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Abstract
In this paper, we introduce a novel approach to bypass

modern face authentication systems. More specifically,

by leveraging a handful of pictures of the target user

taken from social media, we show how to create realistic,

textured, 3D facial models that undermine the security

of widely used face authentication solutions. Our frame-

work makes use of virtual reality (VR) systems, incor-

porating along the way the ability to perform animations

(e.g., raising an eyebrow or smiling) of the facial model,

in order to trick liveness detectors into believing that the

3D model is a real human face. The synthetic face of the

user is displayed on the screen of the VR device, and as

the device rotates and translates in the real world, the 3D

face moves accordingly. To an observing face authenti-

cation system, the depth and motion cues of the display

match what would be expected for a human face.

We argue that such VR-based spoofing attacks con-

stitute a fundamentally new class of attacks that point

to a serious weaknesses in camera-based authentication

systems: Unless they incorporate other sources of verifi-

able data, systems relying on color image data and cam-

era motion are prone to attacks via virtual realism. To

demonstrate the practical nature of this threat, we con-

duct thorough experiments using an end-to-end imple-

mentation of our approach and show how it undermines

the security of several face authentication solutions that

include both motion-based and liveness detectors.

1 Introduction

Over the past few years, face authentication systems have

become increasingly popular as an enhanced security

feature in both mobile devices and desktop computers.

As the underlying computer vision algorithms have ma-

tured, many application designers and nascent specialist

vendors have jumped in and started to offer solutions for

mobile devices with varying degrees of security and us-

ability. Other more well-known players, like Apple and

Google, are posed to enter the market with their own

solutions, having already acquired several facial recog-

nition software companies1. While the market is seg-

mented based on the type of technology offered (e.g.,

2D facial recognition, 3D recognition, and facial analyt-

ics/face biometric authentication), Gartner research esti-

mates that the overall market will grow to over $6.5 bil-

lion in 2018 (compared to roughly $2 billion today) [13].

With this push to market, improving the accuracy of

face recognition technologies remains an active area of

research in academia and industry. Google’s FaceNet

system, which achieved near-perfect accuracy on the La-

beled Faces in the Wild dataset [47], exemplifies one

such effort. Additionally, recent advances with deep

learning algorithms [38, 53] show much promise in

strengthening the robustness of the face identification

and authentication techniques used today. Indeed, state-

of-the-art face identification systems can now outper-

form their human counterparts [36], and this high accu-

racy is one of the driving factors behind the increased use

of face recognition systems.

However, even given the high accuracy of modern face

recognition technologies, their application in face au-

thentication systems has left much to be desired. For

instance, at the Black Hat security conference in 2009,

Duc and Minh [10] demonstrated the weaknesses of pop-

ular face authentication systems from commodity ven-

dors like Lenovo, Asus, and Toshiba. Amusingly, Duc

and Minh [10] were able to reliably bypass face-locked

computers simply by presenting the software with pho-

tographs and fake pictures of faces. Essentially, the secu-

rity of these systems rested solely on the problem of face

detection, rather than face authentication. This widely

publicized event led to subsequent integration of more

robust face authentication protocols. One prominent ex-

ample is Android OS, which augmented its face authen-

1See, for example, “Apple Acquires Face Recognition, Expression

Analysis firm, Emotient”, TechTimes, Jan, 2016; “Google Acquires

Facial Recognition Software Company PittPar,” WSJ, 2011.
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tication approach in 2012 to require users to blink while

authenticating (i.e., as a countermeasure to still-image

spoofing attacks). Unfortunately, this approach was also

shown to provide little protection, and can be easily by-

passed by presenting the system with two alternating im-

ages — one with the user’s eyes open, and one with her

eyes closed.2 These attacks underscore the fact that face

authentication systems require robust security features

beyond mere recognition in order to foil spoofing attacks.

Loosely speaking, three types of such spoofing attacks

have been used in the past, to varying degrees of success:

(i) still-image-based spoofing, (ii) video-based spoofing,

and (iii) 3D-mask-based spoofing. As the name suggests,

still-image-based spoofing attacks present one or more

still images of the user to the authentication camera; each

image is either printed on paper or shown with a digi-

tized display. Video-based spoofing, on the other hand,

presents a pre-recorded video of the victim’s moving face

in an attempt to trick the system into falsely recognizing

motion as an indication of liveness. The 3D-mask-based

approach, wherein 3D-printed facial masks are used, was

recently explored by Erdogmus and Marcel [11].

As is the typical case in the field of computer se-

curity, the cleverness of skilled, motivated adversaries

drove system designers to incorporate defensive tech-

niques in the biometric solutions they develop. This

cat-and-mouse game continues to play out in the realm

of face authentication systems, and the current recom-

mendation calls for the use of well-designed face live-

ness detection schemes (that attempt to distinguish a real

user from a spoofed one). Indeed, most modern systems

now require more active participation compared to sim-

ple blink detection, often asking the user to rotate her

head or raise an eyebrow during login. Motion-based

techniques that check, for example, that the input cap-

tured during login exhibits sufficient 3D behavior, are

also an active area of research in face authentication.

One such example is the recent work of Li et al. [34]

that appeared in CCS’2015. In that work, the use of

liveness detection was proposed as a solution to thwart-

ing video-based attacks by checking the consistency of

the recorded data with inertial sensors. Such a detection

scheme relies on the fact that as a camera moves relative

to a user’s stationary head, the facial features it detects

will also move in a predictable way. Thus, a 2D video

of the victim would have to be captured under the exact

same camera motion in order to fool the system.

As mentioned in [34], 3D-printed facial reconstruc-

tions offer one option for defeating motion-based live-

ness detection schemes. In our view, a more realizable

approach is to present the system with a 3D facial mesh

in a virtual reality (VR) environment. Here, the motion

2https://www.youtube.com/watch?v=zYxphDK6s3I

of the authenticating camera is tracked, and the VR sys-

tem internally rotates and translates the mesh to match.

In this fashion, the camera observes exactly the same

movement of facial features as it would for a real face,

fulfilling the requirements for liveness detection. Such

an attack defeats color-image- and motion-based face au-

thentication on a fundamental level because, with suffi-

cient effort, a VR system can display an environment that

is essentially indistinguishable from real-world input.

In this paper, we show that it is possible to undermine

modern face authentication systems using one such at-

tack. Moreover, we show that an accurate facial model

can be built using only a handful of publicly accessible

photos — collected, for example, from social network

websites — of the victim. From a pragmatic point of

view, we are confronted with two main challenges: i) the

number of photos of the target may be limited, and ii) for

each available photo, the illumination setting is unknown

and the user’s pose and expression are not constrained.

To overcome these challenges, we leverage robust, pub-

licly available 3D face reconstruction methods from the

field of computer vision, and adapt these techniques to fit

our needs. Once a credible synthetic model of a user is

obtained, we then employ entry-level virtual reality dis-

plays to defeat the state of the art in liveness detection.

