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ABSTRACT

This paper presents a new approach for virtual view synthesis that
does not require any information of scene geometry. Our approach
first generates multiple virtual views at the same position based
on multiple depths by the conventional view interpolation method.
The interpolated views suffer from blurring and ghosting artifacts
due to the pixel mis-correspondence. Secondly, the multiple views
are integrated into a novel view where all regions are focused. This
integration problem can be formulated as the problem of solving a
set of linear equations that relates the multiple views. To solve this
set of equations, two methods using projection onto convex sets
(POCS) and inverse filtering are presented that effectively integrate
the focused regions in each view into a novel view. Experimental
results using real images show the validity of our methods.

1. INTRODUCTION
Traditional geometry-based approaches to virtual view synthesis
using reference images taken with multiple cameras recover the
scene geometry (3D models) and render the novel view based on
the geometry. The recovery of the scene geometry involves com-
putationally expensive and complicated processing steps such as
feature extraction and matching, etc. and it is generally hard to
achieve appropriate quality for the real scene. An alternative ap-
proach is image-based rendering (IBR) [1], which does not require
geometry information. However, hundreds of reference images
taken by densely arranged cameras are necessary for rendering
with adequate quality.

In this paper, we present a novel view synthesis method with-
out estimating scene geometry information. The presented method
allows more sparsely arranged cameras for capturing reference im-
ages compared with the conventional IBR. In our approach, we
first assume multiple object planes at different depths in the scene
and interpolate multiple novel views at the same fixed position
based on the planes. In each interpolated view, although the re-
gion at the assumed depth appears in focus, the region far from the
assumed depth has blurring and ghosting artifacts due to the pixel
mis-correspondence between the reference images to be used for
the interpolation. Secondly, from the multiple views, we recon-
struct an all in-focus view using methods based on projection onto
convex sets (POCS) [6] and inverse filtering.

Recently, two criteria have been presented to measure the sharp-
ness (or focus) of a region in local for the purpose of extracting
the focused region from the multiple views interpolated based on
multiple depths. This is the same framework of classical image fu-
sion for integrating an all in-focus image from multi-focus images;
however, the artifact caused in the interpolated view differs from

Scene

Virtual camera

4 capturing cameras

C1 C2

C4C3

Cv

b

b

Y

X

Z

Fig. 1. Camera arrangement used in our method.

blur in that it contains both low and high frequency components.
Isaksen et al. [2] have measured the smoothness (consistency) of
the pixel values to be used for the interpolation at each depth. This
idea is essentially equivalent to that underlying stereo matching.
Takahashi et al. [3] have presented a stable focus measure using
the difference of the views that are generated through different
kinds of interpolation methods based on the same assumed object
plane. Both approaches result in estimating the view dependent
depth map.

Our method presented in this paper can reconstruct an all in-
focus view directly from the multiple interpolated views without
depth map estimation. We model the multiple interpolated views
and the desired all in-focus view as a set of linear equations with
a combination of the textures at the assumed depths. We can solve
this set of linear equations by using POCS in both the spatial and
frequency domains. We also present an inverse filtering method
that can reconstruct the all in-focus view in one shot in the fre-
quency domain. These methods effectively integrate the focused
regions in each view into an all in-focus view.

2. THE PROPOSED METHOD

The camera arrangement used in this paper is shown in Fig. 1. We
capture 4 reference images with 4 cameras (C1, C2, C3 and C4)
arranged on the XY plane, with an interval of b in parallel to the
depth direction Z. Our goal is to synthesize a novel image at the
virtual camera (Cv) located at the middle (i.e., at (b/2, b/2)) of the
capturing cameras.

2.1. View interpolation based on multiple depths
In the first step of our method, we generate multiple views at the
same virtual point by view interpolation based on multiple object
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Fig. 2. Artifact due to pixel mis-correspondence in view interpo-
lation based on multiple object planes.

planes at different depths in the scene. When using two cameras
C1 and C2 on the X axis and assuming the object depth to be Zn

as shown in Fig. 2, we interpolate the pixel value lv on the virtual
view as (l1 + l2)/2, that is the average of the corresponding pixel
values l1 and l2 on the captured images, which are determined
based on the assumed depth Zn.

Assume that the scene consists of lambertian surface objects
without occlusions. When the assumed depth Zn coincides with
the actual object depth Zm (Zn = Zm), the same pixel values
(i.e., l1 = l2) of the texture at depth Zn are used for interpolating
the pixel value on the virtual image, resulting in lv = l1 = l2.
In the case of Zn �= Zm, different pixel values (i.e., l1 �= l2)
of the texture at depth Zm are used for interpolation; thus, pixel
mis-correspondence leads to blurring or ghosting artifacts on the
interpolated image. The phenomenon of those artifacts was an-
alyzed in the frequency domain from a sampling theory point of
view [4]. We find that the texture at depth Zm in the virtual view
interpolated based on the assumed depth Zn becomes the filtered
version of that texture in the virtual view interpolated based on the
actual depth Zm. When using 4 reference images, we can model
this filter as a 4-tap filter with all coefficients equal to 1/4:

hnm = 1/4 · δ(x − ∆nm/2, y − ∆nm/2)

