
Virtual Training for Multi-View Object Class Recognition

Han-Pang Chiu Leslie Pack Kaelbling Tomás Lozano-Pérez

MIT Computer Science and Artificial Intelligence Laboratory

Cambridge, MA 02139, USA

{chiu,lpk,tlp}@csail.mit.edu

Abstract

Our goal is to circumvent one of the roadblocks to using

existing approaches for single-view recognition for achiev-

ing multi-view recognition, namely, the need for sufficient

training data for many viewpoints. We show how to con-

struct virtual training examples for multi-view recognition

using a simple model of objects (nearly planar facades cen-

tered at fixed 3D positions). We also show how the models

can be learned from a few labeled images for each class.

1. Introduction

Seeing a number of instances of an object class from

different views ought to enable a vision system to recog-

nize other instances of that class from views that have not

been seen before. In most current approaches to object class

recognition, the problem of recognizing multiple views of

the same object class is treated as recognizing multiple in-

dependent object classes, with a separate model learned for

each. This independent-view approach can be made to work

well when there are many instances at different views avail-

able for training, but can typically only handle new view-

points that are a small distance from some view on which it

has been trained.

An alternative strategy is to use multiple views of multi-

ple instances to construct a model of the distribution of 3-

dimensional shapes of the object class. Such a model would

allow recognition of many entirely novel views. This is a

very difficult problem, which is as yet unsolved.

In this paper, we take an intermediate approach. We de-

fine the Potemkin model of 3-dimensional objects as a col-

lection of parts. The model allows the parts to have an arbi-

trary arrangement in 3D, but assumes that, from any view-

point, the parts themselves can be treated as being nearly

planar. We will refer to the arrangement of the part cen-

troids in 3D as the skeleton of the object. As one moves

the viewpoint around the object, the part centroids move as

dictated by the 3D skeleton; but rather than having the de-

tailed 3D model that would be necessary for predicting the

transformation of each part shape from one view to another,

we model the change in views of each shape as a 2D per-

spective transformation.

The Potemkin model is trained and used in two phases.

In the first phase, multiple views of some simple object in-

stances, such as boxes, are used to learn fundamental trans-

forms from view to view. The necessary data can be rel-

atively simply acquired from real or synthetic image se-

quences of a few objects rotating through the desired space

of views. In the second phase, a collection of views of

different object instances of the target class, from arbitrary

views, is used to estimate the 3D skeleton of the object class

and tune the view transforms for each of the parts. Given a

new view of interest, the skeleton can easily be projected

into that view, specifying the 2D centroids of the parts.

Then, the 2D part images of the training examples in other

views can be transformed into this view using the trans-

forms learned in the initial phase. This gives us a method for

generating “virtual training examples” of what it would be

like to see this object from a novel view. These virtual train-

ing examples, along with any real training examples that are

available, can then be fed into any view-dependent 2D part-

based recognition system, which can be used to look for

instances of the object class in the novel viewpoint.

The first phase of the model need only be carried out

once, and it can be done entirely off-line. After that, the

model can be used for new object classes with very little

overhead. In this paper, we demonstrate that the model

is useful both for recognizing objects at previously unseen

views and for leveraging sparse training data by transform-

ing every training instance into a view that is suitable for

training every view-dependent recognizer. We show results

using both Crandall et al’s [2] recognition system in a detec-

tion task and a recognition system we will describe below

in a localization task.

Related Work. This work leverages recent advances in

single-view object recognition for objects modeled as a col-

lection of parts and spatial relationships [8, 9, 12, 2, 3] and

enables them to be applied to multi-view recognition with-

out excessive training-data requirements. There is an exist-

1

ing body of work on multi-view object class recognition for

specific classes such as cars and faces [1, 6, 13, 15, 16, 19].

