
VirtualClock: A New Traffic Control Algorithm for

Packet Switching Networks

Lixia Zhang
XEROX Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304
lixia@parc.xerox.com

Abstract

A challenging research issue in high speed networking is

how to control the transmission rate of statistical data

P OWS. This paper describes a new algorithm, Virtual-

Clock, for data trafic control in high-speed networks.

VirtualClock maintains the statistical multiplexing flex-

ibility of packet switching while ensuring each data flow

its reserved average throughput rate at the same time.

The algorithm has been tested through simulation,

1 Introduction

High-speed networking introduces challenging issues in
data traffic control. One is the large product of round-

trip-time and channel bandwidth which makes it pos-

sible that at any given time a large number of pack-

ets can be stored in the “pipe”. Another issue is the

stringent performance requirements raised by new ap-
plications, such as real time voice and video. These

applications often require a bounded transmission de-

lay but possibly with a relaxed demand on error recov-

ery. These new features makes it difficult for the con-

ventional window-based flow control mechanisms, which

have served well for reliable data transfer applications in

low speed network environments, to meet the new chal-

lenge. Therefore, rate-based traffic control algorithms

for packet-switching networks have become a focus of

research in recent years.

A difficult issue in rate-based traffic control is how to

monitor and control the transmission rate of statistical

data flows, and how to enforce network resource usage

to prevent interference among different users without

sacrificing the flexibility of statistical multiplexing. This

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

@ 1990 ACM 089791-405-8/90/0009/0019...$1.50

paper introduces a new design, called VirtualClock, as a

traffic control algorithm for high-speed packet switching

networks. VirtualClock controls the average transmis-

sion rate of data flows, enforces ‘each user’s resource us-

age according to its reservation, builds firewalls among

flows, and supports multi-priority transmissions. The

algorithm has been tested extensively through simula-

tion.

In this paper we discuss the design of the VirtualClock

algorithm, its fundamental properties, and present some

of the simulation results. We then compare the Virtual-

Clock algorithm with a few others that have been pro-

posed for network traffic control, the schedule-based ap

preach [6], fair-queueing [l, 31, and Leaky-Bucket [8, 91.

2 Virt ualclock Algorithm

2.1 Design Goals

VirtualClock was designed as part of a new network

architecture, the Flow Network [lo]. A Flow Network

provides users with guaranteed performance by requir-

ing explicit resource reservation and by employing rate-

based traffic control. It models a user’s data transmis-

sion demand as a flow, the switch processing power and

channel bandwidths as distributed resources, and em-

ploys data rate control mechanisms to regulate the us-

age of the resources to meet the demand. As part of the

network control mechanisms, VirtualClock was designed

to provide the following functionalities:

1. To support diverse throughput requirements from

various applications by enforcing the resource us-

age according to each flow’s average throughput

reservation.

2. To monitor average data flows and provide mea-
surement input to other network control functions.

19

SIGCOMM 1990

3.

4.

2.2

To provide firewalls among individual data fl0ws.l

To preserve the full flexibility of statistical multi-

plexing of packet switching.

VirtualClock: First Outline

The idea of VirtualClock was inspired by the Time Di-

vision Multiplexing (TDM) system. A TDM system

completely eliminates interference among users because

individual user channels can transmit only during spe-

cific time slots. The capacity is wasted, however, when

a slot is given to a flow that has no data to send at that

moment; also the channel bandwidths allocated to each

user are pre-fixed rather than dynamically adjustable.

We would like to achieve the firewalls of a TDM system

as well as to preserve the flexibility of statistical multi-

plexing of packet-switching. A TDM system is driven by

a real time clock; a statistical multiplexing system may

use a virtual clock concept in a similar way. To make a

statistical data flow resemble a TDM channel, we may

imagine that arriving packets from the flow were hav-

ing a constant rate in a virtual time space, so that each

packet arrival would indicate that one slot time period

had passed.

Following this thought, we assign each data flow a Vir-

tualClock which ticks at every packet arrival from that

flow; the tick step is equal to the mean inter-packet

gap (assuming a constant packet size for the moment).

In this way the VirtualClock reading tells the expected

arrival time of the packet. If a flow sends packets ac-

cording to its specified average rate, its VirtualClock

reading should be in the vicinity of the real time. To im-

itate the transmission ordering of a TDM system, each

switch may stamp packets by the flows’ VirtualClock

values and use the stamps to order transmissions, as if

the VirtualClock stamp were the real time slot number

in the TDM system.

We sketch an implementation outline below. For each

switch,

1. When received flowi’s set-up request, compute

the value Vticki = lIARi, where A& is the aver-

age transmission rate indicated in the request.

1 As has been frequently observed in operational networks,
users may sometimes misbehave, i.e. a user may not follow the

network control protocol but rather transmit data at a high rate.

