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ABSTRACT: Adding a nonlocal operator to the true Hamiltonian is used to define an
Ž .adiabatic coupling between a noninteracting e.g., Kohn]Sham reference system and the

real one. By using the Hellmann]Feynman theorem, it is shown that when the operator
Ž .added is shifting upward the virtual noninteracting levels the correlation energy is

related to the number of electrons displaced into the virtual levels. To construct
approximations, calculations were performed for the uniform electron gas. The expectation
that atomic systems would behave locally like a uniform electron gas with the unoccupied
levels shifted up by a constant close to the atomic excitation energies is not confirmed by
exploratory calculations on atoms. Some perturbation theory expressions are also given
and suggest an approach to self-interaction free-correlation energy functionals. Q 1998
John Wiley & Sons, Inc. Int J Quant Chem 69: 581]590, 1998

Introduction

ne of the techniques used to obtain moreO Ž .insight into density functional theory DFT
and a supplementary flexibility of the functionals
themselves is the modification of the Hamiltonian.
One common example is the modification of the
electron]electron interaction operator either by a

Ž w xconstant, see, e.g., 1, 2 for the theoretical aspect
w x .or 3, 4 for its applications or by splitting it into a

Ž w x.short- and a long-range part, see, e.g., 5 . Alter-
natively, one-electron nonlocal operators can be

w xused 6 . Such approaches are promising alterna-

Correspondence to: A. Savin.

w xtives to the widely used Kohn]Sham schemes 7 .
As introducing supplementary one-body operators
seems to be a good compromise between the wish
of supplementary flexibility in density functional
schemes and computational flexibility, this article
will discuss a very simple one, which shifts up all
unoccupied levels of some effective one-electron
Hamiltonian by an arbitrary constant.* A motiva-
tion for this approach is a question which is some-
times raised in connection with the local density

Žapproximation which transfers the correlation en-
.ergy per particle from the uniform electron gas :

Would it be better to transfer the correlation en-
ergy per particle from a uniform electron gas with

* A local one-body operator will, of course, not modify the
Kohn]Sham scheme.
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a gap? A physical argument in favor of such a
change is the significant difference in the spectrum
in a system such as an atom, a molecule, or an
insulator, on the one hand, and in the uniform
electron gas, on the other hand, the most striking
feature being the absence of a gap for the latter.
This reminds one, of course, of Callaway’s ap-

w xproach for describing insulators 8 . We would like
to mention that some of its drawbacks are not

w xpresent in Penn’s model 9 , which has been al-
ready used as a reference for approximations
w x10, 11 . For the sake of simplicity, however, we
will stick in the present article to the rigid shift of
the energy levels by a constant.

The article is structured as follows: In the first
part of the article, we present the level-shifting

Žalternative to the usual electron]electron interac-
w x.tion switch-on 1, 2 adiabatic coupling theorm.

The second part contains some aspects of perturba-
tion theory in the present context. Later, some
policies of constructing approximations will be
shown. For these, the correlation energies of a
uniform electron gas with a gap will be given. The
last part shows the effect of simple approximations
when applied to simple systems like the helium
and beryllium atoms.

Adiabatic Coupling Formula

Let us consider a model N-body Hamiltonian
ˆ G ˆŽ .H derived from the true one H by adding a
given one-body nonlocal operator, o, multiplied byˆ
a positive number G which we will choose to
vary. The expectation value is

ˆ G ˆ 3 3² : Ž . Ž . Ž .² :H s H q G o r , r 9 g r 9, r d r d r 9, 1H

Ž .where g r 9, r is the reduced one-body density
matrix. With the minimizing wave function, one
obtains the ground-state energy of the model

G ˆ G² :system, E s H . For each G, the Hellmann]
Feynman theorem can be applied, yielding

G Ž . G Ž . 3 3 Ž . E r G s o r , r 9 g r 9, r d r d r 9, 2H
GŽ .where g r 9, r is the reduced one-body density

matrix obtained from the wave function minimiz-
ˆ G †² :ing H . This equation can also be written in

† w xSee a formally similar approach in 12 .

integral form:

