
Virtual Ring Routing: Network Routing Inspired by DHTs

Matthew Caesar∗2, Miguel Castro1, Edmund B. Nightingale∗3, Greg O’Shea1, Antony Rowstron1

1 Microsoft Research 2 University of California Berkeley 3 University of Michigan
Cambridge, UK Berkeley, USA Ann Arbor, USA

mcastro,gregos,antr@microsoft.com mccaesar@cs.berkeley.edu enightin@eecs.umich.edu

ABSTRACT
This paper presents Virtual Ring Routing (VRR), a new network
routing protocol that occupies a unique point in the design space.
VRR is inspired by overlay routing algorithms in Distributed Hash
Tables (DHTs) but it does not rely on an underlying network routing
protocol. It is implemented directly on top of the link layer. VRR
provides both traditional point-to-point network routing and DHT
routing to the node responsible for a hash table key.

VRR can be used with any link layer technology but this paper
describes a design and several implementations of VRR that are
tuned for wireless networks. We evaluate the performance of VRR
using simulations and measurements from a sensor network and an
802.11a testbed. The experimental results show that VRR provides
robust performance across a wide range of environments and work-
loads. It performs comparably to, or better than, the best wireless
routing protocol in each experiment. VRR performs well because
of its unique features: it does not require network flooding or trans-
lation between fixed identifiers and location-dependent addresses.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Protocols

General Terms
Algorithms, Measurement, Performance, Reliability

Keywords
Network Routing, Distributed Hash Table, Wireless

1. INTRODUCTION
This paper presents Virtual Ring Routing (VRR), a new network

routing protocol with a unique design. The design is inspired by
Distributed Hash Table (DHT) overlays (e.g.,[38, 40, 39, 44]) but
VRR is a network routing protocol. Whereas DHTs assume an
underlying network routing protocol that provides connectivity be-
tween all pairs of nodes, VRR is implemented directly on top of the

∗Work done during an internship at Microsoft Research Cambridge.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’06, September 11–15, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-308-5/06/0009 ...$5.00.

link layer. VRR provides not only traditional point-to-point net-
work routing but also DHT functionality: it balances the load of
managing hash-table keys across nodes and routes messages sent to
a key to the node responsible for managing the key.

VRR is also unique because it never floods the network and uses
only location independent identifiers to route. Nodes are organized
into a virtual ring ordered by their identifiers and each node main-
tains a small number of routing paths to its neighbors in the ring.
The nodes along a path store the next hop towards each path end-
point in a routing table. VRR uses these routing tables to route
packets between any pair of nodes in the network: a packet is for-
warded to the next hop towards the path endpoint whose identifier
is numerically closest to the destination. The paths between virtual
ring neighbors are setup using this algorithm.

VRR can route over any link layer technology but this paper
focuses on wireless ad hoc environments. We believe that DHT
functionality is particularly useful in these environments because it
can be used to implement scalable network services in the absence
of servers. Furthermore, VRR addresses some performance issues
with previous wireless routing protocols.

VRR performs well across a wide range of environments and
workloads because it does not flood and it does not use location-
dependent addresses. Proactive wireless routing protocols flood
on topology changes (e.g., [34, 6]) and reactive protocols flood to
discover routes (e.g., [22, 35]). Hybrid protocols perform scoped
floods on topology changes and flood to discover routes to nodes in
other regions of the network (e.g., [18, 37]). Previous protocols that
do not flood use location-dependent addresses to route (e.g., [5, 33,
24, 26, 15]), which has some disadvantages. Location-dependent
addresses can change with mobility and, in some protocols, with
congestion and failures [5, 33, 15]. These changes can result in
losses and increased congestion, and usually require mechanisms
to lookup the location of a node given a fixed identifier [28].

We compared VRR against a number of representative wireless
routing protocols using both simulations and measurements from
real implementations running on a sensor network and an 802.11a
Windows PC testbed. The Windows implementation modifies the
Mesh Connectivity Layer (MCL) [10] to support VRR. The VRR
network appears to an unmodified TCP/IP protocol stack as a single
virtual link. Therefore, all IP-based applications can be run over the
VRR network without modification.

The experiments show that VRR provides robust performance
across a wide range of environments and workloads. It performs
comparably to, or better than, the best routing protocol in each ex-
periment.

The paper is organized as follows. Section 2 presents an overview.
Section 3 describes VRR in detail. We evaluate performance in Sec-
tion 4. Section 5 describes related work and Section 6 concludes.



Figure 1: Relationship between the virtual ring and the physical network topology.

2. OVERVIEW
VRR uses random unsigned integers to identify nodes, and orga-

nizes the nodes into a virtual ring in order of increasing identifier
(with wrapping around zero). Node identifiers are fixed, unique,
and location independent. To maintain the integrity of the vir-
tual ring with node and link failures, each node maintains a virtual
neighbor set (or vset) of cardinality r containing the node identi-
fiers of the r/2 closest neighbors clockwise in the virtual ring and
the r/2 closest neighbors counter clockwise.

Each node also maintains a physical neighbor set (or pset) with
the identifiers of nodes that it can communicate with at the link
layer. Since link quality can vary widely in wireless environments,
it is important for nodes to estimate the quality of wireless links to
candidate physical neighbors. A node only adds a neighbor to the
pset if the quality of the links to and from that neighbor is above a
threshold. In addition, VRR nodes can take link quality into account
when making forwarding decisions. Sections 4.2 and 4.3 describe
implementations that estimate link quality using packet loss and
bandwidth metrics but it is possible to use other metrics.

Figure 1(a) shows an example virtual ring with a 12-bit identifier
space (with identifiers in base 16). It also shows the vset of the node
with identifier 8F6 with r = 4.

VRR sets up and maintains routing paths between a node and
each of its virtual neighbors. These are called vset-paths. Since
node identifiers are random and location independent, the virtual
neighbors of a node will be randomly distributed across the phys-
ical network. So vset-paths are multi-hop in most cases. They are
also bidirectional because membership in the vset is symmetrical
(if node x is in the vset of node y then node y is in the vset of x).

The routing information for a vset-path is stored in the routing
tables of the nodes along the path. Each node maintains a routing
table with information about the vset-paths to its virtual neighbors
and other vset-paths that are routed through the node. A routing
table entry identifies the two vset-path endpoints and the next hop
towards each endpoint. This information is maintained proactively,
i.e., it is maintained even when there is no traffic along the path.

Figure 1(b) shows the mapping between the virtual ring and the
physical network topology and it shows the vset-paths between node
8F6 and its virtual neighbors.

VRR does not setup or maintain paths between nodes that are not
virtual neighbors because vset-paths can be used to route packets
between any pair of nodes. VRR nodes route packets to destina-
tion identifiers by forwarding them to the next hop towards the path
endpoint whose identifier is numerically closest to the destination
identifier from among all the endpoints in their routing table.

If there is a correct vset-path between each node and its virtual
neighbors, VRR can route between any pair of nodes by following
the vset-paths between neighboring nodes along the ring. But VRR
does better because each node uses not only the vset-paths to its vir-
tual neighbors but also vset-paths between other nodes that happen
to be routed through it. The following approximate analysis pro-
vides some intuition into how this works. If each node maintains
r vset-paths to its virtual neighbors and the average path length is
p, the total number of routing table entries in an n node network
is nrp. Therefore, each node will have on average rp entries for
vset-paths in its routing table: r entries for the paths to its virtual
neighbors and r(p−1) additional entries for vset-paths through the
node. If we assume that these additional vset-paths end at nodes that
are selected randomly and uniformly, the probability that a random
node has a path to a random destination is O(rp/n). Therefore, a
packet is expected to reach a node that has a vset-path to the destina-
tion after visiting O(n/(rp)) nodes, which will add only a constant
stretch if p grows with

√
n (as in wireless ad hoc networks).

