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Abstract 

A challenging research issue in high speed networking is 

how to control the transmission rate of statistical data 

P OWS. This paper describes a new algorithm, Virtual- 

Clock, for data trafic control in high-speed networks. 

VirtualClock maintains the statistical multiplexing flex- 

ibility of packet switching while ensuring each data flow 

its reserved average throughput rate at the same time. 

The algorithm has been tested through simulation, 

1 Introduction 

High-speed networking introduces challenging issues in 
data traffic control. One is the large product of round- 

trip-time and channel bandwidth which makes it pos- 

sible that at any given time a large number of pack- 

ets can be stored in the “pipe”. Another issue is the 

stringent performance requirements raised by new ap- 
plications, such as real time voice and video. These 

applications often require a bounded transmission de- 

lay but possibly with a relaxed demand on error recov- 

ery. These new features makes it difficult for the con- 

ventional window-based flow control mechanisms, which 

have served well for reliable data transfer applications in 

low speed network environments, to meet the new chal- 

lenge. Therefore, rate-based traffic control algorithms 

for packet-switching networks have become a focus of 

research in recent years. 

A difficult issue in rate-based traffic control is how to 

monitor and control the transmission rate of statistical 

data flows, and how to enforce network resource usage 

to prevent interference among different users without 

sacrificing the flexibility of statistical multiplexing. This 
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paper introduces a new design, called VirtualClock, as a 

traffic control algorithm for high-speed packet switching 

networks. VirtualClock controls the average transmis- 

sion rate of data flows, enforces ‘each user’s resource us- 

age according to its reservation, builds firewalls among 

flows, and supports multi-priority transmissions. The 

algorithm has been tested extensively through simula- 

tion. 

In this paper we discuss the design of the VirtualClock 

algorithm, its fundamental properties, and present some 

of the simulation results. We then compare the Virtual- 

Clock algorithm with a few others that have been pro- 

posed for network traffic control, the schedule-based ap 

preach [6], fair-queueing [l, 31, and Leaky-Bucket [8, 91. 

2 Virt ualclock Algorithm 

2.1 Design Goals 

VirtualClock was designed as part of a new network 

architecture, the Flow Network [lo]. A Flow Network 

provides users with guaranteed performance by requir- 

ing explicit resource reservation and by employing rate- 

based traffic control. It models a user’s data transmis- 

sion demand as a flow, the switch processing power and 

channel bandwidths as distributed resources, and em- 

ploys data rate control mechanisms to regulate the us- 

age of the resources to meet the demand. As part of the 

network control mechanisms, VirtualClock was designed 

to provide the following functionalities: 

1. To support diverse throughput requirements from 

various applications by enforcing the resource us- 

age according to each flow’s average throughput 

reservation. 

2. To monitor average data flows and provide mea- 
surement input to other network control functions. 
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3. 

4. 

2.2 

To provide firewalls among individual data fl0ws.l 

To preserve the full flexibility of statistical multi- 

plexing of packet switching. 

VirtualClock: First Outline 

The idea of VirtualClock was inspired by the Time Di- 

vision Multiplexing (TDM) system. A TDM system 

completely eliminates interference among users because 

individual user channels can transmit only during spe- 

cific time slots. The capacity is wasted, however, when 

a slot is given to a flow that has no data to send at that 

moment; also the channel bandwidths allocated to each 

user are pre-fixed rather than dynamically adjustable. 

We would like to achieve the firewalls of a TDM system 

as well as to preserve the flexibility of statistical multi- 

plexing of packet-switching. A TDM system is driven by 

a real time clock; a statistical multiplexing system may 

use a virtual clock concept in a similar way. To make a 

statistical data flow resemble a TDM channel, we may 

imagine that arriving packets from the flow were hav- 

ing a constant rate in a virtual time space, so that each 

packet arrival would indicate that one slot time period 

had passed. 

Following this thought, we assign each data flow a Vir- 

tualClock which ticks at every packet arrival from that 

flow; the tick step is equal to the mean inter-packet 

gap (assuming a constant packet size for the moment). 

In this way the VirtualClock reading tells the expected 

arrival time of the packet. If a flow sends packets ac- 

cording to its specified average rate, its VirtualClock 

reading should be in the vicinity of the real time. To im- 

itate the transmission ordering of a TDM system, each 

switch may stamp packets by the flows’ VirtualClock 

values and use the stamps to order transmissions, as if 

the VirtualClock stamp were the real time slot number 

in the TDM system. 

We sketch an implementation outline below. For each 

switch, 

1. When received flowi’s set-up request, compute 

the value Vticki = lIARi, where A& is the aver- 

age transmission rate indicated in the request. 

1 As has been frequently observed in operational networks, 
users may sometimes misbehave, i.e. a user may not follow the 

network control protocol but rather transmit data at a high rate. 