The rest of the paper is laid out as follows: §2 provides

background and related work related to face authentica-

tion, exploitation of users’ online photos, and 3D facial

reconstruction. §3 outlines the steps we take to perform

our VR-based attack. In §4, we evaluate the performance

of our method on 5 commercial face authentication sys-

tems and, additionally, on a proposed state-of-the-art sys-

tem for liveness detection. We suggest steps that could

be taken to mitigate our attack in §5, and we address the

implications of our successful attack strategy in §6.

2 Background and Related Work

Before delving into the details of our approach, we first

present pertinent background information needed to un-

derstanding the remainder of this paper.

First, we note that given the three prominent classes of

spoofing attacks mentioned earlier, it should be clear that

while still-image-based attacks are the easiest to perform,

they can be easily countered by detecting the 3D struc-

ture of the face. Video-based spoofing is more difficult to

accomplish because facial videos of the target user may

be harder to come by; moreover, such attacks can also

be successfully defeated, for example, using the recently

suggested techniques of Li et al. [34] (which we discuss

in more detail later). 3D-mask-based approaches, on the

other hand, are harder to counter. That said, building

a 3D mask is arguably more time-consuming and also

requires specialized equipment. Nevertheless, because
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of the threat this attack vector poses, much research has

gone into detecting the textures of 3D masks [11].

2.1 Modern Defenses Against Spoofing

Just as new types of spoofing attacks have been intro-

duced to fool face authentication systems, so too have

more advanced methods for countering these attacks

been developed. Nowadays, the most popular liveness

detection techniques can be categorized as either texture-

based approaches, motion-based approaches, or liveness

assessment approaches. We discuss each in turn.

Texture-based approaches [11, 25, 37, 40, 54, 60] at-

tempt to identify spoofing attacks based on the assump-

tion that a spoofed face will have a distinctly different

texture from a real face. Specifically, they assume that

due to properties of its generation, a spoofed face (irre-

spective of whether it is printed on paper, shown on a

display, or made as a 3D mask) will be different from

a real face in terms of shape, detail, micro-textures, res-

olution, blurring, gamma correction, and shading. That

is, these techniques rely on perceived limitations of im-

age displays and printing techniques. However, with the

advent of high-resolution displays (e.g., 5K), the differ-

ence in visual quality between a spoofed image and a

living face is hard to notice. Another limitation is that

these techniques often require training on every possible

spoofing material, which is not practical for real systems.

Motion-based approaches [3, 27, 29, 32, 57] detect

spoofing attacks by using motion of the user’s head to

infer 3D shape. Techniques such as optical flow and

focal-length analysis are typically used. The basic as-

sumption is that structures recovered from genuine faces

usually contain sufficient 3D information, whereas struc-

tures from fake faces (photos) are usually planar in depth.

For instance, the approach of Li et al. [34] checks the

consistency of movement between the mobile device’s

internal motion sensors and the observed change in head

pose computed from the recorded video taken while the

claimant attempts to authenticate herself to the device.

Such 3D reasoning provides a formidable defense against

both still-image and video-based attacks.

Lastly, liveness assessment techniques [19, 30, 31, 49]

require the user to perform certain tasks during the au-

thentication stage. For the systems we evaluated, the

user is typically asked to follow certain guidelines dur-

ing registration, and to perform a random series of ac-

tions (e.g., eye movement, lip movement, and blinking)

at login. The requested gestures help to defeat contem-

porary spoofing attacks.

Take-away: For real-world systems, liveness detec-

tion schemes are often combined with motion-based ap-

proaches to provide better security protection than either

can provide on their own. With these ensemble tech-

niques, traditional spoofing attacks can be reliably de-

tected. For that reason, the combination of motion-based

systems and liveness detectors has gained traction and

is now widely adopted in many commercial systems, in-

cluding popular face authentication systems offered by

companies like KeyLemon, Rohos, and Biomids. For the

remainder of this paper, we consider this combination as

the state of the art in defenses against spoofing attacks

for face authentication systems.

2.2 Online Photos and Face Authentication

It should come as no surprise that personal photos from

online social networks can compromise privacy. Major

social network sites advise users to set privacy settings

for the images they upload, but the vast majority of these

photos are often accessible to the public or set to ‘friend-

only’ viewing’ [14, 26, 35]. Users also do not have di-

rect control over the accessibility of photos of themselves

posted by other users, although they can remove (‘un-

tag’) the association of such photos with their account.

A notable use of social network photos for online se-

curity is Facebook’s social authentication (SA) system

[15], an extension of CAPTCHAs that seeks to bolster

identity verification by requiring the user to identify pho-

tos of their friends. While this method does require more

specific knowledge than general CAPTCHAs, Polakis

et al. [42] demonstrated that facial recognition could be

applied to a user’s public photos to discover their social

relationships and solve 22% of SA tests automatically.

Given that one’s online photo presence is not entirely

controlled by the user alone — but by their collective

social circles — many avenues exist for an attacker to

uncover the facial appearance of a user, even when the

user makes private their own personal photos. In an ef-

fort to curb such easy access, work by Ilia et al. [17] has

explored the automatic privatization of user data across

a social network. This method uses face detection and

photo tags to selectively blur the face of a user when the

viewing party does not have permission to see the photo.

In the future, such an approach may help decrease the

public accessibility of users’ personal photos, but it is

unlikely that an individual’s appearance can ever be com-

pletely obfuscated from attackers across all social media

sites and image stores on the Internet.

Clearly, the availability of online user photos is a boon

for an adversary tasked with the challenge of undermin-

ing face authentication systems. The most germane on

this front is the work of Li et al. [33]. There, the au-

thors proposed an attack that defeated commonly used

face authentication systems by using photos of the target

user gathered from online social networks. Li et al. [33]

reported that 77% of the users in their test set were vul-
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nerable to their proposed attack. However, their work

is targeted at face recognition systems that do not in-

corporate face liveness detection. As noted in §2, in

modern face authentication software, sophisticated live-

ness detection approaches are already in use, and these

techniques thwart still-image spoofing attacks of the kind

performed by Li et al. [33].

2.3 3D Facial Reconstruction

Constructing a 3D facial model from a small number

of personal photos involves the application of powerful

techniques from the field of computer vision. Fortu-

nately, there exists a variety of reconstruction approaches

that make this task less daunting than it may seem on first

blush, and many techniques have been introduced for fa-

cial reconstruction from single images [4, 23, 24, 43],

videos [20, 48, 51], and combinations of both [52]. For

pedagogical reasons, we briefly review concepts that

help the reader better understand our approach.

The most popular facial model reconstruction ap-

proaches can be categorized into three classes: shape

from shading (SFS), structure from motion (SFM) com-

bined with dense stereoscopic depth estimation, and sta-

tistical facial models. The SFS approach [24] uses a

model of scene illumination and reflectance to recover

face structure. Using this technique, a 3D facial model

can be reconstructed from only a single input photo. SFS

relies on the assumption that the brightness level and gra-

dient of the face image reveals the 3D structure of the

face. However, the constraints of the illumination model

used in SFS require a relatively simple illumination set-

ting and, therefore, cannot typically be applied to real-

world photo samples, where the configuration of the light

sources is unknown and often complicated.