G1G G G1 2E y E s  E r G dGH
G2

G1 G 3 3Ž . Ž .s dG o r , r 9 g r 9, r d r d r 9.H H
G2

Ž .3

Up to now, the operator o is general. In thisˆ
article, however, a simple form will be chosen
for o:̂

virtual
UŽ . Ž . Ž . Ž .o r , r 9 s w r w r 9 , 4Ýs i i

i

which is a projection operator onto some orbital
space. The orbitals w can be thought of being thei
eigenfunctions of some one-body Hamiltonian, e.g.,
the Kohn]Sham or Hartree]Fock Hamiltonian. We
have restricted ourselves again, by limiting the
sum to being performed over those not occupied
in the ground state of the Hamiltonian.‡ By using
the completeness relationship,

occupied virtual
U UŽ . Ž . Ž . Ž . Ž .w r w r 9 q w r w r 9 s d r y r 9 ,Ý Ýi i i i

i i

the sum over the virtual orbitals can be eliminated
in favor of that on the occupied ones to yield

Ž . Ž . Ž . Ž .o r , r 9 s d r y r 9 y p r , r 9 , 5s

Ž .where p r, r 9 is a projection operator onto the
space of the occupied orbitals. For a closed-shell

Ž .system, p r, r 9 is

Nr2
UŽ . Ž . Ž . Ž .p r , r 9 s w r w r 9 . 6Ý i i

is1

Two limiting values of G are of special interest:
Ž GG s 0 which transforms E into the expectation

.value of the true Hamiltonian and G ª `. As
ˆ G² :H o g is nonnegative, at large G, the minimal Hs

will be reached when H o g ª 0, i.e., when only thes
Ž .occupied Hartree]Fock or Kohn]Sham orbitals

are used to construct the minimizing wave func-
tion. Thus, EG ª` becomes the expectation value
of the minimizing wave function in the space pre-

Ž . Ž .sent in p r, r 9 . With the choice made in Eq. 4 ,
Žone can now obtain the Wigner]Lowdin or¨

‡ More general forms can be used, e.g., by making a selec-
tion within the space of virtual orbitals, yielding room for
multideterminant reference wave functions or by having differ-
ent weights for each of the orbitals, shifting the orbitals in a
nonuniform fashion.
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. ŽKohn]Sham correlation energy in the ‘‘quantum
chemistry’’ or one of the ‘‘density functional’’

.definitions, respectively :

Gs 0 G ª` Ž .E s E y E . 7c

A generalized form is

G G G ª` Ž .E s E y E . 8c

Ž . GAccording to Eq. 3 , E can be rewritten asc

`
G G 3 3Ž . Ž . Ž .E s y dG o r , r 9 g r 9, r d r d r 9. 9H Hc s

G

Please note that this is an explicit formula for the
correlation energy in terms of first-order density

w GŽ .x Ž w xmatrices g r 9, r cf. 13, 14 for another possi-
.bility . More insight can be gained by expanding

g G in terms of the orthonormal orbitals f :

G Ž . G Ž . U Ž . Ž .g r 9, r s P f r 9 f r 10Ý k l k l
k , l

Ž G .P are expansion coefficients . Then, from Eqs.k l
Ž . Ž . Ž . Ž .2 , 6 , 8 , and 10 ,

Nr2
G G Ž .² : ² : E r G s N y w f P f w , 11Ý Ýc i k k l l i

is1 k , l

where N is the number of electrons in the system
Ž .g has been chosen normalized to N . If the set f
is chosen to be that of the eigenfunctions at G ª `,
then

Nr2
G G E r G s N y PÝc i i

is1

G Ž .s P , 12Ý i i
i)Nr2

which is the number of electrons transferred by
correlation into the G ª ` unoccupied levels. By
integration, the previous equation yields.

`
G G Ž .E s y dG P . 13ÝHc i i

G i)Nr2

The equations above can be also derived in the
case when the wave function is constrained to

Ž w x. Gyield a given density r cf. 15 . Thus, Ec
becomes

ˆ G ˆ G² < < : ² < < :min C H C y lim min F H F .
Cªr Gª` Fªr

G Ž .With the above formula, E is for a given G ac

universal functional of the density: The contribu-
tion of the terms containing the external potential
vanishes, and the projection operator appearing in
ˆ GH can be obtained from the density alone when

ŽKohn]Sham orbitals are used which, of course,
.can be obtained from the density alone . In partic-

Žular, for G s 0, the correlation energy is as ex-
.pected a universal functional of the density.