Even if we assume no users have malicious intention, such mis- 

behavior can still be caused by software or hardware failures, by 
protocol implementation errors, or even by protocol design errors 

[7, 51. It is the responsibility of the network control to prevent 

misbehaving users from interrupting normal service to others. 

2. 

3. 

4. 

5. 

Upon the arrival of the first packet from flowi, 

VirtualClocki + real time. 

Upon receiving each packet from flow,, advance 

ViTtualClocki by Vticki, then stamp the packet 

with the value of Virtualclocki. 

Transmit packets by the order of increasing Vir- 

tualClock stamp values. 

When the switch runs out of buffer space, drop 

the last packet from the queue. 

If packets have variable sizes, the value of Vtick in the 

above can be chosen proportionally to the size of each 

packet. 
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Figure 1: Real time, Virtual Clock, and packet process 

ing order. 

One major difference between a VirtualClock controlled 

packet switching network and a TDM system is that 

the VirtualClock algorithm merely orders packet trans- 

mission without changing the statistical sharing nature 

of packet switching - the network forwards all pack- 

ets as long as resources are available. Anotlher major 

difference is that the packet network can support arbi- 

trary throughput rates of individual flows. The network 

reservation control determines how much share of the 

resources each flow may take on average; the Virtual- 

Clock algorithm determines, if more than one packet is 

waiting, which packet should go next based on the flows’ 

reserved transmission rates. 

2.2.1 VirtualClock as a Data Flow Monitor 

From another viewpoint, VirtualClock plays the role of 

a “flow meter” driven by packet arrivals. Decause it 

is advanced according to the flow’s specified average 

transmission rate, the difference between the Virtual- 

Clock and the real time clock will show how closely a 

running flow is following its claimed rate. Therefore we 
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can monitor each flow by comparing its VirtualClock 

with the real time clock periodically in order to provide 
feedback to flow sources if their actual throughput ever 

depart significantly from the reserved rate. 

How often should a flow’s VirtualClock be checked? A 

reasonable average iniervel (AI) is needed over which 

we can check a flow’s average transmission rate while 

tolerating burstiness and randomness in packet flows as 

much as possible. In [lo] we argued that this AI value is 

application-dependent and should be provided in each 

flow’s reservation request. With the AI value given, a 

flow can then be monitored by checking its meter, Vir- 

tualclock, after every AI time period. Such a measure, 

however, may react too slowly, especially when the value 

of AI is large. A derivative detector will be able to catch 

misbehaving flows more quickly - that means checking 

the amplitude of changes. 

Therefore we let the switch check each flow, flowi, after 

receiving every AI&(= ARi x AIi) packets from it. By 

counting the number of packets, traffic impulses can be 
quickly detected. Had we used a specific time interval 

for measurement, we would have faced the dilemma of 

picking a period that is either too small to keep control 

stable, or too big to detect overload promptly. 

The VirtualClock algorithm monitors data flows in the 

following way: 

l At flowi setup, the switch computes the value 

AI& = A& x AIi. 

l Upon receiving each set of AIRi packets, 

- (VirtualClocki > real time) indicates that 

the flow has been sending faster than the 

specified rate. If VirtdClocki is ahead by 

more than a threshold value, proper control 
actions should be taken. 

- If (VirtualClocki < real time), then 

VirtualClocki e real time. 

We see that VirtualClock is driven either by incoming 

packets or by the real time, whichever runs faster. No 

credit can be saved over an average interval, even when 

the flow runs more slowly than the specified rate. From 

a resource allocation viewpoint, unused resources are 

gone; if a flow were allowed to accumulate credits, it 

could increase its priority by idling for a while and then 

transmitting in bursts, which would cause packets from 
other flows to experience a sudden increase in queueing 

delay, or even switch buffer overflow. 

2.2.2 Providing Priority Service 

Priority service can also be easily accommodated by the 
VirtualClock algorithm, i.e. by decreasing a flow’s Vir- 

tualclock by a certain amount, P, at the start of a flow. 

VirtualClock c (real time - P) 

where P represents the priority. The value of P should 

be big enough to separate priority Rows far apart from 

the rest in the transmission queue.2 This priority, how- 

ever, does not allow the former to take unfair advantage 

of other flows. If a prioritized flow runs faster than the 

claimed throughput rate, its VirtualClock will eventu- 

ally run ahead of the real time and hence its packets 

will lose priority in transmission. 

2.2.3 Building Firewalls among Flows 

Ordering packet transmission by VirtualClock stamps 

assures that, although an aggressive flow may take up 

idle resources, it cannot disturb the network service to 

other flows. The resource reservation control ensures 

that no congestion will occur if every flow transmits 

according to its reserved average throughput rate. In 

cases where one or more flows violates the reservation 

to cause congestion, flows that follow their specified 

throughput rate will not be affected, while the most 

offending flows will receive the worst service because 

their VirtualClocks will run too fast, hence their pack- 

ets will be put at the end of the service queues, or even 
get dropped. The VirtualClock algorithm prevents in- 

terference among flows. 