As an alternative, the structure from motion approach

[12] makes use of multiple photos to triangulate spatial

positions of 3D points. It then leverages stereoscopic

techniques across the different viewpoints to recover the

complete 3D surface of the face. With this method, the

reconstruction of a dense and accurate model often re-

quires many consistent views of the surface from differ-

ent angles; moreover, non-rigid variations (e.g., facial ex-

pressions) in the images can easily cause SFM methods

to fail. In our scenario, these requirements make such an

approach less usable: for many individuals, only a lim-

ited number of images might be publicly available on-

line, and the dynamic nature of the face makes it difficult

to find multiple images having a consistent appearance

(i.e., the exact same facial expression).

Unlike SFS and SFM, statistical facial models [4, 43]

seek to perform facial reconstruction on an image using

a training set of existing facial models. The basis for this

type of facial reconstruction is the 3D morphable model

(3DMM) of Blanz and Vetter [6, 7], which learns the

principal variations of face shape and appearance that

occur within a population, then fits these properties to

images of a specific face. Training the morphable mod-

els can be performed either on a controlled set of im-

ages [8, 39] or from internet photo-collections [23]. The

underlying variations fall on a continuum and capture

both expression (e.g., a frowning-to-smiling spectrum)

and identity (e.g., a skinny-to-heavy or a male-to-female

spectrum). In 3DMM and its derivatives, both 3D shape

and texture information are cast into a high-dimensional

linear space, which can be analyzed with principal com-

ponent analysis (PCA) [22]. By optimizing over the

weights of different eigenvectors in PCA, any particu-

lar human face model can be approximated. Statistical

facial models have shown to be very robust and only re-

quire a few photos for high-precision reconstruction. For

instance, the approach of Baumberger et al. [4] achieves

good reconstruction quality using only two images.

To make the process fully automatic, recent 3D fa-

cial reconstruction approaches have relied on a few fa-

cial landmark points instead of operating on the whole

model. These landmarks can be accurately detected us-

ing the supervised descent method (SDM) [59] or deep

convolutional networks [50]. By first identifying these

2D features in an image and then mapping them to points

in 3D space, the entire 3D facial surface can be effi-

ciently reconstructed with high accuracy. In this process,

the main challenge is the localization of facial landmarks

within the images, especially contour landmarks (along

the cheekbones), which are half-occluded in non-frontal

views; we introduce a new method for solving this prob-

lem when multiple input images are available.

The end result of 3D reconstruction is a untextured

(i.e., lacking skin color, eye color, etc.) facial surface.

Texturing is then applied using source image(s), creating

a realistic final face model. We next detail our process for

building such a facial model from a user’s publicly avail-

able internet photos, and we outline how this model can

be leveraged for a VR-based face authentication attack.

3 Our Approach

A high-level overview of our approach for creating a syn-

thetic face model is shown in Figure 1. Given one or

more photos of the target user, we first automatically ex-

tract the landmarks of the user’s face (stage ➊). These

landmarks capture the pose, shape, and expression of the

user. Next, we estimate a 3D facial model for the user,

optimizing the geometry to match the observed 2D land-

marks (stage ➋). Once we have recovered the shape of

the user’s face, we use a single image to transfer texture

information to the 3D mesh. Transferring the texture is

non-trivial since parts of the face might be self-occluded
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Figure 1: Overview of our proposed approach.

(e.g., when the photo is taken from the side). The tex-

ture of these occluded parts must be estimated in a man-

ner that does not introduce too many artifacts (stage ➌).

Once the texture is filled, we have a realistic 3D model

of the user’s face based on a single image.

However, despite its realism, the output of stage ➌ is

still not able to fool modern face authentication systems.

The primary reason for this is that modern face authenti-

cation systems use the subject’s gaze direction as a strong

feature, requiring the user to look at the camera in order

to pass the system. Therefore, we must also automati-

cally correct the direction of the user’s gaze on the tex-

tured mesh (stage ➍). The adjusted model can then be de-

formed to produce animation for different facial expres-

sions, such as smiling, blinking, and raising the eyebrows

(stage ➎). These expressions are often used as liveness

clues in face authentication systems, and as such, we

need to be able to automatically reproduce them on our

3D model. Finally, we output the textured 3D model into

a virtual reality system (stage ➏).

Using this framework, an adversary can bypass both

the face recognition and liveness detection components

of modern face authentication systems. In what follows,

we discuss the approach we take to solve each of the var-

ious challenges that arise in our six-staged process.

3.1 Facial Landmark Extraction

Starting from multiple input photos of the user, our first

task is to perform facial landmark extraction. Follow-

ing the approach of Zhu et al. [63], we extract 68 2D

facial landmarks in each image using the supervised de-

scent method (SDM) [59]. SDM successfully identifies

facial landmarks under relatively large pose differences

(±45deg yaw, ±90deg roll, ±30deg pitch). We chose

the technique of Zhu et al. [63] because it achieves a me-

dian alignment error of 2.7 pixels on well-known datasets

[1] and outperforms other commonly used techniques

(e.g., [5]) for landmark extraction.

Figure 2: Examples of facial landmark extraction

For our needs, SDM works well on most online im-

ages, even those where the face is captured at a low res-

olution (e.g., 40× 50 pixels). It does, however, fail on

a handful of the online photos we collected (less than

5%) where the pose is beyond the tolerance level of the

algorithm. If this occurs, we simply discard the image.

In our experiments, the landmark extraction results are

manually checked for correctness, although an automatic

scoring system could potentially be devised for this task.

Example landmark extractions are shown in Figure 2.

3.2 3D Model Reconstruction

The 68 extracted 3D point landmarks from each of the

N input images provide us with a set of coordinates

si, j ∈ R
2, with 1 ≤ i ≤ 68,1 ≤ j ≤ N. The projection of

the 3D points Si, j ∈ R
3 on the face onto the image coor-

dinates si, j follows what is called the “weak perspective

projection” (WPP) model [16], computed as follows:

si, j = f jPR j (Si, j + t j) , (1)

where f j is a uniform scaling factor; P is the projection

matrix

(

1 0 0

0 1 0

)

; R j is a 3×3 rotation matrix defined by
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the pitch, yaw, and roll, respectively, of the face relative

to the camera; and t j ∈ R
3 is the translation of the face

with respect to the camera. Among these parameters,

only si, j and P are known, and so we must estimate the

others.

Fortunately, a large body of work exists on the shape

statistics of human faces. Following Zhu et al. [63],

we capture face characteristics using the 3D Morphable

Model (3DMM) [39] with an expression extension pro-

posed by Chu et al. [9]. This method characterizes varia-

tions in face shape for a population using principal com-

ponent analysis (PCA), with each individual’s 68 3D

point landmarks being concatenated into a single feature

vector for the analysis. These variations can be split into

two categories: constant factors related to an individual’s

distinct appearance (identity), and non-constant factors

related to expression. The identity axes capture charac-

teristics such as face width, brow placement, or lip size,

while the expression axes capture variations like smiling

versus frowning. Example axes for variations in expres-

sion are shown in Figure 6.