In particular, Everingham and Zisserman [4] generated vir-

tual training data for face recognition from multiple view-

points using a reconstructed 3D model of the head. Two

important contributions to general multi-view object class

recognition are the work of Torralba et al. [18], who

show that sharing features among multi-view models im-

proves both running time and recognition performance, and

Thomas et al. [17], who link similar appearance features of

the same training object to enable better multi-view recog-

nition. In both of these systems, the training images need

to be taken from many views for many instances to achieve

satisfactory recognition results. In contrast, we introduce

a method for leveraging fewer training images from fewer

views to obtain multi-view recognition. In our method ev-

ery object instance contributes to the recognition perfor-

mance in many nearby views.

2. Modeling 3D shape and appearance

The Potemkin model is used to represent an approximate

3D shape and appearance model. In this section we describe

it in detail, including how to estimate the parameters from a

small amount of training data, and use it to generate virtual

training data.

2.1. The Potemkin model

A Potemkin model for an object class with m parts is

defined by:

• k view bins, which are contiguous regions of the view

sphere;

• k projection matrices, Pα ∈ R2×3, from normalized

3D coordinates to image coordinates for each view bin

α;

• a class skeleton, S1, . . . , Sm, specifying the 3D posi-

tions of part centroids, in a fixed, normalized reference

frame; and

• mk2 view transformation matrices, T j
α,β ∈ R3×3, one

for each part j and pair of view bins α, β, which map

points of an image of part j, represented in homoge-

nous coordinates, from view α to view β.

This model is appropriate for object classes in which the

skeleton is relatively similar for all of the instances of the

class; if there is more variability, and especially multi-

modality, it will become necessary to extend the model to

probabability distributions over the skeleton and matrices,

and to integrate or sample over model uncertainty when us-

ing it for prediction.

Of course, a single linear projection cannot correctly

model projections from 3D coordinates to all views in a bin,

Figure 1. A synthetic nearly planar box object used for learning

the generic view transformations.

or from all views in one bin to all views in another; we as-

sume that the bins are small enough that the error in such

a model is tolerable. The choice of bin size represents a

model-selection problem. The smaller the bins, the more

accurate the model, but the more data needed to train it re-

liably.

Label images indicate which pixels in a training image

correspond to each part. A Potemkin model, together with

a label image whose view bin is known, can be used to pro-

duce k − 1 additional images containing predicted views

of the parts of the instance from the other view bins. Below

we review how we estimate a Potemkin model from training

data and then use it to predict new label images.

2.2. Estimating the model

Our overall goal is to use the Potemkin model to enable

learning from fewer images than would otherwise be neces-

sary. It is crucial, then, that we be able to estimate the model

itself from few labeled training images. To enable this, we

initialize the view transforms using cheaply available syn-

thetic data, then refine the transforms using the available

training images. Similarly, we solve for the skeleton points

by pooling the data from all the instances in a view bin, ex-

ploiting the assumption that the skeleton is relatively stable

across instances of the class.

The projection matrices Pα, from 3D to view, are depen-

dent only on the choice of view bins, and can be computed

analytically for the centroid of the view bin or estimated

from data sampled over the whole bin.

2.2.1 Learning generic view transformations

We start by learning a set of generic view transformations

that are not part-specific. These will be used to initialize

learning of object-part-specific transformations, based on

very few real training images.

The set of generic transforms Tα,β map points of an im-

age in view bin α to points of an image in view bin β. These

Figure 2. The ellipses indicate the distribution of 2D positions of

the centroids of each part in the training set of chair images for

each viewpoint. The 3D spheres show the estimate of the skeleton

positions Sj for each part.

transforms are currently learned from synthetic binary im-

ages (one drawn randomly from each of the k view bins) of

approximately 30 relatively “flat” blocks of varying dimen-

sions, as depicted in figure 1. Note that since we are using

synthetic data, we have enough data to get a good initial es-

timate for all the pairwise view transforms. A smaller set

of real images could be used in addition to or instead of the

synthetic images.

In this paper, the blocks used for learning the transforms

are all upright, similar to those shown in the figure; this

has been sufficient to get reasonable initial estimates of 2D

shape transformation in our experiments. In future, we

could learn the transforms for several simple shapes and

several 3D orientations of the shapes and use the first few

instances of a new class to select the most appropriate trans-

form for each part.