2.3 Further Revisions of VirtualClock Al- 

gorit hm 

The VirtualClock design, as described in the above, was 

tested through simulation and a few revisions were made 

to correct the problems discovered in the simulation, as 

explained below. 

2Using time-stamp for priority purposes has a side-effect: low 
priority objects can have their priority increased with time. We 
argue that, if the channel keeps a proper utilization, P can be set 

to a value longer than the resource contention period, therefore 
low priority load can be effectively hidden from high priority flows. 

If we define channel state from idle to next idle as an epoch, P 
should be much longer than the average epoch length. Only in 

the presence of misbehaving users may a channel be in busy state 
for long, in which case the misbehaving users will be detected, as 

described in the previous section, and proper control actions will 
be taken. 
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2.3.1 No Credit Saving vs Flow Variation Tol- 

erance 

The first problem revealed by simulation tests is that, 

if a burst of packets arrives from a flow, f lowi, that has 

been idle for a while (within an AI period), the burst can 

still cause sudden queueing increases to others. This is 

because the algorithm is designed to tolerate flow vari- 

ations within each average interval (which is primarily 

chosen by individual applications), and VirtualClocki 

has not been advanced since the last checking point, and 

will not be until AI& packets have been received. 

To resolve this conflict, we assign each flow an auxiliary 

VirtualClock (auxVC), and revise step (3) of the packet 

stamping rule described in Section 2.2 in the following 

way: 

l Upon receiving each packet from flow;, 

1. auxVC c max(rea1 time, auxVC); 

2. VirtualClocki + (VirtualClocki + Vticki), 

and auxVC + (auxVC + Vtick); 

3. stamp the packet with auxVC. 

This revision replaces VirtualClock by auxVC in packet 

stamping so that no flow can increase the priority of 

its packets by saving credits even within the average 

interval. VirtualClock retains its role as a flow meter 
that measures the progress of a statistical packet flow; 

its value may fall behind the real time clock between 

checking points to tolerate packet burstiness within each 

average interval. 

2.3.2 Need for A User-Behavior Envelope 

As proposed in Section 2.2.1, the switch monitors a sta- 

tistical flow by comparing its VirtualClock with the real 

time after receiving each set of AIR packets. An unre- 

solved issue is how to choose a proper threshold value, 

T, such that whenever (VirtualClocki - real time) > T, 

the switch can assume with confidence that flowi has 

indeed been transmitting too fast and control actions 

deem necessary. 

A number of simulation runs were conducted to test var- 

ious threshold values. The results show that, even when 

a flow generates packets by a Poisson process and uses 

a reasonably large average interval (e.g. AR = 5 pack- 

ets/second, AI = 10 seconds), the difference between 

the VirtualClock and the real time may still exceed any 

fixed threshold and trigger false control actions. Intu- 

itively, one might think that the variations in a flow’s 

data generation over each average interval should can- 

cel each other out, and hence the VirtualClock read- 

ing would stay within some finite vicinity of the real 

time. Close observations of simulation runs show that, 

contrary to intuition, these variations grow unbounded. 

Below we give a simple analysis of the observed phe- 

nomenon . 

First let us assume that the VirtualClock is advanced 

only by packet arrivals. We are interested in how the 

difference between a flow’s VirtualClock and the real 

time clock may grow as time goes on. 

Let us cut packet arrivals from a Poisson source into 

equal time intervals, Tl, T2, . . . , Ti . . . , and let Pi repre- 

sent the number of packets arrived during Ti, we have 

Di = Pi-AIR 
n 

Sum, = c Di 
i=l 

(2) 

= (VirtualClock - RealTime),lVtick (3) 

The Pi’s are independent, identically distributed (IID) 

random variables, so are the Di’s. Sum, is a sum of n 

IID variables, and thus 

Mean(Sum,) = Mean(Q) x 7~ = 0 (4) 

Var(Sum,) = Var(Di) x n (5) 

Sum,, represents a random walk process, and the value 

of [Sum,.,/ is unbounded as n + 00. Equation (5) indi- 

cates that, probabilistically, the value of Sum,, i.e. the 
difference between VirtualClock and the real time clock, 

may vary above any fixed threshold after the flow has 

run long enough. 

When VirtualClock is advanced either by packet arrivals 

or by the real time, Sumn in Equation (2) becomes 

n 

Sum, = c Di, Di >0 (6) 
i=l 

Intuitively, the variance of Sum, in Equation (6) should 

grow with n not more slowly than linearly. Also note 

that the value of Var(Di) is application-dependent, so 

is Var(Sum,). This fact adds to the difficulty in distin- 

guishing whether a VirtualClock which is running ahead 

of the real time indicates a misbehaving flow or whether 

it is merely due to large variations in data generations. 