VRR provides not only point-to-point network routing between
two nodes but also a distributed hash table (DHT) [40, 38, 44, 39].
VRR routes messages sent to numerical keys to the node whose
identifier is numerically closest to the key. These keys can iden-
tify application objects instead of VRR nodes. We believe that
DHT functionality is particularly useful in wireless ad hoc scenar-
ios where there may be no servers to coordinate nodes but we do
not explore specific applications in this paper. VRR could easily
support peer-to-peer applications like directories, instant messag-
ing, cooperative caching, and cooperative storage.

VRR does not impose any structure on node identifiers. It only
requires that they be unique and totally ordered. Therefore, node
identifiers can be generated in different ways to suit specific pur-
poses. For example, an identifier could be the 160-bit SHA-1 hash
of a node’s public key to facilitate secure communication [30], or
a randomly selected 32-bit integer to provide backwards compati-
bility with IPv4 addresses. It is also possible to use certified node
identifiers as described in [4] to prevent Sybil attacks [9].

VRR does not use flooding and it uses only location independent
identifiers to route. All control and data packets are routed as de-
scribed above without any translation to location based addresses.
In particular, control messages to setup new vset-paths are routed
using the existing vset-paths. Additionally, VRR can usually route
around failed paths without requiring them to be repaired because
there are usually many routes between each pair of nodes. These
features allow VRR to offer robust performance across a wide range
of environments and workloads.



3. VIRTUAL RING ROUTING
This section presents VRR in detail. It starts by describing the

routing state maintained by nodes and how it is used to forward
messages. Then it describes how this state is maintained when
nodes join and when nodes or links fail.

3.1 Forwarding
Each node maintains a routing table with an entry for every vset-

path that includes the node. Each entry contains the identifiers of
the two endpoints of the path, the identifier of the physical neighbor
to be used as the next hop towards each endpoint, and a vset-path
identifier. The first endpoint identifier in an entry is always the
identifier of the node that initiated the vset-path setup.

Figure 2 continues the example from Figure 1 by showing the
routing table of node 8F6. The first four entries in the table are for
the vset-paths from the node to its four virtual ring neighbors.

Since node 8F6 is an endpoint in these paths, the identifier of the
next hop towards the node is null. The 5th and 6th entries in the
table are for two vset-paths that are routed through node 8F6. VRR
maintains the invariant that the nextA and nextB fields in a node’s
routing table entries are in the pset of the node.

endpointA endpointB nextA nextB path id
8F0 8F6 20E null 03
8E2 8F6 F01 null 2F
8F6 90E null 7E2 1E
910 8F6 F01 null 2F
35F 37A 20E 7E2 12
A01 A10 F01 FC1 F0
8F6 20E null 20E FF
8F6 F01 null F01 FF
8F6 7E2 null 7E2 FF
8F6 FC1 null FC1 FF

Figure 2: Sample routing table for the node with identifier 8F6.
The first four entries are vset-paths to 8F6’s virtual neighbors,
the fifth and sixth entries are for vset-paths that happen to be
routed through 8F6, and the last four are paths to 8F6’s physical
neighbors.

VRR also inserts one-hop paths to physical neighbors in the rout-
ing table to simplify routing. These are the last four entries in the
table and have the special path identifier FF.

The routing table in the example also shows that vset-path iden-
tifiers are not necessarily distinct. The vset-path identifier is as-
signed by endpointA, which is the node that initiates the path setup,
such that each vset-path is uniquely identified by the pair 〈path
id,endpointA〉. Vset-path identifiers can be small; each node orig-
inates at most one vset-path to each of its r virtual ring neighbors
and nodes can reuse the identifiers of torn down paths after a pro-
bation period to ensure that there are no routing table entries with
those identifiers.

NextHop(rt, dst)
endpoint := closest id to dst from Endpoints(rt)
if (endpoint == me)

return null
return next hop towards endpoint in rt

Figure 3: VRR’s forwarding algorithm. The identifier of the
local node is me and rt is its routing table.

The forwarding algorithm used by VRR is very simple — VRR
picks the node with the identifier closest to the destination from
the routing table and forwards the message towards that node. The
packet is delivered to the node with the identifier closest to the des-
tination in the network. This is shown in Figure 3. When a node

receives a packet destined to the node with identifier dst, it sets end-
point to the node identifier numerically closest to dst from among
all the endpoint identifiers in the routing table, rt. If endpoint is the
identifier of the local node, the function returns null and the packet
is delivered locally. Otherwise, the next hop to reach endpoint is
retrieved from the routing table and the packet is sent to that node.
If there are several alternative paths to reach endpoint in the routing
table, the algorithm uses one of the entries with the highest value of
〈path id,endpointA〉 to compute the next hop. This favors one-hop
paths when present.

3.2 Node joins
When a node joins the VRR network, it initializes its pset and

vset and it sets up vset-paths to its virtual neighbors. It finds its
virtual neighbors by routing a message to its own identifier. This is
all done without flooding the network by using existing vset-paths
to route messages.

The joining node starts by looking for physical neighbors that
are already active in the network and, therefore, can be used as
proxies to route messages to others. It finds a proxy by sending and
listening to hello messages that VRR nodes broadcast to physical
neighbors periodically. These messages are also used to initialize
the pset of the joining node as will be discussed in Section 3.3.

After finding a proxy, the joining node sends a setup req message
to its own identifier, x, through the proxy. This message is routed
using the forwarding algorithm to the node whose identifier, y, is
closest to x. Node y is one of the immediate virtual neighbors of
the joining node in the virtual ring and it knows the identities of the
other virtual neighbors of x.

Node y replies with a setup message that is routed back to the
joining node through the proxy and it also adds x to its vset. This
message sets up the vset-path between node y and the joining node
by updating the routing tables of the nodes it visits. The joining
node adds y to its vset when it receives the message.

The setup message also includes y’s vset. The joining node uses
the received vset to initialize its own; it sends setup req messages to
the identifiers of its other virtual neighbors. The joining node adds
these neighbors to its vset when it receives setup messages from
them. This completes all routing state initialization and the node
becomes active.

Figure 4 shows pseudo code that describes in more detail the
initialization of routing state. It introduces two additional message
types: setup fail messages are sent in reply to setup req messages
to indicate refusal to setup a vset-path to the source, and teardown
messages are used to remove entries for vset-paths from the routing
tables along the path.

A node replies to a setup req message from x with setup fail
when it does not add x to its vset. This can happen when there
are concurrent joins and the node learns about identifiers closer to
its own than x. This message provides x with new destinations to
send setup req messages to.

Like setup messages, setup fail messages are routed back to x
through the proxy: they are routed towards the identifier of the
proxy until they reach one of x’s physical neighbors that sends it to
x. This works because x picks a proxy that is a physical neighbor
and this can shorten the path if the message visits another physical
neighbor of x before reaching the proxy.

