3.4 (i)) and modulo

x− 3
2 d(d−3)−2ε2+8min{0,(d−3)(ε−(d−3))}+118 (bound from Ai ).
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For virtual χy-genus, we tested Conjecture 1.1 for:

• Sd such that d = 4, . . . , 7, c1 = εL with ε = −3, . . . , 6, modulo
x

5
2 d(d−3)−4ε(d−3)+2ε2+10 (bound from Corollary 3.4 (i)) and modulo

x− 3
2 d(d−3)−2ε2+8min{0,(d−3)(ε−(d−3))}+26 (bound from Ai ).

In order to give an idea of the complexity of the numbers involved, we give some
examples. First we compute the virtual Euler numbers. We only show cases where
ε > 2(d − 3), so that we do not need to use the strong form of Mochizuki’s formula,
and thus we have unconditionally proved these formulas.

The formula of Corollary 1.3 is proved for (d = 4, ε = 5), modulo x50, for (d =
4, ε = 6) modulo x40, for(d = 5, ε = 5) modulo x45 for (d = 5, ε = 6) modulo x31.
When ε is even, let Zodd

Sd ,H,0(x, 1) be the part of the generating function corresponding to
c2 odd, so themoduli spaces only consist ofGieseker stable sheaves.Using the invariance
under tensoring by H or L respectively we have

ZS4,H,L(x, 1) = 120x2 + 80800x6 + 18764544x10 + 2352907648x14

+ 192977504816x18 + 11510039013632x22

+ 533695300891136x26 + O(x30),

Zodd
S4,L ,0(x, 1) = 2 + 1354148x8 + 22293779698x16 + 80622742217604x24

+ 115687108304998636x32 + O(x40),

ZS5,H,L(x, 1) = −256x − 2622464x5 − 4399076864x9 − 3005594355712x13

− 1137273257362688x17 − 278765441520823296x21 + O(x25),

Zodd
S5,L ,0(x, 1) = −123928576x7 − 62207974965248x15

− 3825621677917863936x23 + O(x31).

Now we give some examples of the virtual χy-genus. In this case we need to use the
strong form ofMochizuki’s formula. For d = 4, c1 = 0, L we get the virtual refinements

ZS4,H,L(xy
1
2 , y) = (14y2 + 92y + 14)x2

+ (154y6 + 2540y5 + 16398y4 + 42616y3 + . . .)x6

+ (756y10 + 17360y9 + 185020y8 + 1145700y7 + 4174352y6 + 7718168y5 + . . .)

× x10 + O(x14),

Zodd
S4,L ,0(xy

1
2 , y) = 2 + (364y8 + 7300y7 + 64090y6 + 293556y5 + 623528y4 + . . .)

× x8 + O(x16),

where the missing terms are determined by the symmetry of the virtual χy-genus.
Next let Fa = P(OP1 ⊕ OP1(a)) denote the ath Hirzebruch surface, where a ≥ 0.

Suppose B is the section corresponding to the surjection OP1 ⊕ OP1(a) � OP1 onto
the first factor. Then B2 = −a. We denote the class of the fibre of Fa → P

1 by F . Let
d1 > 0 and d2 > ad1. A rich source of examples are double covers

π : Sa,d1,d2 → Fa
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branched over a smooth connected curve in |O(2d1B + 2d2F)|. Let B̃ := π∗B and
F̃ = π∗F . We choose d1 > 2 and d2 > a(d1 − 1) + 2, so the canonical divisor

KSa,d1,d2
= (d1 − 2)B̃ + (d2 − (a + 2))F̃

is the pull-back of a very ample divisor and its linear system contains smooth connected
curves. These surfaces satisfy b1(Sa,d1,d2) = 0. We have

K 2
Sa,d1,d2

= 4(d1 − 2)
(

d2 − d1a

2
− 2

)
,

χ(OSa,d1,d2
) = (d1 − 1)

(
d2 − d1a

2
− 1

)
+ 1.

We first note that it is enough to determine ZSa,d1,d2 ,ε1 B̃+ε2 F̃ (x, y) for a = 0, 1.

Proposition 6.1. Assume the strong form of Mochizuki’s formula holds (Remark 3.5).
Let a ≥ 0, d1 > 2, d2 > (a +1)(d1 −1)+1, and d2 > (a +1)d1. Let H be a polarization
on Sa,d1,d2 such that there exist no rank 2 strictly Gieseker H-semistable sheaves with
Chern classes c1 := ε1 B̃ + ε2 F̃ and c2. Let H ′ be a polarization on Sa+2,d1,d1+d2 such
that there exist no rank 2 strictly Gieseker H ′-semistable sheaves with Chern classes
c′
1 := ε1 B̃ + (ε1 + ε2)F̃ and c2. Then

χvir−y(M H
Sa,d1,d2

(2, ε1 B̃ + ε2 F̃, c2)) = χvir−y(M H ′
Sa+2,d1,d1+d2

(2, ε1 B̃ + (ε1 + ε2)F̃, c2)),

for all

c2 < 2χ(OSa,d1,d2
) +

1

2
c1(c1 − KSa,d1,d2

)

= 2χ(OSa+2,d1,d1+d2
) +

1

2
c′
1(c

′
1 − KSa+2,d1,d1+d2

).

Proof. Write S := Sa,d1,d2 and S′ := Sa+2,d1,d1+d2 . Fix c1 := ε1 B̃ + ε2 F̃ on S and
c′
1 := ε1 B̃ + (ε1 + ε2)F̃ on S′. The map

φ : H2(S, Z) → H2(S′, Z), B̃ �→ B̃ + F̃, F̃ �→ F̃

is an isomorphism between the subgroups generated by B̃, F̃ on S, S′ and it preserves the
intersection forms on these subgroups. It sends KS to KS′ , and thus it sends the Seiberg–
Witten basic classes 0, KS of S to the corresponding Seiberg–Witten basic classes of S′.
We also see that c1 is send to c′

1. Moreover χ(OS) = χ(OS′). We apply the strong form
of Mochizuki’s formula to S with H, c1, c2 and S′ with H ′, c′

1, c2. Since

(a2
1 , a1c1, c21, a1KS, c1KS, K 2

S, χ(OS)) = (a′2
1 , a′

1c′
1, c′2

1 , a′
1KS′ , c′

1KS′ , K 2
S′ , χ(OS′))

for (a1, a′
1) = (0, 0) and (a1, a′

1) = (KS, KS′), the assertion follows from Corollary 3.4
and Remark 3.5.