More formally, for any given individual, the 3D coor-

dinates Si, j on the face can be modeled as

Si, j = S̄i +Aid
i α

id
+A

exp
i α

exp
j , (2)

where S̄i is the statistical average of Si, j among the in-

dividuals in the population, Aid
i is the set of principal

axes of variation related to identity, and A
exp
i is the set

of principal axes related to expression. α
id and α

exp
j are

the identity and expression weight vectors, respectively,

that determine person-specific facial characteristics and

expression-specific facial appearance. We obtain S̄i and

Aid
i using the 3D Morphable Model [39] and A

exp
i from

Face Warehouse [8].

Figure 3: Illustration of identity axes (heavy-set to thin) and

expression axes (pursed lips to open smile).

When combining Eqs. (1) and (2), we inevitably run

into the so-called “correspondence problem.” That is,

given each identified facial landmark si, j in the input im-

age, we need to find the corresponding 3D point Si′, j

on the underlying face model. For landmarks such as

the corners of the eyes and mouth, this correspondence

is self-evident and consistent across images. However,

for contour landmarks marking the edge of the face in

an image, the associated 3D point on the user’s facial

model is pose-dependent: When the user is directly fac-

ing the camera, their jawline and cheekbones are fully in

view, and the observed 2D landmarks lie on the fiducial

boundary on the user’s 3D facial model. When the user

rotates their face left (or right), however, the previously

observed 2D contour landmarks on the left (resp. right)

side of the face shift out of view. As a result, the observed

2D landmarks on the edge of the face correspond to 3D

points closer to the center of the face. This 3D point dis-

placement must be taken into account when recovering

the underlying facial model.

Qu et al. [44] deal with contour landmarks using con-

straints on surface normal direction, based on the obser-

vation that points on the edge of the face in the image

will have surface normals perpendicular to the viewing

direction. However, this approach is less robust because

the normal direction cannot always be accurately esti-

mated and, as such, requires careful parameter tuning.

Zhu et al. [63] proposed a “landmark marching” scheme

that iteratively estimates 3D head pose and 2D contour

landmark position. While their approach is efficient and

robust against different face angles and surface shapes,

it can only handle a single image and cannot refine the

reconstruction result using additional images.

Our solution to the correspondence problem is to

model 3D point variance for each facial landmark using a

pre-trained Gaussian distribution (see Appendix A). Un-

like the approach of Zhu et al. [63] which is based on

single image input, we solve for pose, perspective, ex-

pression, and neutral-expression parameters over all im-

ages jointly. From this, we obtain a neutral-expression

model Si of the user’s face. A typical reconstruction, Si,

is presented in Figure 4.

Figure 4: 3D facial model (right) built from facial landmarks

extracted from 4 images (left).
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3.3 Facial Texture Patching

Given the 3D facial model, the next step is to patch the

model with realistic textures that can be recognized by

the face authentication systems. Due to the appearance

variation across social media photos, we have to achieve

this by mapping the pixels in a single captured photo

onto the 3D facial model, which avoids the challenges

of mixing different illuminations of the face. However,

this still leaves many of the regions without texture, and

those untextured spots will be noticeable to modern face

authentication systems. To fill these missing regions, the

naïve approach is to utilize the vertical symmetry of the

face and fill the missing texture regions with their sym-

metrical complements. However, doing so would lead

to strong artifacts at the boundary of missing regions. A

realistic textured model should be free of these artifacts.

To lessen the presence of these artifacts, one approach

is to iteratively average the color of neighboring vertices

as a color trend and then mix this trend with texture de-

tails [45]. However, such an approach over-simplifies

the problem and fails to realistically model the illumina-

tion of facial surfaces. Instead, we follow the suggestion

of Zhu et al. [63] and estimate facial illumination using

spherical harmonics [61], then fill in texture details with

Poisson editing [41]. In this way, the output model will

appears to have a more natural illumination. Sadly, we

cannot use their approach directly as it reconstructs a pla-

nar normalized face, instead of a 3D facial model, and so

we must extend their technique to the 3D surface mesh.

The idea we implemented for improving our initial

textured 3D model was as follows: Starting from the

single photo chosen as the main texture source, we first

estimate and subsequently remove the illumination con-

ditions present in the photo. Next, we map the textured

facial model onto a plane via a conformal mapping, then

impute the unknown texture using 2D Poisson editing.

We further extend their approach to three dimensions and

perform Poisson editing directly on the surface of the fa-

cial model. Intuitively, the idea behind Poisson editing

is to keep the detailed texture in the editing region while

enforcing the texture’s smoothness across the boundary.

This process is defined mathematically as

∆ f = ∆g,s.t f |∂Ω = f 0|∂Ω, (3)

where Ω is the editing region, f is the editing result, f 0

is the known original texture value, and g is the texture

value in the editing region that is unknown and needs to

be patched with its reflection complement. On a 3D sur-

face mesh, every vertex is connected with 2 to 8 neigh-

bors. Transforming Eq. 3 into discrete form, we have

|Np| fp − ∑
q∈Np∩Ω

fq = ∑
q∈Np∩Ω

f 0
q +(∆g)p, (4)

where Np is the neighborhood of point p on the mesh.

Our enhancement is a natural extension of the Poisson

editing method suggested in the seminal work of Pérez

et al. [41], although no formulation was given for 3D.

By solving Eq. 4 instead of projecting the texture onto a

plane and solving Eq. 3, we obtain more realistic texture

on the facial model, as shown in Figure 5.

Figure 5: Naïve symmetrical patching (left); Planar Poisson

editing (middle); 3D Poisson editing (right).

3.4 Gaze Correction

We now have a realistic 3D facial model of the user.

Yet, we found that models at stage ➌ were unable to

bypass most well-known face recognition systems. Dig-

ging deeper into the reasons why, we observed that most

recognition systems rely heavily on gaze direction during

authentication, i.e., they fail-close if the user is not look-

ing at the device. To address this, we introduce a simple,

but effective, approach to correct the gaze direction of

our synthetic model (Figure 1, Stage ➍).