Even if we assume no users have malicious intention, such mis-

behavior can still be caused by software or hardware failures, by
protocol implementation errors, or even by protocol design errors

[7, 51. It is the responsibility of the network control to prevent

misbehaving users from interrupting normal service to others.

2.

3.

4.

5.

Upon the arrival of the first packet from flowi,

VirtualClocki + real time.

Upon receiving each packet from flow,, advance

ViTtualClocki by Vticki, then stamp the packet

with the value of Virtualclocki.

Transmit packets by the order of increasing Vir-

tualClock stamp values.

When the switch runs out of buffer space, drop

the last packet from the queue.

If packets have variable sizes, the value of Vtick in the

above can be chosen proportionally to the size of each

packet.

teaI time cloc$(secongd)
2 8 10 12 14 16

Flow-l’s VirualClock (AR = 1 pkt/sec)

nn nn nnn~n nnn
1011

Flow-2’s VirtualClack (AR = 0.5

8 10

Switch’s packet forwarding queue (2 pkts/sec)

I I 1 I

Figure 1: Real time, Virtual Clock, and packet process

ing order.

One major difference between a VirtualClock controlled

packet switching network and a TDM system is that

the VirtualClock algorithm merely orders packet trans-

mission without changing the statistical sharing nature

of packet switching - the network forwards all pack-

ets as long as resources are available. Anotlher major

difference is that the packet network can support arbi-

trary throughput rates of individual flows. The network

reservation control determines how much share of the

resources each flow may take on average; the Virtual-

Clock algorithm determines, if more than one packet is

waiting, which packet should go next based on the flows’

reserved transmission rates.

2.2.1 VirtualClock as a Data Flow Monitor

From another viewpoint, VirtualClock plays the role of

a “flow meter” driven by packet arrivals. Decause it

is advanced according to the flow’s specified average

transmission rate, the difference between the Virtual-

Clock and the real time clock will show how closely a

running flow is following its claimed rate. Therefore we

20

can monitor each flow by comparing its VirtualClock

with the real time clock periodically in order to provide
feedback to flow sources if their actual throughput ever

depart significantly from the reserved rate.

How often should a flow’s VirtualClock be checked? A

reasonable average iniervel (AI) is needed over which

we can check a flow’s average transmission rate while

tolerating burstiness and randomness in packet flows as

much as possible. In [lo] we argued that this AI value is

application-dependent and should be provided in each

flow’s reservation request. With the AI value given, a

flow can then be monitored by checking its meter, Vir-

tualclock, after every AI time period. Such a measure,

however, may react too slowly, especially when the value

of AI is large. A derivative detector will be able to catch

misbehaving flows more quickly - that means checking

the amplitude of changes.

Therefore we let the switch check each flow, flowi, after

receiving every AI&(= ARi x AIi) packets from it. By

counting the number of packets, traffic impulses can be
quickly detected. Had we used a specific time interval

for measurement, we would have faced the dilemma of

picking a period that is either too small to keep control

stable, or too big to detect overload promptly.

The VirtualClock algorithm monitors data flows in the

following way:

l At flowi setup, the switch computes the value

AI& = A& x AIi.

l Upon receiving each set of AIRi packets,

- (VirtualClocki > real time) indicates that

the flow has been sending faster than the

specified rate. If VirtdClocki is ahead by

more than a threshold value, proper control
actions should be taken.

- If (VirtualClocki < real time), then

VirtualClocki e real time.

We see that VirtualClock is driven either by incoming

packets or by the real time, whichever runs faster. No

credit can be saved over an average interval, even when

the flow runs more slowly than the specified rate. From

a resource allocation viewpoint, unused resources are

gone; if a flow were allowed to accumulate credits, it

could increase its priority by idling for a while and then

transmitting in bursts, which would cause packets from
other flows to experience a sudden increase in queueing

delay, or even switch buffer overflow.

2.2.2 Providing Priority Service

Priority service can also be easily accommodated by the
VirtualClock algorithm, i.e. by decreasing a flow’s Vir-

tualclock by a certain amount, P, at the start of a flow.

VirtualClock c (real time - P)

where P represents the priority. The value of P should

be big enough to separate priority Rows far apart from

the rest in the transmission queue.2 This priority, how-

ever, does not allow the former to take unfair advantage

of other flows. If a prioritized flow runs faster than the

claimed throughput rate, its VirtualClock will eventu-

ally run ahead of the real time and hence its packets

will lose priority in transmission.

2.2.3 Building Firewalls among Flows

Ordering packet transmission by VirtualClock stamps

assures that, although an aggressive flow may take up

idle resources, it cannot disturb the network service to

other flows. The resource reservation control ensures

that no congestion will occur if every flow transmits

according to its reserved average throughput rate. In

cases where one or more flows violates the reservation

to cause congestion, flows that follow their specified

throughput rate will not be affected, while the most

offending flows will receive the worst service because

their VirtualClocks will run too fast, hence their pack-

ets will be put at the end of the service queues, or even
get dropped. The VirtualClock algorithm prevents in-

terference among flows.