For y = 1, we checked Conjecture 1.1 in the following cases:

• Sa,d1,d2 such thata = 0, . . . , 3,d1 = 3, . . . , 6,d2 = a(d1−1)+3, . . . , a(d1−1)+10,
c1 = ε1 B̃ + ε2 F̃ with ε1 = −2, . . . , 2, ε2 = −2, . . . , 10, modulo x M (bound from
Corollary 3.4 (i)) and modulo x N+124 (bound from Ai ),
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where

M := −5

2
ad2

1 +
5

2
ad1 + 5d1d2 − 5d1 − 5d2 + 10 + 4aε1d1 − 4aε1 − 4ε1d2

+ 8ε1 − 4ε2d1 + 8ε2 − 2aε21 + 4ε1ε2,

N := 2aε21 − 4ε1ε2 − 3(d1 − 1)(d2 − d1a

2
− 1) − 3

+ 8min
{
0, a(d1 − 2)(ε1 − (d1 − 2)) + (d1 − 2)(ε2 − (d2 − (a + 2)))

+ (d2 − (a + 2))(ε1 − (d1 − 2))
}
.

For virtual χy-genus, we checked Conjecture 1.1 in the following cases:

• Sa,d1,d2 such that a = 0, . . . , 3, d1 = 3, 4, 5, d2 = a(d1 −1)+3, . . . , a(d1 −1)+5,
c1 = ε1 B̃ + ε2 F̃ with ε1 = −2, . . . , 2, ε2 = −2, . . . , 6, modulo x M (bound from
Corollary 3.4 (i)) and modulo x N+32 (bound from Ai ).

Some examples of these tables are the following:

Zodd
S0,3,3,0(x, 1) = −105472x5 − 17699188736x13 − 311478544324608x21 + O(x29),

ZS0,3,4,B̃(x, 1) = −36864x3 − 123928576x7 − 125523673088x11 + O(x15),

ZS1,3,5,F̃ (x, 1) = 1248x2 + 3740160x6 + 3011270208x10

+ 1143966397440x14 + O(x18),

ZS1,3,5,F̃+B̃(x, 1) = 8 + 85920x4 + 119219712x8 + 63288183168x12 + O(x16).

Here c1, c2 always have the property that there are no rank 2 strictly Gieseker H -
semistable sheaves with these Chern classes. The virtual refinement of ZS1,3,5,F̃ (x, 1) is
given by

ZS1,3,5,F̃ (xy
1
2 , y) = (216y2 + 816y + 216)x2 + (13720y6 + 184128y5

+ 876264y4 + 1591936y3 + 876264y2 + 184128y + 13720)x6 + O(x10).

6.5. Divisors in products of projective spaces. Let Sd be a smooth surface of degree d
in P

3, then

KSd = (d − 4)L ,

where L is the hyperplane section. Moreover Sd is simply connected by the Lefschetz
hyperplane theorem. We take d ≥ 5, so Sd is of general type. One readily calculates

K 2
Sd

= d(d − 4)2,

χ(OSd ) = 1

6
d(d2 + 11) − d2.

The hyperplane section L on Sd is very ample so |KS| contains smooth connected
canonical divisors. We test Conjecture 1.1 using Corollary 3.4.
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We take as polarization H = L and c1 = εL . If Sd is very general, i.e. in the com-
plement of countably many closed subvarieties in the projective space of hypersurfaces
of degree d, then Pic(Sd) = ZL by the Noether–Lefschetz Theorem. For

c1H = dε > 2d(d − 4) = 2KSd H,

c1H = dε odd, or Sd very general and ε odd

there are no rank 2 strictly μ-semistable sheaves with first Chern class c1 and conditions
(ii), (iii) of Corollary 3.4 are satisfied.

We also perform computations when these conditions are not satisfied (recall Re-
mark 3.5). For y = 1, we verified Conjecture 1.1 in the following cases:

• Sd such that d = 4, 5, 6, c1 = εE with ε = −1, . . . , 4, modulo
x

5
6 d(d2+11)−5d2+εd(ε−2d+8) (bound from Corollary 3.4 (i)) and modulo

x−ε2d− 1
2 d(d2+11)+3d2+4min{0,εd(d−ε−4)}+124 (bound from Ai ).

For virtual χy-genus, we tested Conjecture 1.1 for:

• Sd such that d = 4, 5, 6, c1 = εE with ε = 1, 2, modulo x
5
6 d(d2+11)−5d2+εd(ε−2d+8)

(bound from Corollary 3.4 (i)) and modulo x−ε2d− 1
2 d(d2+11)+3d2+4min{0,εd(d−ε−4)}+32

(bound from Ai ).

We list a few examples. First we deal with the specialization to the virtual Euler
number and in this case we only consider the case that ε > 2(d − 4), so that we do not
use the strong from ofMochizuki’s formula and the formulas are proved unconditionally.
For d = 5 and ε = 3, 4 we obtain

ZS5,L ,L(x, 1) = 8 + 52720x4 + 48754480x8 + 17856390560x12 + 3626761297400x16

+ 482220775619120x20 + 46283858505022160x24 + O(x28),

Zodd
S5,L ,0(x, 1) = − 316096x5 − 70399202880x13 − 1550539821466560x21 + O(x29).

For d = 5, ε = 1 and using the strong form of Mochizuki’s formula, we obtain the
refinement

ZS5,L ,L(xy
1
2 , y) = 8 + (1280y4 + 11440y3 + 27280y2 + 11440y + 1280)x4

+ (25520y8 + 448640y7 + 3228960y6 + 11405320y5 + 18537600y4 + . . .)x8

+ O(x12).

Next we move on to smooth surfaces Sd1,d2 of bidegree (d1, d2) in P
2 × P

1. Again
Sd1,d2 is simply connected and one readily calculates

K 2
Sd1,d2

= (d1 − 3)2d2 + 2d1(d1 − 3)(d2 − 2),

χ(OSd1,d2
) = 1

2
d1(d1d2 − d1 − 3d2 + 3) + d2.