The idea is as follows. Since we have already re-

constructed the texture of the facial model, we can syn-

thesize the texture data in the eye region. These data

contain the color information from the sclera, cornea,

and pupil and form a three-dimensional distribution in

the RGB color space. We estimate this color distri-

bution with a 3D Gaussian function whose three prin-

ciple components can be computed as (b1,b2,b3) with

weight (σ1,σ2,σ3),σ1 ≥ σ2 ≥ σ3 > 0. We perform the

same analysis for the eye region of the average face

model obtained from 3DMM [39], whose eye is look-

ing straight towards the camera, and we similarly obtain

principle color components (bstd
1 ,bstd

2 ,bstd
3 ) with weight

(σ std
1 ,σ std

2 ,σ std
3 ),σ std

1 ≥ σ std
2 ≥ σ std

3 > 0. Then, we con-

vert the eye texture from the average model into the eye

texture of the user. For a texture pixel c in the eye region

of average texture, we convert it to

cconvert =
3

∑
i=1

σi

σ std
i

(c′bstd
i )bi. (5)

In effect, we align the color distribution of the average

eye texture with the color distribution of the user’s eye

texture. By patching the eye region of the facial model

with this converted average texture, we realistically cap-

ture the user’s eye appearance with forward gaze.
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3.5 Adding Facial Animations

Some of the liveness detection methods that we test re-

quire that the user performs specific actions in order to

unlock the system. To mimic these actions, we can sim-

ply animate our facial model using a pre-defined set of

facial expressions (e.g., from FaceWarehouse [8]). Re-

call that in deriving in Eq. 2, we have already computed

the weight for the identity axis α
id , which captures the

user-specific face structure in a neutral expression. We

can adjust the expression of the model by substituting a

specific, known expression weight vector α
exp
std into Eq. 2.

By interpolating the model’s expression weight from 0 to

α
exp
std , we are able to animate the 3D facial model to smile,

laugh, blink, and raise the eyebrows (see Figure 6).

Figure 6: Animated expressions. From left to right: smiling,

laughing, closing the eyes, and raising the eyebrows.

3.6 Leveraging Virtual Reality

While the previous steps were necessary to recover a re-

alistic, animated model of a targeted user’s face, our driv-

ing insight is that virtual reality systems can be lever-

aged to display this model as if it were a real, three-

dimensional face. This VR-based spoofing constitutes

a fundamentally new class of attacks that exploit weak-

nesses in camera-based authentication systems.

In the VR system, the synthetic 3D face of the user

is displayed on the screen of the VR device, and as the

device rotates and translates in the real world, the 3D

face moves accordingly. To an observing face authen-

tication system, the depth and motion cues of the dis-

play exactly match what would be expected for a hu-

man face. Our experimental VR setup consists of custom

3D-rendering software displayed on a Nexus 5X smart

phone. Given the ubiquity of smart phones in modern

society, our implementation is practical and comes at

no additional hardware cost to an attacker. In practice,

any device with similar rendering capabilities and iner-

tial sensors could be used.

On smart phones, accelerometers and gyroscopes

work in tandem to provide the device with a sense of

self-motion. An example use case is detecting when the

device is rotated from a portrait view to a landscape view,

and rotating the display, in response. However, these sen-

sors are not able to recover absolute translation — that

is, the device is unable to determine how its position has

changed in 3D space. This presents a challenge because

without knowledge of how the device has moved in 3D

space, we cannot move our 3D facial model in a realistic

fashion. As a result, the observed 3D facial motion will

not agree with the device’s inertial sensors, causing our

method to fail on methods like that of Li et al. [34] that

use such data for liveness detection.

Fortunately, it is possible to track the 3D position of

a moving smart phone using its outward-facing camera

with structure from motion (see §2.3). Using the cam-

era’s video stream as input, the method works by tracking

points in the surrounding environment (e.g., the corners

of tables) and then estimating their position in 3D space.

At the same time, the 3D position of the camera is re-

covered relative to the tracked points, thus inferring the

camera’s change in 3D position. Several computer vision

approaches have been recently introduced to solve this

problem accurately and in real time on mobile devices

[28, 46, 55, 56]. In our experiments, we make use of a

printed marker3 placed on a wall in front of the camera,

rather than tracking arbitrary objects in the surrounding

scene; however, the end result is the same. By incorpo-

rating this module into our proof of concept, the perspec-

tive of the viewed model due to camera translation can be

simulated with high consistency and low latency.4

An example setup for our attack is shown in Figure

7. The VR system consists of a Nexus 5X unit using

its outward-facing camera to track a printed marker in

the environment. On the Nexus 5X screen, the system

displays a 3D facial model whose perspective is always

consistent with the spatial position and orientation of the

authentication device. The authenticating camera views

the facial model on the VR display, and it is successfully

duped into believing it is viewing the real face of the user.

Figure 7: Example setup using virtual reality to mimic 3D

structure from motion. The authentication system observes a

virtual display of a user’s 3D facial model that rotates and trans-

lates and the device moves. To recover the 3D translation of the

VR device, an outward-facing camera is used to track a marker

in the surrounding environment.

3See Goggle Paper at http://gogglepaper.com/
4Specialized VR systems such as the Oculus Rift could be used to

further improve the precision and latency of camera tracking. Such ad-

vanced, yet easily obtainable, hardware has the potential to deliver even

more sophisticated VR attacks compared to what is presented here.
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4 Evaluation

We now demonstrate that our proposed spoofing method

constitutes a significant security threat to modern face

authentication systems. Using real social media photos

from consenting users, we successfully broke five com-

mercial authentication systems with a practical, end-to-

end implementation of our approach. To better under-

stand the threat, we further systematically run lab exper-

iments to test the capabilities and limitations of our pro-

posed method. Moreover, we successfully test our pro-

posed approach with the latest motion-based liveness de-

tection approach by Li et al. [34], which is not yet avail-

able in commercial systems.

Participants

We recruited 20 volunteers for our tests of commercial

face authentication systems. The volunteers were re-

cruited by word of mouth and span graduate students and

faculty in two separate research labs. Consultation with

our IRB departmental liaison revealed that no applica-

tion was needed. There was no compensation for par-

ticipating in the lab study. The ages of the participants

range between 24 and 44 years, and the sample consists

of 6 females and 14 males. The participants come from

a variety of ethnic backgrounds (as stated by the volun-

teers): 6 are of Asian descent, 4 are Indian, 1 is African-

American, 1 is Hispanic, and 8 are Caucasian. With their

consent, we collected public photos from the users’ Face-

book and Google+ social media pages; we also collected

any photos we could find of the users on personal or com-

munity web pages, as well as via image search on the

web. The smallest number of photos we collected for an

individual was 3, and the largest number was 27. The

average number of photos was 15, with a standard de-

viation of approximately 6 photos. No private informa-

tion about the subjects was recorded beside storage of the

photographs they consented too. Any images of subjects

displayed in this paper was done with the consent of that

particular volunteer.

For our experiments, we manually extracted the region

around user’s face in each image. An adversary could

also perform this action automatically using tag infor-

mation on social media sites, when available. One in-

teresting aspect of social media photos is they may cap-

ture significant physical changes of users over time. For

instance, one of our participants lost 20 pounds in the

last 6 months, and our reconstruction had to utilize im-

ages from before and after this change. Two other users

had frequent changes in facial hair styles – beards, mous-

taches, and clean-shaven – all of which we used for our

reconstruction. Another user had only uploaded 2 pho-

tos to social media in the past 3 years. These varieties all

present challenges for our framework, both for initially

reconstructing the user’s face and for creating a likeness

that matches their current appearance.

