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Virtual Tawaf:
A Velocity-space-based Solution for Simulating
Heterogeneous Behavior in Dense Crowds

Sean Curtis and Stephen J. Guy and Basim Zafar and Dinesh Manocha

Abstract We present a system to simulate the movement of individual agents in

large-scale crowds performing the Tawaf. The Tawaf serves as a unique test case;

the large crowd consists of a heterogeneous set of pilgrims, varying in both physi-

cal capacity and activity. Furthermore, the density of the crowd reaches extremely

high levels (up to eight people/m2.) This extreme density can place impractical con-

straints on simulation parameters. We use a velocity-space-based pedestrian model

which exhibits consistent results even under extreme density: reciprocal velocity

obstacles (RVO). Furthermore, we extend RVO to include priority and right of way

— agents respond to potential collisions asymmetrically depending on context; one

agent may yield, to varying degrees, to another. Our system uses a finite state ma-

chine to specify the behavior of the agents at each time step, to model the varied

behaviors seen during the Tawaf. The finite-state machine, used in conjunction with

RVO, generates collision-free trajectories for tens of thousands of agents in the per-

formance of the Tawaf. The overall system can model agents with varying age,

gender and behaviors, supporting the heterogeneity observed in the performance of

the Tawaf, even at high densities.
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1.1 Introduction

The Tawaf is one of the Islamic rituals of pilgrimage performed by Muslims when

they visit Al-Masjid al Harām. Located in Makkah, Saudi Arabia, Al-Masjid al

Harām surrounds the Kaaba, the site Muslims around the world turn towards while

performing daily prayers. Al-Masjid al Harām is the largest mosque in the world and

is regarded as Islam’s holiest place. During the Tawaf, Muslim pilgrims circumam-

bulate the Kaaba seven times in a counterclockwise direction, while in supplication

to God.

The Tawaf is performed both during the Umrah and the Hajj. Performing the

Hajj is one of the five pillars of Islam and every Muslim aspires to visit Makkah

at least once in his or her life. Annually, more than two million Muslims perform

the Hajj. While the Hajj has several stages and takes place over several days, all

pilgrims move through the various stages of the Hajj on the same days which creates

limitations in both time and space resulting in very high crowd densities during the

Tawaf, especially on the Mataf, the marble floor of the mosque, in the center of

which stands the Kaaba. During the Hajj season, or the last few days of the month of

Ramadan, as many as 35,000 pilgrims perform Tawaf at the same time in the Mataf

area in Al-Masjid al Harām. Given the large scale of the gathering, it is important to

understand and model the behavior and movement of the crowd to provide insight

which may improve crowd management techniques and help ensure the safety of

the pilgrims.

The Tawaf has several properties which make simulating it particularly challeng-

ing:

Heterogeneous Population: The population of pilgrims varies significantly, span-

ning gender, a wide range of ages and physical capacity, and representing differ-

ent cultures from all over the world.

High Density: The crowd density throughout the Mataf often varies considerably.

It can become as high as eight pilgrims per square meter near the Kaaba [32]. The

extremely high density greatly restricts the movement of the pilgrims.

Varying Velocities: The velocity of the pilgrims in Mataf can vary depending on

many factors such as their distance from the Kaaba and the proximity of struc-

tures on the floor or congestion caused by other agents due to the capacity satu-

ration and geometry of the mosque; the irregular shape of the Mataf is not well

suited to the inherently elliptical movement around the Kaaba.

Complex Motion Flows: Different types of crowd flows have been observed dur-

ing the Tawaf. These flows arise out of the sometimes contradictory intentions of

the many pilgrims; at any given time, pilgrims will be simultaneously trying to

stand still to kiss the Black Stone at the corner of the Kaaba, circumambulate the

Kaaba, or attempt to move orthogonally to the circular flow, inwards, toward the

Kaaba, or outwards, towards the exit, preventing purely circular flow.

Simulating the Tawaf will afford those who administer Al-Masjid al Harām the

ability to evaluate alternative crowd flow control systems or architectural changes

to improve the comfort and safety of the pilgrims and increase the capacity of the
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Mataf. But creating a practical simulator for such a complex scenario is challenging.

The crowd simulator must account for the heterogeneous population, allowing for

large variance in the capabilities and actions of the agents. Furthermore, to capture

the acts of the ritual, the simulator must provide a mechanism in which the activities

and strategies of each agent change with respect to time. These features must be em-

bedded in a computationally efficient simulator. It should scale well with respect to

both the number of virtual pilgrims and increasing density. The greater the computa-

tion time, the less flexibility the simulator provides in evaluating scenario variations

or producing stochastic studies in which multiple runs with randomly perturbed ini-

tial conditions are analyzed in aggregate. Satisfying these challenges and producing

an accurate simulation of complex and dynamic interactions between pedestrians of

this sort remains an open problem.

Main Results In this paper, we describe a system to model the movement of in-

dividual agents in a large-scale crowd performing the Tawaf. To address the above

challenges, we present an agent-based model which combines a velocity-based

pedestrian model to control local interactions between the agents with a finite state

machine (FSM) to model the intentions of each pilgrim. We extend the pedestrian

model with a parameter called priority which governs how the agents divide the

effort to avoid collision between them. In some cases, agents act cooperatively to

avoid collision. In other cases greater priority gives one agent right of way over an-

other agent, causing the agent with less priority to yield. This enables us to model

the asymmetric relationships observed between pilgrims in the Tawaf such as when

pilgrims stop to kiss the Black Stone while others move around them. To model the

changing goals of agents, each state in the FSM encodes a particular behavior which

defines both strategy and tactics for navigating the shared space. The state provides

a function which defines time-dependent values for a sub-space of the agent con-

figuration space, including, but not limited to, such agent properties as preferred

velocity and priority. The pedestrian model computes a collision-free trajectory by

computing a new velocity based on the agent’s time-dependent state. We use several

criteria to transition between the states based on spatial, agent-property, temporal

and stochastic conditions.

The resulting system allows us to simulate crowds of heterogenous individuals,

including variations in age and gender, performing the Tawaf. Each agent is associ-

ated with a unique instance of the pilgrim FSM. The FSM defines the general form

of the Tawaf ritual, but each individual instance can allow for individual variance in

the particular performance. For example, some pilgrims may possess a strong de-

sire to approach the Kaaba, while others avoid the dense region near the Kaaba and

maintain a greater distance.

From these simulations, we measure aggregate behavior such as density and ve-

locity. We also measure Tawaf-specific metrics, such as the time to complete the

Tawaf, and the overall throughput, in terms of the number of pilgrims that can com-

plete the Tawaf per hour and show correlation with empirical observations.

Paper Organization: The rest of the paper is organized as follows. In Sec-

tion 1.2, we survey related work on crowd simulation, behavior modeling, and sim-

ulation of the Tawaf. We discuss the full simulation pipeline in Section 1.3, paying
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particular attention to the formulation of the high-level behavioral finite state ma-

chine. In Section 1.4 we present four models for pedestrian simulation and discuss

their particular suitability for modeling the Tawaf. In addition, we discuss the details

of priority and right of way and illustrate its effect on pedestrian relationships. Sec-

tion 1.5 contains specific details on the actual performance of the Tawaf by living

pilgrims and the mapping to a particular finite state machine. Finally, in Section 1.6

we provide the results of our system.