The setup of vset-paths may be aborted due to failures or con-
current setups as shown in the Receive function for setup in Fig-
ure 4. VRR aborts a vset-path setup by calling TearDownPath to
remove all entries for the path from the routing tables of all nodes
that may have been visited by the setup message. The first call to
TearDownPath happens when the node receives the message from
a node that is not in its pset or it already has the entry for the path



Receive(〈setup req, src, dst, proxy, vset’〉, sender)
nh := NextHopExclude(rt, dst, src)
if (nh �= null)

Send 〈setup req, src, dst, proxy, vset’〉 to nh
else

ovset := vset; added := Add(vset, src, vset’)
if (added)

Send 〈setup, me, src, NewPid(),proxy, ovset〉 to me
else

Send 〈setup fail, me, src, proxy, ovset〉 to me

Receive(〈setup, src, dst, pid, proxy, vset’〉, sender)
nh := (dst ∈ pset) ? dst : NextHop(rt, proxy)
added := Add(rt,〈src, dst, sender, nh, pid〉)
if (¬added ∨ sender �∈ pset)

TearDownPath(〈pid, src〉, sender)
else if (nh �= null)

Send 〈setup, src, dst, pid, proxy, vset’〉 to nh
else if (dst = me)

added := Add(vset, src, vset’)
if (¬added)

TearDownPath(〈pid, src〉, null)
else

TearDownPath(〈pid, src〉, null)

Receive(〈setup fail, src, dst, proxy, vset’〉, sender)
nh := (dst ∈ pset) ? dst : NextHop(rt, proxy)
if (nh �= null)

Send 〈setup fail, src, dst, proxy, vset’〉 to nh
else if (dst = me)

Add(vset, null, vset’∪{src})

Receive(〈teardown, 〈pid, ea〉, vset’〉, sender)
〈ea, eb, na, nb, pid〉 := Remove(rt, 〈pid, ea〉)
next := (sender = na) ? nb : na

if (next �= null)
Send 〈teardown, 〈pid, ea〉, vset’〉 to next

else
e := (sender = na) ? eb : ea

Remove(vset, e)
if (vset’ �= null)

Add(vset, null, vset’)
else

proxy := PickRandomActive(pset)
Send 〈setup req, me, e, proxy, vset〉 to proxy

Add(vset, src, vset’)
for each (id ∈ vset’)

if (ShouldAdd(vset, id))
proxy := PickRandomActive(pset)
Send 〈setup req, me, id, proxy, vset〉 to proxy

if (src �= null ∧ ShouldAdd(vset,src))
add src to vset and any nodes removed to rem
for each (id ∈ rem) TearDownPathTo(id)
return true;

return false;

TearDownPath(〈pid, ea〉, sender)
〈ea, eb, na, nb, pid〉 := Remove(rt, 〈pid, ea〉)
for each (n ∈ {na, nb, sender})

if (n �= null ∧ n ∈ pset)
vset’ := (sender �= null) ? vset : null
Send 〈teardown, 〈pid, ea〉, vset’〉 to n

Figure 4: Pseudo code for VRR. The identifier of the local node is me, its virtual neighbor set is vset, its physical neighbor set is pset,
and its routing table is rt. The functions that are not defined in the figure work as follows: NextHopExclude is identical to NextHop
except that the last argument is excluded from the next hop computation to prevent the message from being routed back to the
source; NewPid() returns a new path identifier that is not in use by the local node; Add(rt, 〈ea, eb, na, nb, pid〉) adds the entry to the
routing table unless there is already an entry with the same 〈pid, ea〉; Remove(rt, 〈pid, ea〉) removes and returns the entry identified
by 〈pid, ea〉 from the routing table; PickRandomActive(pset) returns a random physical neighbor that is active; Remove(vset, id)
removes node id from the vset; ShouldAdd(vset, id) sorts the identifiers in vset∪{id, me} and returns true if id should be in the vset;
and TearDownPathTo(id) is similar to TearDownPath but it tears down all vset-paths that have id as an endpoint.

being setup in the routing table. These loops are rare but can occur
when vset-paths are being concurrently setup or torn down. Calling
TearDownPath provides a clean and simple solution to deal with
these infrequent loops. The other calls to TearDownPath happen
if the message is delivered to the wrong node or a node that is no
longer a virtual neighbor of the source. They can happen with fail-
ures and concurrent joins.

The Add function in Figure 4 is used to add members to a node’s
vset. A node only adds new members when it receives a setup or
setup req message from them to prevent convergence problems due
to the addition of failed members. When nodes remove a member
from their vset to make room for a new member, they teardown any
vset-path to the removed member to inform it that it is no longer in
the vset and to garbage collect redundant routing state.

To deal with concurrent joins, all messages in Figure 4 have a
vset’ field that contains the identifiers of the nodes in the vset of
the source. When a node x receives a message, it invokes the Add
function that sends setup req messages to all identifiers in vset’ that
should be added to the local vset. This allows nodes to exchange
their local views of the virtual ring until their views converge and
the appropriate vset-paths are setup.

If a node cannot find an active neighbor to use as a proxy to join
the network, it creates a new ring by making itself active after a
timeout. This can partition the network into multiple rings. These
rings are merged using the mechanism described in Section 3.3.4.

3.3 Node and link failures
VRR must detect failures and repair routing state in a timely fash-

ion to ensure virtual ring consistency. To avoid the overhead of end-
to-end probes or end-to-end heartbeats, VRR maintains hard rout-
ing state for vset-paths and it detects both node and path failures
using only direct communication between physical neighbors. This
section describes how we detect failures and repair routing state.

3.3.1 Symmetric failure detection
Most routing protocols use soft state (e.g., [22, 35, 18, 37]) be-

cause it is easier to maintain soft state consistent than hard state.
We introduce a simple technique that makes it easy to maintain hard
state consistent. We call this technique symmetric failure detection.
It guarantees that if a node x marks a neighbor y faulty, y will also
mark x faulty. We use this to ensure that routing state is correctly
removed from the network on failures, and to implement reliable
node and path failure notifications. For example, if x tears down
a vset-path because it suspects the next hop y is faulty, symmetric
failure detection ensures that y will teardown the other half of the
vset-path and that both path endpoints will learn about the failure.
This is related to the technique presented in [12] to detect failures
in an overlay network.

To implement symmetric failure detection, each node x monitors
the ability to communicate with its physical neighbors by broad-
casting hello messages every Th seconds. x also remembers the



nodes from which it has heard a hello during the last 2kTh seconds.
Typical values are k = 4 and Th = 1. These nodes can be in
one of three states: linked if the node received hellos from x and
x received hellos from the node, pending if x received hellos from
the node but does not know if the node received hellos from x, and
failed if the link to the node has been marked faulty. Other nodes
are in the unknown state. The pset of x is the set of nodes in the
linked state and x also tracks whether these nodes are active. It is
possible to further restrict pset membership by imposing minimum
thresholds on link quality (as described in Sections 4.2 and 4.3) but
we ignore this to simplify the exposition.

The hello messages include three sets to classify the nodes ac-
cording to their states: a set with nodes that are linked and active,
one with nodes that are linked but not active, and another with pend-
ing nodes. When node x receives a hello message from node y, it
compares its state in the hello message with its local state for y.
Then, it updates y’s local state according to the state transition dia-
gram shown in Figure 5. The edges in the diagram correspond to x’s
state in y’s hello message, for example, a state of missing indicates
that x does not appear in the message. Additionally, x marks y as
failed if it does not receive hello message from y for kTh seconds
and it removes y from the set of failed nodes if it does not receive a
hello for 2kTh seconds. These state transitions ensure that a node
can send and receive messages from nodes in the pset (linked state)
and that failure detection is symmetric.

Figure 5: State transitions for physical neighbors when a hello
message is received.

A hello message also indicates whether the sender is active or
not. Whenever x determines that a physical neighbor z is both
linked and active, it inserts a physical neighbor path to z in the
routing table. From the information in hello packets from z, x is
also able to determine the neighbors of z that are active and can be
reached in two hops via z. As an optimization, these two-hop paths
are also added to the routing table.