Industry-leading Solutions

We tested our approach on five advanced commercial

face authentication systems: KeyLemon5, Mobius6, True

Key [18], BioID [21], and 1U App7. Table 1 summarizes

the training data required by each system when learning a

user’s facial appearance, as well as the approximate num-

ber of users for each system, when available. All systems

incorporate some degree of liveness detection into their

authentication protocol. KeyLemon and the 1U App re-

quire users to perform an action such as blinking, smil-

ing, rotating the head, and raising the eyebrows. In ad-

dition, the 1U App requests these actions in a random

fashion, making it more resilient to video-based attacks.

BioID, Mobius and True Key are motion-based systems

and detect 3D facial structure as the user turns their head.

It is also possible that these five systems employ other

advanced liveness detection approaches, such as texture-

based detection schemes, but such information has not

been made available to the public.

Methodology

System Training Method # Installs

KeyLemon3 Single video ∼100,000

Mobius2 10 still images 18 reviews

True Key1 Single video 50,000-100,000

BioID2 4 videos unknown

1U App1 1 still image 50-100

Table 1: Summary of the face authentication systems evaluated.

The second column lists how each system acquires training data

for learning a user’s face, and the third column shows the num-

ber approximate number of installations or reviews each sys-

tem has received according to (1) the Google Play Store, (2)

the iTunes store, or (3) softpedia.com. BioID is a relatively

new app and does not yet have customer reviews on iTunes.

All participants were registered with the 5 face authen-

tication systems under indoor illumination. The average

length of time spent by each of the volunteers to register

across all systems was 20 minutes. As a control, we first

verified that all systems were able to correctly identify

the users in the same environment. Next, before testing

our method using textures obtained via social media, we

evaluated whether our system could spoof the recogni-

tion systems using photos taken in this environment. We

5http://www.keylemon.com
6http://www.biomids.com
7http://www.1uapps.com
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thus captured one front-view photo for each user under

the same indoor illumination and then created their 3D

facial model with our proposed approach. We found that

these 3D facial models were able to spoof each of the

5 candidate systems with a 100% sucess rate, which is

shown in the second column of Table 2

Following this, we reconstructed each user’s 3D fa-

cial model using the images collected from public online

sources. As a reminder, any source image can be used as

the main image when texturing the model. Since not all

textures will successfully spoof the recognition systems,

we created textured reconstructions from all source im-

ages and iteratively presented them to the system (in or-

der of what we believed to be the best reconstruction, fol-

lowed by the second best, and so on) until either authen-

tication succeeded or all reconstructions had been tested.

Findings

We summarize the spoofing success rate for each system

in Table 2. Except for the 1U system, all facial recogni-

tion systems were successfully spoofed for the majority

of participants when using social media photos, and all

systems were spoofed using indoor, frontal view photos.

Out of our 20 participants, there were only 2 individu-

als for whom none of the systems was spoofed via the

social-media-based attack.

Looking into the social media photos we collected of

our participants, we observe a few trends among our re-

sults. First, we note that moderate- to high-resolution

photos lend substantial realism to the textured models.

In particular, photos taken by professional photographers

(e.g., wedding photos or family portaits) lead to high-

quality facial texturing. Such photos are prime targets

for facial reconstruction because they are often posted by

other users and made publicly available. Second, we note

that group photos provide consistent frontal views of in-

dividuals, albeit with lower resolution. In cases where

high-resolution photos are not available, such frontal

views can be used to accurately recover a user’s 3D fa-

cial structure. These photos are easily accessible via

friends of users, as well. Third, we note that the least

spoof-able users were not those who necessarily had a

low number of personal photos, but rather users who had

few forward-facing photos and/or no photos with suffi-

ciently high resolution. From this observation, it seems

that creating a realistic texture for user recognition is the

primary factor in determining whether a face authentica-

tion method will be fooled by our approach. Only a small

number of photos are necessary in order to defeat facial

recognition systems.

We found that our failure to spoof the 1U App, as well

as our lower performance on BioID, using social me-

dia photos was directly related to the poor usability of

Indoor Social Media

Spoof % Spoof % Avg. # Tries

KeyLemon 100% 85% 1.6

Mobius 100% 80% 1.5

True Key 100% 70% 1.3

BioID 100% 55% 1.7

1U App 100% 0% —

Table 2: Success rate for 5 face authentication systems using a

model built from (second column) an image of the user taken in

an indoor environment and (third and fourth columns) images

obtained on users’ social media accounts. The fourth column

shows the average number of attempts needed before success-

fully spoofing the target user.

those systems. Specifically, we found the systems have

a very high false rejection rate when live users attempt

to authenticate themselves in different illumination con-

ditions. To test this, we had 5 participants register their

faces indoors on the 4 mobile systems.8 We then had

each user attempt to log in to each system 10 times in-

doors and 10 times outdoors on a sunny day, and we

counted the number of accepted logins in each environ-

ment for each system. True Key and Mobius, which we

found were easier to defeat, correctly authenticated the

users 98% and 100% of the time for indoor logins, re-

spectively, and 96% and 100% of the time for outdoor

logins. Meanwhile, the indoor/outdoor login rates of

BioID and the 1U App were 50%/14% and 96%/48%,

respectively. The high false rejection rates under outdoor

illumination show that the two systems have substantial

difficulty with their authentication when the user’s envi-

ronment changes. Our impression is that 1U’s single-

image user registration simply lacks the training data

necessary to accommodate to different illumination set-

tings. BioID is very sensitive to a variety of factors in-

cluding head rotation and illumination, which leads to

many false rejections. (Possibly realizing this, the mak-

ers of BioID therefore grant the user 3 trials per login

attempt.) Even so, as evidenced by the second column

in Table 2, our method still handily defeats the liveness

detection modules of these systems given images of the

user in the original illumination conditions, which sug-

gests that all the systems we tested are vunerable to our

VR-based attack.

Our findings also suggest that our approach is able to

successfully handle significant changes in facial expres-

sion, illumination, and for the most part, physical charac-

teristics such as weight and facial hair. Moreover, the ap-

proach appears to generalize to users regardless of gen-

der or ethnicity. Given that it has shown to work on a var-

ied collection of real-world data, we believe that the at-

8As it is a desktop application, KeyLemon was excluded.
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tack presented herein represents a realistic security threat

model that could be exploited in the present day.

Next, to gain a deeper understanding of the realism

of this threat, we take a closer look at what conditions

are necessary for our method to bypass the various face

authentication systems we tested. We also consider what

main factors contribute to the failure cases of our method.

4.1 Evaluating System Robustness

To further understand the limitations of the proposed

spoofing system, we test its robustness against resolu-

tion and viewing angle, which are two important factors

for the social media photos users upload. Specifically,

we answer the question: what is the minimum resolu-

tion and maximum head rotation allowed in an uploaded

photo before it becomes unusable for spoofing attacks

like ours? We further explore how low-resolution frontal

images can be used to improve our success rates when

high-resolution side-view images are not available.