1.2 Related Work

In this section, we discuss related work in crowd simulation and behavior modeling

for crowds. We also highlight some prior crowd simulation systems designed for

simulating the Tawaf.

1.2.1 Crowd Simulation

There is extensive literature on crowd simulation and many techniques have been

proposed.

Cellular automata (CA) are some of the oldest approaches for crowd simulation.

In CA the workspace of agents is divided into discrete grid cells which can be oc-

cupied by zero or one agent. Agents then follow simple rules to move towards their

goals through adjacent grid cells [26].

Continuum methods such as [27] and [20] treat the crowd as a whole and model

the motion and interactions of agents based on equations that represent aggregate

flow.

Agent-based approaches model each individual in the crowd and the interactions

between them. Different techniques have been proposed to model these interactions.

Reynolds [24] proposed Boids, which is a simple method based on rules for avoid-

ing collisions while preserving flock cohesion. The rules are often implemented as

forces. Other well known force-based methods including the social force model [12]

(and its many variations), generalized centrifugal force model [6] and HiDAC [23].

These approaches use more complex forces between agents to model a larger do-

main of local interactions. Ondřej et al. [21] proposed a vision-based model in which

agents respond to nearby obstacles based on the angle to the obstacle and the esti-

mated “time to interaction”. Recently, velocity-space methods have been proposed

to model human pedestrians. These geometric formulations are often based on ve-

locity obstacles [9, 5, 11] and have been shown to exhibit many emergent crowd

phenomena.
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1.2.2 Behavior Modeling

Many researchers have proposed approaches to simulate various aspects of human

and crowd behaviors. Funge et al. [10] proposed using a cognitive model to allow

agents to plan and perform high-level tasks. Yu and Terzopoulos [31] introduced

a decision network framework that is capable of simulating interactions between

multiple agents. Ulincy and Thalmann [28] used a modular behavioral architecture

to allow a mixture of automated and scripted behavior in multi-agent simulations.

Durupinar et al. [8] modeled the effects personality factors have on local behav-

ior. Yersin et al. [30] used spatial patches to direct motion and behavior of agents.

Bandini et al. [4] applied a state machine to an underlying CA model to create sce-

narios with more complex behaviors. Yeh et al. [29] employed a physical collision

avoidance mechanism to model abstract factors in pedestrian interactions such as

aggression, priority and authority.

Data-driven approaches have also been used to capture crowd behaviors, often by

training models of agent motion based on video data. Lee et al. [16] used data-driven

methods to create group behavior such as queueing and clustering. Ju et al. [14] pro-

posed a data-driven method which attempts to match the style of simulated crowds

to those in a reference video. Patil et al. [22] proposed a method of directing crowd

simulations with flow fields extracted from video or specified by a user. Video data

has also been used to analyze and interpret real-world crowd behavior. Mehran et

al. [17] proposed a method to detect abnormal crowd behavior from video using the

social-force model. Johansson et al. [13] used video to study crowd behavior during

portions of the Hajj.

1.2.3 Tawaf Simulation

There is some prior work on simulating crowd movement during the Tawaf and

other Hajj related rituals. Algadhi and Mahmassani [3] simulated crowd flows in

the Jamarat area of the Hajj using continuum models. Mulyana and Gunawam [19]

performed agent based simulations of various rituals of the Hajj including a 500-

agent simulation of the Tawaf. Zainuddin et al. [33] used the commercial software

SimWalk to perform a social force-based simulation of up to 1,000 agents perform-

ing the Tawaf ritual. Sarmady et al. [25] performed a large crowd simulation of the

Tawaf using CA techniques combined with a discrete-event simulator.

A few studies have also been performed on crowd flow in the Mataf area in the

Al-Masjid al Harām. Al-Haboubi and Selim [2] proposed a potential spiral move-

ment path to increase safety and throughput of pilgrims during the Tawaf. Koshak

and Fouda [15] collected trajectories of actual pilgrims performing the Tawaf during

the Hajj using GPS devices. The Crystals project currently studies how to incorpo-

rate cultural differences into simulations of Hajj pilgrims [1].



6 S. Curtis and S.J. Guy and B. Zafar and D. Manocha

1.3 Modeling Crowd Behaviors

In this section, we give an overview of our method for modeling the crowd behav-

iors during the Tawaf. Human behavior arises from the confluence of many factors,

including culture, psychology, environment and physiology. Generally, human be-

havior spans a wide range of activity. When discussing crowd behavior we limit

our discussion to those human behaviors which affect how humans share space. For

example, two people standing and discussing current events are functionally equiv-

alent to those same people negotiating a business deal; the topic is unimportant, but

the fact that they are stationary at a fixed distance away from each other is the be-

havioral detail which most influences crowd simulation. We characterize behaviors

which affect the crowd with two concepts: where does an individual wish to be and

how do they interact with those around them in reaching their goal? The first deals

with the agent’s intention — the general strategy, such as what path to take through

an environment. The latter addresses the immediate tactics applied to execute the

strategy under the dynamic constraints of a populated environment.

1.3.1 Agent-based Simulations

To simulate the Tawaf, with its heterogeneous population and widely varying ac-

tivities, we need an approach which can accommodate a high-level of per-agent

variability. To that end, we model the crowd with individual agents. Each agent is

characterized by its physical state (position, velocity, size, etc.), its behavior state

(preferred velocity, priority, its FSM, etc.), and its property set (a collection of asso-

ciated data appropriate to the scenario.) For example, a simulated pilgrim’s property

set includes a counter indicating how many circles the pilgrim has already com-

pleted around the Kaaba. The counter doesn’t directly affect the computation of an

agent’s preferred velocity or how it interacts with other agents, but it is used in the

behavior mechanism to know when the Tawaf is complete.

We model the behaviors of agents by coupling together a high-level finite-state

machine (FSM) with a pedestrian model. The FSM evaluates the agent’s physical

state and defines the agent’s behavior state and, optionally, changes values in the

agent’s property set. The behavior state is used by the pedestrian model, in conjunc-

tion with an agent’s physical state, to compute a new velocity and update the agent’s

physical state. Figure 1.1 illustrates the two components of our system and how they

interact.

1.3.2 The Behavior Finite State Machine

A finite state machine (FSM) defines the behavior of an agent at every time step.

Each state in the FSM defines the behavior state, and, optionally, the property set
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Fig. 1.1 We simulate crowd

behaviors appropriate to

the Tawaf by coupling a

high-level finite-state ma-

chine (FSM) with a low-level

pedestrian model. The FSM

computes behavior-state and

property-set values for each

agent. The pedestrian model,

in turn, updates the agent’s

physical state.

for the agent. By providing unique definitions, each state can impart a distinct, ob-

servable behavior on the agent. We do not require any particular method for a state

to use to compute the behavior state for an agent. The choice is arbitrary. All that

matters is that the values for the agent’s behavior state produce the desired behavior.