We will close this section with a short comment
about the significance of the operator o : With thes

Ž .choice made in Eq. 6 , some of the matrix ele-
ˆ Gments of the Hamiltonian H will differ from

ˆthose of H. Deriving effective one-body Hamilto-
ˆ G Žnians from H such as Kohn]Sham or

.Hartree]Fock will normally introduce a supple-
mentary dependence on G, namely, an upward
shift by G of all the unoccupied one-electron levels
of the effective one-electron Hamiltonian, increas-
ing the gap between the occupied and unoccupied
levels by G.

Perturbation Theory

For large values of G, perturbation theory can
be applied to second order and yield

G G ª` Ž y2 . Ž .E s E y CrG q O G , 14

where C is a positive constant. To see this, con-
sider the Epstein]Nesbet unperturbed Hamilto-
nian in the Rayleigh]Schrodinger perturbation¨

w xtheory 16]18 :

ˆ G ˆ G< : ² < < : ² < Ž .H s F F H F F , 15Ý0 I I I I
I

F being Slater determinants. The perturbation op-I
ˆ G ˆ Gerator H y H has only nondiagonal nonzero0

elements. There are, thus, no diagonal elements in
the numerators of the perturbation energy expan-
sion. Furthermore, the one-body operator o hasŝ

only nonzero elements on the diagonal which yield
ˆ G ˆŽ . ² < < : ² < < :with Eq. 6 F H F s F H F q m Gd ,I J I J I I J

where m is the number of spin]orbitals of F notI I

present in p. Thus, G is present in the denomina-
tors only. The first-order contribution to EG van-
ishes, and the n ) 1 contribution to it will have
terms proportional to 1rGn for large G. For exam-
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ple, the second-order term

ˆ ˆ² < < : ² < < :F H F F H F0 I I 0G , 2E s yÝc ˆ ˆ² < < : ² < < :F H F y F H F q m GI/0 I I 0 0 I

Ž .16

becomes for large G

ˆ ˆ² < < : ² < < :1 F H F F H F0 I I 0G , 2 Ž .E ª y . 17Ýc G mII/0

When no singly excited Slater determinants con-
ˆ² < < : Žtribute to the F H F matrix elements e.g.,I 0

when p was constructed from Hartree]Fock
. G , 2orbitals , the expression of E can be furtherc

simplified:

1 ˆ ˆ² < < : ² < < : Ž .C s F H F F H F , 18Ý 0 I I 02
I/0

which can also be written as a functional of F by0
< : ² <using Ý F F s 1:I I I

21 2ˆ ˆ² < < : ² < < : Ž .C s F H F y F H F . 190 0 0 02

Ž .A consequence of Eq. 14 is that

 EG Cc y3Ž . Ž .s y q O G 202 G G

Ž . Gfor G ª `. As by the definition in Eq. 8 , Ec ª 0
for G ª `, it follows that for large G

C
G y2Ž . Ž .E s q O G . 21c G

Approximations

Is a local approximation better if a uniform
electron gas with a gap is used as a reference
system? In other words, is it possible to approxi-
mate the correlation energy by using the correla-
tion energy per particle of the uniform electron gas

Ž .with gap G, « r :c, G

Ž . Ž Ž .. 3 Ž .E f r r « r r d r . 22Hc c , G

A short discussion of this first approximation will
be made below by using some atoms and ions as a
reference. A more general form would be, of
course, to choose the gap locally, e.g., by defining

a local density of states:

Ž . Ž Ž .. 3 Ž .E f r r « r r d r . 23Hc c , GŽ r .

One advantage of such a scheme is that extensivity
can be guaranteed.§

Another type of a local approximation to E canc
be generated from  EGr G. By performing justc

Ž .the integration over r 9 in Eq. 11 or by simply
< Ž . < 2 3 Ž .using the H w r d r s 1 in Eq. 12 ,i

2G G 3Ž . Ž . E r G s P w r d r , 24Ý Hc i i i
i)Nr2

X Ž .and introducing the functions « r ,c, G

2G Ž .Ý P w ri) Nr2 i i iX Ž . Ž .« r s 25c , G Ž .r r

and

`
XŽ . Ž . Ž .« r s y « r dG. 26Hc , G c , G

G

Thus,

G Ž . X Ž . 3 Ž . E r G s r r « r d r 27Hc c , G

and

G Ž . Ž . 3 Ž .E s r r « r d r . 28Hc c , G

We will use the notation « s « when build-c, Gs0 c
ing E .c

As the formulas above are also valid for the
uniform electron gas, we can generate a first ap-

Ž .proximation by assuming that « r , or directlyc, G
Ž .« r , can be transferred from the uniform electronc

Ž .gas with density r r . This is, of course, nothing
Ž .but the usual local density approximation LDA .

