
Virtual Topology Mapping in Elastic Optical
Networks

Juzi Zhao, Suresh Subramaniam
Department of Electrical and

Computer Engineering

The George Washington University, Washington, DC 20052

Email: juzizhao@gwu.edu, suresh@gwu.edu

Maı̈té Brandt-Pearce
Charles L. Brown Department of

Electrical and Computer Engineering

University of Virginia, Charlottesville, Virginia 22904

Email: mb-p@virginia.edu

Abstract—Virtualization improves the efficiency of networks
by allowing multiple virtual networks to share a single physical
network’s resources. Next-generation optical transport networks
are expected to support virtualization by accommodating mul-
tiple virtual networks with different topologies and bit rate re-
quirements. Meanwhile, Optical Orthogonal Frequency-Division
Multiplexing (OOFDM) is emerging as a viable technique for
efficiently using the optical fiber’s bandwidth in an elastic
manner. OOFDM partitions the fiber’s bandwidth into hundreds
or even thousands of OFDM subcarriers that may be allocated
to services. In this paper, we consider an OOFDM-based optical
network and formulate a virtual network mapping problem for
both static and dynamic traffic. This problem has several natural
applications, such as e-Science, Grid, and cloud computing.
The objective for static traffic is to maximize the subcarrier
utilization, while minimizing the blocking ratio is the aim for
dynamic traffic. Two heuristics are proposed and compared.
Simulation results are presented to demonstrate the effectiveness
of the proposed approaches.

Index Terms—Virtual optical networks, OOFDM, elastic net-
works, mapping, list scheduling, subcarriers.

I. INTRODUCTION

Network virtualization serves as an efficient method to

circumvent the Internet’s rigidity, in which multiple virtual net-

works with different topologies and requirements are allowed

to share a single physical network. This concept was originally

applied to the higher protocol layers, but recent efforts have

turned their attention to virtualizing the physical layer [1],

which has traditionally been based on Wavelength Division

Multiplexing (WDM). These Virtual Optical Networks (VON)

are expected to handle the exploding traffic demands in carrier

networks in the future. The concept of optical network virtual-

ization, and its implication and challenges for optical network

elements and transport technologies are presented in [1]. A

possible approach for virtualization of classical wavelength-

switched optical network by partitioning and aggregation of

optical switching nodes and link capacity is also discussed.

Concurrent with the emergence of virtualization of the op-

tical layer, new ways of getting around the rigidity and coarse-

ness of the wavelength spectrum in WDM-based transmission

are being identified. Efforts have been underway for some

time on optical orthogonal frequency division multiplexing

(OOFDM), which has been proposed as a viable technology

for optical transmission [2]. OOFDM allows fiber bandwidth

to be carved up into subcarriers that have much finer band-

width granularity than wavelengths. Whereas in WDM the

typical wavelength spacing is 25 GHz, wavelength bit-rates

are 10, 40, or 100 Gbps, and whole wavelengths are allocated

to services, in OOFDM the spacing between subcarriers is

only a few GHz and subcarrier bit rates are a few Gbps. An

attractive feature of OOFDM is that different bit rates may be

achieved by using one of a variety of modulation schemes, and

bands of subcarriers may be assigned to a service as needed. In

this way, allocated network resources can be matched up with

service requirements in a much more flexible manner than in

WDM-based networks. Such optical networks have therefore

been called elastic optical networks [3].

This paper is at the intersection of the above two emerging

research areas. One of the challenges of network virtualization

is the virtual topology mapping (or embedding) problem,

which assigns substrate physical nodes to virtual nodes, and

guarantees the bandwidth requirements of the virtual links.

We consider the problem of mapping virtual topologies in

elastic optical networks. To the best of our knowledge, this

is the first paper on this topic, though virtualization in WDM-

based network has been an active topic of research in the

past couple of years [4], [5], [6]. The problem of mapping

virtual topologies in elastic optical networks is different from

that in WDM networks because of the multiple subcarrier

allocation. Further, the multiple subcarriers (a subcarrier band)

for a service are typically allocated in a contiguous manner,

as blocks allocated to two different services must be separated

by a guardband in order to avoid interference [3].

