
Virtualization Aware File Systems: Getting Beyond the Limitations of
Virtual Disks

Ben Pfaff, Tal Garfinkel, Mendel Rosenblum
{blp,talg,mendel}@cs.stanford.edu

Stanford University Department of Computer Science

Abstract
Virtual disks are the main form of storage in today’s vir-
tual machine environments. They offer many attractive
features, including whole system versioning, isolation,
and mobility, that are absent from current file systems.
Unfortunately, the low-level interface of virtual disks is
very coarse-grained, forcing all-or-nothing whole system
rollback, and opaque, offering no practical means of shar-
ing. These problems impose serious limitations on virtual
disks’ usability, security, and ease of management.

To overcome these limitations, we offer Ventana, a vir-
tualization aware file system. Ventana combines the file-
based storage and sharing benefits of a conventional dis-
tributed file system with the versioning, mobility, and
access control features that make virtual disks so com-
pelling.

1 Introduction
Virtual disks, the main form of storage in today’s virtual
machine environments, have many attractive properties,
including a simple, powerful model for versioning, roll-
back, mobility, and isolation. Virtual disks also allow
VMs to be created easily and stored economically, freeing
users to configure large numbers of VMs. This enables a
new usage model in which VMs are specialized for par-
ticular tasks.

Unfortunately, virtual disks have serious shortcomings.
Their low-level isolation prevents shared access to stor-
age, which hinders delegation of VM management, so
users must administer their own growing collections of
machines. Rollback and versioning takes place at the
granularity of a whole virtual disk, which encourages mis-
management and reduces security. Finally, virtual disks’
lack of structure obstructs searching or retrieving data in
their version histories [34].

Conversely, existing distributed file systems support
fine-grained controlled sharing, but not the versioning,
isolation, and encapsulation features that make virtual
disks so useful.

To bridge the gap between these two worlds, we present

Ventana, a virtualization aware file system (VAFS). Ven-
tana extends a conventional distributed file system with
versioning, access control, and disconnected operation
features resembling those available from virtual disks.
This attains the benefits of virtual disks, without compro-
mising usability, security, or ease of management.

Unlike traditional virtual disks whose allocation and
composition is relatively static, in Ventana storage is
ephemeral and highly composable, being allocated on de-
mand as a view of the file system. This allows virtual ma-
chines to be rapidly created, specialized, and discarded,
minimizing the storage and management overhead of set-
ting up a new machine.

We describe the principles behind virtualization aware
file systems. We also present our prototype implementa-
tion of Ventana and explore the practical benefits that a
VAFS offers to VM users and administrators.

We will begin by examining the properties of virtual
disks. Section 2 explores their limitations, to motivate
our desire for file system-based virtual machine storage,
then Section 3 details virtual disks’ compelling features.
Section 4 shows how to integrate these features into a dis-
tributed file system by presenting Ventana, a virtualization
aware file system. Section 5 focuses on our prototype im-
plementation of Ventana and Section 6 demonstrates a us-
age scenario. Sections 7 and 8 discuss related and future
work and Section 9 concludes.

2 Motivation

Virtual machines are changing the way that users perceive
a “machine.” Traditionally, machines were static entities.
Users had one or a few, and each machine was treated
as general-purpose. The design of virtual machines, and
even their name, has largely been driven by this percep-
tion.

However, virtual machine usage is changing as users
discover that a VM can be as temporary as a file. VMs
can be created and destroyed at will, checkpointed and
versioned, passed among users, and specialized for par-
ticular tasks. Virtual disks, that is, files used to simulate

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 353



disks, aid these more dynamic uses by offering fully en-
capsulated storage, isolation, mobility, and other benefits
that will be discussed fully in Section 3.

Before that, to motivate our work, we will highlight
the significant shortcomings of virtual disks. Most im-
portantly, virtual disks offer no simple way to share read
and write access between multiple parties, which frus-
trates delegating VM management. At the same time, the
dynamic usage model for VMs causes them to proliferate,
which introduces new security and management risks and
makes such delegation sorely needed [9, 31].

Second, although it is easy to create multiple hierar-
chical versions of virtual disks, other important activities
are difficult. A normal file system is easy to search with
command-line or graphical tools, but searching through
multiple versions of a virtual disk is a cumbersome, man-
ual process. Deleting sensitive data from old versions of
a virtual disk is similarly difficult.

Finally, a virtual disk has no externally visible struc-
ture, which forces entire disks to roll back at a time, de-
spite the possible negative consequences [9]. Whether
they realize it or not, whole-disk rollback is hardly ever
what people actually want. For example, system security
precludes rolling back password files, firewall rules, en-
cryption keys, and binaries patched for security, and func-
tionality may be impaired by rolling back network con-
figuration files. Furthermore, the best choice of version
retention policy varies from file to file [23], but virtual
disks can only distinguish version policies on a whole-
disk level.

These limitations of virtual disks led us to question why
they are the standard form of storage in virtual environ-
ments. We concluded that their most compelling feature
is compatibility. All of their other features can be realized
in a network file system. By adopting a widely used net-
work file system protocol, we can even achieve reasonable
compatibility.