For example, one element of the behavior state is the preferred velocity. It may be

computed in any number of ways: by a simple rule, or as the result of a complex al-

gorithm using techniques as varied as guidance fields or roadmaps. We give specific

examples of this in Section 1.5.3

We have classified the FSM’s transitions into four categories based on the types

of conditions which cause the transition to become active: spatial, property, tempo-

ral, and stochastic. A spatial transition will cause the agent’s current state to change

when the agent’s position achieves some pre-defined spatial configuration, such as

entering an area, leaving an area, etc. For example, this transition will signal the start

or end of a circumambulation. The property transition moves the FSM from the cur-

rent state to a new state if some element of the agent’s property set conforms to a

particular condition. In the Tawaf, this transition causes an agent to exit when it has

completed 7 circles. The temporal transition acts as a timer for the state. The tran-

sition is activated when the agent has been in the current state for some pre-defined

amount of time. For example, some agents in the Tawaf will stop and pray for a few

seconds when completing a circumambulation. Finally, the stochastic transition be-

comes active according to a user-defined probability distribution. In the Tawaf, we

expect that only a fraction of the participants stop to pray. We use the stochastic

transition to model this distribution. Finally, we prioritize the transitions such that

if two transitions conditions are both true, the transition with the higher priority is

taken.

1.4 Pedestrian Modeling

With a mechanism in place to alter agent behavior over time, we need to select

a pedestrian model to execute the high-level strategy. In this section, we discuss

various types of pedestrian simulation algorithms and their suitability for a scenario

such as the Tawaf. Finally, we present the reciprocal velocity obstacle pedestrian
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model and describe priority and right of way — an extension which increases the

space of interactions between virtual agents.

1.4.1 Models of Pedestrian Simulation

There are numerous algorithms for simulating pedestrians. Each has its own unique

set of advantages and disadvantages. It has yet to be shown that any single algorithm

perfectly models pedestrian dynamics in arbitrary scenarios. For our purposes, we

are most interested in those algorithms well suited to a specific scenario: the Tawaf.

We are interested in simulators which will provide a mechanism to model the phys-

ical and behavioral heterogeneity observed in the Tawaf. Furthermore, to be useful,

we require the simulator to be efficient (a hypothetical “perfect” algorithm which

took hours to simulate seconds of data would be impractical.)

We divide pedestrian simulators into two categories: macroscopic and micro-

scopic. Macroscopic approaches model a crowd of pedestrians as an aggregate

phenomenon (e.g. [27, 20].) Microscopic simulators deal with individual agents,

trusting that the aggregate behavior will naturally arise from basic principles (e.g.

[24, 12, 6, 5, 9, 21].)

Macroscopic models typically assume a relatively high density; they operate on

the principle that the choices of an individual pedestrian are strongly constrained by

its local conditions. In dense crowds this is a reasonable assumption. As the crowd

becomes sparser, the effect of one pedestrian on its distant neighbors is significantly

reduced. In some cases, these approaches can be quite efficient. Narain et al. [20]

were able to simulate 100K agents at 450 ms per simulation step. These approaches

usually treat the crowd as a continuous, homogenous medium. Assuming continuity

and homogeneity precludes the variation in physical attributes and behaviors ob-

served in the performance of the Tawaf. For example, such approaches would be

unable to create a dense simulation in which some agents remain stationary while

other agents move next to them. For these reasons, we consider macroscopic simu-

lation algorithms to be inappropriate for simulating the Tawaf.

Microscopic models provide greater potential to realize the kind of per-agent

heterogeneity we require. Each agent is individually simulated and, as such, can be

assigned arbitrary properties to model varying physical capacity. Furthermore, their

behaviors can be individually specified; one agent’s motion is not explicitly con-

strained by its neighbors. It can try to pursue a goal that stands in direct opposition

to its neighbors (its success is dependent on the pedestrian model.) We consider

three major categories of microscopic models: cellular automata (CA), social forces

(SF) and velocity obstacles (VO).

As previously indicated, CA approaches decompose the simulation domain into

a uniform grid. Each agent occupies a single cell and a single cell can contain at

most one agent. Probabilities are applied to neighboring cells based on a movement

protocol and each agent’s position is updated according to the probability distribu-

tion and a set of rules for resolving conflict. CA approaches are typically simple to
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implement. A CA approach has even been applied to simulating the Tawaf before

[25]. However, the authors indicate that while CA can generate emergent phenom-

ena (such as lane formation, etc.), the individual microscopic trajectories are “un-

realistic” [25]. Furthermore, the grid decomposition imparts a homogeneity on the

agents as well. Agents can only move an integer number of cells in a single time

step. Finally, the authors indicate that CA has limitations with respect to density.

The maximum possible density is simply a function of the size of the cells. This

maximum is only theoretical. In practice, that density is impossible to achieve be-

cause if all cells are filled, agents cannot resolve conflicts and the simulation reaches

a deadlock. We feel that, despite its simplicity, the cost of the spatial discretization

leads to too many undesirable artifacts to simulate the Tawaf effectively.

SF-based and VO-based approaches both operate in continuous space, obviating

the artifacts observed in CA. SF-based models treat pedestrians as mass-particles.

Various forces applied to a particle draw the particle towards a goal position and

prevent collisions with obstacles and other agents. The many variations of SF-based

models generally differ in how the forces are formulated.

VO-based approaches consider the relative velocities and positions of agents to

select a feasible velocity — a velocity which will remain collision free for a spec-

ified window of time. For each neighboring agent, it computes a set of infeasible

velocities — velocities which will lead to collision within a specified time win-

dow. The selected feasible velocity is the velocity which lies outside the union of

all infeasible velocity regions but which minimizes some cost function. There are

multiple variations on VO-based algorithms, which may differ in how they model

the space of inadmissible velocities, define the cost function, and how they solve the

optimization problem.

Generally, both SF- and VO-based algorithms appear to be viable candidates for

simulating the Tawaf to the level of fidelity we seek. More detailed investigation is

required to differentiate their suitability. We provide summaries of a recent SF-based

model [6] and a recent VO-based model [5]. For simplicity, we limit the summary

to agent-agent interactions and refer the reader to the original papers for details on

agent-obstacle interactions.

Generalized Centrifugal Force: The Generalized Centrifugal Force (GCF)

model is a SF-based model which formulates inter-agent repulsive forces in terms of

the agents’ positions and velocities.1 The agent is modeled with the state vector: [m

p v v0]T ∈ R
7, where m ∈ R

1 is the agent’s mass, p,v,v0 ∈ R
2 are the agent’s cur-

rent position, current velocity, and preferred velocity, respectively. Preferred speed

v0 = ‖v0‖ is simply the magnitude of preferred velocity.