Facing this variance accumulation problem in flow mea 

surement, we proposed a user-behavior envelope (UBE) 

as a solution: a flow source must constrain itself from 

sending more than AIR packets during each average 

interval. After flow sources restrict the transmission 
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within the above envelope, simulation tests show that 

the VirtualClock value is stabilized, varying around the 
real time. The value of AI is chosen to be the thresh- 

old, T. (Also see [IO] for a complete description of the 

solution.) 

Justification 

We assume that flows’ data generators, which can be 

either real-time applications or data retrieval processes 

fetching storage, are able to adjust the generation rate 

in certain ways according to the UBE constraint. Ei- 
ther the data rate can be adjusted without causing ap- 

plication performance degradation, or the data in the 

excessive packets (i.e. those that would have been sent 

if there were no UBE control) can be encoded in subse- 

quent packets. Appendix A shows a simple implemen- 

tation of this user-behavior envelope. 

Although the user-behavior envelope was introduced as 

a solution to our specific problem in using VirtualClock 

for flow measurement, we believe that it is a manda- 

tory part of rate-based flow control systems in gen- 

eral. Packet switching offers unbounded flexibility to 
users, a well defined constraint is therefore necessary to 

counter balance this flexibility. The widely employed 

window flow control mechanisms provide a good exam- 

ple of such constraints - users restrict themselves from 

having more than a certain amount of outstanding data 

in the network at any time. Requesting self-constraints 
on users is a necessary cost, which ought to be recog- 

nized explicitly. Much work needs to be done on how to 

design application protocols that can adjust themselves 

to the constraints. 

Resource Overbooking 

The above discussion may have triggered a related ques- 

tion in the reader’s mind: if the partial sum of a random 

data source can depart significantly from the average at 

a given moment, there will be flows that generate data 

much above the specified average, as well as flows much 

below the average. And for each flow, there will be pe- 

riods of heavy data generation and periods of relatively 

low activity. Restricting a flow’s transmission by a fixed 
envelope means cutting off the high peaks. The overall 

transmission rate, therefore, may average lower than the 

specified value, and the resources may be overbooked. 

Simulation tests indeed manifested such resource over- 

booking. When a flow with a statistical data source 

restricts its transmission according to the proposed en- 
velope, its actual throughput is lower than the expected 

average. Enlarging the average interval can reduce this 

difference to a negligible value. One cannot, however, 
totally eliminate it by any finite average interval. 

It is also possible that a user, predicting a high variation 

in its data generation process, may purposely specify an 
average rate higher than the estimated mean in order 

to minimize the cut-off by the user-behavior envelope 

constraint, even if such overbooking may be associated 

with a cost3 Besides a reduced constraint on its data 

transmission, a flow that overbooks resources may also 

receive a better delay performance, because its Virtual- 

Clock will be advanced by a smaller step at each packet 

arrival. One flow’s overbooking will not have any neg- 

ative effect on the performance of others, because the 

VirtualClock algorithm assures everyone the amount of 

its own reserved throughput. 

2.4 VirtualClock: the Final Version 

Below is a description of the final VirtualClock 

rithm: at each packet switch, 

Upon receiving the first packet from flowi, 

VirtualClock~ c real time. 

Upon receiving each packet from flowi, 

algo- 

1. auxVC t- max(rea1 time, auxVC); 

2. VidualCiocki +- (VirtualClocki + Vticki), 

and auxVC c (auxVC + Vtick); 

If all packets have a constant size, 

Wicki = l/AR(packet/sec). If packets have 

variable size, the value of Viicki should be com- 

puted from individual packet sizes. 

3. stamp the packet with the auxVC value. 

Transmit packets by the order of increasing stamp 

values. 

When the switch runs out of buffer space, drop 

the last packet from the queue. 

Upon receiving each set of AlRi(= ARi x A&) 

packets from flowi, 

- if (VirtualClocki- real time) > threshold, 

control actions should be taken. 

- If (VidualClocki < real time), 

VirtualClock; c real time. 

In handling priority flows, real time in the above should 

be replaced by (real time - P). 

The above VirtualClock algorithm can ensure the fol- 
lowing functionalities: 

3However, the case where malicious users overbook resources 
to deny services to others must be prevented by proper charging 
or authentication mechanisms. 
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Every flow receives a fair service measured by its 

claimed transmission parameters.4 

Flows running faster than the claimed through- 

put rate will be detected by their fast running 
VirtualClock. They may be punished by longer 

queueing delays, or even packet losses, while other 

flows will not be disturbed. 

Multiple level priority services can easily be pre 

vided, and flows with priority are prevented from 

taking unfair advantage of others. 

Packets from different flows are maximally inter- 

leaved, which is an important measure in keeping 

good network performance [2]. 