VRR also detects node and link failures by using per-hop ac-
knowledgments and retransmissions for all messages except hellos.
A node x marks a physical neighbor y failed when it does not re-
ceive acknowledgements for packets sent to y after some number
of retransmissions.

3.3.2 Failure repair
When a node x marks a node y failed, it initiates the teardown

of any vset-paths in its routing table that have y as a next hop. It
does this by calling TeardownPath(p, null) (as defined in Figure 4)
for each identifier p of a failed vset-path. Additionally, x removes
any one- and two-hop paths through y from its routing table.

To ensure consistent routing state with concurrent failures, tear-
down messages are acknowledged and retransmitted. If a physi-
cal neighbor fails to acknowledge a teardown for a vset-path, it is
marked failed, which triggers the sending of additional teardown
messages that complete the teardown of the vset-path. This also

provides a robust mechanism to abort incorrect vset-path operations
when local consistency checks fail. This abort mechanism is used
to handle several complex but infrequent corner cases, for example,
to teardown a vset-path when a setup message loops.

Nodes repair vset-paths to their virtual neighbors when the paths
fail. When a node receives a teardown message for a vset-path for
which it is an endpoint, it removes the other endpoint from its vset
and sends a setup req message to that node, as shown in Figure 4.
This message is retransmitted up to a maximum number of times
(for example, five), which usually is sufficient to setup a new vset-
path to the same neighbor if it is alive and it is reachable. When the
neighbor is dead or unreachable, VRR delivers the setup req mes-
sage to the node with identifier closest to the dead virtual neighbor.
If this node is the appropriate replacement neighbor, it replies with a
setup message. Otherwise, it replies with a setup fail message that
almost always includes the identity of the replacement neighbor.
When this mechanism fails to setup a vset-path to a replacement
neighbor, VRR repeats the join procedure but this is rare even for
small vset sizes (e.g., r = 4).

3.3.3 Local vset-path repair
Tearing down the full vset-path when a link fails can be unneces-

sary. Instead, VRR can perform local repair by replacing only the
link that failed by an alternative route when possible. Local repair
has been used before, for example, DSR [22] uses the route cache
to find alternative routes on link failures but it communicates the
new route back to the source.

VRR’s vset-path repair mechanism is truly local — it only in-
volves the nodes around the failed link. Since VRR does not rely on
source routes or end-to-end path metrics like hop count, it can per-
form local repair without communicating with any of the endpoints.
Therefore, the cost of local repair is constant in VRR whereas the
cost of repair in previous mechanisms grows with the path length.

To support local repair, we extend the state stored in the routing
table for each vset-path. When setting up a vset-path, each node
stores both a nextA and a nextnextA field for the path. They record
the identifiers of the first and second hops towards the endpoint
that originates the vset-path setup message (endpointA). This is
achieved simply by adding a prev field to setup messages to record
the node visited by the message before the sender.

The idea behind local repair is simple: when a node x detects a
failed link to a node y, it determines the set of all vset-paths in the
routing table that use y as their next hop. For each vset-path where
nextA = y, x searches for an alternate nextA that can bypass the
failed link. If endpointA is a physical neighbor, x patches the vset-
path directly to endpointA . Otherwise, if nextnextA is a physical
neighbor, x patches the vset-path to nextnextA. These two cases are
checked first because they allow x to repair and shorten the vset-
path at the same time. If these checks fail, x searches for a physical
neighbor with a link to nextnextA. If there is such a neighbor w, the
path can be repaired by replacing the failed link with a link from
x to w and another link from w to nextnextA. This transformation
does not increase the path length, and finding w requires only a
local search in the routing table because routing tables have paths
to nodes within a 2-hop radius.

For the vset-paths where nextB = y, x simply delays the tear-
down by a period of (k +1)Th + δt seconds, which is the expected
time for the node on the other side of the link to detect the failure
plus some time to complete repair. If during that period it receives
a message from a node wishing to repair the entry, it cancels the
teardown. Otherwise, after the period it tears down the path.

The local repair algorithm uses simple local consistency checks
that are conservative and trigger teardowns when they fail. It en-
sures that either the path is successfully repaired or torn down.



3.3.4 Partitions
Node and link failures may partition the network. When this hap-

pens, the algorithm ensures that nodes form separate rings. Typi-
cally, they form one ring in each partition, which enables the nodes
in a partition to communicate with each other. However, the algo-
rithm that we described so far is not sufficient to ensure that these
rings converge to a single ring when the partition heals. This section
describes a mechanism to ensure this.

The mechanism picks a representative from each separate ring
and uses hello messages to maintain routes from each node to each
representative. These routes are not vset-paths but they are in-
serted in the routing table like routes to one- and two-hop neigh-
bors. When an active node learns about a representative that should
be in its vset, it sends a setup message to that representative and
adds the representative’s identifier to its vset. The routes to repre-
sentatives ensure that this message can be routed across partitioned
rings. Receiving the setup triggers the vset stabilization mecha-
nism described in Figure 4, which ensures that the separate rings
are merged into one in the absence of further node and link failures.
If the merge fails, the nodes form separate rings and the process is
repeated.

The representative for a ring is the node whose identifier is clos-
est to zero in the ring. Each node can determine locally whether it
is a representative by inspecting its vset. VRR uses a mechanism
similar to DSDV [34] to maintain routes between each node and a
representative. It piggybacks updates to these routes in every hello
message. The updates have a sequence number that is incremented
by the representative before each hello to prevent loops. Nodes stop
sending route updates for a representative if they do not receive an
update with a fresh sequence number for more than kTh seconds.

To keep the overhead low, nodes only send route updates for
the two representatives whose identifiers are closest to zero from
among those they have fresh routes to. This is sufficient to merge
two rings at a time and it ensures that the overhead is constant. The
partition repair mechanism does not add additional messages and
only adds a small amount of data to hello messages. In contrast,
route update messages in DSDV [34] have size O(n). Addition-
ally, we eliminate unnecessary messages by having nodes send a
setup to a representative only when they receive route updates for
two representatives in a hello message and only to the representa-
tive farthest away from zero.

4. EVALUATION
We evaluated VRR using both simulations on ns-2 [1] and mea-

surements of two prototypes running on different testbeds: a 67-
node sensor network [20] and a 30-node 802.11a network of Win-
dows PCs. The simulations compared the performance of VRR
with DSR [22], AODV [35], and DSDV [34], which are represen-
tative wireless routing protocols with well tuned implementations
in ns-2. DSR and AODV are reactive protocols and DSDV is a
proactive protocol. We compared the performance of the sensor
network prototype with BVR [15] and the performance of the Win-
dows prototype with MR-LQSR [10, 11]. BVR is representative of
the state of the art in protocols that route using location-dependent
addresses, and MR-LQSR is representative of the state of the art in
wireless mesh routing protocols.

We ran a large number of experiments. The results show that
VRR performs well across all the experiments. Other protocols
tend to perform well on some experiments but poorly on others.

4.1 Simulations
The simulation experiments ran on ns-2.27 using the wireless ex-

tensions developed by the CMU Monarch project [3]. They simu-

lated an 802.11b wireless network running at 11Mbps. We ran a
large set of experiments to explore the impact of different workload
and environmental parameters on the performance of the routing
protocols; we varied the rate of mobility, the traffic load offered by
each node, the number of nodes, and the lifetime of network flows.