At each time step, agent i’s acceleration is computed as:

ai =
Fi

mi

=
Fdrv

i +∑F
rep
i j

mi

, (1.1)

1 The velocity term is the inspiration for the name. The original SF model considered only agent

positions [12].
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where Fdrv
i is a “driving” force and F

rep
i j is the repulsive force applied to agent i by

agent j. Given this acceleration, the agent’s velocity and position are updated by

integrating with respect to time using an explicit integrator.2

The driving force is what causes the agent to move toward its goal. These systems

assume that for each time step, a “preferred velocity” (v0) is computed. How this

velocity is defined is arbitrary, but we assume it represents the velocity the agent

would “prefer” to take in the absence of dynamic constraints. The driving force

is defined such that it imparts an acceleration on the agent sufficient to reach its

preferred velocity in τ seconds:

Fdrv
i = mi

v0
i −vi

τ
. (1.2)

The presence of other agents may prevent an agent from following its preferred

velocity. This interference is modeled by repulsive forces. Each nearby agent j ap-

plies a repulsive force to the agent i of the form:

F
rep
i j = −miki j

(ηv0
i + vi j)

2

di j

êi j, (1.3)

vi j = max(0,(vi −v j) · êi j), (1.4)

ki j = max

(

0,
vi · êi j

vi

)

(1.5)

where di j = ‖p j − p j‖ is the distance between agents i and j, êi j =
p j−p j

di j
is the

normalized direction vector from agent i to agent j, vi j is the amount of agent i’s

and j’s relative velocity that lies in the direction of êi j, clamped to the range [0,∞],
η is a simulation variable used to tune the behavior of the simulation, and ki j is a

field-of-view weight — the strongest response is to agents in the direction of travel

with decreasing weight as the angle increases to 90◦ on either side of that direction.

According to the authors, the formulation of the repulsive force has several de-

sirable properties:

1. Repulsion is a local effect because the magnitude of the force is dependent on

inverse distance. effect.

2. The vi j term accounts for relative velocity so that a slow moving agent will not

be affected by a fast moving agent in front of it.

3. The ki j term gives the agent an active field of view. Agents will not be repulsed

by agents behind them.

According to (1.3), the repulsive force between agents has infinite support; no

matter how far the distance between two agents, some small contribution to one

agent’s acceleration will be due to an unreasonably distant agent. Conversely, when

the agents overlap, their distance converges to zero and the repulsive force can grow

2 While the formula doesn’t preclude using an implicit integration scheme, the common practice

has been to use a low-order explicit integrator such as forward Euler.
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infinitely large. The authors combat both of these undesirable artifacts by approxi-

mating (1.3) with a spline which bounds the growth at small distances and limits the

functions domain to a user-defined maximum distance.

Unfortunately, this formulation still exhibits some undesirable properties as well.

The combination of how the forces are defined and the integration scheme can lead

to very “jittery” agent behavior, especially under high densities; an agent’s trajec-

tory may exhibit high-frequency oscillations because of numerical integration error

which can only be addressed through taking extraordinarily small simulation time

steps.

The full analysis of this behavior is beyond the scope of this work. However, we

feel a brief intuitive discussion of the causes will illustrate why we deem a social-

force-based model impractical for simulating the Tawaf. We leave the full, formal

analysis for future work. We focus on two particular properties of the formulation as

the cause of the undesirable oscillatory behavior: the explicit integration of a “stiff”

physical system and the out-of-phase nature of driving and repulsive forces.

Fig. 1.2 The inverse distance

function. At small distances, a

small perturbation in distance

leads to a large change in the

function value (red circles.)

The same sized perturba-

tion at large distances leads

to a correspondingly small

change in function value (blue

diamonds.)
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The inter-agent repulsive force (1.3) is essentially a function of the inverse dis-

tance between the agents (see Fig. 1.2.) The function has relatively compact sup-

port; the force is greatest at near distances when collision is most imminent. As

distance increases, the magnitude quickly decreases. When simulating a relatively

sparse environment, where distance between agents is high, the magnitude of the

repulsive force is quite small. A small perturbation in distances between agents

produces forces with only slightly different magnitude. But when agents are close,

small changes in distance lead to very large changes in forces–in other words, the

slope of the force function is quite steep. This is a classic characteristic of a stiff

system. When performing explicit integration, the common practice for SF-based

pedestrian models, small time steps must be taken to prevent oscillatory behavior

and unbounded error in the undamped system.

Furthermore, the driving force (1.2) and repulsive forces (1.3) are solved out

of phase with each other. Imagine two agents moving towards each other at their

preferred velocity. Because they are moving at their preferred velocity, their driving

force is zero. They continue on their trajectories until they are close enough for
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the repulsive forces to be non-zero. At that time step when the repulsive forces

are first non-zero, the driving force is still zero. Thus, the repulsive forces are the

sole influence on the agent and the current velocity is accelerated accordingly. At

the next time step, the repulsive force will be significantly reduced (because the

relatively velocity has been reduced), but the driving force now increases due to the

deviation between preferred and current velocities. This alternating dominance can

eventually converge to a steady-state where they will be in balance, but it requires a

small time step.

We seek to simulate the Tawaf during its peak performance, when tens of thou-

sands of pilgrims pack into a small area reaching densities as high as eight people

per square meter. There is an unavoidable computational cost in increasing the size

of the simulation to a 35,000 agents. If we also had to significantly reduce the simu-

lation time step to an extremely small time step, the simulation would no longer be

tractable in reasonable time frames. For this reason, we consider SF-based models

impractical for simulating the Tawaf.

Reciprocal Velocity Obstacle: The Reciprocal Velocity Obstacle (RVO) updates

an agent’s velocity by performing geometric calculations in velocity space. Agents

in RVO are modeled with a state vector similar to that of GCF: [p v v0]T ∈ R
6,

where p, v, and v0 are defined as before.

Fig. 1.3 Velocity obstacles. (a) The velocity obstacle formed by agent j on i. (b) The truncated

velocity obstacle for time window τ formed by j on i. (c) Agent i assumes the full burden to avoid

collision, assuming j’s velocity will be unchanged; VO ji is displaced by j’s velocity.

The velocity obstacle lies at the core of these approaches. As the name implies,

it is an obstacle, but rather than lying in workspace or configuration space, it lies in

velocity space. For agents i and j, agent j induces a velocity obstacle on i, VO ji, and

i induces a symmetric velocity obstacle on j, VOi j. The velocity obstacle is a cone,

originating at pi, which tightly bounds the Minkowski sum of agent i’s geometry

with j’s. Fig. 1.3(a) illustrates VO ji for two agents with circular geometry. If the

relative velocity between agents i and j remains within this cone, there will be an

inevitable collision. In practice, we are only concerned with collisions that can occur

within the next τ seconds. Including this term truncates the cone (as illustrated in

Fig. 1.3(b).)

This obstacle is the space of relative velocities that lead to collision. A single

agent cannot exert unilateral control over the relative velocity. If agent i assumes that

j will not change velocity, i must take full responsibility for avoiding the collision.

This is accomplished by translating VO ji by j’s velocity, as shown in Fig. 1.3(c).
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This is the original velocity obstacle formulation, in which each agent assumes that

every other agent is a non-responsive, dynamic obstacle [9].

However, this model is a poor representation of people because agents do, in fact,

react to each other. This leads to two significant issues. First, the velocity obstacle is

only valid based on the assumption that the other agent maintains a constant velocity.

It is possible for both agents to pick a velocity outside of their respective velocity

obstacles but the resulting relative velocity may place them on a collision course.

Secondly, both agents overreact to their neighbors (because they falsely assume that

the other will make no effort to avoid collision.) This can easily lead to oscillatory

motion as the agents overreact in successive steps.