Extensive simulation tests have been conducted to ver- 

ify the above conclusions [lo]. Due to the space limit, 

however, only part of the simulation results will be pre- 

sented in the next section. 

3 Simulation Results 

In this section, we first discuss the network model used 
in simulation tests, and then present the results show- 

ing that VirtualClock provides a fair service, supports 

diverse throughput rates, and builds firewalls between 

flows. Some interesting results showing the impact of 

VirtualClock on packet queueing delays will also be dis- 
cussed briefly. 

3.1 Simulation Model 

3.1.1 Network Topology 

A simple network topology model is used in the sim- 

ulations (see Figure 2). It has four switches in a row. 

Each link is a duplex communication channel (below we 

use the words link and channel interchangeably). All 

the switches and links are assumed to provide error- 

free transmission. The links from hosts to the attached 

switch have a bandwidth of 10 Mbps, and a propaga- 

tion delay of 1 msec. The three switch-to-switch links 
have the same bandwidth of 400 Kbps and propagation 

*The definition of fairness is a difficult subject. We consider 

it as a policy issue above the network control layer. A control 

algorithm should be able to support whatever fairness definition 

is given. This research assumes that the service parameters in 
each flow request have been checked by the fairness policy. 

Figure 2: The simulation topology. 

delay of 5 msec. 5 All the four switches have a moder- 

ate buffer pool size of 100 packets. The switches are 

assumed to have adequate capacity to process incoming 

packets from all attached links. 

Although the network bandwidths used in the simula- 

tion model is relatively low, one should be able to extend 

the results presented below directly to a higher speed en- 

vironment. It is the channel utilization that determines 

the queueing distribution. If we scale up both flows’ 
transmission rates and the network bandwidths up by 

a factor of 1000, for example, the channel utilization 

will remain unchanged, so will the queue length distri- 

bution. The queueing delay, however, will be decreased 

by a factor of 1000. 

3.1.2 Data Generator Model 

Data generation is an application-dependent random 
process. Because the packet switching network is to 

serve multiple current, and potential applications, a uni- 

versally accurate data generation model does not exist. 

Most previous network performance studies Shave used 

the Poisson arrival model for data generation. There 

exist various speculations, however, that use af the Pois- 

son model may not result in a realistic performance esti- 

mate. In [4], Jain and Routhier presented a packet train 

model based on their traffic measurement. We chose to 

use this train model for our data generation in the sim- 

ulation tests. 

Modeling each packet as a railroad car, a group of pack- 

ets following one another closely is modeled as a train. 

The generation process of a packet train model can be 
described by three parameters: train length, inter-train 

gap, and inter-packet gap (see Figure 3). Pac:ket trains 

fit into a Markov chain model of two states; it is one 

step forward from the Poisson arrival model. Many ap- 

5The propagation of the speed of light in fiber is about 200,000 

km/set. A coast-t-coast span of the continental USA is 4000 km, 

with a propagation delay of 20 msec. 
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plications can be coarsely modeled by a Markov chain 

(probably with more states). 

train length 
Msrkov chain model 

l-l (23 

b-Y idle 

I 
inter-pcketgpp inteHrain gap 

Figure 3: Packet train model. 

In simulation tests, the train length is modeled as a 

geometrically distributed random variable. The inter- 

train gap is modeled as an exponentially distributed 

random variable. The inter-packet gap is set to l/(2 x 

Average Rate), i.e. the burstiness degree is 2. All data 

packets are assumed a constant size of 250 bytes. 

3.1.3 Misbehaving Data Sources 

As a measure of robustness, a network control algorithm 

must be prepared to handle users who do not obey the 

control rules. We call them misbehaving users. This 

group does not include maliciozls users who attack pur- 

posely. The simulated model of misbehaving users is a 
data source that transmits faster than the specified rate 

and does not respond to network control, 

3.2 Simulation Results 

3.2.1 Flows with Same Throughput Require- 

ment 

We first present the results from a simulation run with 

the following traffic load: there are total 60 flows, each 

generates data by the packet-train model with a mean 

of 10 packets/set (20 Kbps) and requests an average 

throughput of 10 packets/set. Flows 1 through 24 have 

a path of l-hop, flows 25 through 48 2-hop, and flows 

49 through 60 3-hop. The hop count of a flow is the 

number of the switch-to-switch link(s) it crosses. The 

sources and destinations of the flows are more or less 

uniformly distributed. Later we will refer to this test as 

Test-One. 

The goal of this test is to demonstrate the network per- 

formance under heavy load. There are 18 flows on each 
of the inter-switch links, driving the utilization above 

85%. The test simulated a 10 minute run of the real 

system. The measurement statistics of both directions 
of Link-12 are given below as a sample of the network 

performance.6 The link utilization is averaged over ev- 

ery 100 msec period. The queue length measures the 
number of packets in the queue, including the one un- 

der transmission; “99-t” means the 99th percentile of 

the queue length samples. The effective throughput is 

the number of packets delivered successfully from end 

to end. The total loss is the number of packet losses 

during the whole simulation run. 