2.3 Further Revisions of VirtualClock Al-

gorit hm

The VirtualClock design, as described in the above, was

tested through simulation and a few revisions were made

to correct the problems discovered in the simulation, as

explained below.

2Using time-stamp for priority purposes has a side-effect: low
priority objects can have their priority increased with time. We
argue that, if the channel keeps a proper utilization, P can be set

to a value longer than the resource contention period, therefore
low priority load can be effectively hidden from high priority flows.

If we define channel state from idle to next idle as an epoch, P
should be much longer than the average epoch length. Only in

the presence of misbehaving users may a channel be in busy state
for long, in which case the misbehaving users will be detected, as

described in the previous section, and proper control actions will
be taken.

21

2.3.1 No Credit Saving vs Flow Variation Tol-

erance

The first problem revealed by simulation tests is that,

if a burst of packets arrives from a flow, f lowi, that has

been idle for a while (within an AI period), the burst can

still cause sudden queueing increases to others. This is

because the algorithm is designed to tolerate flow vari-

ations within each average interval (which is primarily

chosen by individual applications), and VirtualClocki

has not been advanced since the last checking point, and

will not be until AI& packets have been received.

To resolve this conflict, we assign each flow an auxiliary

VirtualClock (auxVC), and revise step (3) of the packet

stamping rule described in Section 2.2 in the following

way:

l Upon receiving each packet from flow;,

1. auxVC c max(rea1 time, auxVC);

2. VirtualClocki + (VirtualClocki + Vticki),

and auxVC + (auxVC + Vtick);

3. stamp the packet with auxVC.

This revision replaces VirtualClock by auxVC in packet

stamping so that no flow can increase the priority of

its packets by saving credits even within the average

interval. VirtualClock retains its role as a flow meter
that measures the progress of a statistical packet flow;

its value may fall behind the real time clock between

checking points to tolerate packet burstiness within each

average interval.

2.3.2 Need for A User-Behavior Envelope

As proposed in Section 2.2.1, the switch monitors a sta-

tistical flow by comparing its VirtualClock with the real

time after receiving each set of AIR packets. An unre-

solved issue is how to choose a proper threshold value,

T, such that whenever (VirtualClocki - real time) > T,

the switch can assume with confidence that flowi has

indeed been transmitting too fast and control actions

deem necessary.

A number of simulation runs were conducted to test var-

ious threshold values. The results show that, even when

a flow generates packets by a Poisson process and uses

a reasonably large average interval (e.g. AR = 5 pack-

ets/second, AI = 10 seconds), the difference between

the VirtualClock and the real time may still exceed any

fixed threshold and trigger false control actions. Intu-

itively, one might think that the variations in a flow’s

data generation over each average interval should can-

cel each other out, and hence the VirtualClock read-

ing would stay within some finite vicinity of the real

time. Close observations of simulation runs show that,

contrary to intuition, these variations grow unbounded.

Below we give a simple analysis of the observed phe-

nomenon .

First let us assume that the VirtualClock is advanced

only by packet arrivals. We are interested in how the

difference between a flow’s VirtualClock and the real

time clock may grow as time goes on.

Let us cut packet arrivals from a Poisson source into

equal time intervals, Tl, T2, . . . , Ti . . . , and let Pi repre-

sent the number of packets arrived during Ti, we have

Di = Pi-AIR
n

Sum, = c Di
i=l

(2)

= (VirtualClock - RealTime),lVtick (3)

The Pi’s are independent, identically distributed (IID)

random variables, so are the Di’s. Sum, is a sum of n

IID variables, and thus

Mean(Sum,) = Mean(Q) x 7~ = 0 (4)

Var(Sum,) = Var(Di) x n (5)

Sum,, represents a random walk process, and the value

of [Sum,.,/ is unbounded as n + 00. Equation (5) indi-

cates that, probabilistically, the value of Sum,, i.e. the
difference between VirtualClock and the real time clock,

may vary above any fixed threshold after the flow has

run long enough.

When VirtualClock is advanced either by packet arrivals

or by the real time, Sumn in Equation (2) becomes

n

Sum, = c Di, Di >0 (6)
i=l

Intuitively, the variance of Sum, in Equation (6) should

grow with n not more slowly than linearly. Also note

that the value of Var(Di) is application-dependent, so

is Var(Sum,). This fact adds to the difficulty in distin-

guishing whether a VirtualClock which is running ahead

of the real time indicates a misbehaving flow or whether

it is merely due to large variations in data generations.

Facing this variance accumulation problem in flow mea

surement, we proposed a user-behavior envelope (UBE)

as a solution: a flow source must constrain itself from

sending more than AIR packets during each average

interval. After flow sources restrict the transmission

22

within the above envelope, simulation tests show that

the VirtualClock value is stabilized, varying around the
real time. The value of AI is chosen to be the thresh-

old, T. (Also see [IO] for a complete description of the

solution.)