Van den Berg et al. proposed an alternate formulation to VO which addresses

these issues: Optimal Reciprocal Collision Avoidance (ORCA) [5]. The truncated

cone, VOi j, is replaced with a half plane, ORCAi j. This solves the first issue by

defining the half planes of ORCAi j and ORCA ji to contain “mutually reciprocal”

sets of velocities. That means there is no pair of velocities, selected from each agents

admissible region, which will lead to a collision within τ seconds. Furthermore, the

planes are defined such that the amount of change to the relative velocity required

to avoid collision is evenly distributed between the two agents, removing the danger

of overcompensation and oscillation.

Finally, ORCA provides an additional advantage. When an agent has multiple

neighbors, the inadmissible velocities is the union of all velocity obstacles. For trun-

cated cones, computing this region, and finding the best admissible velocity outside

is complex and expensive. With half planes, the admissible velocities form a convex

polygon. For a convex cost function, the optimal velocity can be computed in O(n)
time, for n ORCA half planes.

Fig. 1.4 The formulation of

the ORCA half-plane. The

various components of the

definition are illustrated. The

minimum change in relative

velocity, u, the direction of

minimum change, n̂, and

the resultant ORCA veloc-

ity obstacles, ORCA ji and

the symmetric half plane

ORCAi j .

The ORCA half-plane can be constructed geometrically in the following manner.

Assume agents i and j adopt velocities v
opt
i and v

opt
j , respectively, and that these

velocities place them on a collision course (i.e. v
opt
i − v

opt
j ∈ VO ji.) Let u be the

vector from v
opt
i −v

opt
j to the closest point on the boundary of the velocity obstacle

(see Fig. 1.4.) More formally,

u = (argmin
v∈δVO ji

‖v− (vopt
i −v

opt
j )‖)− (vopt

i −v
opt
j ) (1.6)
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is the minimum change in relative velocity between i and j necessary to guarantee

no collision within τ seconds. To model the reciprocity, half of the minimum change

is applied to each agent. So, we can define the ORCA velocity obstacle induced by

agent j on agent i as:

ORCA ji = {v|(v− (vopt
i +

1

2
u) · n̂ < 0}, (1.7)

where n̂ is the normalized direction of u. Proof of the guarantees can be seen in the

original paper [5]. Henceforth, we will refer to this model as RVO.

RVO is less prone to jitter oscillations than GCF. Whereas GCF computes a new

velocity by integrating a stiff physical system with explicit integration, RVO com-

putes a new velocity directly in velocity space. Unlike GCF, for a given agent state,

RVO will produce the same feasible velocity, regardless of time step size. Like GCF,

agent position is still integrated using explicit integration and has limits on the size

of the time step. Theoretically, the time step must be strictly larger than the time

window τ . In practice, RVO has been shown to be stable for time steps as large as

0.2 s [7].

1.4.2 Priority and Right of Way

One of the appealing properties of RVO for pedestrian simulation is its reciprocal

nature. The idea that moving pedestrians will each make an effort to avoid collisions

with others is consistent with anecdotal evidence. However, the model’s exactitude

in defining the reciprocity to be precisely half implies a precision that does not exist

in nature. While, generally, the equal division of effort is a reasonable model of the

most generic behavior, there are scenarios in which effort is not shared equally and

the model becomes highly dissatisfying.

On a subway platform, pedestrians enter the platform, find a location to await the

train and then stop. In navigating the platform, moving pedestrians typically move

around those already waiting. After they’ve stopped in their chosen position, those

following behind, must move likewise around them. At that moment, the pedestrian

shifts paradigms from an expectation of full responsibility for avoiding collisions,

to the expectation that other moving pedestrians will assume the responsibility to

avoid collision with them.

In a more subtle vein, even when all pedestrians are moving, the burden isn’t

necessarily shared equally. It may be that some pedestrians are more conservative

and more willing to give way to others. Some pedestrians may seem more aggressive

or determined. Subtle social and psychological clues affect how people react to each

other and shifts the distribution of responsibility for avoiding collision.

The ability to model asymmetry plays an important role in the simulation of the

Tawaf as well. There are several instances in which asymmetrical responses are vital

to reproduce observed behaviors. When pilgrims queue up to kiss the Black Stone,

their relationship with other pilgrims in the queue is different than with those still
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circling; they should not yield position to those still circling, but must cooperate,

to some degree, with those in the queue. When actually kissing the Black stone, a

pilgrim must ignore all other pilgrims, holding their position in front of the stone.

Finally, when exiting the Mataf, the agents must work outwards when the rest of

the agents are moving tangentially or even spiraling inwards. At any given moment,

the exiting pilgrims are in the minority. The ability of the minority to move counter

to the flow of the majority is predicated on their ability to enforce their will on the

majority.

In the study of traffic, there is a concept that perfectly captures this phenomenon:

right of way. Right of way is the set of rules which define when one entity must yield

to another entity. When moving pedestrians walk around standing commuters on a

train platform, the stationary people have right of way. When an aggressive person

moves through a crowd and those around him part to let him through, it is because

he implicitly has right of way.

Unlike with vehicles, where right of way has a very discrete, exclusionary in-

terpretation (i.e. between two cars, right of way belongs entirely to one vehicle),

between pedestrians it can be considered a continuous quantity. Right of way can be

absolute, when one pedestrian completely yields to another or it can be shared such

that each pedestrian partially yields, albeit to different degrees, to avoid collision.

RVO’s formulation provides a simple mechanism by which we can model con-

tinuous right of way. We introduce a new agent state parameter, p, called priority–a

non-negative, real number. An agent with higher priority has right of way. We define

the right of way of agent i over agent j as:

Ri j =

{

max(1, pi − p j) if pi ≥ p j

0 otherwise
. (1.8)

As implied by (1.8), the value of Ri j lies in the range [0, 1], regardless of what the

relative priorities of the two agents are. Furthermore, Ri j > 0 implies R ji = 0. Right

of way can only be held by a single agent and an agent cannot have more than 100%

right of way. Another implication of this formulation is that agents can be assigned

tiered priorities — an aggressive agent may acquire full right of way over a passive

agent, but it may still be required to yield right of way to a stationary agent. This

is easily achieved by assigning priority values to the shy, aggressive and stationary

agents of 0, 1, and 2, respectively (or any sequence of monotonically increasing

values such that each value is at least one greater than the previous value.)

In the formulation of RVO, the velocity obstacle is defined with respect to an

abstract relative velocity between agents i and j. The definition uses vopt to compute

the relative velocity. Van den Berg et al. refer to this as the “optimization” velocity

and suggest that this is typically the agent’s current velocity because it minimizes

the amount of change to the current agent state required to avoid collision, but it

need not necessarily be the current velocity [5].

We redefine vopt in terms of right of way. This new definition will affect the

definition of ORCA ji (1.7) in the following manner:
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ORCA ji = {v|(v− (vopt
i j +αi jui j) · n̂ < 0}, (1.9)

v
opt
i j = (1−Ri j)vi +Ri jv

0
i , (1.10)

αi j =











0.5 if Ri j = R ji = 0
Ri j

2
if Ri j > 0

1+R ji

2
if R ji > 0

. (1.11)

The effect of right of way is as follows. If both agents have the same priority,

no agent has right of way and the new formulation or RVO is equivalent to the

old; both agents optimize with respect to their current velocities and share an equal

burden in avoiding collision. As one agent’s priority increases, its right of way also

increases. The increased right of way affects the computation in two ways. First, the

higher-priority agent’s optimization velocity becomes a linear interpolation between

its current and its preferred velocity. Second, the higher-priority agent’s share of the

burden linearly decreases. When an agent has full right of way, its optimization

velocity is its preferred velocity and it bears no responsibility for avoiding collision.