We take d1 ≥ 4 and d2 ≥ 3 so KSd1,d2
is very ample and its linear system contains a

smooth connected canonical divisor.
Let Li be the restriction of π∗

i L to S, where π1 : P
2 ×P

1 → P
2 and π2 : P

2 ×P
1 →

P
1 denote projections and L is the hyperplane class on each factor. For y = 1, we

tested Conjecture 1.1 using Corollary 3.4 and the strong version of Mochizuki’s formula
(Remark 3.5) in the following cases:
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• for Sd1,d2 such that (d1, d2) = (4, 3), (5, 3), (6, 3), (4, 4), (5, 4), (4, 5), c1 = ε1L1+
ε2L2 with ε1 = −3, . . . , 7, ε2 = −2, . . . , 8, modulo x M (bound from Corollary 3.4
(i)) and modulo x N+124 (bound from Ai ),

where

M := 5

2
d1(d1d2 − 3d2 − d1 + 3) + 5d2 + ε21d2 + 2ε1ε2d1

− 2ε1(d1 − 3)d2 − 2ε2(d1 − 3)d1 − 2ε1(d2 − 2)d1,

N := − ε21d2 − 2ε1ε2d1 − 3

2
d1(d1d2 − 3d2 − d1 + 3) − 3d2

+ 4min
{
0, (d1 − 3)(ε1 − (d1 − 3))d2 + (d1 − 3)(ε2 − (d2 − 2))d1

+ (d2 − 2)(ε1 − (d1 − 3))d1
}
.

For general y, we checked Conjecture 1.1 in the following cases:

• for Sd1,d2 such that (d1, d2) = (4, 3), (4, 4), c1 = ε1L1 + ε2L2 with ε1 = −1, . . . ,
3, ε2 = −2, . . . , 5, modulo x M (bound from Corollary 3.4 (i)) and modulo x N+32

(bound from Ai ).

Examples contained in these tables with (d1, d2) = (4, 3) are

ZS4,3,3L1(x, 1) = 128 + 5350656x4

+ 18196176128x8 + 20761214894592x12 + O(x16),

Zodd
S4,3,3L2

(x, 1) = −2704756736x7 + O(x15),

where we choose a polarization H such that L1H is odd in the first case. A virtual
refinement of the second formula is given by

Zodd
S4,3,3L2

(xy
1
2 , y) = −(6323328y7 + 81371136y6 + 394518784y5

+ 870165120(y4 + y3) + 394518784y2 + 81371136y + 6323328
)
x7 + O(x15).

Finallywe consider smooth surfaces Sd1,d2,d3 of tridegree (d1, d2, d3) inP
1×P

1×P
1.

Then Sd1,d2,d3 is simply connected and one can compute

K 2
Sd1,d2,d3

= 2
∏

(i, j, k)

i, j, k distinct

di (d j − 2)(dk − 2),

χ(OSd1,d2,d3
) = 1

2
d1d2d3 − 1

6
d1d2 − 1

6
d1d3 − 1

6
d2d3 − 1

3
d1 − 1

3
d2 − 1

3
d3 + 2.

Taking d1, d2, d3 ≥ 3, the canonical linear system is very ample and contains smooth
connected curves.Denote by Li the restrictionofπ∗

i L to S,whereπi : P
1×P

1×P
1 → P

1

are the projections and L is the class of a point onP
1. For y = 1, we tested Conjecture 1.1

using Corollary 3.4 and the strong version of Mochizuki’s formula (Remark 3.5) in the
following cases:

• for Sd1,d2,d3 such that (d1, d2, d3) = (3, 3, 3), (3, 3, 4), (3, 3, 5), (3, 4, 4), c1 =
ε1L1 + ε2L2 + ε3L3 with ε1, ε2, ε3 = −2, . . . , 5, modulo x M (bound from Corol-
lary 3.4 (i)) and modulo x N+124 (bound from Ai ),
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where

M := 5

2
d1d2d3 − 5

6
d1d2 − 5

6
d1d3 − 5

6
d2d3 − 5

3
d1 − 5

3
d2 − 5

3
d3 + 10

− 2
∏

(i, j, k)

i, j, k distinct

(di − 2)d j ek + 2
∏

(i, j, k)

i, j, k distinct

ei e j dk,

N := − 3

2
d1d2d3 +

1

2
d1d2 +

1

2
d1d3 +

1

2
d2d3 + d1 + d2 + d3 − 6

−
∏

(i, j, k)

i, j, k distinct

ei e j dk + 4min
{
0,
∏

(di − 2)(e j − (d j − 2))dk

}
.

For arbitrary y, we checked Conjecture 1.1 in the following cases:

• for Sd1,d2,d3 such that (d1, d2, d3) = (3, 3, 3), (3, 3, 4), c1 = ε1L1 + ε2L2 + ε3L3

with ε1, ε2, ε3 = −1, . . . , 3, modulo x M (bound from Corollary 3.4 (i)) and modulo
x N+32 (bound from Ai ).

An example covered by these tables with (d1, d2, d3) = (3, 3, 3) is the following

ZS,−L1+2L2+2L3(x, 1) = −147456x − 8358985728x5 + O(x9),

where we choose a polarization H such that L1H is odd. Its virtual refinement is

ZS,3L1(xy
1
2 , y) = ZS,−L1+2L2+2L3(xy

1
2 , y) = (−73728y − 73728)x + O(x5).

6.6. Complete intersections in projective spaces. For d1, d2 ∈ Z≥2, with d1+d2 ≥ 6, let
Sd1,d2 be a smooth complete intersection of bidegree (d1, d2) inP

4. Then Sd1,d2 is simply
connected. Let L be the restriction of the hyperplane class on P

4 to Sd1,d2 . If Sd1,d2 is
very general, then by the Noether–Lefschetz theorem for complete intersections (see e.g.
[Kim]) the Picard group of Sd1,d2 is generated by L . Putting d := d1d2, D := d1 + d2,
we have KSd1,d2

= (D − 5)L is very ample and

K 2
Sd1,d2

= d(D − 5)2,

χ(OSd1,d2
) = d

12
(2D2 − 15D − d + 35).

If the Picard group of Sd1,d2 is ZL and H = L , then there are no rank 2 strictly μ-
semistable sheaves on Sd1,d2 with c1 = εL and ε odd.
For y = 1, we checked Conjecture 1.1 in the following cases:

• for Sd1,d2 such that (d1, d2) = (2, 4), (2, 5), (3, 3), (3, 4), c1 = εL with ε =
−1, . . . , 3, modulo x M (bound from Corollary 3.4 (i)) and modulo x N+124 (bound
from Ai ).

Here

M := ε2d − 2εd(D − 5) +
5d

12
(2D2 − 15D − d + 35),

N := −ε2d − 3d

12
(2D2 − 15D − d + 35) + 4min

{
0, d(D − 5)(ε − (D − 5))

}
.

For y general, we checked Conjecture 1.1 in the following cases:
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• for Sd1,d2 such that (d1, d2) = (2, 4), (3, 3), c1 = εL with ε = 1, modulo x M

(bound from Corollary 3.4 (i)) and modulo x N+32 (bound from Ai ).

For ε = 3 we determined ZS3,3,L ,L(x, 1), and ZS2,4,L ,L(x, 1)modulo x25 and x34, where
the second is only written modulo x26.