To learn the generic transforms Tα,β , we first establish

correspondences between points on the (synthetic or real)

training images, each of which is the outline of a part in the

image. We use the shape context algorithm [14] to obtain a

dense matching between the 2D boundaries across the im-

ages. Then, we use linear regression to solve for a 2D pro-

jective transform that best explains the observed matches

across a set of image pairs representing a sample of object

dimensions and viewpoints within the view bins.

General 2D projective transforms have 8 parameters and

(assuming v = 1 below) they can be decomposed [11] as:

Tα,β =

[

sR(θ) t

0T 1

] [

K 0
0T 1

] [

I 0
v

T v

]

In our case, the translation t is known to be zero. Choosing

K =

[

Ka Kb

0 1/Ka

]

, v
T = [v1, v2] and s > 0, we can

therefore represent each transform as a vector of 6 param-

eters [log s, θ, Ka, Kb, v1, v2]. We use the mean of these 6

parameters over the training data as our generic view trans-

form.

2.2.2 Refining the view transformations

The actual training data given to the recognition system are

images of different instances of the class at different views.

If the training data set happens to contain more than one

view of a particular instance, in different view bins, then

that data can be used to refine the generic transforms, mak-

ing them specific to the particular parts of the class. If

it does not, the model can still be used with the original

generic transforms.

Assume we are given a label-image pair 〈xα, xβ〉 with

views in bins α and β. For each part j in each image, we use

the shape-context algorithm to match points on the bound-

ary of the part and then construct the transform T̂ j
α,β , rep-

resented as a vector of 6 parameters, as above. Assuming

n image pairs are available, we can find the mean of the

resulting parameter vectors.

We then combine the generic view transform (the mean

of the transforms derived from the synthetic images) and the

mean of the part transforms to obtain a part-specific view

transform T j
α,β .

T j
α,β =

n

κ + n
T̂ j

α,β +
κ

κ + n
Tα,β

The relative weighting of the generic and specific trans-

forms is determined by the parameter κ, which is currently

chosen empirically; in principle it could be treated as a

Bayesian hyperparameter and learnt based on training data

from many object classes.

2.2.3 Learning the class skeleton

The class skeleton can be estimated from any collection of

images of instances in any views, and does not require there

to be multiple views of any instance. The label images that

are used for training allow us to directly compute the cen-

troids of the individual parts. We will then use these to esti-

mate the skeleton, using the projection matrices Pα, which

specify the projection from 3D points into 2D view bin α.

We begin by translating and normalizing the training im-

ages relative to a bounding box that contains them all. Next,

for each view bin α and part j, we compute the mean µj
α and

covariance Σj
α of the coordinates of the centroid of part j in

the normalized images in bin α. Finally, we solve for the

set of 3D positions that best project to the mean centroids

of the corresponding labeled parts, using the covariance in

the estimates to weight their contribution to the solution.

We do this using the PowerFactorization method [10] to

solve the weighted least squares problem:

Sj =

(

∑

α

PT
α (Σj

α)−1Pα

)

−1(

∑

α

PT
α (Σj

α)−1µj
α

)

,

where Sj is the 3D position for part j in the skeleton. The

skeleton location for each part is estimated independently,

Figure 3. The Potemkin model in the top two rows is constructed

from only two real labeled images (left). Given the label images

for two object instances, each in only one viewpoint bin (high-

lighted), the other virtual views are generated from the Potemkin

model. The model in bottom two rows is constructed from a total

of 10 real images, from 5 object instances over 6 views.

because we have no prior on the structure of a new object

class.

Figure 2 shows a schematic version of this process. In

each view bin, the distribution on the centroid of each part

is estimated, shown by the ellipses. Then, the centroids are

used to estimate the 3D skeleton locations, shown in the

center. The centroids of parts that are sometimes occluded

by other object parts have higher variance; ultimately it may

be important to explicitly model self-occlusion.