4.1.1 Protocols
We compared the performance of VRR, DSR, AODV and DSDV.

This VRR implementation supports the local repair optimization. It
was configured to use 4-byte node identifiers, a vset size of four
(r = 4), and a hello period of one second (Th = 1s). We used the
default parameters for the other protocols, which are carefully tuned
to this simulation environment. The four routing protocols unicast
data packets, use link failure notifications, and do not use RTS/CTS.
We modified all the routing protocols not to use the ARP protocol
to translate the addresses of physical neighbors, because this can in-
troduce significant delays that obscure the performance differences
between the protocols. It is easy to populate ARP caches with the
MAC addresses of physical neighbors using VRR’s hello messages.

4.1.2 Experimental setup
Our experimental setup is very similar to the one used in [3] to

facilitate comparison with previous work. The base configuration
simulates 50 mobile nodes randomly distributed over a 1500m ×
300m plane as in [3]. We vary the number of nodes from 25 to 200
and adjust the plane dimensions to keep the density of nodes per
square meter constant and to preserve the aspect ratio. For example,
we ran 200-node simulations in a 3000m × 600m plane.

We ran experiments with and without mobility. The mobility pat-
terns were generated using the random trip mobility model [2] that
fixes the slow convergence problems [42] of the original random
waypoint model [23]. In this model, each node selects a destina-
tion coordinate uniformly at random within the plane and moves
towards that coordinate at constant speed. When it reaches the des-
tination, the node selects a new destination and speed without paus-
ing. We show results for two scenarios that represent extremes: the
static scenario with no movement and the 20m/s mobility scenario
with fast movement. Nodes select speeds uniformly at random from
the interval (0,20] m/s in the mobility scenario.

All the experiments ran for 1900 seconds with measurements
taken only during the last 900 seconds. The initial 1000 seconds
were used to ensure that the routing protocols reached steady state.
The results that we present do not include the overhead to initialize
routing information when the network starts. For VRR, this over-
head was small and routing state converged fast. For example when
starting a static network with 200 nodes, the average number of
control messages per node (excluding hello messages) was 110.4
and all nodes were active after 24.3 seconds. In contrast, a single
flood of the network requires 200 messages.

The experiments used a variable number of UDP constant bit rate
sources (CBR) as in [3]. In the default configuration each node
picks a random destination and starts sending 100 byte packets to
that destination at a random time in the interval [1000,1180] sec-
onds and at the rate of one per second [3]. We also ran experiments
varying the number of CBRs and their lifetime.

4.1.3 Evaluation metrics
We measured the fraction of CBR packets delivered correctly, the

end-to-end delay for these packets, and the number of router-level
messages per correct delivery (i.e., the number of messages passed
down to the MAC divided by the number of CBR packets delivered
correctly). Each experiment ran five times with different seeds and
we present the average result for each metric. We used the same
traffic, topology, and mobility patterns for all protocols.



(a) Packets delivered correctly (b) End-to-end delay (c) Message overhead

Figure 6: Performance with increasing number of CBR flows in the static scenario.

(a) Packets delivered correctly (b) End-to-end delay (c) Message overhead

Figure 7: Performance with increasing number of CBR flows in the 20m/s mobility scenario.

4.1.4 Performance with increasing traffic load
The first set of experiments compared the performance of the

routing protocols with increasing traffic load while keeping the size
of the network constant at 100 nodes. We varied the total number
of CBR flows between 1 and 200. With less than 100 flows, we
selected sources randomly such that each node sourced at most one
flow. With 100 or more flows, each node sourced at least one flow
and the sources for the additional flows were selected randomly
such that no node sourced more than two flows. The destination of
each CBR flow was selected randomly. Figures 6 and 7 show the
results for the static and mobility scenarios, respectively.

In the static scenario, all protocols achieve nearly perfect deliv-
ery ratios and low delays with 100 flows or less. As the number of
flows increases, the delivery ratio drops and delays increase due to
congestion. The delays of DSR, DSDV, and AODV increase dra-
matically because they queue packets while they repair routes that
fail due to congestion. This strategy improves delivery ratios but it
results in high delays. Additionally, packets spend more time in the
interface queues because of collision avoidance and packet retrans-
missions at the MAC layer. The delivery ratio decreases because
packets are dropped when the router or interface queues fill up.

VRR achieves low delay because it never queues packets waiting
for routes and it can achieve good delivery ratio because it can route
around failed links most of the time.

Figure 6(c) shows a high overhead per delivery for DSDV and
VRR with one CBR flow. This is because both protocols send con-
trol messages periodically between physical neighbors. DSR and
AODV do not send these messages. In real wireless environments,
periodic messages are required to estimate link quality [10].

The results for the mobility scenario in Figure 7 show similar
trends. The difference is that routes fail not only because of conges-
tion as the number of flows increases but also because nodes move.
For DSR, DSDV, and AODV, this results in more packets queued
waiting for routes and even higher delays. DSDV achieves low de-
livery ratios even without congestion because routing tables are not
sufficiently up to date. VRR achieves the highest delivery ratios

and lowest delays because of the reasons mentioned before. Ad-
ditionally, it tends to move vset-path links from fast moving nodes
to slow moving nodes because links that do not fail do not change
and those that fail are moved to new nodes. This simple mechanism
to learn good routes is similar to the one used in DAR to perform
dynamic routing in circuit-switched networks [25].

4.1.5 Performance with increasing network size
The second set of experiments evaluates the performance of the

routing protocols as the number of nodes increases while keeping
the traffic load offered by each node constant. We varied the number
of nodes from 25 to 200 and each node sourced CBR traffic to a
single random destination. Figures 8 and 9 show the results for the
static and mobility scenarios, respectively.

Figure 8 shows that all protocols achieve high delivery ratios and
low delays with 125 nodes or less. With more nodes, delivery ra-
tios drop and delays increase due to congestion. The delays of DSR,
AODV, and DSDV grow high with more than 125 nodes. As in the
previous set of experiments, the delays grow because these proto-
cols queue packets waiting for routes that failed and also because
packets spend more time in interface queues. Increasing the net-
work size aggravates the problem because the message overhead to
repair routes grows and longer routes are more likely to fail. The
large increase in messages per correct delivery for DSR and AODV
in Figure 8(c) illustrates this problem. These protocols incur a high
overhead to repair a failed route because they use flooding. DSDV
has a low message overhead because it uses damping to reduce the
number of control messages and aggregates several routing table
updates in a single control message. However, this results in large
control messages and less consistent routing tables.

The results with mobility are similar but there are more route
failures because nodes move. In both scenarios, VRR achieves low
delays for all network sizes with good delivery ratios. It can do this
for the reasons mentioned in the previous section and because it can
repair routes with lower overhead than the other protocols.



(a) Packets delivered correctly (b) End-to-end delay (c) Message overhead

Figure 8: Performance with increasing network size in the static scenario.

(a) Packets delivered correctly (b) End-to-end delay (c) Message overhead

Figure 9: Performance with increasing network size in the 20 m/s mobility scenario.

4.1.6 Performance with short-lived flows
The final set of simulations compared protocol performance with

short-lived flows. They used the same experimental setting as the
previous set, except that nodes chose a random destination for each
packet (instead of always sending packets to the same destination).
Figures 10 and 11 show the results without and with mobility.

The results for DSDV and VRR are very similar to those obtained
with long-lived flows because these protocols do not discover routes
on demand. DSDV maintains routes between all pairs of nodes
proactively, and VRR maintains routes between virtual ring neigh-
bors that can be used to route between any pair of nodes. DSR and
AODV perform badly in this scenario because they discover routes
on demand by flooding the network. They cannot amortize the cost
of discovery over many data packets because flows are short lived.
Figures 10(c) and 11(c) show that the overhead per delivery in DSR
and AODV grows quadratically with the number of nodes. Traffic
patterns with short-lived flows to random destinations are likely for
applications running on DHTs. Therefore, layering existing DHTs
on top of reactive protocols is unlikely to work well and proactive
protocols perform poorly with mobility.