ZS3,3,L ,L(x, 1) = − 1152x − 11784960x5 − 18762235136x9 − 11903890079232x13

− 4135344957021312x17 − 924519456314916096x21 + O(x25),

ZS2,4,L ,L(x, 1) = 6912x2 + 30124032x6 + 31867565056x10 + 15237098061824x14

+ 4243875728564736x18 + 789670403161694208x22 + O(x26).

For ε = 1 and using the strong form of Mochizuki’s formula (Remark 3.5), we get

χvir−y(M L
S3,3(2, L , 7)) = −576y − 576,

χvir−y(M L
S2,4(2, L , 7)) = 1344y2 + 4224y + 1344.

For d1, d2, d3 ∈ Z≥2, with d1 + d2 + d3 ≥ 7, let Sd1,d2,d3 be a smooth complete
intersection of tridegree (d1, d2, d3) in P

5. Then Sd1,d2,d3 is simply connected. When
Sd1,d2,d3 is very general, the Picard group of Sd1,d2,d3 is generated by the restriction
L of a hyperplane class on P

5. Putting d := d1d2d3, D := d1 + d2 + d3, we have
KSd1,d2,d3

= (D − 6)L is very ample and

K 2
Sd1,d2,d3

= d(D − 6)2,

χ(OSd1,d2,d3
) = d

12
(2D2 − 18D + 51 − d1d2 − d1d3 − d2d3).

For y = 1, we checked Conjecture 1.1 in the following cases:

• for Sd1,d2,d3 with (d1, d2, d3) = (2, 2, 3), c1 = εL such that ε = 0, 1, 2, mod-

ulo x12ε
2−24ε+35 (bound from Corollary 3.4 (i)) and modulo x48min{0,ε−1}−12ε2+103

(bound from Ai ).

As an example we get

ZS2,2,3,L ,L(x, 1) = − 1261568x3 − 7379091456x7 − 11717181702144x11

− 8585117244063744x15 − 3662336916158939136x19 + O(x23).

6.7. Verifications of Conjecture 5.1. Let β ∈ Z
4 and (γ1, γ2) ∈ Z

2 such that β1 ≡ β2
mod 2 and β3 ≥ β4 − 3. Put

M1 := min
{
2β1 − 2β2 + 8β4, 124 − 4γ1 + 4γ2, 124 + 4β2 − 4β3 + 4γ1 − 4γ2

}

− β1 − 3β4,

M2 := min
{
2β1 − 2β2 + 8β4, 32 − 4γ1 + 4γ2, 32 + 4β2 − 4β3 + 4γ1 − 4γ2

}

− β1 − 3β4.

For y = 1, we verified Conjecture 5.1 up to order x M1−1 in the following cases:
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• γ1 = γ2 = 0 and any |β1|, |β2|, |β3|, |β4| ≤ 16,
• any |γ1|, |γ2|, |β1|, |β2|, |β3|, |β4| ≤ 4.

For arbitrary y, we verified Conjecture 5.1 up to order x M2−1 in the following cases:

• γ1 = γ2 = 0 and any |β1|, |β2|, |β3|, |β4| ≤ 3,
• any |γ1|, |γ2|, |β1|, |β2|, |β3|, |β4| ≤ 2.

We have examples showing that the condition β3 ≥ β4 − 3 is necessary.

Remark 6.2. Any choice of β ∈ Z
4 with β1 ≡ β2 mod 2 satisfying

1

12
β3 ≤ β4 <

1

9
β3

does not arise geometrically and automatically implies β3 ≥ β4 − 3. These inequalities
correspond to “e(S) ≥ 0 but violation of the Bogomolov-Miyaoka-Yau inequality”, so
in this regime β cannot be realized by a smooth projective algebraic surface. With these

restrictions, we verified Conjecture 5.1 for y = 1 up to order x M1−1 for all

γ1 = γ2 = 0 and |β1|, |β2|, |β3|, |β4| ≤ 25,

and for arbitrary y up to order x M2−1 for all

γ1 = γ2 = 0 and |β1|, |β2|, |β3|, |β4| ≤ 27.
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Yoshioka for collaboration and many useful discussions on instanton counting and Mochizuki’s formula over
many years, and in particular to Hiraku Nakajima for very useful discussions and comments. The second
named author was supported by Marie Skłodowska-Curie IF 656898.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Appendix A. A1, . . . , A7

We calculated A1(s, 1, q), . . . , A7(s, 1, q) up to order q30 and list them up to order q4.

A1 = 1 − 5

8s3
q +

(
3

2
− 3

s2
+

27

8 s4
− 45

128 s6

)
q2 +

(
− 6

s
+

375

16 s3
− 153

8 s5
+

273

64 s7
− 337

1024 s9

)
q3

+

(
− 181

8
+

193

2 s2
− 2649

16 s4
+

30741

256 s6
− 4977

128 s8
+

6213

1024 s10
− 12097

32768 s12

)
q4 + O(q5),

A2 = 1 +
1

8

q

s3
+

(
− 3

2s2
+

3

8s4
+

1

128 s6
+
3

2

)
q2 +

(
181

16 s3
− 99

16 s5
+

75

64 s7
− 69

1024 s9
− 6

s

)
q3

+

(
14423

256 s6
− 5021

32768 s12
+

2763

1024 s10
− 699

8 s4
− 293

8
+

283

4 s2
− 4593

256 s8

)
q4 + O(q5),

http://creativecommons.org/licenses/by/4.0/
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A3 = 1 +
3