4.1.1 Blurry, Grainy Pictures Still Say A Lot

To assess our ability to spoof face authentication systems

when provided only low-resolution images of a user’s

face, we texture the 3D facial models of our sample users

using an indoor, frontal view photo. This photo is then

downsampled at various resolutions such that the dis-

tance between the user’s chin and forehead ranges be-

tween 20 and 50 pixels. Then, we attempt to spoof

the True Key, BioId, and KeyLemon systems with fa-

cial models textured using the down-sampled photos.9 If

we are successful at a certain resolution, that implies that

that resolution leaks the user’s identity information to our

spoofing system. The spoofing success rate for various

image resolutions is shown in Figure 8.

The result indicates that our approach robustly spoofs

face authentication systems when the height of the face in

the image is at least 50 pixels. If the resolution of an up-

loaded photo is less than 30 pixels, the photo is likely of

too low-resolution to reliably encode useful features for

identifying the user. In our sample set, 88% of users had

more than 6 online photos with a chin-to-forehead dis-

tance greater than 100 pixels, which easily satisfies the

resolution requirement of our proposed spoofing system.

4.1.2 A Little to the Left, a Little to the Right

To identify the robustness of the proposed system against

head rotation, we first evaluate the maximum yaw angle

allowed for our system to spoof baseline systems using a

9We skip analysis of Mobius because its detection method is similar

to True Key, and our method did not perform as well on True Key. We

also do not investigate the robustness of our method in the 1U system

because of our inability to spoof this system using online photos.

Figure 8: Spoofing success rate with texture taken from photos

of different resolution.

single image. For all 20 sample users, we collect multi-

ple indoor photos with yaw angle varying from 5 degrees

(approximately frontal view) to 40 degrees (significantly

rotated view). We then perform 3D reconstruction for

each image, for each user, on the same three face au-

thentication systems. The spoofing success rate for a

single input image as a function of head rotation is il-

lustrated in Figure 9 (left). It can be seen that the pro-

posed method successfully spoofs all the baseline sys-

tems when the input image has a largely frontal view. As

yaw angle increases, it becomes more difficult to infer

the user’s frontal view from the image, leading to a de-

creased spoofing success rate.

4.1.3 For Want of a Selfie

The results of Figure 9 (left) indicate that our success rate

falls dramatically if given only a single image with a yaw

angle larger than 20 degrees. However, we argue that

these high-resolution side-angle views can serve as base

images for facial texturing if additional low-resolution

frontal views of the user are available. We test this hy-

pothesis by taking, for each user, the rotated images from

the previous section along with 1 or 2 low-resolution

frontal view photos (chin-to-forehead distance of 30 pix-

els). We then reconstruct each user’s facial model and

use it to spoof our baseline systems. Alone, the pro-

vided low-resolution images provide insufficient texture

for spoofing, and the higher-resolution side view does

not provide adequate facial structure. As shown in Fig-

ure 9 (right), by using the low-resolution front views to

guide 3D reconstruction and then using the side view for

texturing, the spoofing success rate for large-angle head

rotation increases substantially. From a practical stand-

point, low-resolution frontal views are relatively easy to

obtain, since they can often be found in publicly posted

group photos.
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Figure 9: Spoofing success rate with different yaw angles. Left: Using only a single image at the specified angle. Right: Supple-

menting the single image with low-resolution frontal views, which aid in 3D reconstruction.

4.2 Seeing Your Face Is Enough

Our approach not only defeats existing commercial sys-

tems having liveness detection — it fundamentally un-

dermines the process of liveness detection based on color

images, entirely. To illustrate this, we use our method

to attack the recently proposed authentication approach

of Li et al. [34], which obtains a high rate of success

in guarding against video-based spoofing attacks. This

system adds another layer to motion-based liveness de-

tection by requiring that the movement of the face in the

captured video be consistent with the data obtained from

the motion sensor of the device. Fortunately, as discussed

in §3, the data consistency requirement is automatically

satisfied with our virtual reality spoofing system because

the 3D model rotates in tandem with the camera motion.

Central to Li et al. [34]’s approach is to build a classi-

fier that evaluates the consistency of captured video and

motion sensor data. In turn, the learned classifier is used

to distinguish real faces from spoofed ones. Since their

code and training samples have not been made public,

we implemented our own version of Li et al. [34]’s live-

ness detection system and trained a classifier with our

own training data. We refer the reader to [34] for a full

overview of the method.

Following the methodology of [34], we capture video

samples (and inertial sensor data) of ∼4 seconds from

the front-facing camera of a mobile phone. In each sam-

ple, the phone is held at a distance of 40cm from the

subject and moved back-and-forth 20cm to the left and

right. We capture 40 samples of real subjects moving

the phone in front of their face, 40 samples where a pre-

recorded video of a user is presented to the camera, and

30 samples where the camera is presented with a 3D re-

construction of a user in our VR environment. For train-

ing, we use a binary logistic regression classifier trained

on 20 samples from each class, with the other samples

used for testing. Due to the relatively small size of our

training sets, we repeat our classification experiments 4

times, with random train/test splits in each trial, and we

report the average performance over all four trials.

Training Data Real Video VR

Real+Video 19.50 / 20 0.25 / 20 9.75 / 10

Real+Video+VR 14.00 / 20 0.00 / 20 5.00 / 10

Real+VR 14.75 / 20 — 5.00 / 10

Table 3: Number of testing samples classified as real users.

Values in the first column represent true positive rates, and the

second and third columns represent false positives. Each row

shows the classification results after training on the classes in

the first column. The results were averaged over four trials.

The results of our experiments are shown in Table 3.

For each class (real user data, video spoof data, and VR

data), we report the average number (over 4 trials) of test

samples classified as real user data. We experiment with

three different training configurations, which are listed in

the first column of the table. The first row shows the re-

sults when using real user data as positive samples and

video spoof data as negative samples. In this case, it

can easily be seen that the real-versus-video identifica-

tion is almost perfect, matching the results of [34]. How-

ever, our VR-based attack is able to spoof this training

configuration nearly 100% of the time. The second and

third rows of Table 3 show the classification performance

when VR spoof data is included in the training data. In

both cases, our approach defeats the liveness detector in

50% of trials, and the real user data is correctly identified

as such less than 75% of the time.

All three training configurations clearly point to the

fact that our VR system presents motion features that are

close to real user data. Even if the liveness detector of

[34] is specifically trained to look for our VR-based at-

tack, 1 out of every 2 attacks will still succeed, with the

false rejection rate also increasing. Any system using



USENIX Association  25th USENIX Security Symposium 509

this detector will need to require multiple log-in attempts

to account for the decreased recall rate; allowing multi-

ple log-in attempts, however, allows our method more

opportunties to succeed. Overall, the results indicate

that the proposed VR-based attack successfully spoofs

Li et al. [34]’s approach, which is to our knowledge the

state of the art in motion-based liveness detection.

5 Defense in Depth

While current facial authentication systems succumb to

our VR-based attack, several features could be added to

these systems to confound our approach. Here, we detail

three such features, namely random projection of light

patterns, detection of minor skin tone fluctuations related

to pulse, and the use of illuminated infrared (IR) sensors.

Of these, the first two could still be bypassed with addi-

tional adversary effort, while the third presents a signif-

icantly different hardware configuration that would re-

quire non-trivial alterations to our method.