Justification

We assume that flows’ data generators, which can be

either real-time applications or data retrieval processes

fetching storage, are able to adjust the generation rate

in certain ways according to the UBE constraint. Ei-
ther the data rate can be adjusted without causing ap-

plication performance degradation, or the data in the

excessive packets (i.e. those that would have been sent

if there were no UBE control) can be encoded in subse-

quent packets. Appendix A shows a simple implemen-

tation of this user-behavior envelope.

Although the user-behavior envelope was introduced as

a solution to our specific problem in using VirtualClock

for flow measurement, we believe that it is a manda-

tory part of rate-based flow control systems in gen-

eral. Packet switching offers unbounded flexibility to
users, a well defined constraint is therefore necessary to

counter balance this flexibility. The widely employed

window flow control mechanisms provide a good exam-

ple of such constraints - users restrict themselves from

having more than a certain amount of outstanding data

in the network at any time. Requesting self-constraints
on users is a necessary cost, which ought to be recog-

nized explicitly. Much work needs to be done on how to

design application protocols that can adjust themselves

to the constraints.

Resource Overbooking

The above discussion may have triggered a related ques-

tion in the reader’s mind: if the partial sum of a random

data source can depart significantly from the average at

a given moment, there will be flows that generate data

much above the specified average, as well as flows much

below the average. And for each flow, there will be pe-

riods of heavy data generation and periods of relatively

low activity. Restricting a flow’s transmission by a fixed
envelope means cutting off the high peaks. The overall

transmission rate, therefore, may average lower than the

specified value, and the resources may be overbooked.

Simulation tests indeed manifested such resource over-

booking. When a flow with a statistical data source

restricts its transmission according to the proposed en-
velope, its actual throughput is lower than the expected

average. Enlarging the average interval can reduce this

difference to a negligible value. One cannot, however,
totally eliminate it by any finite average interval.

It is also possible that a user, predicting a high variation

in its data generation process, may purposely specify an
average rate higher than the estimated mean in order

to minimize the cut-off by the user-behavior envelope

constraint, even if such overbooking may be associated

with a cost3 Besides a reduced constraint on its data

transmission, a flow that overbooks resources may also

receive a better delay performance, because its Virtual-

Clock will be advanced by a smaller step at each packet

arrival. One flow’s overbooking will not have any neg-

ative effect on the performance of others, because the

VirtualClock algorithm assures everyone the amount of

its own reserved throughput.

2.4 VirtualClock: the Final Version

Below is a description of the final VirtualClock

rithm: at each packet switch,

Upon receiving the first packet from flowi,

VirtualClock~ c real time.

Upon receiving each packet from flowi,

algo-

1. auxVC t- max(rea1 time, auxVC);

2. VidualCiocki +- (VirtualClocki + Vticki),

and auxVC c (auxVC + Vtick);

If all packets have a constant size,

Wicki = l/AR(packet/sec). If packets have

variable size, the value of Viicki should be com-

puted from individual packet sizes.

3. stamp the packet with the auxVC value.

Transmit packets by the order of increasing stamp

values.

When the switch runs out of buffer space, drop

the last packet from the queue.

Upon receiving each set of AlRi(= ARi x A&)

packets from flowi,

- if (VirtualClocki- real time) > threshold,

control actions should be taken.

- If (VidualClocki < real time),

VirtualClock; c real time.

In handling priority flows, real time in the above should

be replaced by (real time - P).

The above VirtualClock algorithm can ensure the fol-
lowing functionalities:

3However, the case where malicious users overbook resources
to deny services to others must be prevented by proper charging
or authentication mechanisms.

23

Every flow receives a fair service measured by its

claimed transmission parameters.4

Flows running faster than the claimed through-

put rate will be detected by their fast running
VirtualClock. They may be punished by longer

queueing delays, or even packet losses, while other

flows will not be disturbed.

Multiple level priority services can easily be pre

vided, and flows with priority are prevented from

taking unfair advantage of others.

Packets from different flows are maximally inter-

leaved, which is an important measure in keeping

good network performance [2].

Extensive simulation tests have been conducted to ver-

ify the above conclusions [lo]. Due to the space limit,

however, only part of the simulation results will be pre-

sented in the next section.

3 Simulation Results

In this section, we first discuss the network model used
in simulation tests, and then present the results show-

ing that VirtualClock provides a fair service, supports

diverse throughput rates, and builds firewalls between

flows. Some interesting results showing the impact of

VirtualClock on packet queueing delays will also be dis-
cussed briefly.

3.1 Simulation Model

3.1.1 Network Topology

A simple network topology model is used in the sim-

ulations (see Figure 2). It has four switches in a row.