4

q

s3
+

(
3 − 9

4s4
+

3

4s6

)
q2 +

(
8 s +

27

32 s9
+

1

s3
− 83

16 s7
− 6

s
+

15

2s5

)
q3

+

(
−57 + 42 s2 − 411

16 s6
+

8301

8192 s12
− 2421

256 s10
− 243

16 s4
+
51

s2
+

3603

128 s8

)
q4 + O(q5),

A4 = 1 +

(
−1 +

3

2s2
+

1

4s3

)
q +

(
3

2
+
6

s
+

3

4s2
− 25

4 s3
− 3

4s4
+

5

4s5
+

39

128 s6

)
q2

+

(
31

2
− 159

4 s2
− 19

8 s3
+

285

8 s4
+

61

16 s5
− 1639

128 s6
− 21

8 s7
+

389

256 s8
+

215

512 s9

)
q3

+

(
56 s − 85

8
− 165

s
+

39

8 s2
+
2141

8 s3
+

6

s4
− 3819

16 s5
− 5991

256 s6
+

7083

64 s7
+

10127

512 s8
− 12691

512 s9
− 779

128 s10
+

133

64 s11

+
20047

32768 s12

)
q4 + O(q5),

A5 = 1 +

(
−2 +

1

s2

)
q +

(
−6 s + 4 − 1

2s2
− 9

2s3
− 1

4s4
+

5

8s5
+

5

64 s6
+
6

s

)
q2

+

(
20 + 24 s − 16 s2 − 237

32 s6
+

9

64 s9
+

3

s3
− 9

8 s7
+
26

s4
− 12

s
− 67

2 s2
+

7

4s5
+

45

64 s8

)
q3

+

(
−100 + 86 s + 134 s2 − 56 s3 − 357

32 s6
− 831

64 s9
+

1871

8192 s12
+
219

s3
− 701

256 s10
+

1101

16 s7
− 173

8 s4
− 141

s
+
72

s2

− 5545

32 s5
+

1369

128 s8
+

237

256 s11

)
q4 + O(q5),

A6 = 1 +

(
−2 s − 1

2s2
− 1

8s3

)
q +

(
−4 s2 − 2 s − 2

s
− 1

2s2
+

9

4s3
+

1

s4
− 1

4s5
− 1

8s6

)
q2

+

(
−8 s2 + 10 s + 6 +

3

s
+
13

s2
+

51

8 s3
− 43

4 s4
− 217

32 s5
+

83

32 s6
+

57

32 s7
− 27

128 s8
− 77

512 s9

)
q3

+

(
−24 s3 + 92 s2 + 52 s + 10 +

23

s
− 1

2s2
− 321

4 s3
− 427

8 s4
+

949

16 s5
+

767

16 s6
− 657

32 s7
− 2281

128 s8
+

869

256 s9

+
195

64 s10
− 55

256 s11
− 101

512 s12

)
q4 + O(q5),

A7 = 1 +

(
24 s − 6

s

)
q +

(
360 s2 − 180 +

30

s2
− 9

4s4
+

3

32 s6

)
q2

+

(
4160 s3 − 3200 s +

1020

s
− 210

s3
+

135

4 s5
− 55

16 s7
+

5

32 s9

)
q3

+

(
40560 s4 − 43380 s2 + 20280 − 6480

s2
+
7065

4 s4
− 6255

16 s6
+

975

16 s8
− 735

128 s10
+

495

2048 s12

)
q4 + O(q5).

Appendix B. Nekrasov Partition Function

In Sect. 4, we considered a toric surface S and we reduced ZS(a1, c1, s, y, q) to a
purely combinatorial expression on each toric patch Uσ

∼= C
2. We now study these

local contributions on the toric patches in terms of the Nekrasov partition function. The
content of this section is not used elsewhere in this paper. For simplicity we restrict
attention to the case of virtual Euler characteristics, i.e. y = 1, although very similar
arguments work for virtual χy-genus. In particular, we will see that

ZS(a1, c1, s, q) := ZS(a1, c1, s, 1, q)

can be expressed in terms of four universal functions. We use the notation from Lectures
on instanton counting by Nakajima-Yoshioka [NY1] (see also [GNY1]).
Let M(n) be the framed moduli space of pairs (E,�). Here E is a rank 2 torsion free
sheaf on P

2 with c2(E) = n and locally free in a neighbourhood of the “line at infinity”
�∞ ⊂ P

2. Furthermore

� : E |�∞
∼=→ O⊕2

�∞
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denotes the framing. The moduli space M(n) is a fine moduli space and is a smooth
quasi-projective variety of dimension 4n. Let T = C

∗2 acting on C
2 = P

2\�∞ by

(t1, t2) · (x, y) = (t1x, t2y).

This action lifts to M(n), which has an additional C
∗ action by scaling the framing

(s1, s2) ∈ O⊕2
�∞ �→ (e−1s1, es2) ∈ O⊕2

�∞ .

Wedenote the corresponding equivariant parameters of these actions by ε1, ε2, a. Follow-
ing the conventions of [GNY1], wewrite their characters as eε1 , eε2 , ea . The� = T ×C

∗
fixed locus of M(n) is given by Hilbn(C2 � C

2)T , where C
2 = P

2\�∞ as described in
[NY1]. In particular, the fixed locus consists of finitely many isolated reduced points
indexed by pairs of partitions (λ, μ) satisfying |λ| + |μ| = n as in Sect. 4. Concretely,
the pair (λ, μ) corresponds to the direct sum of ideal sheaves IZλ ⊕ IZμ .
The instanton part of the Nekrasov partition function with one adjoint matter M and one
fundamental matter m is defined as follows

Zinst(ε1, ε2, a, m, M, q) :=
∞∑

n=0

qn
∫

M(n)

Eu(TM(n) ⊗ eM )Eu(V ⊗ em).

Since M(n) is non-compact, the above integral is defined by the �-localization formula.
Here Eu(·) is the equivariant Euler class with respect to two trivial torus actions with
equivariant parameters m, M (and, after localization, it also becomes equivariant with
respect to �). Furthemore TM(n) denotes the tangent bundle and V denotes the rank n
vector bundle defined by

V := R1q2∗
(
E ⊗ q∗

1O(−�∞)
)
,

where E is the universal sheaf on P
2 × M(n) and qi is projection to the i th factor. We

note that the term in Zinst corresponding to n = 0 is equal to 1.
In the previous section, we encountered the following expression

Z(ε1, ε2, a1, c1, s, q) :=
∑
(λ,μ)

q |λ|+|μ|Eu(H0(O(a1)|Zλ))

Eu(TZλ)

Eu(H0(O(c1 − a1)|Zμ) ⊗ s2)

Eu(TZμ)

× c(En1,n2 |(Zλ,Zμ))

Eu(En1,n2 |(Zλ,Zμ) − TZλ − TZμ)
,

(33)

where the sum is over all pairs of partitions (λ, μ). Moreover, we view a1, c1 as equiv-
ariant parameters (of trivial torus actions) by replacingO(c1 − a1) by ec1−a1 etc. In this
section, all Chern classes and Euler classes are equivariant with respect to all tori.

Proposition B.1

Z(ε1, ε2, a1, c1, s, q) = Zinst
(
ε1, ε2, s +

c1 − 2a1
2

, s +
c1
2

, 0, q
)
.
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Proof. The �-representation of T(E,�)M(n) = Ext1
P2

(E, E(−�∞)) at a �-fixed point is
described in [NY1, Thm. 3.2]. After a bit of rewriting, much like in [GNY1], it becomes

− R HomC2(IZλ , IZλ)0 − R HomC2(IZμ, IZμ)0 + R�(OC2 ⊗ e2a)

− R HomC2(IZλ , IZμ ⊗ e2a) + R�(OC2 ⊗ e−2a) − R HomC2(IZμ, IZλ ⊗ e−2a).