Light Projection The principle of using light projec-

tion for liveness detection is simple: Using an outward-

facing light source (e.g., the flashlight commonly in-

cluded on camera-equipped mobile phones), flash light

on the user’s face at random intervals. If the observed

change in illumination does not match the random pat-

tern, then face authentication fails. The simplicity of this

approach makes it appealing and easily implementable;

however, an adversary could modify our proposed ap-

proach to detect the random flashes of light and, with

low latency, subsequently add rendered light to the VR

scene. Random projections of structured light [62], i.e.,

checkerboard patterns and lines, would increase the diffi-

culty of such an attack, as the 3D-rendering system must

be able to quickly and accurately render the projected

illumination patterns on a model. However, structured

light projection requires specialized hardware that typi-

cally is not found on smart phones and similar devices,

which decreases the feasibility of this mitigation.

Pulse Detection Recent computer vision research [2,

58] has explored the prospect of video magnification,

which transforms micro-scale fluctuations over time into

strong visual changes. One such application is the detec-

tion of human pulse from a standard video of a human

face. The method detects small, periodic color changes

related to pulse in the region of the face and then am-

plifies this effect such that the face appears to undergo

strong changes in brightness and hue. This amplification

could be used as an additional method for liveness detec-

tion by requiring that the observed face have a detectable

pulse. Similar ideas have been applied to fingerprint sys-

tems that check for blood flow using light emitted from

beneath a prism. Of course, an attacker using our pro-

posed approach could simply add subtle color variation

to the 3D model to approximate this effect. Nevertheless,

such a method would provide another layer of defense

against spoofed facial models.

Infrared Illumination Microsoft released Windows

Hello as a more personal way to sign into Windows 10

devices with just a look or a touch. The new interface

supports biometric authentication that includes face, iris,

or fingerprint authentication. The platform includes In-

tel’s RealSense IR-based, rather than a color-based, fa-

cial authentication method. In principle, their approach

works in the same way as contemporary face authentica-

tion methods, but instead uses an IR camera to capture

a video of the user’s face. The attack presented in this

paper would fail to bypass this approach because typi-

cal VR displays are not built to project IR light; how-

ever, specialized IR display hardware could potentially

be used to overcome this limitation.

One limiting factor that may make IR-based tech-

niques less common (especially on mobile devices) is

the requirement for additional hardware to support this

enhanced form of face authentication. Indeed, as of this

writing, only a handful of personal computers support

Windows Hello.10 Nevertheless, the use of infrared illu-

mination offers intriguing possibilities for the future.

Takeaway In our opinion, it is highly unlikely that ro-

bust facial authentication systems will be able to op-

erate using solely web/mobile camera input. Given

the widespread nature of high-resolution personal online

photos, today’s adversaries have a goldmine of informa-

tion at their disposal for synthetically creating fake face

data. Moreover, even if a system is able to robustly de-

tect a certain type of attack – be it using a paper printout,

a 3D-printed mask, or our proposed method – generaliz-

ing to all possible attacks will increase the possibility of

false rejections and therefore limit the overall usability of

the system. The strongest facial authentication systems

will need to incorporate non-public imagery of the user

that cannot be easily printed or reconstructed (e.g., a skin

heat map from special IR sensors).

6 Discussion

Our work outlines several important lessons for both the

present state and the future state of security, particularly

as it relates to face authentication systems. First, our ex-

ploitation of social media photos to perform facial re-

construction underscores the notion that online privacy

of one’s appearance is tantamount to online privacy of

other personal information, such as age and location.

10See “PC platforms that support Windows Hello” for more info.
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The ability of an adversary to recover an individual’s fa-

cial characteristics through online photos is an immedi-

ate and very serious threat, albeit one that clearly can-

not be completely neutralized in the age of social media.

Therefore, it is prudent that face recognition tools be-

come increasingly robust against such threats in order to

remain a viable security option in the future.

At a minimum, it is imperative that face authentica-

tion systems be able to reject synthetic faces with low-

resolution textures, as we show in our evaluations. Of

more concern, however, is the increasing threat of virtual

reality, as well as computer vision, as an adversarial tool.

It appears to us that the designers of face authentication

systems have assumed a rather weak adversarial model

wherein attackers may have limited technical skills and

be limited to inexpensive materials. This practice is

risky, at best. Unfortunately, VR itself is quickly becom-

ing commonplace, cheap, and easy-to-use. Moreover,

VR visualizations are increasingly convincing, making

it easier and easier to create realistic 3D environments

that can be used to fool visual security systems. As such,

it is our belief that authentication mechanisms of the fu-

ture must aggressively anticipate and adapt to the rapid

developments in the virtual and online realms.

Appendix

A Multi-Image Facial Model Estimation

In §3.2, we outline how to associate 2D facial landmarks

with corresponding 3D points on an underlying facial

model. Contour landmarks pose a substantial difficulty

for this 2D-to-3D correspondence problem because the

associated set of 3D points for these features is pose-

dependent. Zhu et al. [63] compensate for this phe-

nomenon by modeling contour landmarks with parallel

curved line segments and iteratively optimizing head ori-

entation and 2D-to-3D correspondence. For a specific

head orientation R j, the corresponding landmark points

on the 3D model are found using an explicit function

based on rotation angle:

si, j = f jPR j(Si′, j + t j)

Si′, j = S̄i′ +Aid
i′ α

id +A
exp

i′
α

exp
j

i′ = land(i,R j),

(6)

where land(i,R j) is the pre-calculated mapping func-

tion that computes the position of landmarks i on the 3D

model when the orientation is R j. Ideally, the first equa-

tion in Eq. (6) should hold for all the landmark points

in all the images. However, this is not the case due to

the alignment error introduced by landmark extraction.

Generally, contour landmarks introduce more error than

corner landmarks, and this approach actually leads to in-

ferior results when multiple input images are used.

Therefore, different from Zhu et al. [63], we com-

pute the 3D facial model with Maximum a Posteriori

(MAP) estimation. We assume the alignment error of

each 3D landmark independently follows a Gaussian dis-

tribution. Then, the most probable parameters θ :=
({ f j},{R j},{t j},{α

exp
j },α id) can be estimated by mini-

mizing the cost function

θ = argmax
θ

{
68

∑
i=1

N

∑
j=1

1

(σ s
i )

2
||si, j − f jPR j(Si′, j + t j)||

2+

N

∑
j=1

(αexp
j )′Σ−1

expα
exp
j +(α id)′Σ−1

id α
id}.

(7)

Here, Si′, j is computed using Eq. (6). Σid and Σexp

are covariance matrices of α
id and α

exp
j , which can be

obtained from the pre-existing face model. (σ s
i )

2 is the

variance of alignment error of the i-th landmark and is

obtained from a separate training set consisting 20 im-

ages with hand-labeled landmarks. Eq. (7) can be com-

puted efficiently, leading to the estimated identity weight

α
id , with which we can compute the neutral-expression

model Si(= S̄i′ +Aid
i′

α
id).
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