The following section details the virtual disk features
that we wish to integrate into a network file system. The
design issues raised in this integration are then covered in
Section 4.

3 Virtual Disk Features

Virtual disks are, above all, backward compatible, be-
cause they provide the same block-level interface as phys-
ical disks. This section examines other important fea-
tures that virtual disks offer, such as versioning, isolation,
and encapsulation, and the usage models that they enable.
This discussion shapes the design for Ventana presented
in the next section.

(a) (b)

FIGURE 1: Snapshots of a VM: (a) first two snapshots;
(b) after resuming again from snapshot 1, then taking
a third snapshot.

3.1 Versioning

Because any saved version of a virtual machine can be re-
sumed any number of times, VM histories take the form
of a tree. Consider a user who “checkpoints” or “snap-
shots” a VM, permanently saving the current version as
version 1. He uses the VM for a while longer, then check-
points it again as version 2. So far, the version history is
linear, as shown in Figure 1(a). Later, he again resumes
from version 1, uses it for a while, then snapshots it an-
other time as version 3. The tree of VMs now looks like
Figure 1(b). The user can resume any version any number
of times and create new snapshots based on these existing
versions, expanding the tree.

Virtual disks efficiently support this tree-shaped ver-
sion model. A virtual disk starts with an initial or “base”
version that contains all blocks (all-zero blocks may be
omitted), corresponding to snapshot 1. The base version
may have any number of “child” versions, and so may
those versions recursively. Thus, like virtual machines,
the versions of virtual disks form a tree. Each child ver-
sion contains only a pointer to its parent and those blocks
that differ from its parent. This copy-on-write sharing al-
lows each child version to be stored in space proportional
to the differences between it and its parent. Some imple-
mentations also support content-based sharing that shares
identical blocks regardless of parent/child relationships.

Virtual disk versioning is useful for short-term recovery
from mistakes, such as inadvertently deleting or corrupt-
ing files, or for long-term capture of milestones in config-
uration or development of a system. Linear history also
effectively supports these usage models. But hierarchical
versions offer additional benefits, described below.

Specialization Virtual disks enable versions to be used
for specialization, analogous to the use of inheritance in
object-oriented languages. Starting from a base disk, one
may fork multiple branches and install a different set of
applications in each one for a specialized task, then branch
these for different projects, and so on. This is easily sup-
ported by virtual disks, but today’s file systems have no
close analogue.

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association354



Non-Persistence Virtual disks support “non-persistent
storage.” That is, they allow users to make temporary
changes to disks during a given run of a virtual machine,
then throw away those changes once the run is complete.
This usage pattern is handy in many situations, such as
software testing, education, electronic “kiosk” applica-
tions, and honeypots. Traditional file systems have no
concept of non-persistence.

3.2 Isolation
Everything in a virtual machine, including virtual disks,
exists in a protection domain decoupled from external
constraints and enforcement mechanisms. This supports
important changes in what users can do.

Orthogonal Privilege With the contents of the virtual
machine safely decoupled from the outside world, access
controls are put into the hands of the VM owner (often
a single user). There is thus no need to couple them to
a broader notion of principals. Users of a VM are pro-
vided with their own “orthogonal privilege domain.” This
allows the user to use whatever operating systems or ap-
plications he wants, at his discretion, because he is not
constrained by the normal access control model restrict-
ing who can install what applications.

Name Space Isolation VMs can serve in the same role
filled by chroot, BSD jails, application sandboxes,
and similar mechanisms. An operating system inside a
VM can even be easier to set up than more specialized,
OS-specific jails that require special configuration. It is
also easier to reason about the security of such a VM than
about specialized OS mechanisms. A key reason for this
is that VMs afford a simple mechanism for name space
isolation, i.e. for preventing an application confined to a
VM modifying outside system resources. The VM has
no way to name anything outside the VM system without
additional privilege, e.g. access to a shared network. A
secure VMM can isolate its VMs perfectly.

3.3 Encapsulation
A virtual disk fully encapsulates storage state. Entire vir-
tual disks, and accompanying virtual machine state, can
easily be copied across a network or onto portable media,
notebook computers, etc.

Capturing Dependencies The versioning model of vir-
tual disks is coarse-grained, at the level of an entire disk.
This has the benefit of capturing all possible dependen-
cies with no extra effort from the user. Thus, short-term
“undo” using a virtual disk can reliably back out opera-
tions with complex dependencies, such as installation or

removal of a major application or device driver, or a com-
plex, automated configuration change.

Full capture of dependencies also helps in saving mile-
stones in the configuration of a system. The snapshot will
not be broken by subsequent changes in other parts of the
system, such as the kernel or libraries, because those de-
pendencies are part of the snapshot [13].

Finally, integrating dependencies simplifies and speeds
branching. To start work on a new version of a project or
try out a new configuration, all the required pieces come
along automatically. There is no need to again set up li-
braries or configure a machine.

Mobility A virtual disk can be copied from one medium
to another without retaining any tie to its original location.
Thus, it can be used while disconnected from the network.
Virtual disks thereby offer mobility, the ability to pick up
a machine and go.