As C is a monotonous function of the density in
Ž y2the uniform electron gas it is proportional to r ,s

3 .where r s 4p r r3; see below , we can obtain as
X Ž .second approximation by transferring « r fromc, G

Žthe the uniform electron gas having the same C given
2 X .by lim G « . It is interesting to note that thisG ª` c, g

approximation becomes exact in one-electron sys-
Žtems. There, C s 0 any shift of the virtual levels

.does not change the energy . For the uniform elec-
§ A nontrivial global value of G cannot be found in a way to

ensure that the energy of the system formed by two different
noninteracting subsystems A and B is the same as the sum of
the energies of the subsystems: If the systems are different and
G / G , which of the G has to be used for the compositeA B
system?
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tron gas, C ª ` as r ª `; in this limit, the corre-s
lation energy per particle vanishes. In other words,
transferring the correlation energy per particle from
the uniform electron gas with vanishing C means
that no correlation energy is transferred, in con-
trast to the LDA, where a spurious self-interaction
is present.

Numerical Results: The Uniform
Electron Gas

To obtain uniform electron gas data, we re-
w xpeated Freeman’s coupled-cluster calculations 19

modified only by adding the operator Go for vari-ˆ

ous values of G and r . The results are given ins
Table I. For applications, it is useful to possess an
analytic fit. We used for that purpose a rational
function

« q c Gc 1 Ž .« f 29c , G 21 q c G q c G2 3

and the following input:

B « , the correlation energy per particle at G sc
Ž w x.0 ‘‘exact’’ values 20 .

B
X X« s « , the first derivative of the corre-c c, Gs0

lation energy with respect to the gap G at

TABLE 1
Correlation energies per particle, in mHartree, from coupled cluster calculations for different densities

1/////3 2 2 1/////3˜[ ( ) ] ( )given as r = 3 ///// 4pr and for different gaps G = G ///// k , in atomic units; k = 3p r .s F F

rs

G̃ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 y120.8 y100.9 y89.6 y81.9 y76.1 y71.5 y67.6 y64.4 y61.6
0.1 y89.8 y79.3 y72.6 y67.6 y63.8 y60.6 y57.9 y55.5 y53.5
0.2 y73.3 y66.5 y61.9 y58.3 y55.5 y53.1 y51.0 y49.2 y47.6
0.3 y62.5 y57.7 y54.3 y51.6 y49.4 y47.5 y45.8 y44.4 y43.1
0.4 y54.8 y51.2 y48.5 y46.4 y44.6 y43.1 y41.7 y40.5 y39.4
0.5 y49.0 y46.1 y44.0 y42.2 y40.7 y39.5 y38.3 y37.3 y36.4
0.6 y44.4 y42.0 y40.3 y38.8 y37.6 y36.5 y35.5 y34.6 y33.8
0.7 y40.6 y38.7 y37.2 y36.0 y34.9 y34.0 y33.1 y32.4 y31.7
0.8 y37.5 y35.9 y34.6 y33.5 y32.6 y31.8 y31.1 y30.4 y29.8
0.9 y34.9 y33.5 y32.4 y31.4 y30.6 y29.9 y29.2 y28.7 y28.1
1.0 y32.6 y31.4 y30.4 y29.6 y28.9 y28.2 y27.7 y27.1 y26.6
2.0 y20.1 y19.6 y19.3 y18.9 y18.6 y18.4 y18.1 y17.9 y17.5
3.0 y14.7 y14.5 y14.3 y14.1 y13.9 y13.8 y13.6 y13.5 y13.4
4.0 y11.6 y11.5 y11.4 y11.3 y11.2 y11.1 y11.0 y10.9 y10.8
5.0 y9.7 y9.6 y9.5 y9.4 y9.3 y9.3 y9.2 y9.1 y9.1