We consider both static and dynamic versions of the virtual

topology mapping problem. In this problem, a virtual topology

request includes a set of virtual nodes, the amount of computa-

tion requirements at the virtual nodes (e.g., number of virtual

machines (VMs) needed), and the bandwidth requirements

between the virtual nodes. The virtual topology mapping

problem is NP-hard. We present an optimal integer linear

programming (ILP) formulation suitable to small networks

and two heuristic algorithms, applicable to larger systems, to

map the virtual topology requests onto the physical network,

and assign VMs and OFDM subcarriers to virtual network

requests.

The paper is organized as follows. In Section II, we present

some background on virtual topology mapping and OOFDM,

and formulate a problem. An ILP formulation for the problem

and the proposed heuristics are presented in Section III.

Section IV presents and discusses the simulation results. We

conclude the paper in Section V.

978-1-4673-3122-7/13/$31.00 ©2013 IEEE

IEEE ICC 2013 - Optical Networks and Systems

3904

II. MODEL AND PROBLEM STATEMENT

In this section, we provide some background on optical

network virtualization and OOFDM, present the system model,

and define our problem.

A. Virtual Optical Network Problems

We first provide a classification of virtualization problems.

These problems are applicable to WDM- as well as OOFDM-

based optical networks. In general, these problems can be

classified into Slice Provisioning problems or Virtual Net-

work (VN) Mapping problems. In Slice Provisioning, each

request requires a slice of the entire physical network in-

cluding (sub)wavelengths on fibers, ports of optical devices,

and/or optical-electrical-optical (OEO) converters at regenera-

tor nodes [1]. The objective can be maximizing the acceptance

ratio or maximizing revenue (each VON request has to pay the

price of the resources). This model can further be classified

in two ways:

1. Slice Provisioning: specific model

The slice request includes specific (sub)wavelengths of each

physical link, specific ports of each optical device (e.g., optical

cross-connetcs (OXC)), and the number of OEO circuits in

each regenerator.

2. Slice Provisioning: flexible model

The slice request includes the bit rate requirement on each

physical link, the number of ports at each optical device, and

the reachability of each pair of nodes. The provider assigns

(sub)wavelengths on each link, the ports on each node and the

OEO converters on each regenerator node to the request.

In VN Mapping, each request is a virtual network

topology including virtual nodes and/or virtual links. The

provider assigns physical nodes to virtual nodes, and allocates

(sub)wavelengths on each link to the virtual links. In both

versions, the request may also include Bit Error Rate (BER)

or survivability requirements.

1. VN mapping: pipe model

The VN request includes a topology consisting of virtual nodes

and virtual links, each virtual node has a set of candidate

physical nodes that it could be assigned to (based, for example,

on proximity) and possibly a computing resources requirement

[7]. Virtual links have a bit-rate requirement.

2. VN mapping: hose model ([8])

The VN request consists of virtual nodes with computing

resources requirement, and the aggregate incoming/outgoing

traffic from/to the other virtual nodes.

We consider the VN mapping using the pipe model in this

paper.

B. OOFDM

OOFDM is a technology providing flexible subcarrier as-

signments and more efficient bandwidth utilization. The op-

tical spectrum of each fiber (e.g., C-band) is divided into

subcarriers, which are orthogonal to each other, and a guard-

band consisting of multiple subcarriers is placed between two

adjacent subcarrier bands assigned to different connections.

Guardbands are used for avoiding interference, and their width

is in general a function of the maximum number of filters on

the path and the filter characteristics (such as filter bandwidth

and order) [9].

Different modulation levels can be adopted by different

subcarriers, and a connection can be assigned multiple sub-

carriers depending on its bit rate requirement. However, all

the subcarriers assigned to a single lightpath use the same

modulation level. The highest modulation level of a path

depends on the length of that path due to physical layer

impairments [3]. Regenerators in the network can extend the

reach of a lightpath.

The subcarriers assigned to a connection may be contiguous

or non-contiguous. Contiguous assignment can take advan-

tage of overlap between adjacent subcarriers due to their

orthogonality, but is obviously more restrictive because of

the contiguity restriction. Non-contiguous assignment is more

flexible but may increase total guardband overhead. There may

be subcarrier converters [10] in the network; at a subcarrier

converter, a whole band of subcarriers assigned to a connection

on the incoming link can be converted to another band of

subcarriers on the outgoing link.