+1/4 · δ(x − ∆nm/2, y + ∆nm/2)

+1/4 · δ(x + ∆nm/2, y − ∆nm/2)

+1/4 · δ(x + ∆nm/2, y + ∆nm/2), (1)

where δ(·, ·) indicates the 2-D Kronecker delta fuction and ∆nm

is the distance between the locations of the pixel values to be used
for interpolation in the image plane of the virtual view (see Fig. 2)
that is given by bd|1/Zm − 1/Zn|, where d is the focal length of
the virtual camera. It does not depend on the pixel location; hence
the filter is spatially invariant.

2.2. Modeling with depth layers
Assuming the scene consists of N depth layers at depth Zn (n =
1, ..., N), we model the virtual view using a linear combination of
textures at depth Zn that are visible from a virtual view point. Let
gn be the virtual image interpolated based on the depth Zn and the
texture at depth Zn be fn. Based on the discussion in the previous
section 2.1, we can model gn by

gn = fn +
N�

m�=n

hnm ∗ fm, (n = 1, ..., N), (2)

where ∗ is the 2-D convolution operation. The desired virtual im-
age that we synthesize is modeled simply by the sum of the tex-
tures: f =

�N
m=1 fm. We formulate the virtual view synthesis

problem as a problem of solving a set of linear equations (2). We
have used this formulation using point spread fucntions as hnm

for all in-focus image generation from multiple differently focused
images [5].

2.3. POCS method
In the second step of our method, we reconstruct the desired all
in-focus view f from multiple virtual images gn (n = 1, ..., N).
In this section, we present a novel iterative reconstruction method
using projection onto convex sets (POCS) [6] for recursively re-
constructing each depth texture fn.

We introduce N constraint sets for a vector � = (f1 f2 · · ·
fN ) using the models (2) themselves as

Sn =

��
�� : fn = gn −

N�
m�=n

hnm ∗ fm

��
� (n = 1, ..., N) (3)

Unlike the conventional image restoration methods using POCS,
any additional sets are not necessary. Since all the sets Sn are
shown to be convex (see appendix), by iteratively projecting an
arbitrary � onto the sets Sn, we can obtain a feasible solution in
the intersection set of the sets Sn. Let � (0) be the initial solution
vector (f

(0)
1 f

(0)
2 · · · f

(0)
N ). First, we project it onto the set S1 to

update the element f
(0)
1 to f

(1)
1 as

f
(1)
1 = g1 −

N�
m=2

h1m ∗ f (0)
m , (4)

and we obtain a new vector (f
(1)
1 f

(0)
2 · · · f

(0)
N ). Second, we

project this vector onto the set S2 to update the second element
f

(0)
2 to f

(1)
2 and obtain a new vector (f

(1)
1 f

(1)
2 f

(0)
3 · · · f

(0)
N ).

Similarly, the new vector obtained is projected onto Sn until the
last element f

(0)
N is updated, and the first iteration solution vector

� (1) = (f
(1)
1 f

(1)
2 · · · f

(1)
N ) is obtained. Let the projection operator

onto the set Sn be Pn. In any kth solution vector, it is given by

Pn(f
(k+1)
1 · · · f (k)

n · · · f (k)
N ) = (f

(k+1)
1 · · · f (k+1)

n · · · f (k)
N ) (5)

where f
(k)
n is updated to f

(k+1)
n :

f (k+1)
n = gn −

n−1�
m=1

hnm ∗ f (k+1)
m −

N�
m=n+1

hnm ∗ f (k)
m . (6)

We can find the kth iteration solution vector � (k) by successive
projection

�
(k) = PNPN−1 · · ·P1�

(k−1) (7)

The kth solution of the desired image f is finally reconstructed as
f (k) =

�N
m=1 f

(k)
m .

Whereas the conventional POCS methods have generally used
non-linear projections, our method uses only linear projections so
that it can be performed in the frequency domain using the Fourier
transform.



2.4. Inverse method in the frequecny domain
In this section, we present the inverse method in the frequency do-
main that is derived from the direct solution of the set of equations
in the frequency domain. The Fourier transformed version of the
model (2) can be written by matrix notion as

� = �� (8)

where

�=

�
			


G1

G2

...
GN

�
���, � =

�
			


F1

F2

...
FN

�
���, �=

�
			


1 H12 · · · H1N

H21 1 · · · H2N

...
...

. . .
...

HN1 HN2 · · · 1

�
��� .