Referring to Definition 3.2, we conclude that we want to specialize a = s + c1−2a1
2 .

The specialization m = s + c1
2 can be deduced from the fact that the fibre of V over

Zλ ⊕ Zμ ∈ Hilbn(C2 � C
2)T is given by

H1(IZλ(−�∞)) ⊕ H1(IZμ(−�∞)) ∼= H0(OZλ) ⊕ H0(OZμ),

where the first factor has weight e−a and the second ea with respect to the framing
action. The specialization M = 0 comes from the fact that we are interested in total
Chern class, i.e. the virtual Euler characteristic specialization.

Remark B.2 Similar to [NY1], we define

F inst(ε1, ε2, a, m, M, q) := logZinst(ε1, ε2, a, m, M, q).

The Nekrasov conjecture, originally formulated in [Nek2] and studied in various con-
texts e.g. in [NY2,NO,BE], states that F inst (in its original setting) is regular at (ε1, ε2) =
(0, 0) and identifies its value at (0, 0) with the corresponding Seiberg–Witten prepoten-
tial, an expression in terms of the periods of the corresponding Seiberg–Witten curve,
which is typically a family of elliptic curves. In the case of the partition function with
one adjoint and one fundamental matter however, the Seiberg–Witten curve, and thus the
Seiberg–Witten prepotential, are not available. Nevertheless, it is natural to conjecture12

ε1ε2F inst(ε1, ε2, a, m, M, q) is regular at (ε1, ε2) = (0, 0). (34)

Since F inst(ε1, ε2, a, m, M, q) is symmetric under ε1 ↔ ε2, (34) allows us to write

ε1ε2F inst(ε1, ε2, a, m, M, q) = F0(a, m, M, q) + (ε1 + ε2)H(a, m, M, q)

+ (ε1 + ε2)
2G1(a, m, M, q) + ε1ε2G2(a, m, M, q) + · · · ,

(35)

where · · · stands for terms of order εi
1ε

j
2 with i + j ≥ 3.

Remark B.3 For any toric surface S and a1, c1 ∈ A1
T (S), we have (3.2, (33))

ZS(a1, c1, s, 1, q) =
e(S)∏
σ=1

Z(vσ ,wσ , (a1)σ , (c1)σ , s, q). (36)

Assume (34) holds. Combining (36), (35) with localization on S gives

logZS(a1, c1, s, q) = 1

8
(c1 − 2a1)

2 ∂2F0

∂a2 +
1

4
(c1 − 2a1)c1

∂2F0

∂a∂m
+
1

8
c21

∂2F0

∂m2

+
1

2
(c1 − 2a1)KS

∂ H

∂a
+
1

2
c1KS

∂ H

∂m
+ K 2

S G1 + c2(S) G2.

(37)

12 We verified this using the toric calculations of Sect. 4 for (1) M = 0 and order q≤2 and (2) M = 0,
ε1 = −ε2, and order q3.
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Here the right hand side is evaluated at (a, m, M, q) = (s, s, 0, q). See [GNY1, Proof
of Thm. 4.2] for a similar, but more complicated, calculation.
Assume (34) holds. From Proposition 3.3 and the fact that the Ai are determined on
P
2, P

1 × P
1, we deduce that (37) holds for any smooth projective surface S and

a1, c1 ∈ A1(S). Therefore ZS(a1, c1, s, 1, q) is determined by four universal func-
tions F0, H, G1, G2. We do not know the statement of the Nekrasov conjecture in this
context, which would be an explicit conjectural formula for F0, H, G1, G2, possibly
in terms of periods of a family of elliptic curves, as studied in many cases e.g. in
[NY2,NO,BE,GNY3]. One possibility to approach the y = 1 specialization of Con-
jecture 1.1 (and Conjectures 5.1, 5.7 below), would be via first finding a formulation
of the Nekrasov conjecture in this context, and then a solution, employing strategies
somehow related to the ones used in [NY2,NO,BE,GNY3]. However, this seems to be
very difficult, because the corresponding Seiberg–Witten curve is not available.

Appendix C. Vafa–Witten Formula with μ-Classes by Lothar Göttsche and Hiraku
Nakajima

Let S be a projective algebraic surface with b1(S) = 0 and pg(S) > 0. For an ample line
bundle H on S, we denote again M = M H

S (c1, c2) the moduli space of H -semistable
rank 2 sheaves on S with Chern classes c1 ∈ H2(S, Z) and c2 ∈ H4(S, Z) = Z. We
assume that there are no rank 2 strictly Gieseker H -semistable sheaves with first Chern
class c1. Let E be a universal sheaf over M . For β ∈ Hk(S, Q) we denote

μ(β) := πM∗
(
(c2(E) − c1(E)2/4) ∩ π∗

Sβ
) ∈ H4−k(M, Q).

Formally we can write (c2(E) − c1(E)2/4) = − ch2(E ⊗ det(E)−1/2).
TheWitten conjecture for S expresses the generating function of the Donaldson invari-

ants of S in terms of the Seiberg–Witten invariants of S. On the other hand the version
of the Vafa–Witten conjecture of this paper (Conjecture 5.7 with y = 1) expresses the
generating function of the virtual Euler numbers of the M H

S (c1, c2) in terms the Seiberg–
Witten invariants of S. We want to give a common conjectural generalization of both
formulas. For α ∈ H2(S, Q) and p ∈ H0(S, Z) the class of a point, the Donaldson
generating function is

DS
c1(αz + pu, x) :=

∑
n

∫
[M H

S (c1,n)]vir
exp

(
μ(αz + pu)

)
xvd(S,c1,n)

=
∑

n

∑
l+2m=vd(S,c1,n)

∫
[M H

S (c1,n)]vir
μ(α)lμ(p)m zl

l!
um

m! xl+2m .

Here again vd(S, c1, n) = 4n − c21 − 3χ(OS) is the expected dimension of the moduli
space M H

S (c1, n). The Vafa–Witten partition function is

ZS
c1(x) :=

∑
n

∫
[M H

S (c1,n)]vir
cvd(S,c1,n)(T

vir
M H

S (c1,n)
)xvd(S,c1,n).