C. Network Model and Notation

The physical network includes a set of physical nodes,

each with h virtual machines (VMs), and a set of fibers,

each with multiple subcarriers. Each subcarrier is C GHz.

Guardband G is a fixed integer number of subcarriers. The

shortest path ps,d (based on distance) for each pair of nodes

(s, d) is precomputed, and depending on its length each path

has a highest modulation level that can be used.

Virtual topology (VT) request i includes a set of virtual

nodes and a set of virtual links.1 For virtual link ki, there is

a bit rate requirement Λi
k. Virtual node ji has a candidate set

(N i
j) of physical nodes to map to, and a VM requirement mi

j .

Determined by the candidate nodes, virtual link ki has a can-

didate path set P i
k. Path p ∈ P i

k has a subcarrier requirement

bk(p), which is obtained from its highest modulation level and

Λi
k.

D. Problem Statement

We consider the VN mapping problem using the pipe model.

Within this context, there are several variants based on whether

traffic can be split among multiple paths or not, whether the

subcarrier bands should be contiguous or not, etc. We assume

that the network is all-optical (i.e., no regenerators), a single

path is used for each virtual link, and subcarriers for each

virtual link are contiguous.

Consider a VT request. For each of its virtual nodes,

a physical node that has sufficient VMs available must be

assigned from the set of candidate physical nodes. At the same

time, a physical path p should be assigned to each virtual link,

and a band of contiguous subcarriers on each physical link of

the path should be allocated to the virtual link to satisfy the

virtual link’s bit rate requirement. We allow different virtual

1We use the letter i for VT index, j for virtual node index, k for virtual
link index, n for physical node index, p for physical path index.

3905

nodes of a request to be mapped to the same physical node

in case they have common candidate physical nodes; in this

case, there is no need to map the virtual link between these

virtual nodes (and no subcarriers are allocated).
For the static traffic case, a set of VT requests is given,

and the objective is to minimize the maximum used subcarrier

index on any link. For the dynamic traffic case, the number

of subcarriers per link is fixed and VT requests arrive and

depart in a random manner. The objective is to minimize

the request blocking ratio. All virtual links are assumed to

be bidirectional and use the same path and subcarriers for

both directions. Since the bit rate (bandwidth) requirements

of each VT could be different, in addition to the request

blocking ratio, we consider bandwidth blocking ratio, defined

as: Bandwidth blocking = (
∑

i′∈I′ Bi′)/(
∑

i∈I Bi), where Bi

denote the aggregate bit rate requirement of request i (the sum

of the bit rate requirements over all virtual links in request i).

III. ALGORITHMS

In this section we introduce our algorithms for VT mapping.

We first present an ILP formulation for static requests that can

be used to solve small problem instances. We then present two

heuristics for static requests, and later adapt them to dynamic

requests. Recall that for static traffic we are given a set of VT

requests which never depart, and VT requests arrive and depart

in a random manner for dynamic traffic. Each VT request has

bit-rate requirements on its virtual links, VM requirements at

the virtual nodes, and there is a constraint on the set of physical

nodes a virtual node can be mapped to.

A. ILP Formulation
Input parameters used in the ILP formulation are listed

below: S(p) denotes source of path p; D(p) denotes desti-

nation of path p; γp,l = 1 if path p uses link l; S(ki) denotes

the source virtual node for virtual link k of request i; D(ki)
denotes the destination virtual node for virtual link k of request

i; q denotes a dummy path with S(q) = D(q).

Objective: Minimize maxs sfs

Variables:
a)

fs =

{
1, if subcarrier index s is used on some physical link

0, otherwise

b)

xijn =

{
1, if virtual node ji uses physical node n

0, otherwise

c)

yikp =

{
1, if virtual link ki uses path p

0, otherwise

d)

zikpc =

⎧
⎪⎨

⎪⎩

1, if virtual link ki uses path p

and the starting subcarrier index is c

0, otherwise

Constraints:

a) Each virtual node is assigned to one physical node.
∑

n∈Ni
j
xijn = 1 for all i, j

b) Each virtual link is assigned to one physical path.
∑

p∈P i
k
yikp = 1 for all i, k

c) Each physical node’s VM capacity cannot be exceeded.
∑

i,j(xijn ·mi
j) ≤ h, for all n

d) If the source and destination of a virtual link are assigned

to the same physical node, the virtual link is assigned to

dummy path q (which uses no subcarriers).