4.1.7 Stretch
We also measured VRR’s stretch, that is, the average ratio be-

tween the number of hops traversed by a message and the length of
the shortest path between source and destination. We used the same
experimental setting except that the packet rate was decreased to
0.1 packets per second to ensure a high delivery ratio for all net-
work sizes. Figure 12(a) shows the stretch for different network
sizes, Figure 12(b) shows the stretch distribution for different short-
est path lengths between source and destination, and Figure 12(c)
shows the distribution of shortest path lengths.

The stretch increases with the network size but it stays below
40% up to 200 nodes. Our rough analysis predicted constant stretch
but it ignored the use of routes to one- and two-hop neighbors when
forwarding packets. This optimization reduces stretch but its impact
decreases with the network size.

VRR preserves locality of communication, which is important to
achieve scalability. As shown in Figure 12(b), there is no stretch
when the distance between source and destination is less than three
hops, and the stretch is relatively independent of the distance in
other cases. If VRR did not preserve communication locality, the
average number of hops to deliver a message would be independent
of the distance between the source and the destination. For exam-
ple, the stretch when the source and destination are three hops apart
would be 2.67 (because the average number of hops to deliver a
message is 8.01). Since VRR preserves locality of communication,
this stretch is only 1.57.

4.2 Sensor network testbed
We compared the performance of VRR and BVR [15] on a sen-

sor network testbed with 67 mica2dot [20] motes distributed over a
single floor of the U.C. Berkeley computer science building. BVR
is representative of the state of the art in coordinate-based routing
and it has an implementation that runs on mica2dot motes.

4.2.1 Protocols
We implemented VRR on mica2dot motes running TinyOS [27].

The implementation was written in nesC [17] and it was configured
to use 1-byte node identifiers, a vset size of four (r = 4), and a hello
period of 10 seconds (Th = 10s). The hello period is large because
the data rate of the mica2dot radios is only 19.2Kb/s. This imple-
mentation does not support local repair because this optimization
provides little benefit in static networks.

We used the BVR implementation described in [15] with a small
number of performance improvements [14]. Each BVR node has
both a unique identifier and a coordinate that reflects its current lo-
cation in the network. Coordinates are a vector with the distances
in hops to a set of beacons. BVR forwards packets greedily to
the neighbor whose coordinate is closest to the destination. When
greedy forwarding fails, the packet is sent towards the beacon clos-
est to the destination. If the packet reaches the beacon, it is flooded
with scope equal to the distance between the destination and the



(a) Packets delivered correctly (b) End-to-end delay (c) Message overhead

Figure 10: Performance with short-lived CBR flows in the static scenario.

(a) Packets delivered correctly (b) End-to-end delay (c) Message overhead

Figure 11: Performance with short-lived CBR flows in the 20m/s mobility scenario.

beacon. BVR ran with the parameters in [15] and with eight ran-
domly placed beacons. We experimented with different numbers of
beacons and chose eight because it provided the best performance.

Both protocols use a link quality estimator based on the algo-
rithm proposed in [41] with parameters tuned using empirical data
gathered from the testbed. The network diameter with BVR’s esti-
mator is 7. VRR nodes use this estimator to select the members of
their physical neighbor set; only links with quality above a thresh-
old are selected.

The mica2dot radios send fixed size packets with a data payload
of 28 bytes. VRR adds a header with the identifier of the destination
mote. BVR adds a header with the identifier of the destination mote,
the coordinate of the destination, and a vector representing the min-
imum distance observed. With 8-bit identifiers, 4-bit distances, and
8 beacons, BVR’s header uses 32% of the payload. VRR’s header
uses less than 4% of the payload. It is possible to reduce BVR’s
overhead but this is likely to reduce delivery ratios. The experi-
ments that we ran do not penalize BVR for this overhead: they send
packets at the same rate for both protocols and count the fraction of
packets delivered.

BVR does not implement a service to map between unique iden-
tifiers and the current coordinates of a node. The experiments used
the testbed’s wired control network to obtain the current coordi-
nates of destination nodes (as in [15]). Running a mapping service
would likely decrease the routing performance of BVR and it will
be necessary for some applications.

4.2.2 Experiments
The experimental results are averaged over five runs and the motes

acting as beacons were chosen randomly each run.
The first experiment measured the fraction of data packets deliv-

ered successfully with increasing traffic (as in [15]). There was a
15 minute warmup phase without traffic. For the next five minutes,
we selected a new source and destination at random every second
and the source sent a data packet to the destination. Afterwards,
the send rate was increased by one every 120 seconds up to 8 pack-

ets per second. Figure 13(a) shows the delivery ratios for VRR and
BVR. BVR achieves nearly perfect delivery ratio with a send rate of
one packet per second but the ratio drops as the send rate increases.
VRR’s delivery ratio is nearly perfect throughout the experiment.

The second experiment measured routing overhead. After a 15
minute warmup phase, we routed 1000 data packets between ran-
domly selected source and destination motes at the rate of one per
second. For each data packet that was delivered successfully, we
counted the number of data packet transmissions. Figure 13(b)
shows a CDF of these transmission counts. The median values for
the two systems are similar but the maximum transmission count
is 10 for VRR and 71 for BVR. This is because of the overhead
incurred by BVR when greedy forwarding fails. Even in static net-
works without packet losses, greedy forwarding may fail between
some pairs of nodes. This problem is not specific to BVR; recover-
ing from greedy forwarding failures is known to introduce overhead
in other coordinate-based routing protocols [26].

The final experiment measured the fraction of packets delivered
successfully with artificially induced mote failures. After an ini-
tial warmup phase of 15 minutes, five random source/destination
pairs were chosen every second from the set of live motes and a
packet was sent between each pair. After 400 seconds, we killed
10% of the motes at random. We ensured that the 7 motes killed
were not BVR beacons because the current BVR implementation
does not support recovery from beacon failures. Beacon failures
would likely have a more dramatic impact on performance. Fig-
ure 13(c) shows the results.

BVR’s delivery ratio is lower than VRR’s with a send rate of five
packets per second (as shown in Figure 13(a)). When the motes
fail, BVR’s delivery ratio drops but later recovers. The ratio drops
because node coordinates change. BVR guarantees delivery when
coordinates are stable [15] but may fail to deliver packets when
they change. Additionally, coordinate changes can increase routing
overhead because of more greedy forwarding failures.

VRR’s delivery ratio is high and it is mostly unaffected by the
mote failures because it can route around them. VRR exploits path



(a) Average stretch (b) Average stretch per minimum distance (c) Distribution of minimum distances

Figure 12: Stretch with short-lived CBR flows in the static scenario.

(a) Delivery rate with varying packet rate (b) Message overhead per packet (c) Packet delivery ratio with failures

Figure 13: Sensor network testbed results.

Figure 14: Floor plan of 802.11a PC testbed.

diversity and reroutes data packets dynamically when it encounters
a failed mote.

The results show that both VRR and BVR perform well in sen-
sor networks. BVR’s performance degrades because of coordinate
instability and overhead to recover from failures of greedy routing.
VRR’s performance appears to be more robust.

4.3 802.11a testbed
The final set of experiments compared the performance of VRR

and MR-LQSR [11] on an 802.11a testbed. The testbed consists
of 30 PCs running Windows XP that are distributed across a single
floor in our office building. As shown in Figure 14, we placed most
machines in offices and a small number in cubicles in open-plan
areas. Each machine is equipped with a single NetGear WAG 311
wireless network card. The diameter of the network is 4.