We consider the following new generating function

ZS
c1(αz + pu, t, x) :=

∑
n

∫
[M H

S (c1,n)]vir
cC

∗
vd(S,c1,n)(T

vir
M H

S (c1,n)
⊗ t)

× exp
(
μ(αz + pu)

)
xvd(S,c1,n).
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Here t is the trivial line bundle with equivariant first Chern class t . Note that

ZS
c1(αz + pu, t, x) =

∑
n,k

∫
[M H

S (c1,n)]vir
ck(T

vir
M H

S (c1,n)
)tvd(S,c1,n)−k

× exp
(
μ(αz + pu)

)
xvd(S,c1,n)

=
∑

n

∫
[M H

S (c1,n)]vir
c(T vir

M H
S (c1,n)

) exp
(
μ(αzt + put2)

)
xvd(S,c1,n)

=ZS
c1(αzt + put2, 1, x),

thus the variable t is redundant, but it serves to interpolate between ZS
c1(x) andDS

c1(αz +
pu, x). In fact it is obvious from the above that

ZS
c1(αz + pu, t, x)|t=0 =ZS

c1(x),

Coefftk

[
ZS

c1(αz + pu, t−1, xt)
] =

∑
n

∫
[M H

S (c1,n)]vir
ck(T

vir
M H

S (c1,n)
)

× exp
(
μ(αz + pu)

)
xvd(S,c1,n).

In particular ZS
c1(αz + pu, t−1, xt)|t=0 = DS

c1(αz + pu, x).

Let

G2(x) = G2(x) +
1

24
=
∑
n>0

σ1(n)xn

be the Eisenstein series of weight 2, write D := x d
dx . Let

G p(x) := 2G2(x2) G Q(x) = 1

2
(DG2)(x2), GS(x) := (G2(x) − G2(−x))/2.

We denote Q(α) = ∫
S α2, the quadratic form and for C ∈ H2(S, Z) let 〈C, α〉

be the intersection product. Let a1, . . . , as be the Seiberg–Witten basic classes of S
(in the Mochizuki notation, the corresponding characteristic cohomology classes are
ãi = KS − 2ai ). Denote

Z̃
S
c1(αz + pu, t, x) = 4

(
1

2η(x2)12

)χ(OS) (2η(x4)2

θ3(x)

)K 2
S

× exp
(
G Q(x)Q(α)z2t2 + G p(x)(ut2 − 〈KS, α〉zt)

)

×
s∑

i=1

SW(ai )(−1)〈c1,ai 〉
( θ3(x)

θ3(−x)

)〈KS ,ai 〉
exp

(
GS(x)〈KS − 2ai , α〉zt

)
.

Then we have the conjecture

Conjecture C.1

ZS
c1(αz + pu, t, x) = 1

2

(̃
Z

S
c1(αz + pu, t, x) + (

√−1)c21−χ(OS)Z̃
S
c1(αz + pu, t,

√−1x)
)
.
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By definition it is obvious that at t = 0, Conjecture C.1 specializes to Conjecture 5.7.
Now we look at the specialization at t−1 = 0.

Proposition C.2 Conjecture C.1 is true for ZS
c1(αz + pu, t−1, xt) modulo t2.

Proof. Specializing t−1 = 0 in ZS
c1(αz + pu, t−1, xt), Conjecture C.1 says that

DS
c1(αz + pu, x) = 1

2

(
D̃

S
c1(αz + pu, x) + (

√−1)c21−χ(OS)D̃
S
c1(αz + pu,

√−1x)
)
,

with

D̃
S
c1(αz + pu, x) := Z̃

S
c1(αz + pu, t−1, xt)|t=0

= 22+K 2
S−χ(OS) exp

(Q(α)

2
x2z2 + 2x2u)

)

×
s∑

i=1

SW(ai )(−1)〈c1,ai 〉 exp
(〈KS − 2ai , α〉xz

)
,

which is a reformulation of the Witten conjecture for Donaldson invariants of algebraic
surfaces, proved in [GNY3].
By [HL, Prop. 8.3.1], we have

c1(T
vir
M H

S (c1,n)
) = −2μ(KS)

in H2(M H
S (c1, n), Q). Thus after the substitution t → t−1, x → xt , and using the result

for the coefficient of t0, the coefficient of t1 of the right hand side of Conjecture C.1 is

∑
n

∫
[M H

S (c1,n)]vir
c1(T

vir
M H

S (c1,n)
) exp

(
μ(αz + pu)

)
xvd(S,c1,n)

= z−1 ∂

∂w
DS

c1(αz − 2KSwz + pu, x)

∣∣∣
w=0

= 1

2

(
F1(x) + (

√−1)c21−χ(OS)F1(
√−1x)

)
,

with

F1(x) = z−1 ∂

∂w
D̃

S
c1(αz − 2KSwz + pu, x)

∣∣∣
w=0

= 22+K 2
S−χ(OS) exp

(Q(α)

2
x2z2 + 2x2u)

)

×
s∑

i=1

(〈−2KS, α〉x2z + 〈KS − 2ai ,−2KS〉x)

× SW(ai )(−1)〈c1,ai 〉 exp
(〈KS − 2ai , α〉xz

)
.

And for the left hand side of Conjecture C.1 we get

∂

∂t
ZS

c1(αz + pu, t−1, xt)|t=0 = 1

2

(
F2(x) + (

√−1)c21−χ(OS)F2(
√−1x)

)
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with

F2(x) = ∂

∂t
Z̃

S
c1(αz + pu, t−1, xt)|t=0 = 22+K 2

S−χ(OS) exp
(Q(α)

2
x2z2 + 2x2u)

)

×
s∑

i=1

(− 2K 2
S x − 〈2KS, α〉x2z + 4〈ai , KS〉x)

× SW(ai )(−1)〈c1,ai 〉 exp
(〈KS − 2ai , α〉xz

)
.

Definition C.3 Let π and q be the projections from S[n1] × S[n2] × S to S[n1] × S[n2]
and S. For β ∈ H∗(S, Q) a1, c1 ∈ A1(S), put

ν(β) := πC
∗

∗
(− chC

∗
2

(I1(a1 − c1/2) ⊗ s ⊕ I2(c1/2 − a1) ⊗ s−1) ∩ q∗(β)
)
.

For α ∈ H2(S, Q) and p ∈ H0(S, Z) the class of a point, we put

ZS(a1, c1, s, αz + pu, q) :=
∑

n1,n2≥0

qn1+n2

∫
S[n1]×S[n2]

cC
∗
(En1,n2) exp

(
ν(α)zt + ν(p)ut2

)
Eu(O(a1)[n1])Eu(O(c1 − a1)[n2] ⊗ s2)

Eu(En1,n2 − π∗
1 TS[n1] − π∗

2 TS[n2])
.

We denote by Ã(a1, c1 − a1, c2, s) the expression from (14), in the case

P(E) = c(T vir
M ) exp(μ(α)zt + μ(p)ut2).