2.3. Using the model

Finally, we can use the Potemkin model to generate “vir-

tual” training data for a set of k view-specific 2D recog-

nizers. Any training instance in one view bin can be trans-

formed to many other view bins, using the skeleton and the

view transforms, and used as training data for that recog-

nizer. This strategy effectively multiplies the value of each

training image by k, and allows us to train recognizers for

view bins that have never actually been seen, based only on

virtual data.

Given an input label image in view bin α, we can break

the prediction problem into two stages. For each part j and

each viewpoint β 6= α, we

1. transform the label image of each part j using T j
α,β

2. center the resulting shape at PβSj , the view projection

of the 3D skeleton location of part j into view bin β.

This process generates a complete virtual label image for

view β and can be readily extended to generate complete

images.

An example of the results can be seen in figure 3 (top

two rows), which shows the virtual images constructed from

a minimal Potemkin model, trained with only two real la-

beled images. Note that at least two images are necessary

to solve for the skeleton positions in 3D. The results are al-

ready useful for recognition; see Section 4. If more training

data is available, the results can be improved substantially.

Figure 3 (bottom two rows) shows the results after a total of

10 training images; the transforms and skeletons are learned

well enough to make credible virtual training examples for

all view bins given a single label image. The virtual ex-

amples can be placed into the background from the original

image to construct a realistic image suitable for using in any

existing recognition system as shown in Figure 4.

3. View-specific 2D recognition

The Potemkin model can be used to generate trans-

formed versions of training data, both images and labels, so

we can take any multi-view image corpus and increase its

coverage by transforming every image into multiple view-

points. The resulting corpus can be used to train view-

specific 2D object-class recognizers [7, 9, 2, 3]. We have

tested the effectiveness of the Potemkin images in a de-

tection task by using them as input to the method devel-

oped by Crandall et al. [2] (see the Experimental Results

section). We have also tested localization performance us-

ing a closely related method we developed but which uses

a somewhat richer model of the appearances of individual

parts.

3.1. EigenEdgeStar (EES) Model

A 2D pictorial-structure model consists of a shape model

that describes the spatial relations between the parts and an

appearance model for each part, that describes its appear-

ance in the image. We have developed a specific instance of

this class of models, called the EigenEdgeStar model. In it,

the shape model is a star, or Gaussian 1-fan model, meaning

that a particular part is chosen as the reference part, which

establishes a 2D reference frame, and then the location of

each other part j is specified with a Gaussian distribution

over its position in the frame, using parameters µs
j and Σs

j .

We assume that appearances of the individual parts are

independent of one another and of their respective positions;

the model for each part pj is represented as a probability

distribution over a rectangular window of pixels, Pr(Iw|pj),
with the dimensions of the window potentially different for

each part model.

Let ex,y be a vector representing the edge response

(strength and orientation) at pixel x, y in in the window.

Edge strength is represented as a positive value between 0
and 1. We represent edge orientation θ (which ranges from

0 to 180◦) using sin 2θ and cos 2θ. So, ex,y is represented

as a vector of three values. The contents of the window,

ew, can then be represented as a concatenation of the ex,y

vectors for all pixels in the window.

Even for a relatively small window, representing a full

Figure 4. Full virtual images and the actual input images (bold border) of two object instances in the chair data set.

joint Gaussian distribution over the space of ew would re-

quire an enormous number of parameters (quadratic in the

number of pixels), which would then require an unreason-

ably large amount of training data to estimate. In pictorial

structures, it has been traditional to represent the distribu-

tion as a fully factored distribution over the edge orienta-

tions and strengths of each pixel within the window. We

have found that it is more robust to model some dependence

among pixels within the window.

To reduce the size of the model and the data require-

ments, we project the N -dimensional ew vectors down into

an n-dimensional space, for n much less than N , and rep-

resent a joint Gaussian over vectors in that space. So,

Pr(Iw|pj) = Pr(ew|pj) = Pr(Vjew|pj) ∼ N (µa
j ,Σa

j)

where Vj is an n×N matrix, µa
j is the n-dimensional mean

vector, and Σa
j is the n × n covariance matrix.