4.3.1 Protocols
MR-LQSR [11] is the protocol distributed with the Mesh Con-

nectivity Layer (MCL) toolkit from Microsoft Research [10]. MCL
adds a new kernel module that appears as a virtual network adapter
to the Windows TCP/IP stack, which allows the use of unmodified
IP-based protocols and applications over the wireless mesh.

MR-LQSR represents the state of the art in wireless mesh rout-
ing. It modifies DSR to take into account link quality metrics when
choosing routes. It uses a metric called Expected Transmission
Time (ETT) that is computed using the Expected Transmission Count
(ETX) [7] and an estimate of the link bandwidth from packet pair.

The Windows implementation of VRR replaces MR-LQSR as
the routing protocol in the MCL framework. It exploits the ETX and
bandwidth estimates computed by MCL to select the machines in
physical neighbor sets; only links with ETX and bandwidth values
above a threshold are selected. Additionally, VRR includes link
quality metrics for each physical neighbor in hello messages. These
are used to select between alternate two-hop routes to a node when
forwarding a message: if there are multiple two-hop paths to the
endpoint with identifier closest to the destination, VRR selects the
path with lowest ETT. VRR was configured to use a vset size of
four (r = 4), and a hello period of two seconds (Th = 2s). Both
MR-LQSR and VRR route using 48-bit virtual MAC addresses.

4.3.2 Experiments
The first experiment compared TCP throughput. We used ttcp to

transfer 8MB between all pairs of machines. We ran each transfer
to completion before starting a new one. The experiment was run
three times and VRR identifiers were selected randomly before each
run. Figure 15(a) shows a CDF of the ratio between the through-
puts of MR-LQSR and VRR for each pair of nodes for all three
runs. VRR outperforms MR-LQSR when the ratio is less than one.
Figure 15(b) shows the mean throughput between each machine and
all other machines averaged over the three runs.

For 70% of the pairs in Figure 15(a), VRR has higher through-
put than MR-LQSR. The results in Figure 15(b) also show better
throughput for VRR: the average across all machines is 7.5 Mbps
for VRR and 6.5 Mbps for MR-LQSR. Interestingly, these through-
puts are higher than those provided by 802.11b wireless infrastruc-
tures that are still in widespread use.

VRR can achieve better throughputs that MR-LQSR because it
has lower per-packet overhead. MR-LQSR uses an MTU of only
1,280 bytes to reserve space in the packet for its headers, which
include not only the source route but also per-link quality metrics.
In contrast, VRR only needs the destination identifier in the packet
and, therefore, it can use an MTU of 1,436 bytes.



(a) Bandwidth comparison with MR-LQSR. (b) Bandwidth comparison with MR-LQSR. (c) Five concurrent flows.

Figure 15: 802.11a testbed results.

We also measured throughput in a heavily loaded network with
five concurrent ttcp transfers. We transferred 48MB of data be-
tween five random pairs of machines and started all transfers at the
same time. We ran the experiment three times between the same
pairs of machines. Figure 15(c) shows the ratio between the av-
erage throughputs of MR-LQSR and VRR for each pair of nodes.
The results show that VRR’s throughput is 18% better on average.

The final experiment compared ICMP ping delays. We measured
10 round trip delays between all pairs of machines. Both systems
achieved very similar delays. The averages were 3.2ms for MR-
LQSR and 3.4ms for VRR. We observed a loss rate below 0.01%
for both systems.

4.4 Discussion
Our experimental results show that VRR performs well over a

wide range of wireless environments and workloads.
The simulation results show that VRR achieves low delays and

good delivery ratios in all experiments. The other protocols perform
well in some experiments but poorly in others. It is particularly
interesting that VRR can achieve lower delays because it inflates the
length of routing paths relative to the shortest paths discovered by
the other protocols. It can achieve this because it can route around
failures without waiting for routes to be repaired, and because it can
repair vset-paths efficiently. The sensor network experiments also
show that VRR’s performance is more robust than BVR’s. Finally,
the results from the 802.11a testbed show that VRR performs as
well as MR-LQSR, even though the simulation results indicate that
this is not the most favorable scenario for VRR.

5. RELATED WORK
There has been a large amount of work on wireless routing pro-

tocols. These protocols can be classified into five major types: re-
active, proactive, hybrid, hierarchical, and coordinate-based.

Reactive protocols perform route discovery on-demand by flood-
ing the network and they delay packets until the routes are set up.
For example, AODV [35], DSR [22] and TORA [32] are reactive
protocols. Proactive protocols maintain routes between all pairs of
nodes. They flood information across the network whenever the
topology changes, but they do not incur delay or overhead to dis-
cover routes on demand. DSDV [34], OLSR [6], and WRP [31] are
examples of proactive protocols.

In general, proactive protocols work well in static scenarios while
reactive protocols work best in mobile scenarios. Hybrid proto-
cols such as ZRP [18] and SHARP [37] achieve good performance
across a wider range of scenarios by combining both reactive and
proactive components. They divide the network into zones. Nodes
maintain routes proactively within their zone by flooding topology
changes within the zone. Routes between zones are discovered on
demand with an optimized flooding mechanism.

Hierarchical and coordinate-based protocols do not flood the net-
work. For example, LANMAR [33] and L+ [5] are hierarchical pro-
tocols, and GPSR [24] and BVR [15] are coordinate-based proto-
cols. They use location-dependent addresses to route. These identi-
fiers can change with mobility and, in some protocols, with conges-
tion and failures [5, 33, 15]. Therefore, these protocols use both a
fixed identifier and a location-dependent address for each node and
they usually require mechanisms to lookup the location of a node
given its fixed identifier [28]. These mechanisms reduce resilience
to failures, introduce overhead, and increase complexity.

VRR represents a unique point in the design space. Each VRR
node maintains a small number of paths to its vset members proac-
tively. These vset-paths are built and maintained without flood-
ing. VRR is able to forward packets between any pair of nodes
using these vset-paths without any route discovery overhead or de-
lay. VRR avoids the problems with changes in location-dependent
address because it only uses fixed identifiers.

The design of VRR is inspired by structured overlay routing pro-
tocols used in DHTs, for example, [38, 40, 44, 39]. Chord [40]
and Pastry [39] both organize nodes in a virtual ring and maintain
sets with the closest virtual neighbors of each node. The big dif-
ference is that DHTs assume an underlying network routing pro-
tocol that provides connectivity between all pairs of nodes. VRR
is a network routing protocol; it is implemented directly on top of
the link layer. Another difference is that VRR does not maintain a
finger table like Chord or Pastry; VRR nodes only maintain paths
to their virtual neighbors. The fingers are replaced by information
about vset-paths that do not end at the node but are routed through
it. VRR provides both point-to-point routing and DHT functional-
ity. Many of the current applications built on top of DHTs could be
efficiently supported by VRR.

There has been some recent work on providing DHT routing
without perfect connectivity between all pairs of overlay nodes. The
Unmanaged Internet Protocol (UIP) [16] introduces a routing layer
above IP that can route around discontinuities and failures in the In-
ternet. The design of UIP is derived from the Kademlia DHT [29]
and is focused on NAT and firewall traversal. FreePastry [19] uses
a limited form of source routing to ensure that a node can commu-
nicate with its virtual neighbors.