Fig. 1.5 Four experiments for evaluating right of way. In each experiment, the white agent’s

progress is measured. (a) Experiment #1: A single agent moves through a stationary group of

agents. (b) Experiment #2: A single agent holds position against a moving group of agents. (c)

Experiment #3: A single agent moves perpendicularly to a moving group of agents. (d) Experiment

#4: A circle of 100 agents, each trying to move to its antipodal position.

We illustrate the impact of priority and right of way in four experiments (see

Fig. 1.5.) We apply the following methodology for each experiment. We construct

a group of grey agents consisting of eight rows with 28 agents on each row. The

rows are vertically offset to increase the average density. The priority of the grey

agents always remains zero. We vary the priority of the white subject agent over the

range [0, 1]. For each priority value, we run 20 iterations with a small random noise

applied to the initial positions of the grey agents. In addition, for experiments 1, 2,

and 3, we repeat the set of iterations while changing the average density of the grey

agents over the values: 2, 3, 4, and 5 agents/m2. Experiment 4 has a single density,

8 agents/m2 (the maximum possible density when all agents converge in the center

of the circle.) For experiments 1, 3, and 4, the subject agent travels from an initial

position to a goal position. For these experiments, we measure the impact of priority

by examining the travel time to its goal. More particularly, given its preferred speed

(v0) and the straight-line distance (d) to its goal, we compute the baseline travel time

(tb = d/v0) and report the travel time as a multiple of the baseline. In experiment



1 Virtual Tawaf 17

2, the agent tries to maintain its position, so we examine the impact of priority by

measuring the total distance it travels in the course of the simulation.3 The results

of these experiments can be seen in Fig. 1.6 and Fig. 1.7.
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Fig. 1.6 The impact of priority on the experiment scenarios. (a), (c), and (d) report a multiple of

the baseline travel time based on right-of-way value and density. (b) shows the absolute distance

traveled.

There are several salient points to be made about the results of these experiments.

First, in experiments 1, 2, and 3, as the subject agent’s priority and the corresponding

right of way increases, the subject agent’s performance quickly converges to the

baseline. This can be seen in Figs. 1.6(a), (b), and (c). The performance curves, at

all densities, converge to the baseline value (bottom of the figure) at a priority value

ranging between 0.4 and 0.6. This phenomenon becomes clearer when we observe

the trajectory of the subject agent as shown in Fig. 1.7. The subject agent starts at the

right in each figure and seeks to move in a straight line to its mirrored position on the

left. The baseline trajectory would be a straight, horizontal line. With low priority,

the agent is forced to deviate from the straight line. But for all priority levels, when

the agent reaches the mid-point, it is able to travel directly toward its goal position.

3 If the agent were perfectly capable of maintaining its position, it would travel no distance at all.
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Fig. 1.7 The trajectory of the subject agent at varying priority levels. (a) Experiment 1. (b) Exper-

iment 3.

We conjecture this quick convergence is due to two reasons. First, it has been

shown that, like other pedestrian simulators, RVO exhibits emergent phenomena

such as lane formation [11]. We conjecture that experiments 1, 2, and 3 benefit from

this property. The experiments are orderly scenarios featuring simple bi-direction

flows — an ideal circumstance for lane formation. The subject agent moves con-

trary to the large contingent of grey agents and as its priority increases, those agents

nearest it begin to move out of its way. The following grey agents implicitly fol-

low the divergent paths of the lead agents, forming lanes around the subject. Once

those lanes have formed, the path for the subject agent remains clear. Second, the

agents are arranged in a hexagonal lattice. Moving diagonally through the lattice

is the clearest path possible. So, as the agent is pushed off of the horizontal, base-

line trajectory, the most direct path to its goal eventually becomes a diagonal path

which can exploit the greater clearance in the hexagonal lattice. So, for such orderly

scenarios, a right-of-way value as little as 0.5 is sufficient for the subject agent to

achieve baseline performance.

In comparison, experiment 4 represents a far more chaotic scenario. Agents mov-

ing to their antipodal positions do not share a preferred velocity with any of their

neighbors. This significantly reduces the formation of lanes. The subject agent must

contest with every agent in its path to achieve its goal. The experimental results sup-

port this idea. Fig. 1.6(d) shows increasing priority values contribute to the subject

agent’s performance over the entire range of possible right-of-way values.

In addition, the impact of priority and right of way are dependent on the density

around the subject agent. This is as expected. When the region around the subject

agent is densely populated, taking any trajectory counter to its neighbors is signif-

icantly more difficult. The cause is two-fold. First, because the neighbors are near,

the amount they interfere with the subject agent’s intentions is much higher; the

subject is in danger of colliding with its neighbors in a very small time frame. Also,
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nearby agents have very little flexibility in responding to the subject agent. So, the

agent with right of way needs more priority to successfully influence its neighbors.

But in a sparsely populated areas, neighboring agents are more distant, interfering

less with the subject agent, and have a great deal more space to respond to the higher

priority agent which leads to fast convergence to the baseline value. For the sake of

visual clarity, we have vertically clipped the data shown in Fig. 1.6; the performance

of the subject agent without right of way in high density scenarios was extraordi-

narily bad. Including those complete curves would have rendered the lower-density

curves undifferentiable. At a density of 5 agents/m2, the subject agent required 4.1X

as much time for experiment 1, traveled 71.6 m in experiment 2, and took 7.9X as

much time for experiment 3.

It is worth underscoring, that we are not modeling specific psychological factors

nor advocating specific values which map human personality traits to priority values.

That is a question for sociologists and psychologists to address. We simply provide

a mathematical model which reproduces the phenomenon of asymmetric responses

between pedestrians. Whence this asymmetry springs is an open question and we

would hope that fellow scientists, better qualified to study these issues, will provide

for us suitable characterizations for when such asymmetric responses occur and to

what degree.

1.5 Simulating The Tawaf

In this section we give specific details on how the observed behaviors for performing

the Tawaf are modeled.

Fig. 1.8 shows the layout of the Mataf area, the location where the Tawaf takes

place including the Kaaba, Hateem and Maqam Ibrahim. The Hateem is a semi-

circular structure which was originally part of the Kaaba when the Kaaba was rebuilt

in A.D. 692. The Maqam Ibrahim is a structure of religious significance, to the

northeast of the Kaaba.

Fig. 1.8 The layout of the

Mataf area in the Al-Masjid al

Harām. Pilgrims walk seven

counter-clockwise circles

around the Kaaba and Ha-

teem. Each circle starts in

front of the black stone (indi-

cated as the start region.)
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1.5.1 The Rite

The Tawaf is performed in the following manner:

1. Pilgrims enter the Mataf area and proceed towards the Black Stone. The Black

Stone is located at the Kaaba’s eastern corner. This landmark serves as the start

and finish point of each circumambulation.