Measurement statistics with 

homogeneous flows 

‘i:“~ 

Effective throughput: 584 packets/set 

Total loss: 0 

Dividing the 60 flows into three path-length groups, 

we computed the average throughput and the average 

queueing delay of each group below. Here the queueing 

delay is the waiting time each packet experienced in the 

queue(s), excluding its own transmission time. 

~1 

Notice that the actual average throughput is slightly 

lower than the requested value (about 4%), due to the 

user-behavior envelope restriction we discussed earlier. 
If we convert the packet waiting time to the queue length 

(it takes 5 msec to transmit a 250-byte packet over a 400 

Kbps link), we see that the two measurements agree 

with each other (remembering that the queue length 

counts the packet being transmitted as well). 

Summarizing the test results, we see that: 

l The network meets the flows’ average throughput 

requirement. 

l The average queueing delay is 10w.~ 

l The network load is stable and congestion free. 

l The network provides a fair service, independent 

of flows’ path lengths. 

6Due to memory limitations, it is impossible to log queueing 
data for all the links. 

‘As a point of reference, an M/D/l queue’s average length 
under the same utilization would be around 4 packets, or the 
average waiting time 15 msec. 
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3.2.2 Supporting Diverse Flow Throughput 

We also simulated flows with different throughput 

quirements as given below. 
re- 

Diverse Throughput Rate of Flows 

1 Throughput 1 Flow ID 1 
(packets/set) 

50 1, 18, 35 

30 8, 25, 36 

20 3, 12, 20, 29, 37 

10 2, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 19, 

21, 22, 23, 24, 26, 27, 28, 30, 31, 32 

5 16, 17, 33, 34 

Among the total of 37 flows, 1 - 17 are l-hop flows, 

18 N 34 are 2-hop flows, and the rest 3-hop. The test 

simulated a 10 minute run of the real system and the 

results are presented in the same way as before. 

Measurement statistics 

with diverse throughput flows 

~~ 

Effective throughput: 564 packets/set 

Total loss: 0 
Again we show the average throughput and queueing 

delay of the flows by the path length groups. 

Flow performance 
with diverse throughput rate - - 

1 Average Throughput (pkts/sec) 

Desired I 50 1 30 1 20 1 10 1 5 I 
1 1-bon 1 

I I I I 

48.2 1 29.0 1 19.3 1 9.6 1 4.7 1 

2-ho; 48.3 28.8 19.0 9.6 4.9 

3-hop 47.8 29.0 19.4 

Average Queueing Delay (msec) 

rate 50 I 30 I 20 I 10 I 5 

The above results show that the VirtualClock algorithm 

satisfies the users with their expected throughput; dif- 

ferent path lengths show no effect. The different through- 

put rates of the flows do have a minor impact on the 

average queueing delay though; lower throughput flows 

seem to experience a higher queueing delay. This is 

because their VirtualClocks tick by bigger steps; one 
packet arrival may advance the VirtualClock so much 

that the next packet has to wait to let one or more pack- 

ets from higher-speed flows, which arrived in a burst, 

pass by first. 

3.2.3 Building Firewalls Between Flows 

Here the test condition is changed back to that of Test- 

One, except that every 6th flow is now a misbehaving 

user: it sends at 5 times the specified rate, and does 

not respond to network control. The test simulated a 5 

minute run of the real system. 

Measurement statistics in the 

presence of misbehaving users 

I%? 

Effective throughput: 680 packets/set 

Total loss: 47106 packets 
(all from misbehaving users) 

Performance of normal flows 

in the presence of misbehaving users 

~~ 

Recall that when a switch runs out of buffer space, 

it drops the last packet from the longest queue; and 

that after a switch detects a misbehaving flow it will 

take proper control actions. In this test, the control 
actions are first to send a certain number of control 

messages to each misbehaving flow requesting it to slow 
down; if no change of the flow’s behavior is observed, 

the switch deletes the flow. Because the misbehaving 

flows sent much too fast, their packets were put at the 

end of the service queues; and because they did not lis- 

ten to the control, they were quickly deletecl from the 

switches’ flow tables. Further packets from these flows 

were treated as from unknown users and received the 

lowest priority in handling.’ 

The above results show that normal flows are well pro 

tected from the few misbehaving users, no one lost a 

single packet. Also note that, even though t,he misbe- 

having users have driven the link utilization up to lOO%, 

the queueing delay of the normal flows remains about 

the same as before. The 3-hop flows even receive a lower 

queueing delay than in Test-One, because the switches 

deleted the misbehaving flows, making normal flows see 

a lower utilization. 