Each link is a duplex communication channel (below we

use the words link and channel interchangeably). All

the switches and links are assumed to provide error-

free transmission. The links from hosts to the attached

switch have a bandwidth of 10 Mbps, and a propaga-

tion delay of 1 msec. The three switch-to-switch links
have the same bandwidth of 400 Kbps and propagation

*The definition of fairness is a difficult subject. We consider

it as a policy issue above the network control layer. A control

algorithm should be able to support whatever fairness definition

is given. This research assumes that the service parameters in
each flow request have been checked by the fairness policy.

Figure 2: The simulation topology.

delay of 5 msec. 5 All the four switches have a moder-

ate buffer pool size of 100 packets. The switches are

assumed to have adequate capacity to process incoming

packets from all attached links.

Although the network bandwidths used in the simula-

tion model is relatively low, one should be able to extend

the results presented below directly to a higher speed en-

vironment. It is the channel utilization that determines

the queueing distribution. If we scale up both flows’
transmission rates and the network bandwidths up by

a factor of 1000, for example, the channel utilization

will remain unchanged, so will the queue length distri-

bution. The queueing delay, however, will be decreased

by a factor of 1000.

3.1.2 Data Generator Model

Data generation is an application-dependent random
process. Because the packet switching network is to

serve multiple current, and potential applications, a uni-

versally accurate data generation model does not exist.

Most previous network performance studies Shave used

the Poisson arrival model for data generation. There

exist various speculations, however, that use af the Pois-

son model may not result in a realistic performance esti-

mate. In [4], Jain and Routhier presented a packet train

model based on their traffic measurement. We chose to

use this train model for our data generation in the sim-

ulation tests.

Modeling each packet as a railroad car, a group of pack-

ets following one another closely is modeled as a train.

The generation process of a packet train model can be
described by three parameters: train length, inter-train

gap, and inter-packet gap (see Figure 3). Pac:ket trains

fit into a Markov chain model of two states; it is one

step forward from the Poisson arrival model. Many ap-

5The propagation of the speed of light in fiber is about 200,000

km/set. A coast-t-coast span of the continental USA is 4000 km,

with a propagation delay of 20 msec.

24

plications can be coarsely modeled by a Markov chain

(probably with more states).

train length
Msrkov chain model

l-l (23

b-Y idle

I
inter-pcketgpp inteHrain gap

Figure 3: Packet train model.

In simulation tests, the train length is modeled as a

geometrically distributed random variable. The inter-

train gap is modeled as an exponentially distributed

random variable. The inter-packet gap is set to l/(2 x

Average Rate), i.e. the burstiness degree is 2. All data

packets are assumed a constant size of 250 bytes.

3.1.3 Misbehaving Data Sources

As a measure of robustness, a network control algorithm

must be prepared to handle users who do not obey the

control rules. We call them misbehaving users. This

group does not include maliciozls users who attack pur-

posely. The simulated model of misbehaving users is a
data source that transmits faster than the specified rate

and does not respond to network control,

3.2 Simulation Results

3.2.1 Flows with Same Throughput Require-

ment

We first present the results from a simulation run with

the following traffic load: there are total 60 flows, each

generates data by the packet-train model with a mean

of 10 packets/set (20 Kbps) and requests an average

throughput of 10 packets/set. Flows 1 through 24 have

a path of l-hop, flows 25 through 48 2-hop, and flows

49 through 60 3-hop. The hop count of a flow is the

number of the switch-to-switch link(s) it crosses. The

sources and destinations of the flows are more or less

uniformly distributed. Later we will refer to this test as

Test-One.

The goal of this test is to demonstrate the network per-

formance under heavy load. There are 18 flows on each
of the inter-switch links, driving the utilization above

85%. The test simulated a 10 minute run of the real

system. The measurement statistics of both directions
of Link-12 are given below as a sample of the network

performance.6 The link utilization is averaged over ev-

ery 100 msec period. The queue length measures the
number of packets in the queue, including the one un-

der transmission; “99-t” means the 99th percentile of

the queue length samples. The effective throughput is

the number of packets delivered successfully from end

to end. The total loss is the number of packet losses

during the whole simulation run.

Measurement statistics with

homogeneous flows

‘i:“~

Effective throughput: 584 packets/set

Total loss: 0

Dividing the 60 flows into three path-length groups,

we computed the average throughput and the average

queueing delay of each group below. Here the queueing

delay is the waiting time each packet experienced in the

queue(s), excluding its own transmission time.

~1

Notice that the actual average throughput is slightly

lower than the requested value (about 4%), due to the

user-behavior envelope restriction we discussed earlier.
If we convert the packet waiting time to the queue length

(it takes 5 msec to transmit a 250-byte packet over a 400

Kbps link), we see that the two measurements agree

with each other (remembering that the queue length

counts the packet being transmitted as well).

Summarizing the test results, we see that:

l The network meets the flows’ average throughput

requirement.

l The average queueing delay is 10w.~

l The network load is stable and congestion free.

l The network provides a fair service, independent

of flows’ path lengths.