The function with capital letters denote the Fourier transforms (FTs)
of the respective functions. The FT of the desired all in-focus vir-
tual view, F , can be given by

F = �
T
�

−1
�, (9)

where � = (1 1 · · · 1)T . The coefficient �T�−1 corresponds
to the vector matrix consisting of inverse filters for the multiple
views, say � = (K1K2 · · ·KN ). In our previous method [5]
that have been applied for generating an all in-focus image from
multiple focused images captured with physical camera; we have
shown that the inverse filters for multiple focused images uniquely
exist for two depths scene. In the case of all in-focus view gener-
ation from the multiple views that we deal with in this paper, the
inverse of� does not exist at some frequencies, since the determi-
nant of � , |�|, become zero at some frequencies. In this paper,
setting the threshold value θ, we determine the inverse filters as
Kn = 1/N , if −θ < |�| < θ.

3. EXPERIMENTAL RESULTS ON REAL IMAGES
We test the performance of our algorithm using real images (320 x
280 pixels) as shown in Fig. 3, which are 4 images of the multiview
image database courtesy of the University of Tsukuba, Japan. Four
images were captured from 4 different camera positions with base-
line length (distance between cameras) b of 20 [mm] for a scene
of an object (“Santa Claus doll”). The depth range of the object
is 590–800 [mm]. The maximum and the minimum disparities of
the object are about 23 and 17 pixels, respectively. The expanded
images (50 x 50 pixel) of the same part in the captured images
are also shown in Fig. 6 (a). We can see that different disparities
and occlusions are observed among those region of the captured
images.

Three different object planes for view interpolation are as-
sumed at Z1=590, Z2=680, and Z3=750 [mm]. The three vir-
tual views at the center of the 4 camera positions were generated
through the view interpolation based on the three depths, which
are g1, g2 and g3 as shown in Fig. 4. The region near the assumed
depth appears in focus, while the regions far from the assumed
depth appear blurry or ghosted.

Figure 5 shows the reconstructed virtual views by the pre-
sented methods using POCS in the spatial and frequency domain
and using inverse filtering. In the POCS methods, we used a vec-
tor (g1 0 0) as the initial solution vector � (0) (= (f

(0)
1 f

(0)
2 f

(0)
3 )).

In the inverse method, we set θ as 0.1. θ needs to be optimized
according to the assumed depths. In the reconstructed views, all
regions of the target object are integrated in focus. The results of
the POCS method in the frequency domain suffer from the artifact
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Fig. 3. The reference images (320 x 240 pixel) captured by 4 cam-
eras located with interval of 20 [mm].

of the amplification of certain frequency components that make
|� | = 0, in which case since all the convex sets become same, the
results are affected by noise. The result of the inverse method is
affected by the threshold process in determining the inverse filters.
This is clearly seen in the comparison of the expanded images be-
tween the original reference images and the reconstructed images
as shown in Fig 6. The POCS method in the spatial domain per-
forms well and the view is reconstructed with proper parallax and
no visible artifacts.

4. CONCLUSION AND FUTURE WORK

We presented a new approach to virtual view generation that does
not require the recovery of the scene geometry. Assuming multi-
ple object planes at different depths, we interpolate multiple vir-
tual views based on their depths and integrate them through the
POCS method and the inverse method into an all in-focus virtual
view. The experimental results on real images show that the POCS
method in the spatial domain performs well and can reconstruct
the novel view without visible artifact.

One application of our method is for teleconferencing or video-
phone systems with eye contact using a virtual view synthesis. Us-
ing four images captured by cameras at the four corner of the mon-
itor, we can synthesis the virtual image at the center of the monitor
where the full face view is synthesized for eye contact. For this
application, since the distance between cameras is large, we need
to analyze the limitations of our approach in terms of the distance
between cameras, the target depth range, and the quality of the
virtual view.

A. THE PROOF OF THE CONVEXITY OF THE SET Sn

Given two arbitrary vectors � ′ and � ′′ that belong to the set Sn:
� ′ = (f ′

1 f ′
2 · · · f ′

N ) ∈ Sn and � ′′ = (f ′′
1 f ′′

2 · · · f ′′
N ) ∈ Sn, whose

elements satisfy

f ′
n = gn−

N�
m�=n

hnm∗f ′
m and f ′′

n = gn−
N�

m�=n

hnm∗f ′′
m. (10)
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Fig. 5. The reconstructed all in-focus virtual view by our methods.

Consider a vector � ′′′ that is a linear combination of � ′ and � ′′:
� ′′′ = α� ′ + (1 − α)� ′′, where 0 ≤ α ≤ 1. The proof of the
convexity of Sn can be given by showing � ′′′ = (f ′′′

1 f ′′′
2 · · · f ′′′

N )
∈ Sn. The nth element of � ′′′, f ′′′

n , is calculated as below from
eq.(10) and the fact that hnm is a linear operator.

f ′′′
n = αf ′

n + (1−α)f ′′
n = gn−

N�
m�=n

hnm ∗ (αf ′
m + (1−α)f ′′

m)

= gn −
N�

m�=n

hnm ∗ f ′′′
m (n = 1, ..., N). (11)

This means � ′′′ ∈ Sn and therefore the set Sn is convex.
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Fig. 6. The expanded versions of the reference images and the
reconstructed all in-focus views.