3.2. Training

The EES model is trained on images that have been la-

beled with the outlines of each part. Bounding boxes for the

root part are calculated and the images are scaled so that the

root parts are aligned as well as possible. Now, the shape

model is trained simply by maximum-likelihood estimation

of each µs
j and Σs

j from the positions of the centroids of part

j in each scaled training image, relative to the centroid of

the root part.

To train the appearance models for the parts, we use the

edge images that constitute the labeled boundary for each

example part. We begin by estimating a bounding box for

all the training examples, which defines the dimensionality

of the pixel window for the part. Then, we compute the vec-

tor ew for each example, estimating local orientations of the

edges in the outlines given in the label. The ew vectors are

the input to a PCA algorithm, resulting in Vj . Finally, the

set of transformed vectors, e′w = Vjew, is used to generate

the maximum-likelihood estimates of µa
j and Σa

j .

3.3. Recognition

Now, given a trained EES model and an image, we would

like to localize an instance of the object class in the image.

That is, to find the collection of part locations, l0 . . . lk, that

maximize Pr(l0 . . . lk|I), the probability that there is an ob-

ject of the class of interest at those locations in the image

I . This is proportional to Pr(I|l0 . . . lk) Pr(lo . . . lk), which

is proportional to Pr(I|l0 . . . lk) Pr(l′
1
. . . l′k|l0), where l′j is

the relative location of part j with respect to l0, because we

have no bias on the location of the root part l0 in the image.

The first term can be factored into a product of the probabil-

ity of the images pixels in the window for each part, times a

background model for the rest of the pixels, which we will

neglect because it is the same for all location hypotheses.

The second term can be factored because of the 1-fan as-

sumption. So, we seek the l0 . . . lk that maximize

k
∑

j=0

log Pr(ew(lj);µ
a
j ,Σa

j) +

k
∑

j=1

log Pr(l′j |l0;µ
s
j ,Σ

s
j) ,

where ew(lj) is the edge information for the window cen-

tered on location lj .

We begin by running the Canny edge detector on the im-

age, and computing, for each part j, Pr(ew(lj);µ
a
j ,Σa

j) for

each candidate location of the part in the image. Then, we

maximize the overall criterion using the efficient dynamic-

programming method of the distance transform [7]. This

gives us the best set of part centroids, which allows us to

hypothesize the location of the object in the image as a set

of bounding boxes of its parts. Note that in this paper the

scale of the object instance is assumed known and there-

fore recognition is done at a single scale; the search could

readily be expanded across scale.

4. Experimental Results

We tested the impact of virtual training images on local-

ization accuracy of objects within images using the EES ap-

proach and in detection tasks using the system by Crandall

Figure 5. The 6 parts of a chair and the 5 parts of a bicycle.

et al [2]. We found that the virtual training images improved

the performance of both systems.

We used two different object classes for our testing: four-

legged chairs and bicycles (figure 5). The four-legged chair

dataset was collected by and labeled by our research group.

It contains 140 images of 80 different object instances, at

a variety of viewpoints ranging over about 30◦ in eleva-

tion and 160◦ in azimuth. There is considerable variation

in lighting, location of objects within the image, and clutter.

We discretized the range of viewpoints into six bins, as seen

in figure 2. The bicycle data set is the TU-Graz-02 database,

which is part of the PASCAL Visual Object Classes (VOC)

Challenge [5]. It contains 365 images of bicycles, again

with considerable variation in pose, view, and clutter. Most

of the images were taken from four general poses, and so

we use those as our view bins for this data set.

Localization performance. All the localization ex-

periments reported here are on test sets of instances from

a single class but with views drawn from the full range of

viewpoint bins for the class, six for chairs and four for bicy-

cles. The difference among the experiments is in the train-

ing sets. The recognition system computes a score for each

of the 2D models corresponding to each view bin and picks

the one with the best score. Localization performance is

measured by the percentage of the bounding box of the lo-

calized object that overlaps the ground-truth bounding box

in the image.

To test the benefit of using the Potemkin model to gener-

ate virtual training data, we first compare localization per-

formance when using only the training images for each view

to the performance using the training images augmented by

the virtual training data from the Potemkin model.