yikq = [
∑

n∈Ni
S(ki)

(xiS(ki)n · n) =
∑

n∈Ni
D(ki)

(xiD(ki)n · n)]
(Note that n is not a decision variable, and so the constraint

is linear.)

e) If virtual link k is assigned to physical path p (p �= q),

the source and destination of the two must match, i.e.,

if yikp = 1, then either xiS(ki)S(p) = 1, xiD(ki)D(p) = 1 or

xiS(ki)D(p) = 1, xiD(ki)S(p) = 1.

f) If virtual link k uses path p, then it must be assigned

subcarriers on that path, i.e.,
∑

c zikpc = yikp

g) All assigned subcarriers for non-dummy paths are marked

as used, i.e.,

cikpc = 1 (p �= q), the corresponding fs = 1

zikpc ≤ fs for c ≤ s < c+ bk(p) +G

h) Each subcarrier on a physical link can be used by at most

one virtual link.
∑

i,k,p,c≤s<c+bk(p)+G zikpcγp,l ≤ 1 for all l, s.

B. Static Requests

Before describing the algorithms, we present three functions

(that are used by the heuristics) that check if certain VT

assignments can be made.

i) TrivialRequestCheck(): This function checks whether any

VT can be mapped to a single physical node with no influence

on other virtual node mappings in other VTs (i.e., the candi-

date node sets of the other virtual nodes won’t be affected by

this mapping). In this case, it is best to assign the whole VT

to that physical node (since it will not use any subcarrier).

ii) CheckNode(): If a virtual node has only one candidate

physical node (taking into account the number of currently

available VMs at physical nodes), then we assign it to that

physical node. Since each time a virtual node mapping may

affect candidate nodes for other virtual nodes (due to the VM

limit), this procedure is repeated for at most I · Nl times

(where I is the number of VT requests and Nl is the maximum

number of virtual nodes in a VT). In addition, if a virtual link’s

two terminal virtual nodes are mapped to the same physical

node, we mark the virtual link as an assigned virtual link (a

dummy physical path).

3906

iii) CandidateCheck(): A candidate physical node n ∈ N i
j

for virtual node ji will be considered for node mapping if it

can satisfy the following condition: after mapping node ji to

n, all other unmapped virtual nodes (belonging to the same or

other VTs) still have at least one potential candidate physical

node by considering the number of free VMs on each physical

node.

The following two algorithms are proposed.

1) First Fit (FF): This is a simple greedy algorithm. VTs

are considered one by one (from lowest index) and unmapped

virtual nodes of each VT are mapped one by one. For each

virtual node ji, the first fit physical node (the one with

smallest index) is selected from the candidate set, as long

as the physical node has enough available VMs to satisfy

the virtual node’s VM requirement mi
j . Each time a virtual

node is mapped, the function CheckNode() is called. After

all the virtual nodes are mapped, subcarriers are allocated to

unassigned virtual links. Since the node mapping is already

done, each virtual link’s path (say p) is fixed (recall that the

shortest path is used for each pair of physical nodes), and

the number of subcarriers bk(p) is also known. Then, the first

available band of bk(p) subcarriers is allocated to virtual link

ki.
2) Link List (LL): The idea behind this algorithm is to map

the VTs one by one in decreasing order of their VM and bit-

rate requirements because these require the most resources.

Within each VT, virtual links are mapped one by one, starting

from the “most-constrained” virtual link.

We will use the following notations in the algorithm. For

VT i, denote the sum of the VM requirements of unmapped

virtual nodes as Mi; the sum of the bit rate requirements of

unassigned virtual links as Bi. Further, let the number of used

VMs on physical node n be cn, and denote the two ends of a

generic virtual link as t1 and t2.