81n the Flow Network design, packets from unknown users 

are served with a priority lower than any of the flows with re- 

source reservation, allowing random datagrams to b,e sent with 
no reservation and the network resources to be fully utilized by 

performance-insensitive background traffic. 

26 



3.2.4 Effects of VirtualClock on Queueing De- 

lay 

The major role of VirtualClock is to meter the average 

volume of a statistical data flow and to build firewalls 

among flows in statistical multiplexing. It should be 

made clear that VirtualClock does not contribute di- 

rectly to queueing delay reduction. Bather, it helps indi- 

rectly through interleaving packets from different flows 

and assuring individual flows their reserved throughput 

rates. 

Queueing Delay of Different Data Generation 

Patterns 

Although statistical multiplexing absorbs certain ran- 

domness and burstiness in individual flows’ data trans- 

mission, highly bursty data arrivals can still significantly 

increase queueing delay. Because of the strict service 

ordering enforced by VirtualClock, however, one would 

expect that a higher burstiness in a flow’s data gener- 

ation will be reflected back mostly to an increase in its 

own end-to-end delay. 

This is indeed the case, as evidenced by the results of 

a simulation run with three different data generation 

models, constant rate, Poisson arrival, and packet-train. 

The test condition is the same as that in Test-One ex- 

cept that the last four flows were removed to lower the 
link utilization9 (the measured utilization in this test is 

78%), and that for flows 1 to 48, the data generation 

model is changed to two constant-rate, two Poisson ar- 

rival, and two packet-train in a repeated pattern. Flows 

49 to 56 repeat the pattern of one constant-rate, one 

Poisson, and two packet train. The average and devia- 

tion of the queueing delays of all the flows are summa- 

rized below, sorted by the path-length groups. 

Queueing delay statistics of 

diverse data patterns 

~1 

~, 

Packet-train has the highest burstiness among the three 

9Experiments show that when the utilization is too high (say 
above 80%) the difference of the queueing delay among different 

data source models gradually diminishes. 

data generation models. Consequently, the flows with 

the train data generation received the highest queueing 
delay and delay variation. It seems fair to let bursty 

data sources bear the result of their own behavior. In 

particular, notice that the flows with the Poisson arrival 

model have both a lower average delay and a smaller 

delay deviation than the flows with the packet-train 
model. Using the packet train model instead of the 

Poisson model in testing stretches the performance of 

the VirtualClock algorithm, demonstrating its enhanced 

robustness for a wider range of data generation patterns. 

4 Related Work 

4.1 Schedule-Based Approach in Data 
Flow Control 

In [6], Mukherji proposed a schedule-based approach 

to data traffic control. In his approach, channel band- 

widths are divided into equal time frames; each frame 

has a fixed number of slots which are assigned to indi- 

vidual users. A user can send a packet by using its own 

slot, or using a slot whose designated user has no packet 

to send at the moment. Each user has an auxiliary flow 

control window which limits the number of packets a 

user may send by using others’ slots. 

The VirtualClock algorithm takes a similar approach of 

reserving resources for individual users. However, in- 

stead of assigning channel slots to individual users, Vir- 

tualclock orders packet transmission sequences. Hence 

it achieves the same functionalities of the Mukherji al- 

gorithm but with more flexibility in handling different 

channel bandwidths and different user throughput de- 

mands. 

4.2 Fair-Queueing 

Fair-queueing is a simple strategy that provides all users 

with an equal allocation of network resources. Similar 

to the round-robin scheduling algorithm often used in 

operating systems, the basic idea of fair-queueing is to 

transmit data from each user in turn. Hahne [3] and 

Demers et al. [l] h ave done extensive analysis work on 

fair-queueing’s performance. 

VirtualClock can be considered as performing a fair- 
queueing function, where the fairness is defined to be 

assuring each user the requested throughput rate. In 
fact various queueing policies can all be implemented 

by a simple computation on the VirtualClock value. In 
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particular, the fair-queueing algorithm by Demers et al 

[l] and the VirtualClock algorithm share a number of 
features. A major difference between the two is that Vir- 

tualClock is based on the resource reservation. There- 

fore instead of an equal share to all users, VirtualClock 

can allocate any specific amount of resources to each 

user. 

4.2.1 Leaky-Bucket 

Leaky-Bucket has been suggested as a flow control algo- 

rithm to be used at the network interface for high-speed 

networks [8, 91. Various versions of the algorithm have 
been proposed. A simple model described in [9] works 

in the following way: the switch puts packets from each 

data flow into a corresponding bucket which has a fixed 

size; the bucket opens periodically to drop a packet out 

for transmission; when the bucket is full, incoming pack- 

ets are discarded. In another version of Leaky-Bucket, 
credits for each flow are generated at a constant rate, 

and a certain number of credits (the bucket size) can be 

saved. Arriving packets are transmitted immediately if 

the flow has credits, otherwise they are either dropped 

or transmitted with a low priority. 