Figure 6 shows the change in performance as the number

of training images in each view bin goes from 1 to 10. Note

that we typically use three principal components to char-

acterize the appearance of the parts, but if there are fewer

than 4 training image for view bin, we reduce the number

of components to be the number of images minus 1. This

is only an issue when working without virtual data; the ap-

proach that uses virtual data has a training instance in each

view bin for each image in all of the view bins. In fact, with

virtual data, we can usually make predictions for viewpoints

for which we have no real training data at all; we explore

that case below.

Figure 6. Localization performance of EES for chairs (top) and

bicycles, using all the training data for all views.

The performance when using virtual data on chairs

shows substantial improvement over the no virtual data

case. Since the shape of chairs is so variable, this type of

recognition system requires a substantial number of train-

ing images. When using virtual data, each viewpoint has

roughly six times the amount of training data than the case

without virtual data. The increase in performance also at-

tests to the quality of the virtual data. In the case of bicy-

cles, the use of virtual examples produces a significant, but

somewhat less dramatic improvement. However, the overall

localization accuracy for bicycles is higher than for chairs,

given the same amount of training data. This is not surpris-

ing since the variability in the shapes of bicycles is small

and good performance is reached with little training data.

Figure 7 shows some correct localization results on

chairs and bicycles.

Localization results on previously unseen viewpoints.

As we pointed out above, using virtual data, it is possible

to localize objects seen from a previously unseen view-

point. We measured the system’s performance by vary-

ing the number of view bins represented in the training

set, while always having all views represented in the test

set. Figure 8 shows localization performance for the chairs

dataset when the number of view bins with real images

varies, each with 10 training images. The lower and up-

per lines are the performance for the case we saw earlier

where every view bin has real data, with the top line using

virtual data and the bottom line not. These results illustrate

Figure 7. Successful localizations of chairs and bicycles using

EES.

Figure 8. Localization performance of EES for chairs as a function

of the number of views in the training data.

that the quality of the virtual data is comparable to that of

the real data.

Detection results with Crandall et al’s system. We

have also carried out detection experiments using the sys-

tem developed by Crandall et al [2]. We used their imple-

mentation and did training using a combination of real and

virtual images for the chair and bicycle data sets. Figure 9

(top) shows ROC curves for the chair data set. The task

was to detect the presence of a chair in a known viewpoint

versus background images of office environments.

Figure 9. ROC curves for detecting chairs vs background images

in a single view using [2] (see text).

Good performance on this task requires a substantial

number of training images; the performance with 50 real

training images is much worse than that with 100 real train-

ing images. The performance with 30 real training images

and an additional 100 virtual images obtained from other

viewpoints is intermediate between the performance with

50 and 100 real training images. In all cases, we used 55

chair images and 55 background images for testing.

As a control, we also tested the effectiveness of using a

single global transform for the whole object instead of the

full Potemkin model with multiple parts. The images using

the Potemkin model were much more useful for training.

By way of contrast, for single-view detection of the bi-

cycle class (which is much simpler than the chair class and

nearly planar) there is very little improvement in recogni-

tion performance; see Figure 9 (bottom). In all cases, we

used 35 bicycle images and 35 background images of street

scenes for testing.

We also compared the effect of virtual images in a multi-

view detection task: deciding whether any of 4 viewpoints

of a bicycle is present in an image (Figure 10). This is

done by training 4 independent classifiers and comparing

the strongest response to the learned threshold value. There

are 10 real training images for each viewpoint, leading to

30 additional virtual training images per viewpoint. There

are 85 test images distributed among the 4 viewpoints and

an additional 83 background images.

In this more difficult task, the Potemkin virtual images

Figure 10. ROC curves for multi-view bicycle detection using [2]

(see text).

are quite helpful. Surprisingly, the images derived from

a single global transformation are much less helpful, even

for the nearly planar bicycle. Although the globally trans-

formed images look realistic, the individual parts are not

consistent with the appearances of the parts in the real im-

ages. The Potemkin model refines the transforms for indi-

vidual parts and does a better job of predicting the appear-

ance of parts across distant viewpoints. It is possible that

Crandall et al’s unsupervised training method [3] could do

better with the globally transformed images than the super-

vised system does.