A VT list is created first. For each VT, a virtual link list

is created based on the relative weight of a virtual link ki’s
bit rate requirement Λi

k. When considering the current virtual

link in the list, the candidate nodes of virtual node t1 and t2
are checked by the function CandidateCheck() if they are not

mapped yet. Suppose the virtual link k is mapped to a path

p ending with candidate nodes (or mapped physical nodes)

n1 and n2 for virtual nodes t1 and t2 respectively. Let the

resulting maximum subcarrier index on any link be sn after

first-fit subcarrier assignment. Assign a cost to the path as

max(cn1 +mi
t1 , cn2 +mi

t2 , sn) (if either t1 or t2 are already

mapped, set the corresponding cost to 0). Finally, virtual link

ki is mapped to the candidate path with minimum cost, and t1,

t2 are mapped to the corresponding end nodes of the selected

path. The pseudo-code of the algorithm is shown as Algortihm

1.

C. Dynamic Requests

For dynamic traffic, since VTs arrive (and depart) one by

one, VTs are mapped in the order they arrive. No remapping of

currently mapped VTs is done. The same heuristics for static

traffic are adapted by removing the TrivialRequestCheck()

Algorithm 1 Link List

TrivialRequestCheck() and CheckNode()

for VT i = 1, 2, . . . , I do
Find Mi, Bi, and assign VT i a cost max(Mi∑

i Mi
, Bi∑

i Bi
)

end for
Create LIST in decreasing order of the cost

for each VT i in LIST do
for unassigned virtual link ki do

Assign it a cost
Λi

k

Bi

end for
Create virtual link LIST (i) in decreasing order of the

cost

for each virtual link ki in LIST (i) do
1. CandidateCheck() for t1 and t2
2. Assign a cost to each candidate path

3. Assign link ki to the path with minimum cost

4. Map t1 and t2
CheckNode()

end for
end for

function. Further, the CheckNode() and CandidateCheck()

functions consider only the virtual nodes in the current VT.

IV. SIMULATION RESULTS

We present results for two network topologies, a small 6-

node network and the larger Deutsche Telekom (DT) network,

shown in Fig. 1.

We use 6 modulation levels for the subcarriers: BPSK,

QPSK, 8QAM, 16QAM, 32AQM, 64QAM, and adopt the half

distance law used in [11] for the optical reach. According

to that, BPSK, QPSK, 8QAM, 16QAM, 32QAM, 64QAM

can be used for paths up to 3000 km, 1500 km, 750 km,

375 km, 187.5 km, and 93.75 km, respectively. With each

subcarrier being 5 GHz, the data rate for BPSK is 2.5 Gbps

per subcarrier [11], and the data rates for other modulation

schemes increase by factors of 2, 4, 8, 16, and 32. We

assume that each physical node has 100 VMs (as modern-

day servers allow tens of VMs per host [7]) and there are 800
subcarriers on each link (as C-band is 4000 GHz). In addition,

the guardband is assumed to be G = 2 subcarriers.

VT requests are generated as follows. Each VT in the small

network is a complete graph with 3 or 4 virtual nodes (selected

randomly). In the DT network, each VT has between 3 and

10 virtual nodes, and a virtual link exists between a pair of

nodes with probability 0.5 (we discard any topologies that

are not connected). Each virtual node has between 1 and 3
physical node candidates (candidate nodes are all adjacent to

each other), and requires a random number of VMs between

1 and 4. Each virtual link requires a bit-rate that is uniformly

distributed over the range 0− 2.5L Gbps, where L is a data-

rate load parameter.

A. Static Requests

We first present results for the static traffic case. Due to the

high complexity of the ILP, we are only able to obtain results

3907

2

3

4

5

1 6

100

100

300

300

200

200

200

200

400

(a) 6-node network (b) DT

Fig. 1. 6-node network and 14-node DT. The number on each link
corresponds to the number of distance in km.

for the small network. Sample results for 20 VT requests for

various load values are shown in Table I.
TABLE I

NUMBER OF SUBCARRIERS FOR ILP
20 VTs First Fit Link List ILP
L=5 63 47 41
L=10 79 54 44
L=15 95 62 51
L=20 112 68 58
L=25 128 73 64
L=30 143 87 71
L=35 159 92 78
L=40 176 102 86