6Due to memory limitations, it is impossible to log queueing
data for all the links.

‘As a point of reference, an M/D/l queue’s average length
under the same utilization would be around 4 packets, or the
average waiting time 15 msec.

25

3.2.2 Supporting Diverse Flow Throughput

We also simulated flows with different throughput

quirements as given below.
re-

Diverse Throughput Rate of Flows

1 Throughput 1 Flow ID 1
(packets/set)

50 1, 18, 35

30 8, 25, 36

20 3, 12, 20, 29, 37

10 2, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 19,

21, 22, 23, 24, 26, 27, 28, 30, 31, 32

5 16, 17, 33, 34

Among the total of 37 flows, 1 - 17 are l-hop flows,

18 N 34 are 2-hop flows, and the rest 3-hop. The test

simulated a 10 minute run of the real system and the

results are presented in the same way as before.

Measurement statistics

with diverse throughput flows

~~

Effective throughput: 564 packets/set

Total loss: 0
Again we show the average throughput and queueing

delay of the flows by the path length groups.

Flow performance
with diverse throughput rate - -

1 Average Throughput (pkts/sec)

Desired I 50 1 30 1 20 1 10 1 5 I
1 1-bon 1

I I I I

48.2 1 29.0 1 19.3 1 9.6 1 4.7 1

2-ho; 48.3 28.8 19.0 9.6 4.9

3-hop 47.8 29.0 19.4

Average Queueing Delay (msec)

rate 50 I 30 I 20 I 10 I 5

The above results show that the VirtualClock algorithm

satisfies the users with their expected throughput; dif-

ferent path lengths show no effect. The different through-

put rates of the flows do have a minor impact on the

average queueing delay though; lower throughput flows

seem to experience a higher queueing delay. This is

because their VirtualClocks tick by bigger steps; one
packet arrival may advance the VirtualClock so much

that the next packet has to wait to let one or more pack-

ets from higher-speed flows, which arrived in a burst,

pass by first.

3.2.3 Building Firewalls Between Flows

Here the test condition is changed back to that of Test-

One, except that every 6th flow is now a misbehaving

user: it sends at 5 times the specified rate, and does

not respond to network control. The test simulated a 5

minute run of the real system.

Measurement statistics in the

presence of misbehaving users

I%?

Effective throughput: 680 packets/set

Total loss: 47106 packets
(all from misbehaving users)

Performance of normal flows

in the presence of misbehaving users

~~

Recall that when a switch runs out of buffer space,

it drops the last packet from the longest queue; and

that after a switch detects a misbehaving flow it will

take proper control actions. In this test, the control
actions are first to send a certain number of control

messages to each misbehaving flow requesting it to slow
down; if no change of the flow’s behavior is observed,

the switch deletes the flow. Because the misbehaving

flows sent much too fast, their packets were put at the

end of the service queues; and because they did not lis-

ten to the control, they were quickly deletecl from the

switches’ flow tables. Further packets from these flows

were treated as from unknown users and received the

lowest priority in handling.’

The above results show that normal flows are well pro

tected from the few misbehaving users, no one lost a

single packet. Also note that, even though t,he misbe-

having users have driven the link utilization up to lOO%,

the queueing delay of the normal flows remains about

the same as before. The 3-hop flows even receive a lower

queueing delay than in Test-One, because the switches

deleted the misbehaving flows, making normal flows see

a lower utilization.

81n the Flow Network design, packets from unknown users

are served with a priority lower than any of the flows with re-

source reservation, allowing random datagrams to b,e sent with
no reservation and the network resources to be fully utilized by

performance-insensitive background traffic.

26

3.2.4 Effects of VirtualClock on Queueing De-

lay

The major role of VirtualClock is to meter the average

volume of a statistical data flow and to build firewalls

among flows in statistical multiplexing. It should be

made clear that VirtualClock does not contribute di-

rectly to queueing delay reduction. Bather, it helps indi-

rectly through interleaving packets from different flows

and assuring individual flows their reserved throughput

rates.

Queueing Delay of Different Data Generation

Patterns

Although statistical multiplexing absorbs certain ran-

domness and burstiness in individual flows’ data trans-

mission, highly bursty data arrivals can still significantly

increase queueing delay. Because of the strict service

ordering enforced by VirtualClock, however, one would

expect that a higher burstiness in a flow’s data gener-

ation will be reflected back mostly to an increase in its

own end-to-end delay.

This is indeed the case, as evidenced by the results of

a simulation run with three different data generation

models, constant rate, Poisson arrival, and packet-train.

The test condition is the same as that in Test-One ex-

cept that the last four flows were removed to lower the
link utilization9 (the measured utilization in this test is

78%), and that for flows 1 to 48, the data generation

model is changed to two constant-rate, two Poisson ar-

rival, and two packet-train in a repeated pattern. Flows

49 to 56 repeat the pattern of one constant-rate, one

Poisson, and two packet train. The average and devia-

tion of the queueing delays of all the flows are summa-

rized below, sorted by the path-length groups.