5. Conclusion

We have proposed an approach to circumventing one

of the key roadblocks to effective multi-view recognition

based on single-view recognition approaches, namely the

need for extensive training data in all the viewpoints of in-

terest. We propose a simple class of object models (the

Potemkin model) that can be efficiently learned from few

images and that can be used to generate virtual training data

for a wide range of viewpoints. We have demonstrated the

effectiveness of this model in reducing training data require-

ments in object localization and detection tasks. Future

work will extend the model to handle a greater variety of

initial part shapes and a more sophisticated combination of

prior expectations and training data.

Acknowledgments

This research was supported in part by DARPA IPTO

Contract FA8750-05-2-0249, “Effective Bayesian Transfer

Learning.” We thank M. Aycinena, S. Davies, S. Finney and

K. Hsiao for their help in gathering and labeling the images.

References

[1] E. Bart, E. Byvatov, and S. Ullman. View-invariant recogni-

tion using corresponding object fragments. In ECCV, 2004.

[2] D. Crandall, P. F. Felzenszwalb, and D. P. Huttenlocher. Spa-

tial priors for part-based recognition using statistical models.

In CVPR, 2005.

[3] D. Crandall and D. P. Huttenlocher. Weakly supervised

learning of part-based spatial models for visual object recog-

nition. In ECCV, 2006.

[4] M. Everingham and A. Zisserman. Identifying individuals

in video by combining generative and discriminative head

models. In ICCV, pages 1103–1110, 2005.

[5] M. Everingham, A. Zisserman, C. Williams, and L. V. Gool.

The pascal visual object classes challenge 2006 (voc2006)

results. In 1st PASCAL Challenges Workshop, to appear.

[6] Z. G. Fan and B. L. Lu. Fast recognition of multi-view faces

with feature selection. In ICCV, 2005.

[7] P. Feltzenswalb and D. Hutenlocher. Pictorial structures for

object recognition. In IJCV, 2005.

[8] R. Fergus, P. Perona, and A. Zisserman. Object class recog-

nition by unsupervised scale-invariant learning. In CVPR,

pages 264–271, 2003.

[9] R. Fergus, P. Perona, and A. Zisserman. A sparse object cate-

gory model for efficient learning and exhaustive recognition.

In CVPR, 2005.

[10] R. Hartley and F. Schaffalitzky. Powerfactorization: 3d re-

construction with missing or uncertain data. In AJAWCV,

2003.

[11] R. I. Hartley and A. Zisserman. Multiple View Geometry in

Computer Vision. Cambridge University Press, 2004.

[12] M. P. Kumar, P. H. S. Torr, and A. Zisserman. Extending

pictorial structures for object recognition. In BMVC, 2004.

[13] S. Li and Z. Zhang. Floatboost learning and statistical face

detection. PAMI, 26(9):1112–1123, 2004.

[14] G. Mori, S. Belongie, and J. Malik. Shape contexts enable

efficient retrieval of similar shapes. In CVPR, 2001.

[15] J. Ng and S. Gong. Multi-view face detection and pose

estimation support vector machine across the view sphere.

In Wkshp Recognition, Analysis and Tracking of Faces and

Gestures, 1999.

[16] H. Schneiderman and T. Kanade. A statistical method for 3d

object detection applied to faces and cars. In CVPR, 2000.

[17] A. Thomas, V. Ferrari, B. Leibe, T. Tuytelaars, B. Schiele,

and L. Van Gool. Towards multi-view object class detection.

In CVPR, 2006.

[18] A. Torralba, K. P. Murphy, and W. Freeman. Sharing visual

features for multiclass and multiview object detection. In

CVPR, 2004.

[19] M. Weber, W. Einhaeuser, M. Welling, and P. Perona.

Viewpoint-invariant learning and detection of human heads.

In Conf on automatic face and gesture recognition, 2000.