2. After reaching the region in front of the black stone, pilgrims perform Istilam,

which can consist of kissing the Black Stone, touching the Black Stone with

hands, or raising hands towards the Black Stone, all while saying Tekbir, ”God

is Great”. On crowded days, only a small number of pilgrims will attempt to

approach the Black Stone to kiss it. Those desirous to kiss the Black Stone will

queue up near the southeast wall of the Kaaba. A pilgrim typically will only seek

to kiss the Black Stone once, if at all.

3. The pilgrims walk, in a counter-clockwise direction, around the Kaaba and Ha-

teem.

4. At the completion of each circumambulation, the pilgrims perform Istilam again.

5. At the end of the seventh circle, the pilgrims perform a short prayer outside the

Mataf area, preferably in front of the Maqam Ibrahim or any convenient location

in the mosque. A small number approach to kiss the Black Stone upon comple-

tion of the Tawaf.

6. Pilgrims exit the Mataf area. A recent study [32] has shown that 61% of the

pilgrims exit the Mataf through the Safa exit in preparation for the next ritual.

1.5.2 Population Characteristics

One of the parameters of our simulation is the composition of the population. To

that end we specify agent characteristics using population classes. Each population

class defines a numerical distribution of values for a set of agent parameters. These

values represent the physical capacity of the virtual pilgrims. The classes we use in

simulating the Tawaf include the following parameters:

1. preferred speed: a normal distribution.

2. maximum speed: a normal distribution.

Properties not enumerated in a class (such as agent radius) are the same for all

agents. We defined four agent classes to model both genders in two age categories

(“old” and “young”.) Agents are assigned a population class based on a user-defined

distribution. The initial position of the agents is uniformly distributed in a circular

area around the Kaaba. To achieve “steady-state” as quickly as possible, we set the

agents randomly to have already completed some number of circumambulations (a

uniformly distributed integer in the range [0, 7].) Finally, we force the flow into the

Mataf to be equal to the flow out of the Tawaf by reintroducing each exiting agent

into the system at a random entrance.
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The space occupied by the human body can reasonably be bound with an ellipse

with major and minor radii of 0.24 m and 0.15 m, respectively, with an area of 0.11

m2. RVO uses circles to represent agents. A circle with a 0.19-meter radius has the

same total area as the ellipse (as shown in Fig. 1.9.) We use this circle to model the

pilgrims. Circles of this size can be optimally packed to yield a maximum density

of 8 agents /m2.

Fig. 1.9 A circle of radius

0.19 m has the same area as an

ellipse with major and minor

axes of 0.24 m and 0.15 m,

respectively.

Area = 0.11 m2

1.5.3 The Tawaf FSM

We have mapped the above behavior description to an FSM as shown in Fig. 1.10.

Here we will enumerate the states and their transitions.

Fig. 1.10 The finite state

machine for performing the

Tawaf. Pilgrims start in the

CIRCLE state. At the end

of each circle, they either

attempt to move to the black

stone or perform Istilam and

then perform another circle.

After seven circles, they begin

movement towards an exit.

CIRCLE: The circle state is the main circumambulation state. It contains two

velocity components represented as guidance fields (a 2D vector field defined over

the simulation domain specifying velocity directions.) The first is a radial guidance

field with directions pointing towards the center of the Kaaba and the second is a

tangential guidance field representing the direction of travel around the Kaaba. The
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tangential field causes the pilgrims to circle around the Kaaba and the radial field

draws them toward it. Although it is desirable to approach and kiss the Black Stone,

on crowded days it can prove too difficult and many pilgrims choose not to attempt

it. We model a variable degree of desire to approach the Kaaba and Black Stone

by normally varying the weight of the radial velocity component. Agents with a

large radial weight model those pilgrims with a greater desire to approach and put

themselves in a better position to kiss the Black Stone.

There are two transitions out of this state. The first transition determines if an

agent will queue up to kiss the Black Stone. The transition is a combination of

spatial and property transitions. If the agent has not yet kissed the Black Stone and

enters into a region near the southern corner of the Kaaba, the condition of the

transition is met and the agent enters the MOVE TO BLACK STONE state.

The second transition is a spatial transition. If the agent reaches the start region

in front of the Black Stone, the agent enters the START REGION REACHED state.

START REGION REACHED: This state is a decision point. It contains no

velocity components. When an agent reaches this state, the state’s transitions are

evaluated and the agent immediately advances to the corresponding state.

This state contains two transitions. The first transition is a stochastic transition.

This is the likelihood that a given agent will attempt to perform Istilam by stopping

while turning to face the Kaaba. Anecdotal evidence suggests that this probability

is about 15%. We generate a uniformly distributed random value in the range [0, 1].

If the value is in the range [0, p], where p is the probability of stopping for Istilam,

then the transition is active, moving the FSM to the ISTILAM state.

If the transition to ISTILAM is not taken, then the second transition is taken. This

transition is, by definition, active. It moves the FSM to the CIRCLE DONE state.

CIRCLE DONE: This state is another decision point. Like START REGION

REACHED, it contains no velocity components. At this state, we determine whether

the agent has completed the Tawaf or not.

This state contains two transitions. The first transition is a property transition.

If the agent has completed seven circles around the Kaaba, the FSM transitions to

the EXIT state. Otherwise, the FSM transitions back to the circle state for the next

circle.

MOVE TO BLACK STONE: This state controls the queue for those agents

waiting to kiss the Black Stone. Upon entering this state, the agent is marked as

having kissed the black stone. Subsequently, the transition from CIRCLE to MOVE

TO BLACK STONE cannot be active for this agent. The velocity is computed as

follows: the direction of the preferred velocity is towards the Black Stone. If there is

another agent in the queue between the agent and the Black Stone, the speed is the

lesser of two speeds: the agent’s preferred speed and the speed that will guarantee

the agent reaches the other agent’s position in one second. If the space in front of

the agent is clear, the preferred velocity’s magnitude is simply the agent’s preferred

speed.

This state has a single spatial transition. It activates when the agent reaches the

stone and moves the FSM to the KISS BLACK STONE state.
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KISS BLACK STONE: This state contains a single velocity component and a

single transition. Upon reaching the area directly in front of the Black Stone, the

velocity is computed to hold the agent in that position. To aid in this purpose, the

agent’s determination property is set to one. The single transition is a temporal tran-

sition. After a randomly determined duration the agent enters the CIRCLE DONE

stage.

ISTILAM: This state, like the KISS BLACK STONE state, has a single velocity

component and transition. It likewise computes a velocity to keep the agent fixed in

the position at which the agent was when entering this state. However, this is a softer

constraint and the determination is set to zero. The single transition is a temporal

transition. After a randomly determined duration (1–2 seconds), the agent enters the

CIRCLE DONE stage.

EXIT As pilgrims complete the Tawaf and exit the Mataf floor, they do so in a

cooperative manner, continuing to circle the Kaaba and working their way towards

the outside until they are in sufficient free space to head to their selected exit area.

Each agent is randomly assigned an exit according to the probability distribution

found in [32].

We have areas defined in the simulation domain for each of the five exits. Once

the exit has been randomly selected, we then select a random point in the exit region

to serve as the agent’s goal point.

To model the cooperative exit behavior exhibited by the pilgrims in the Tawaf,

we generate the agent’s velocity with a weighted combination of three velocities: a

vector from current position towards the exit goal position, a tangential component

like that in the CIRCLE state, and an anti-parallel radial component (the opposite of

the radial component of the CIRCLE state.) The tangential and anti-parallel radial

components cause the agent to continue circling the Kaaba while working its way

away from the Kaaba.