From these results, we observe that the LL algorithm

performs much better than FF, suggesting that the simple

greedy algorithm can be vastly improved upon with a clever

heuristic. The LL results are quite close to those achieved by

the ILP (no more than 25% in the cases considered), though

there is some room for improvement. For the DT network,

results for the two heuristics are presented in Table II. These

results confirm our earlier observations.
TABLE II

NUMBER OF SUBCARRIERS FOR STATIC TRAFFIC

20 VTs First Fit Link List 30 VTs First Fit Link List
L=5 167 143 L=5 194 162
L=10 213 172 L=10 244 214
L=15 254 208 L=15 293 240
L=20 291 239 L=20 341 280
L=25 334 275 L=25 392 324
L=30 379 313 L=30 439 360
L=35 420 326 L=35 492 405
L=40 468 375 L=40 543 432
L=45 513 390 L=45 594 505
L=50 557 454 L=50 646 523
L=55 602 485 L=55 699 571
L=60 652 489 L=60 755 608

B. Dynamic Case
For dynamic traffic, VT requests are assumed to arrive to the

network according to a Poisson process. For each data point in

the graphs, we simulated 10000 to 100000 VT request arrivals.

Each request has a holding time of 1 unit. The VT request

arrival rate per unit time is variable, but intended to produce

blocking rates between around 10−4 and 10−1. Figs. 2 and 3

show the request blocking and bandwidth blocking versus the

virtual link bit rate load L for the two algorithms with arrival

rates of 20 and 30. The results show that for both performance

metrics, LL is much better than FF.

10 20 30 40 50 60 70 80
10−5

10−4

10−3

10−2

10−1

100

Load L

R
eq

ue
st

 B
lo

ck
in

g

First Fit−30
Link List−30
First Fit−20
link List−20

Fig. 2. Request Blocking vs. Load L for arrival rates 20 and 30.

10 20 30 40 50 60 70 80
10−5

10−4

10−3

10−2

10−1

100

Load L

B
an

dw
id

th
 B

lo
ck

in
g

First Fit−30
Link List−30
First Fit−20
link List−20

Fig. 3. Bandwidth Blocking vs. Load L for arrival rates 20 and 30.

V. CONCLUSIONS

In this paper, we investigated the virtual network mapping

and subcarrier allocation problem for both static and dynamic

traffic in elastic optical networks. We proposed two heuristics

based on list scheduling, and simulation results showed the vir-

tual link list scheduling approach achieves better performance

than a simple first fit approach.

ACKNOWLEDGMENT

This work was supported in part by NSF grants CNS-

0915795 and CNS-0916890.

REFERENCES

[1] R. Nejabati et al., “Optical network virtualization,” in Optical Network
Design and Modeling (ONDM), Feb. 2011.

[2] I. B. Djordjevic and B. Vasic, “Orthogonal frequency division multi-
plexing for high-speed optical transmission,” Optics Express, vol. 14,
no. 9, pp. 3767–3775, 2006.

[3] M. Jinno et al., “Distance-adaptive spectrum resource allocation in
spectrum-sliced elastic optical path network,” IEEE Commun. Mag.,
vol. 48, no. 8, pp. 138 – 145, Aug. 2010.

[4] K. Shiomoto et al., “Network virtualization in high-speed huge-
bandwidth optical circuit switching network,” in INFOCOM, IEEE,
April 2008.

[5] X. Liu et al., “Application-specific resource provisioning for wide-area
distributed computing,” Network, IEEE, vol. 24, no. 4, pp. 25 – 34,
2010.

[6] S. Peng et al., “Performance modelling and analysis of dynamic virtual
optical network composition,” in Optical Network Design and Modeling
(ONDM), April 2012.

[7] M. Yu et al., “Rethinking virtual network embedding: substrate support
for path splitting and migration,” in ACM SIGCOMM, April 2008.

[8] N. G. Duffield et al., “A flexible model for resource management in
virtual private networks,” in ACM SIGCOMM, Aug. 1999.

[9] B. Kozicki et al., “Filtering characteristics of highly-spectrum efficient
spectrum-sliced elastic optical path (SLICE) network,” in Optical Fiber
Communication (OFC), March 2009.

[10] S. Blouza et al., “Multi-band OFDM networking concepts,” in Confer-
ence on telecommunications, April 2011.

[11] K. Christodoulopoulos et al., “Elastic bandwidth allocation in flexi-
ble OFDM-based optical networks,” IEEE/OSA J. Lightwave Technol.,
vol. 29, no. 9, pp. 1354 – 1366, May 2011.

3908

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