10.0 y5.3 y5.3 y5.2 y5.2 y5.2 y5.2 y5.1 y5.1 y5.1

rs

G̃ 1 2 3 4 5 6 7 8 9 10

0.0 y59.1 y44.2 y36.7 y31.8 y28.4 y25.8 y23.7 y22.1 y20.7 y19.4
0.1 y51.6 y40.0 y33.7 y29.6 y26.6 y24.3 y22.5 y21.0 y19.7 y18.6
0.2 y46.1 y36.7 y31.3 y27.8 y25.1 y23.1 y21.4 y20.0 y18.9 y17.9
0.3 y14.9 y33.9 y29.3 y26.1 y23.8 y21.9 y20.4 y19.2 y18.1 y17.2
0.4 y38.4 y31.6 y27.6 y24.7 y22.6 y20.9 y19.5 y18.4 y17.4 y16.5
0.5 y35.5 y29.6 y26.0 y23.5 y21.5 y20.0 y18.7 y17.7 y16.7 y15.9
0.6 y33.1 y27.9 y24.7 y22.4 y20.6 y19.2 y18.0 y17.0 y16.2 y15.4
0.7 y31.0 y26.4 y23.5 y21.4 y19.8 y18.4 y17.3 y16.4 y15.6 y14.9
0.8 y29.2 y25.1 y22.4 y20.5 y19.0 y17.8 y16.7 y15.9 y15.1 y14.4
0.9 y27.6 y23.9 y21.4 y19.7 y18.3 y17.1 y16.2 y15.4 y14.6 y14.0
1.0 y26.2 y22.8 y20.6 y18.9 y17.6 y16.5 y15.6 y14.9 y14.2 y13.6
2.0 y17.5 y15.9 y14.7 y13.8 y13.1 y12.5 y11.9 y11.5 y11.0 y10.7
3.0 y13.2 y12.3 y11.6 y11.0 y10.5 y10.1 y9.7 y9.4 y9.1 y8.8
4.0 y10.7 y10.1 y9.6 y9.2 y8.8 y8.5 y8.2 y8.0 y7.8 y7.6
5.0 y9.0 y8.5 y8.2 y7.9 y7.6 y7.4 y7.2 y7.0 y6.8 y6.6

10.0 y5.1 y4.9 y4.8 y4.7 y4.6 y4.5 y4.4 y4.3 y4.2 y4.2
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ŽG s 0 finite difference coupled cluster
.value; cf. Table II .

B
Y Y« s « , the second derivative of the cor-c c, Gs0

relation energy «Y with respect to the gapc, G
ŽG at G s 0 finite difference coupled cluster

.value; cf. Table II .
B ŽThe coefficient yC of 1rG at G ª ` ex-

trapolation of the coupled cluster or second-
.order perturbation theory values of G« .c

More explicitly,

« X s c y « cc 1 c 2

Y 2Ž .« s 2 « c y c y c cc c 2 3 1 2

Ž .C s yc rc 301 3

or
2X YŽ .2 « y « «c c c

c s C X1 2Ž .2 C« y «c c

2« « X y C«Y
c c c

c s X2 2Ž .2 C« y ec c

2X YŽ .2 « y « «c c c Ž .c s y . 31X3 2Ž .2 C« y «c c

TABLE II
First and second derivative of the correlation
energies at the gap G = 0, from coupled cluster

(calculations, for different densities given as
1/////3( ) )r = 3 ///// 4pr , in atomic units.s

X Yr « «s c c

y 3 y 50.1 1.1349 ? 10 y2.3902 ? 10
y3 y 40.2 2.9533 ? 10 y1.9218 ? 10
y3 y 40.3 5.0630 ? 10 y6.3269 ? 10
y3 y 30.4 7.3488 ? 10 y1.4544 ? 10
y3 y 30.5 9.7524 ? 10 y2.7522 ? 10
y2 y 30.6 1.2239 ? 10 y4.6096 ? 10
y2 y 30.7 1.4786 ? 10 y7.1022 ? 10
y2 y 20.8 1.7376 ? 10 y1.0296 ? 10
y2 y 20.9 1.9930 ? 10 y1.4081 ? 10
y2 y 21.0 2.2502 ? 10 y1.8763 ? 10
y2 y 12.0 4.9413 ? 10 y1.2117 ? 10
y2 y 13.0 7.5618 ? 10 y3.4170 ? 10
y1 y 14.0 1.0118 ? 10 y7.0947 ? 10
y15.0 1.2577 ? 10 y1.2313
y16.0 1.4959 ? 10 y1.9209
y17.0 1.7268 ? 10 y2.7861
y18.0 1.9515 ? 10 y3.8347
y19.0 2.1714 ? 10 y5.0776
y110.0 2.3508 ? 10 y6.2832