Packet-switching networks should tolerate variations in 

packet arrivals while controlling flows’ average trans- 

mission rate. The first version of Leaky-Bucket reduces 

statistical multiplexing because packets are transmitted 

at a constant rate rather than whenever the channel 

is available. The second version may result in highly 
bursty transmissions if all buckets in the switch is served 

in an FIFO order. The VirtualClock algorithm avoids 

those drawbacks by merely ordering packet transmis- 

sions without reducing statistical sharing; at the same 

time it also makes packets from different Aows maxi- 

mally interleaved. 

The major difference between Leaky-Bucket and Vir- 

tualclock, however, is that the former is an admission 

control while the latter a transmission control. Leaky- 

Bucket enforces control at the switch entrance and de- 

termines whether an incoming packet should be accepted. 

Once packets are in, Leaky-Bucket has no further con- 
trol over the order of transmission and thus it can- 

not discriminate packets according to different delay re- 

quirements. VirtualClock can also be used for admission 

control (e.g. when a flow’s VirtualClock is running too 

fast, further packets from that flow can be rejected). 

Its main merit, however, shows at transmission control. 

VirtualClock determines the transmission order of pack- 

ets from all users. The action is applied right at the 

multiplexing point, controlling exactly which packet go 

next. 

5 Summary and Future Research 

In this paper we presented VirtualClock as a. new traf- 

fic control algorithm for packet switching networks. Its 

fundamental merit comes from its imitation of a TDM 

system in a statistically shared packet network, hence it 

achieves the desired properties of both systems; it main- 
tains the statistical multiplexing flexibility of packet 

switching while ensuring each flow its reserved average 

transmission rate at the same time. 

All control algorithms imply certain constraints on users. 

In the VirtualClock algorithm, such constraints are ex- 

pressed as a user-behavior envelope, which req,uires each 

flow source constrain itself from sending more *than (ARx 
AI) data over each average interval. Although the user- 

behavior envelope was introduced as a solution to our 

specific problem in using VirtualClock for flow measure- 

ment, we believe that it is a mandatory part of rate- 

based flow control in general. How to design application 

protocols that can adjust themselves to the constraints 

is an interesting area to be further explored. 

We also plan to further explore the performance of the 

VirtualClock algorithmunder highly bursty traffic. Some 

preliminary tests indicate that, with the traffic bursti- 

ness degree increased from two to eight, the network can 

maintain the same queueing delay by a modest decrease 

in the channel utilization. However, more rigorous test- 

ing is needed to achieve any quantitative conclusions. 

Design of, and experimentation with, the VirtualClock 

algorithm also brought up a number of othelr interest- 

ing issues for future study. First, it may be attrac- 

tive to applications with stringent delay requirements 

to slightly over-book resources to trade for an improved 

transmission delay. More work is needed to investigate a 

quantitative relation between the percentage of resource 

overbooking and the delay reduction. Another inter- 

esting area is to provide a bounded transmission delay 

and guaranteed delivery to emulate services provided 

by a circuit-switching network. Although the Virtual- 

Clock algorithm, as described in this paper, shows low 

queueing delay in simulation tests, it does nc’t guaran- 

tee bounded transmission delays nor data loss-free. The 
algorithm is being further developed to achieve these 

properties. 

As a final remark, the concept of the average interval 

seems particularly interesting. The VirtualClock algo- 

rithm uses two parameters, average rate (AR.) and av- 
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erage interval (AI), to describe and control statistical 

data flows. AI sets a bound on sources’ transmission 
variation and defines a checking point in network mea- 

surement. The possible range of the AI value is 

1 

average rate 
< AI < flow duration 

Tuning the value to reach the left limit, a data flow 

would transmit at a constant rate and we end up with a 

TDM system. Tuning the value to the right limit, a data 

flow would be able to transmit in any arbitrary man- 

ner as in an uncontrolled datagram network. In other 

words, a data transmission network can move along a 

continuous spectrum, with a TDM system at one end 

and a datagram network at the other, by adjusting the 

AI value. AI provides us a tuning knob between the 

system constraints and the service flexibility. 
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A An Example Implementation 

of User-Behavior Envelope 

In our simulation test, the flow sources implement the 

user-behavior envelope control by a moving-average al- 

gorithm: 

l Each flow source keeps the transmission time of 

the last AIR packets in a circular ring, with a 

pointer, Ptr, to the oldest slot. 

l When sending out a packet, P, the source checks 

whether the real time > (Ptr(time) + AI). If 

so, the next packet, Pnerl, can be sent after the 

minimum inter-packet gap; otherwise Pnerl must 

wait for at least an average inter-packet gap. 

l P’s transmission time is saved in the slot pointed 

by Ptr, and Ptr is moved to the next slot. 
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