There have been several proposals for combining DHTs with
wireless network routing, for example, PeerNet [13], DPSR [21,
36], MADPastry [43] and CrossROAD [8]. PeerNet [13] and MAD-
Pastry [43] route using location-dependent addresses, which has
the disadvantages we mentioned before. In DPSR [21, 36], each
node maintains a finger table similar to Pastry’s, but it stores source
routes to the nodes pointed to by each finger. DPSR uses flooding
to discover the source routes. CrossROAD [8] implements a DHT
on top of OLSR, which is a proactive link-state protocol that floods
topology changes to all nodes. Since each node knows the identity



of all the other nodes in the network, it can determine locally the
node whose identifier is closest to a hash table key and route a mes-
sage to that node using OLSR. Unlike these systems, VRR does not
use flooding or location-dependent addresses.

6. CONCLUSIONS
Virtual Ring Routing is a novel network routing protocol that

provides both point-to-point routing and DHT functionality. VRR
routes using only fixed location independent identifiers that deter-
mine the positions of nodes in a virtual ring. Each node maintains
a small number of paths proactively to its neighbors in the virtual
ring. These paths can be used to forward messages between any pair
of nodes and they can be set up and maintained without flooding.

In this paper, we evaluated VRR in the context of ad hoc wire-
less networks. We have presented simulation results and results
from two implementations running on wireless testbeds. The re-
sults demonstrate that VRR provides robust performance across a
range of different environments and workloads. We believe that
VRR could be used to route in other types of networks, for exam-
ple, in enterprise networks or even in the Internet.

Acknowledgements
We would like to thank Christian Huitema and Gabriel Montenegro
for many useful discussions on VRR.

7. REFERENCES
[1] ns-2 network simulator. http://www.isi.edu/nsnam/ns/.
[2] J.-Y. Le Boudec and M. Vojnovic. Perfect simulation and stationarity

of a class of mobility models. In Infocom, 2005.
[3] J. Broch, D. Maltz, D. Johnson, Y. Hu, and J. Jetcheva. A

performance comparison of multi-hop wireless ad hoc network
routing protocols. In Mobicom, October 1998.

[4] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wallach.
Secure routing for structured peer-to-peer overlay networks. In OSDI,
December 2002.

[5] B. Chen and R. Morris. L+: scalable landmark routing and address
lookup for multi-hop wireless networks. In Technical Report 837,
MIT LCS, March 2002.

[6] T. Clausen and P. Jacquet. OLSR RFC3626, October 2003.
http://ietf.org/rfc/rfc3626.txt.

[7] D. De Couto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput
path metric for multi-hop wireless routing. In Mobicom, 2003.

[8] F. Delmastro. From Pastry to CrossROAD: Cross-layer ring overlay
for ad hoc networks. In PerCom Workshops, 2005.

[9] J. Douceur. The sybil attack. In IPTPS, March 2002.
[10] R. Draves, J. Padhye, and B. Zill. Comparison of routing metrics for

static multi-hop wireless networks. In SIGCOMM, August 2004.
[11] R. Draves, J. Padhye, and B. Zill. Routing in multi-radio, multi-hop

wireless mesh networks. In Mobicom, September 2004.
[12] J. Dunagan, N. Harvey, M. Jones, D. Kostic, M. Theimer, and

A. Wolman. Fuse: Lightweight guaranteed distributed failure
notification. In OSDI, December 2004.

[13] J. Eriksson, M. Faloutsos, and S. Krishnamurthy. Peernet: Pushing
peer-to-peer down the stack. In IPTPS, February 2003.

[14] R. Fonseca. Personal communication.
[15] R. Fonseca, S. Ratnasamy, J. Zhao, C. Ee, D. Culler, S. Shenker, and

I. Stoica. Beacon vector routing: Scalable point-to-point in wireless
sensornets. In NSDI, May 2005.

[16] B. Ford. Unmanaged Internet Protocol: Taming the edge network
management crisis. In HotNets II, November 2003.

[17] D. Gay, P. Levis, R. vonBehren, M. Welsh, E. Brewer, and D. Culler.
The nesC Language: A Holistic Approach to Networked Embedded
Systems. In PLDI, June 2003.

[18] Z. J. Haas and M. R. Pearlman. The zone routing protocol (ZRP) for
ad hoc networks. July 2002. Internet-draft,
draft-ietf-manet-zone-zrp-04.txt.

[19] A. Haeberlen, J. Hoye, A. Mislove, and P. Druschel. Consistent Key
Mapping in Structured Overlays. In Technical Report TR05-456, Rice
CS Department, August 2005.

[20] J. Hill and D. Culler. Mica: A wireless platform for deeply embedded
networks. IEEE Micro, 2002.

[21] Y. Hu, H. Pucha, and S. Das. Exploiting the synergy between
peer-to-peer and mobile ad-hoc networks. In Hot-OS IX, May 2003.

[22] D. Johnson and D. Maltz. Dynamic source routing in ad hoc wireless
networks. In Ad Hoc Networking, 2001.

[23] D.B. Johnson and D.A. Maltz. Dynamic source routing in ad hoc
wireless networks. Mobile Computing, 353, 1996.

[24] B. Karp and H. Kung. Greedy perimeter stateless routing for wireless
networks. In Mobicom, August 2000.

[25] P. Key and G. Cope. Distributed Dynamic Routing Schemes. IEEE
Communications Magazine, October 1990.

[26] Y-J Kim, R. Govindan, B. Karp, and S. Shenker. Geographic routing
made practical. In NSDI, May 2005.

[27] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo,
E. Brewer, and D. Culler. The Emergence of Networking
Abstractions and Techniques in TinyOS. In NSDI, March 2004.

[28] J. Li, J. Jannotti, D. De Couto, D. Karger, and R. Morris. A scalable
location service for geographic ad-hoc routing. In Mobicom, August
2000.

[29] P. Maymounkov and D. Mazières. Kademlia: A Peer-to-peer
Information System. In IPTPS, 2002.

[30] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson. Host
identity protocol (HIP), 2004. draft-moskowitz-hip-08.txt.

[31] S. Murthy and J.J. Garcia-Luna-Aceves. An efficient routing protocol
for wireless networks. In Mobile Networks and Applications, 1996.

[32] V. Park and M. Corson. Temporally-ordered routing algorithm
(TORA) version 1: Functional specification. July 2001.
Internet-draft, draft-ietf-manet-tora-spec-04.txt.

[33] G. Pei, M. Gerla, and X. Hong. LANMAR: Landmark routing for
large scale wireless ad hoc networks with group mobility. In
MobiHoc, 2000.

[34] C. Perkins and P. Bhagwat. Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers. In Sigcomm,
August 1994.

[35] C. Perkins and E. Royer. Ad hoc on-demand distance vector routing.
In Mobile Computing Systems and Applications, February 1999.

[36] H. Pucha, S. M. Das, and Y. C. Hu. Imposed route reuse in ad hoc
network routing protocols using structured peer-to-peer overlay
routing. IEEE Transactions on Parallel and Distributed Systems (to
appear), 2006.

[37] V. Ramasubramanian, Z. Haas, and E. Sirer. SHARP: A hybrid
adaptive routing protocol for mobile ad hoc networks. In Mobihoc,
June 2003.

[38] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
scalable content-addressable network. In Sigcomm, August 2001.

[39] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In
Middleware, November 2001.

[40] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet
applications. In Sigcomm, August 2001.

[41] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of
reliable multihop routing in sensor networks. In SenSys, November
2003.

[42] J. Yoon, M. Liu, and B. Noble. Random waypoint considered
harmful. In Infocom, 2003.

[43] T. Zahn and J. Schiller. MADPastry: A DHT substrate for practicably
sized MANETs. In ASWN, June 2005.

[44] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: an infrastructure
for fault-resilient wide-area location and routing. In Technical report
UCB//CSD-01-1141, U.C. Berkeley, April 2001.