The density-dependence of « X was assumed to bec
well represented by

a r 3r2
1 sX Ž .« f , 32c 1r2 3r21 q a r q a r q a r2 s 3 s 1 s

which has the correct type of behavior at low rs
w x Ž .8 . For r ª `, we used Eq. 25 and the Wigners
crystal momentum distribution of March and

w xSampanthar 21, 22 which give a Gaussian
momentum distribution, the exponent vanishing
with r ª `, meaning that in this limit a negligibles
fraction of the electrons remain in the occupied
orbitals. The values obtained for the coefficients
are a s 0.04953, a s 1.07024, and a s 0.07928.1 2 3

Ž . XEquation 12 establishes a relationship between «c
and the relative number of electrons in momentum
states q ) k . Our values compare favorably withF

w xresults from the literature 23]25 . Although a
more detailed analysis is certainly feasible, we
simply assumed that «Y can be approximated by ac

Žpolynomial in r . We got a reasonable fit fors
.0.1 F r F 10 withs

7
Y i Ž .« f b r , 33Ýc i s

is3

where

b s y0.02504,3

b s 0.007026,4

b s y0.001268,5

b s 0.0001136,6

and
b s y0.000003841.7

As C is given by second-order perturbation
theory, a simple scaling shows that it should be
proportional to kq2 . We computed the proportion-F
ality coefficient to be equal to 0.06483 Hartree.5

The quality of the fit was checked by compari-
son with the calculated values of « G. The errors ofc
the fit are comparable to those of the coupled
cluster calculation in the range analyzed.a

5 Ž 2 .The ‘‘direct’’ part can be found analytically to be 14r 15p
Hartrees.

a With the exception of the dependence of « X for small rc s
w x8 , we did not take care of the analytic behavior of the coeffi-
cients; their quality may become worse when used beyond the
range of density values used in our calculations.
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[ ( )]FIGURE 1. Correlation energy per particle in the uniform electron gas with increasing gap as a function of 1 / 1 + G
( )rs = 1, full curve; rs = 2, short-dashed curve; rs = 4, long-dashed curve .

The behavior of « as a function of the gap isc
wshown in Figure 1 for different values of r . Pleases

notice that we have chosen to use as the abscissa
Ž .1r 1 q G , the left-hand end corresponding to the

noninteracting system, and the right-hand end, to
.the real one. The sign of the curvature changes

with the density of the gas: It is positive for high
and negative for low densities.

Numerical Results: Some Atoms
and Ions

To obtain some insight into the effect of the
approximations, we performed some calculations
on small atoms and ions using Gaussian basis sets

w xand the program Molpro 26 . We performed con-
figuration interaction calculations for the He and
the Be series to obtain reliable densities and corre-
lation energies. In Figure 2, we show the change of
the correlation energy per particle with G for the
He and the Be atom. While He seems to behave
like a high-density uniform electron gas, Be shows
a new type of curve. A more detailed analysis
shows, however, that this first impression can be
corrected: When only the valence shell of the Be
atom is correlated, the curve has the curvature
similar to that of a low-density uniform electron
gas, while the core of the Be atom behaves like a

Ž .high-density electron gas cf. Fig. 3 .

To determine an order of magnitude for G in
the first approximation discussed above, we fixed
G by requiring that the approximate correlation
energy equals the exact one. The resulting values
of G are plotted in Figure 4 vs. the ionization
potential of the atomrion. For the He series, the
behavior is quite regular: G is approximately five
times larger than the ionization potential. At first,
this hugh gap might be surprising. One should
remember, however, that the orbitals needed to
describe the correlation are different from those

Ždescribing the excited states the natural orbitals
are in the region of the occupied orbitals, unlike

w xthe diffuse Rydberg orbitals 27 . One can expect
that the use of a local gap might considerably
improve the results, e.g., by considering a measure
of the overlap of the occupied and virtual states.
We expect that exploring the density of the unoc-
cupied states will help improve the results, as the
density of the Rydberg states overlaps only a little
with that of the occupied states. In the Be series, G
is first increasing, but stabilizes for heavier nuclei.
We expect that the continuation of this curve will
be decreasing, finally crossing the abscissa: There
will be no positive gap allowing the equalization
of the correlation energy of the ion with that of a
uniform electron gas with a gap. We deduce this

w xbehavior from Figure 3 of 28 , where one can
guess that with increasing nuclear charge the LDA
correlation energy will be higher than the real one.
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( ) ( ) ( )FIGURE 2. Correlation energy for the He dashed line and the Be atom dotted curve as functions of 1 / 1 + G , in
atomic units.