Queueing delay statistics of

diverse data patterns

~1

~,

Packet-train has the highest burstiness among the three

9Experiments show that when the utilization is too high (say
above 80%) the difference of the queueing delay among different

data source models gradually diminishes.

data generation models. Consequently, the flows with

the train data generation received the highest queueing
delay and delay variation. It seems fair to let bursty

data sources bear the result of their own behavior. In

particular, notice that the flows with the Poisson arrival

model have both a lower average delay and a smaller

delay deviation than the flows with the packet-train
model. Using the packet train model instead of the

Poisson model in testing stretches the performance of

the VirtualClock algorithm, demonstrating its enhanced

robustness for a wider range of data generation patterns.

4 Related Work

4.1 Schedule-Based Approach in Data
Flow Control

In [6], Mukherji proposed a schedule-based approach

to data traffic control. In his approach, channel band-

widths are divided into equal time frames; each frame

has a fixed number of slots which are assigned to indi-

vidual users. A user can send a packet by using its own

slot, or using a slot whose designated user has no packet

to send at the moment. Each user has an auxiliary flow

control window which limits the number of packets a

user may send by using others’ slots.

The VirtualClock algorithm takes a similar approach of

reserving resources for individual users. However, in-

stead of assigning channel slots to individual users, Vir-

tualclock orders packet transmission sequences. Hence

it achieves the same functionalities of the Mukherji al-

gorithm but with more flexibility in handling different

channel bandwidths and different user throughput de-

mands.

4.2 Fair-Queueing

Fair-queueing is a simple strategy that provides all users

with an equal allocation of network resources. Similar

to the round-robin scheduling algorithm often used in

operating systems, the basic idea of fair-queueing is to

transmit data from each user in turn. Hahne [3] and

Demers et al. [l] h ave done extensive analysis work on

fair-queueing’s performance.

VirtualClock can be considered as performing a fair-
queueing function, where the fairness is defined to be

assuring each user the requested throughput rate. In
fact various queueing policies can all be implemented

by a simple computation on the VirtualClock value. In

27

particular, the fair-queueing algorithm by Demers et al

[l] and the VirtualClock algorithm share a number of
features. A major difference between the two is that Vir-

tualClock is based on the resource reservation. There-

fore instead of an equal share to all users, VirtualClock

can allocate any specific amount of resources to each

user.

4.2.1 Leaky-Bucket

Leaky-Bucket has been suggested as a flow control algo-

rithm to be used at the network interface for high-speed

networks [8, 91. Various versions of the algorithm have
been proposed. A simple model described in [9] works

in the following way: the switch puts packets from each

data flow into a corresponding bucket which has a fixed

size; the bucket opens periodically to drop a packet out

for transmission; when the bucket is full, incoming pack-

ets are discarded. In another version of Leaky-Bucket,
credits for each flow are generated at a constant rate,

and a certain number of credits (the bucket size) can be

saved. Arriving packets are transmitted immediately if

the flow has credits, otherwise they are either dropped

or transmitted with a low priority.

Packet-switching networks should tolerate variations in

packet arrivals while controlling flows’ average trans-

mission rate. The first version of Leaky-Bucket reduces

statistical multiplexing because packets are transmitted

at a constant rate rather than whenever the channel

is available. The second version may result in highly
bursty transmissions if all buckets in the switch is served

in an FIFO order. The VirtualClock algorithm avoids

those drawbacks by merely ordering packet transmis-

sions without reducing statistical sharing; at the same

time it also makes packets from different Aows maxi-

mally interleaved.

The major difference between Leaky-Bucket and Vir-

tualclock, however, is that the former is an admission

control while the latter a transmission control. Leaky-

Bucket enforces control at the switch entrance and de-

termines whether an incoming packet should be accepted.

Once packets are in, Leaky-Bucket has no further con-
trol over the order of transmission and thus it can-

not discriminate packets according to different delay re-

quirements. VirtualClock can also be used for admission

control (e.g. when a flow’s VirtualClock is running too

fast, further packets from that flow can be rejected).

Its main merit, however, shows at transmission control.

VirtualClock determines the transmission order of pack-

ets from all users. The action is applied right at the

multiplexing point, controlling exactly which packet go

next.

5 Summary and Future Research

In this paper we presented VirtualClock as a. new traf-

fic control algorithm for packet switching networks. Its

fundamental merit comes from its imitation of a TDM

system in a statistically shared packet network, hence it

achieves the desired properties of both systems; it main-
tains the statistical multiplexing flexibility of packet

switching while ensuring each flow its reserved average

transmission rate at the same time.

All control algorithms imply certain constraints on users.