As in (17) we find that

∑
c2∈Z

Ã(a1, c1 − a1, c2, s)qc2 = ZS(a1, c1, s, αz + pu, q)

× (2s)χ(OS)

(
2s

1 + 2s

)χ(c1−2a1) ( −2s

1 − 2s

)χ(2a1−c1)

qa1(c1−a1).

Now we have the following analogue of Proposition 3.3.

Proposition C.4 For i = 1, . . . , 7 denote Ai := Ai (s, 1, q) for Ai (s, y, q) the universal
functions from Proposition3.3. There exist universal functions A8(s, q), . . . , A12(s, q) ∈
1 + qQ((s))[[q]], such that for any smooth projective surface S and any a1, c1 ∈ A1(S),
α ∈ H2(S, Q), we have

ZS(a1, c1, s, αz + pu, q) = A
a21
1 Aa1c1

2 A
c21
3 Aa1KS

4 Ac1KS
5 A

K 2
S

6 Aχ(OS)
7

× Aα2z2t2
8 Aa1αzt

9 Ac1αzt
10 AKSαzt

11 Aut2
12 .

The proof is a simple adaptation of the proof of Proposition 3.3 (which is an adaptation
of [GNY1]), note that already in [GNY1] it was shown how to deal with the classes
ν(β). Write M = M H

S (c1, c2). The same proof as that of Corollary 3.4 shows that under
the assumptions of Corollary 3.4 we have
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∫
[Mvir]

cC
∗

vd(M)(T vir
M ⊗ t) exp

(
μ(α)z + μ(p)u

) =
∫

[Mvir]
c(T vir

M ) exp
(
μ(α)zt + μ(p)ut2

)

= Coeffs0qc2

⎡
⎢⎢⎣

∑
a1∈H2(S,Z)

a1H<(c1−a1)H

SW(a1)A(a21 ,a1c1,c21 ,a1KS ,c1KS ,K 2
S ,χ(OS )) Aα2z2 t2

8 Aa1αzt
9 Ac1αzt

10 AKSαzt
11 Aut2

12

⎤
⎥⎥⎦ .

Let F , G be the classes of the fibres of the two projections of P
1 × P

1. The functions
A8, . . . , A12 are determined by A1, . . . , A7 and ZP1×P1(a1, c1, s, αz, q), for

(a1, c1, α) = (0, 0, G − F), (0, 0,−F), (G, G, F − G), (0, G, F − G),

and by ZP1×P1(0, 0, s, pu, q).
In these cases S is a toric surface with torus T = C

∗2. We use the notations and
conventions from Sect. 4. Thus for σ = 1, . . . , e(S) let pσ be a fixpoint of the T -action
on S, letUσ be amaximal T -invariant open affine neighbourhood of pσ , with coordinates
xσ , yσ such that T acts by

t · (xσ , yσ ) = (χ(vσ )xσ , χ(wσ )yσ ),

where χ(vσ ) is a character with weight vσ . Then in the notations of Sect. 4 the T -fixed
points on S[n1] × S[n2] are parametrized by pairs (λ,μ) with λ = {λ(σ)}σ=1,...,e(S), μ =
{μ(σ)}σ=1,...,e(S) tuples of partitions.Writingλ(σ) = (λ1, . . . , λ�), hereλ(σ) corresponds
to the subscheme Zλ(σ) supported in pσ with ideal

Iλ(σ) = (yλ1
σ , xσ yλ2

σ , . . . , x�−1
σ yλ�

σ , x�
σ ),

and similar for the μ(σ). The fixpoint of S[n1] × S[n2] corresponding to (λ,μ) is the pair
(Zλ, Zμ) with Zλ the disjoint union of the Zλ(σ) and similar for Zμ. A T -equivariant
divisor a is again onUσ given by a character of weight aσ . In the T -equivariant K -group
K T
0 (pt), the fibre of I1(a) ⊕ I2(−a) at the point (pσ , Zλ(σ) , Zμ(σ) ) is

χ(aσ )
(
1 − (1 − χ(vσ ))(1 − χ(wσ ))Zλ(σ)

)
+χ(−aσ )

(
1 − (1 − χ(vσ ))(1 − χ(wσ ))Zμ(σ)

)
.

In particular, denoting i∗(pσ ,Z
λ(σ) ,Z

μ(σ) )
, the equivariant pullback to a point via the em-

bedding of the fixpoint (pσ , Zλ(σ) , Zμ(σ) ), we get

i∗(pσ ,Z
λ(σ) ,Z

μ(σ) )
chT

2 (I1(a) ⊕ I2(−a)) = a2
σ − vσ wσ (|λ(σ)| + |μ(σ)|),

and thus for b an equivariant divisor on S, we get

i∗(Zλ,Zμ)πS[n1]×S[n2]∗
(
chT

2 (I1(a) ⊕ I2(−a))π∗
S c1(b)

)

=
e(S)∑
σ=1

( bσ a2
σ

vσ wσ

− bσ (|λ(σ)| + |μ(σ)|
)
.

On P
1 × P

1 we can represent the class of a point by c2(P1 × P
1)/4, which gives
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i∗(Zλ,Zμ)πS[n1]×S[n2]∗
(
chT

2 (I1(a) ⊕ I2(−a))π∗
S (pt)

)

=
e(S)∑
σ=1

1

4

(
a2
σ − vσ wσ (|λ(σ)| + |μ(σ)|)).

Combining this with the formulas of Sect. 4 we can compute in the above cases ZP1×P1

(a1, c1, s, αz, q) by localization.
This has been implemented as as a PARI/GP program, which computed A8(s, q), . . .,

A12(s, q) up to order q10 and any order in s. We then checked Conjecture C.1 in a
number of cases, in all these cases α is an arbitrary class in H2(S, Q). In all these cases
the conjecture has been verified with the bounds of Sect. 6 adapted accordingly.

(1) K3 surfaces, for c21 = 0, . . . , 30.
(2) Blowup Ŝ of a K3 surface S in a point with exceptional divisor E . Here we take

c1 = L + k E with L the pullback of a line bundle on S with L2 = 0, . . . , 30 and
k = 0, 1.

(3) Elliptic surfaces S → P
1 of type E(n), as in Sect. 6.2, for n = 3, . . . , 7 with

c1 = k F or B + k F , with B the class of a section with B2 = −n and F the class of
a fibre and k = 0, . . . 7.

(4) Double cover of P
2, branched along a curve of degree 2d for d = 4, 5, with c1 the

pullback of k-times with hyperplane class for k = −1 . . . , 4.
(5) General quintic in P

3, with c1 the restriction of k times the hyperplane class with
k = 0, 1, 2, 3.
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