Ž .As there is no positive gap capable of lowering
the correlation energy of the uniform electron gas,
we deduce the impossibility of correctly represent-
ing the correlation energy of such strongly corre-
lated systems with the approximation given above.
Of course, one could try to include the orbitals

Ž .producing the strong correlation 2 p into the pro-

Ž .jection operator p r, r 9 and the problem just men-
tioned will disappear.

Let us now discuss the second approximation
Žthe transfer of C from the uniform electron

.gas . We used for this exploratory calculation
Hartree]Fock orbitals to define the projector p

Žand performed a quantum chemical multi-

( ) (FIGURE 3. Correlation energy for the BE dotted curve , that obtained by correlating the valence only frozen core,
) ( 2+ ) ( )short-dashed curve and the Be core Be , long-dashed curve , as functions of 1 / 1 + G , in atomic units.
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( )FIGURE 4. Gap yielding the exact correlation energy in the local approximation in the He series full circles and in the
( )Be series empty circles .

.configuration calculation for a large value of G
Ž .typically 50 or 100 to obtain in each point of

X Ž .space « according to Eq. 25 . We next obtainedc, G
2 X Ž . Ž .in each point of the space G « r s C r andc, G

numerically integrated

3 Ž . uni f w Ž .x Ž .d rr r « C r , 34H c

u ni f w Ž .xwhere « C r is the correlation energy perc
particle for the uniform electron gas having the

Ž . **asymptotic behavior yC r rG. We obtained for
the correlation energy of the He Atom 0.09 Hartree
Žwhich is in between the exact value of 0.04 and

.that obtained with LDA at G s 0, 0.11 Hartree .
Similarly, we obtain for the Be atom 0.17 Hartree
Ž .‘‘exact’’ 0.09; LDA at G s 0: 0.22 .

The previous approximation can be refined by
considering a nonzero gap. By simply choosing the

Žgap equal to the ionization potential or the value
of the eigenvalue of the last occupied Kohn]Sham

.orbital: 0.90 for He and 0.34 for Be , we obtain a
considerable improvement: 0.05 Hartree for He

Žand 0.13 Hartree for Be. The local density approxi-
mation values obtained by choosing the gap equal
to the ionization potential are 0.08 and 0.19 Hartree,

.for He and Be, respectively.

** In the special case of the He atom, as only one orbital is
occupied at G ª `, and the density is chosen as the

Ž .Hartree]Fock one; C r is a constant which turns to be that of a
uniform electron gas with r f 2.s

Conclusion

We hope that using model Hamiltonians with
an additional nonlocal one-body operator may help
one to understand density functional theory and to
devise new methods. A new adiabatic coupling
between the real system and the noninteracting

Žone with all unoccupied levels shifted up to infin-
.ity can be used to define the correlation energy.

The formula obtained shows a relationship be-
tween the latter and an electron transfer from the
noninteracting occupied orbitals to the unoccupied
ones, due to correlation. Perturbation theory can
be used to construct the first correction for very
large, but finite gaps. Under certain conditions, the
present perturbation theory yields terms depend-
ing on the reference determinant only, the price to
be paid being expectation values of powers of the
true Hamiltonian H.

Uniform electron gas calculations have been
performed for different densities and values of the
gap parameter G. An analytical approximation is
given for the correlation energy, as well as for its
first and second derivative with respect to G at
zero gap.

Numerical results show that a local approxima-
tion produced by transferring the correlation en-
ergy per particle from a uniform electron gas with
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a gap to simple atomic systems requires values for
the gap which are larger than the atomic ionization
potential. An alternative method was also pre-
sented, in which the perturbation theory second-
order term is correctly treated and extrapolated to
a zero gap by using density functional data. This
approach automatically is self-interaction free.
Numerical results indicate, however, that a more
sophisticated treatment is required to produce
correlation energies with the quality required
nowadays.
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