We blend the exit goal velocity and the circular velocity based on the agent’s local

density. When the crowd is very dense, the agent continues around the Kaaba. As

the local density reduces, the weight between goal and circular velocities changes

linearly until an acceptable minimum density is achieved and the agent can move

directly towards its end goal.

1.6 Results

We’ve run several simulations with our system. Our first goal is to achieve a result

consistent with observed crowd movement during the Tawaf. To that end, we created

a population of 35,000 agents with the following composition: 25% each of young

male and female and 25% each of old male and female. Young males had a mean

preferred speed of 1.0 m/s and a standard deviation of 0.2 m/s. Similarly old males

had a mean preferred speed of 0.85 m/s with a standard deviation of 0.2 m/s. Young

and old females had mean preferred speeds of 0.95 and 0.8 m/s, respectively. Both

had a standard deviation of 0.15 m/s.
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Our approach exploits the efficiency of the underlying pedestrian model. Our

simulation used a time step of 0.1 s and was able to generate frames at 26 Hz on

an Intel i7 running at 2.67 GHz. The evaluation of the FSM and pedestrian model

were parallelized over the set of agents through the use of OpenMP. In essence, our

simulator runs faster than real-time. For 35,000 agents, it produces 2.6 seconds of

simulated results for each second of computation.

Fig. 1.11 The density of the

crowd of pilgrims performing

the Tawaf in our simulation.

The dark region in the center

is the Kaaba. Our simulation

reaches a maximum density

of 7.3 agents/m2. The density

field is computed as in [13].

Fig. 1.12 The speed of the

individual agents performing

the Tawaf in our simulation.

Figs. 1.11 and 1.12 show a single moment from our simulation results. In this im-

age, approximately 25,900 agents are actively circling the Kaaba. The other 9,100

agents are entering, exiting or queueing to touch the Black Stone. The average walk-

ing speed of the circumambulating agents is approximately 0.73 m/s. The average

completion time for the full Tawaf is 28.1 minutes. If we assume that the 25,900 cir-

cumambulating agents are representative of the portion of the population of 35,000

agents that are circling the Kaaba at any time, then this simulation implies a capacity

of 55,300 participants per hour.

In 2008, Koshak and Fouda [15] tracked subjects performing the Tawaf with

GPS devices. They partitioned the Mataf area into regions and computed the aver-

age speed for each region. The results of this analysis are shown in Fig. 1.13. We

computed average speed for similar regions in our simulation. The simulated results

can be seen in Fig. 1.14. The analysis shows that the simulation compares well with

the real data in some ways and diverges in others.
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1. Similarities

a. Region 1, the region immediately preceding the start area, is the slowest re-

gion.

b. Regions 5–7 exhibit higher speeds than regions 1–4.

c. The top speed of the simulated crowd matches the top speed of the measured

crowd.

2. Differences

a. Simulated data exhibits a much narrower range of speeds.

Fig. 1.13 The observed speeds of real pilgrims traversing each region during the Tawaf [15].

Fig. 1.14 The average speed of simulated agents traversing each region during the Tawaf.

The disparity observed in the range of speeds can be attributed to two causes.

First, when Koshak and Fouda performed their experiments, there was a line on

the Mataf floor indicating the starting point. The line has since been removed. At

the time, experts felt that as pilgrims approached the line, they would come to a

stop while searching for the line. This is considered to be the dominant cause of

the extreme slow down in the corresponding region. Our simulation models current

behaviors reflecting the removal of the line. Thus, our agents don’t come to a stop

and the aggregate result is a higher speed through this region.

Secondly, the narrow range of simulated speeds may arise from properties in

the pedestrian model. It may be that, as a pedestrian model, RVO is insensitive
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to density-related effects, such as the fundamental diagram. Further research is re-

quired to confirm and correct, if necessary.

Heterogeneity: To explore the impact of the heterogeneous population, we ran

two alternative simulations. One consisted of nothing but young males (the fastest

pilgrim class.) The second simulation consisted solely of old females (the slowest

pilgrim class.) The simulation consisting only of young males exhibited an average

walking speed of 0.82 m/s for 24,900 circumambulating pilgrims and a correspond-

ing Tawaf completion time of 25.5 minutes. In contrast, the simulation of old fe-

males obtained an average walking speed of 0.67 m/s for 26,500 circumambulating

pilgrims with a Tawaf completion time of 30.2 minutes. The implied capacity is

58,600 pilgrims per hour for the young males and 52,700 pilgrims per hour for the

old females.

The capacity indicated by the heterogeneous crowd is close to the average capac-

ity of the two homogeneous crowds (although the heterogeneous crowd’s capacity

is slightly lower.) The full impact of heterogeneity is still unclear. It may be that

populating the entire crowd with instances of a single, statistically average pedes-

trian may prove to be sufficient. This requires more study and requires better data

concerning the demographics of the pilgrims performing the Tawaf and more flow

data of the actual performance.

1.6.1 Limitations

While the results are promising, there are still aspects of the Tawaf it does not cap-

ture. In addition to the unknown impact of heterogeneity, these simulations haven’t

modeled groups. We currently treat the agents as individuals. To more fully capture

the dynamics of the Tawaf, we would require a group model such as in [18]. There

is, in particular, one instance of group behavior that has often been noted by ob-

servers. At times, a group of participants will force their way orthogonally across

the crowd flow to get closer to the Kaaba. This behavior, its rate of incidence, and

its characteristics are not well understood and, as such, is not included in our model.

More generally, the simulated speeds need to be validated. Although the maxi-

mum speed matches that observed by Koshak and Fouda [15], it may prove that at

many of the densities observed, the speed of the pedestrians should be lower. Fur-

thermore, since the time of Koshak’s and Fouda’s experiments, the Mataf area has

been changed to improve the flow. We need to validate against more current data

collected from coordinated GPS devices and cameras.

1.6.2 Conclusion

The unique nature of the Tawaf exhibits behaviors which are not well modeled by

many existing crowd simulation systems. We have presented a framework for sim-
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ulating many of the complex behaviors and relationships exhibited by pilgrims per-

forming the Tawaf. By coupling a high-level finite-state machine with a low-level

pedestrian model, we have been able to model a range of behaviors such as: circum-

ambulating the Kaaba, queuing to touch the Black Stone, entering and exiting the

Mataf floor, and pausing to perform Istilam. We’ve shown how to extend a velocity-

obstacle-based pedestrian model to capture asymmetric inter-agent responses and

have shown that the model is well behaved even at the extreme densities observed

in our simulation. In many important respects, the results of the simulation match

those observed in real people performing the Tawaf.

There are still multiple avenues to pursue for future work. The first is to confirm

the validity of the pedestrian model with respect to density-dependent effects. In

addition, we plan to extend the current set of behaviors to capture the important

behaviors currently missing from our simulation, with particular focus on the impact

of exiting pilgrims and groups. In addition, we intend to investigate the possibility

of using video of the Tawaf to refine the behavior system, both the parameters and

structure of the FSM as well as the local collision avoidance parameters.
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