In the VirtualClock algorithm, such constraints are ex-

pressed as a user-behavior envelope, which req,uires each

flow source constrain itself from sending more *than (ARx
AI) data over each average interval. Although the user-

behavior envelope was introduced as a solution to our

specific problem in using VirtualClock for flow measure-

ment, we believe that it is a mandatory part of rate-

based flow control in general. How to design application

protocols that can adjust themselves to the constraints

is an interesting area to be further explored.

We also plan to further explore the performance of the

VirtualClock algorithmunder highly bursty traffic. Some

preliminary tests indicate that, with the traffic bursti-

ness degree increased from two to eight, the network can

maintain the same queueing delay by a modest decrease

in the channel utilization. However, more rigorous test-

ing is needed to achieve any quantitative conclusions.

Design of, and experimentation with, the VirtualClock

algorithm also brought up a number of othelr interest-

ing issues for future study. First, it may be attrac-

tive to applications with stringent delay requirements

to slightly over-book resources to trade for an improved

transmission delay. More work is needed to investigate a

quantitative relation between the percentage of resource

overbooking and the delay reduction. Another inter-

esting area is to provide a bounded transmission delay

and guaranteed delivery to emulate services provided

by a circuit-switching network. Although the Virtual-

Clock algorithm, as described in this paper, shows low

queueing delay in simulation tests, it does nc’t guaran-

tee bounded transmission delays nor data loss-free. The
algorithm is being further developed to achieve these

properties.

As a final remark, the concept of the average interval

seems particularly interesting. The VirtualClock algo-

rithm uses two parameters, average rate (AR.) and av-

28

erage interval (AI), to describe and control statistical

data flows. AI sets a bound on sources’ transmission
variation and defines a checking point in network mea-

surement. The possible range of the AI value is

1

average rate
< AI < flow duration

Tuning the value to reach the left limit, a data flow

would transmit at a constant rate and we end up with a

TDM system. Tuning the value to the right limit, a data

flow would be able to transmit in any arbitrary man-

ner as in an uncontrolled datagram network. In other

words, a data transmission network can move along a

continuous spectrum, with a TDM system at one end

and a datagram network at the other, by adjusting the

AI value. AI provides us a tuning knob between the

system constraints and the service flexibility.

Acknowledgment

This paper is based on my thesis work completed at

Massachusetts Institute of Technology. I wish to thank

my thesis supervisor, David D. Clark, for his guidance

and input. I also wish to thank Scott Shenker and the

anonymous reviewers for their valuable comments.

A An Example Implementation

of User-Behavior Envelope

In our simulation test, the flow sources implement the

user-behavior envelope control by a moving-average al-

gorithm:

l Each flow source keeps the transmission time of

the last AIR packets in a circular ring, with a

pointer, Ptr, to the oldest slot.

l When sending out a packet, P, the source checks

whether the real time > (Ptr(time) + AI). If

so, the next packet, Pnerl, can be sent after the

minimum inter-packet gap; otherwise Pnerl must

wait for at least an average inter-packet gap.

l P’s transmission time is saved in the slot pointed

by Ptr, and Ptr is moved to the next slot.

References

[l] A. Demers, S. Keshav, and S. Shenker. Anal-

ysis and Simulation of a Fair Queueing Algo-

PI

131

PI

[51

PI

PI

PI

PI

PO1

rithm. In Proceedings of Symposium on Commu-

nication Architectures and Protocols. ACM SIG-
COMM, September 1989.

A. Desclous, Contention Probabilities in Packet

Switching Networks with Strung Input Processes,

Teletraffc Congress 1988

Ellen L. Hahne. Round Robin Scheduling for Fair

Flow Control in Data Communication Networks.

PhD thesis, Massachusetts Institute of Technology,

December 1986.

R. Jain and S. Routhier. Packet Trains - Measure-

ments and a New Model for Computer Network

Traffic. IEEE Journal on Selected Areas in Com-

munications, SAC-4(6):986-995, September 1986.

TCP-IP mailing list. TCP-IP mailing list is a

special-interest-group mailing list moderated by

the Network Information Center (NIC) located at

SRI. In TCP-IP mail discussion, there have been

numerous observations of malfunctioning hosts in

the ARPA Internet.

Utpal Mukherji. A Schedule-Based Approach for

Flow-Control in Data Communication Networks.

PhD thesis, Massachusetts Institute of Technology,

February 1986.

John Nagle. Congestion Control in TCP/IP Inter-

networks. A CM Computer Communications Re-

view, 14(4), October 1984.

E. P. Rathgeb. C om arison of Policing Mechanisms p

for ATM Networks. Submitted to IEEE INFO-

COM’90, June 1990.

Jonathan S. Turner. New Directions in Communi-

cations (or Which Way to the Information Age?).
IEEE Communications Magazine, 24(10):8-15, Oc-

tober 1986.

Lixia Zhang. A New Architecture for Packet

Switching Network Protocols. PhD thesis, Ma.+

sachusetts Institute of Technology, July 1989.

%9