Merging and handling of conflicts has long been an im-
portant problem for file systems that support disconnected
operation [16], but there is no automatic means to merge
virtual disks. Nevertheless, virtual disks are useful for
mobility, indicating that merging is not important in the
common case. (In practice, when merging is important,
users tend to use revision control systems.)

4 Design
This section describes Ventana, an architecture for a virtu-
alization aware file system. Ventana resembles a conven-
tional distributed file system in that it provides centralized
storage for a collection of file trees, allowing transparency
and collaborative sharing among users. Ventana’s distinc-
tion is its versioning, isolation, and encapsulation features
to support virtualization, based on virtual disk support for
these same features,

The high-level architecture of Ventana can apply to var-
ious low-level architectures: centralized or decentralized,
block-structured or object-structured, etc. We restrict this
section to essential, high-level design elements. The fol-
lowing section discusses specific choices made in our pro-
totype.

We adopt the convention that an operating system in-
side a virtual machine is a guest OS. Ventana’s clients run
in virtual machines.

Ventana offers the following abstractions:

Branches Ventana supports VM-style versioning with
branches. A private branch is created for use primarily
by a single VM, making the branch effectively private,
like a virtual disk. A shared branch is intended for use
by multiple VMs. In a shared branch, changes made from
one VM are visible to the others, so these branches can

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 355



be used for sharing files, like a conventional network file
system.

Non-persistent branches, whose contents do not survive
across reboots are also provided, as are volatile branches,
whose contents are never stored on a central server, and
are deleted upon migration. These features are especially
useful for providing storage for caches and cryptographic
material that for efficiency or security reasons, respec-
tively, should not be stored or migrated.

Branches are detailed in Section 4.1.

Views Ventana is organized as a collection of file trees.
To instantiate a VM, a view is constructed by mapping one
or more of these trees into a new file system name space.
For example, a base operating system, add-on applica-
tions, and user home directories might each be mounted
from a separate file tree.

This provides a basic model for supporting name space
isolation and allows for rapid synthesis of new virtual ma-
chines, without the space or managment overhead nor-
mally associated with setting up a new virtual disk.

Section 4.2 describes views in more detail.

Access Control File permissions in Ventana must sat-
isfy two kinds of needs: those of the guest OSes to parti-
tion functionality according to the guests’ own principals,
and those of users to control access to confidential infor-
mation. Ventana provides orthogonal types of file ACLs to
satisfy these needs.

Ventana also offers branch ACLs which support com-
mon VM usage patterns, such as one user granting others
permission to clone a branch and modify the copy (but
not the original), and version ACLs which alleviate secu-
rity problems introduced by file versioning.

Section 4.3 describes access control in Ventana.

Disconnected Operation Ventana allows for a very
simple model of mobility by supporting disconnected op-
eration, through a combination of aggressive caching and
versioning. Section 4.4 talks about disconnected opera-
tion in Ventana.

4.1 Branches
Some conventional file systems support versioning of files
and directories. Details about which versions are retained,
when older versions are deleted, and how older versions
are named vary. However, in all of them, versioning is
“linear,” that is, at any point in each file has a unique latest
version.

When versions form a tree that grows in more than one
direction, asking for the latest version of a file can be am-
biguous. The file system must provide a way for users to
express where in the tree to look for a file version.

To appreciate these potential ambiguities, consider an
example. Ziggy allows Yves, Xena, and Walt to each fork
a personalized version of her VM. The version tree for
a file personalized by each person would look something
like Figure 2(a). If an access to a file by default refers to
the latest version anywhere in the tree, then each person’s
changes would appear in the others’ VMs. Thus, the tree
of versions would act like a chain of linear versions.

In a different situation, suppose Vince and Uma use a
shared area in the file system for collaboration. Most of
the time, they do want to see the latest version of a file.
Thus, the version history of such a file should be linear,
with each update following up on the previous one, re-
sembling Figure 2(b).

The essential difference between these two cases is in-
tention. The version tree alone cannot distinguish be-
tween desires for shared or personalized versions of the
file system without knowledge of intention.

Consider another file in Ziggy’s VM. If only Yves has
created a personalized version of the file, then the version
tree looks like Figure 2(c). The shape of this tree can-
not be distinguished from an early version of Figure 2(b).
Thus, Ventana must provide a way for users to specify
their intentions.

4.1.1 Private and Shared Branches

Ventana introduces branches to resolve the above diffi-
culty. A branch is a linear chain in the tree of versions.
Because a branch is linear, it is meaningful to refer to the
latest version of a file in a branch, or the version at a par-
ticular point in time.

A branch begins as an exact copy of the contents of
some other branch at the current time, or at a chosen ear-
lier time. After creation, the new branch and the branch
that was copied are independent, so that modifying one
has no effect on the other.

Branches are created by copying. Thus, multiple
branches may contain the same version of a file. There-
fore, for a file access to be unambiguous, both a branch
and a file must be specified. Mounting a tree in a virtu-
alization aware file system requires specifying the branch
to mount.

If a single client wants a private copy of the file tree,
a private branch is created for its exclusive use. Like a
file system on a virtual disk, a private branch will only be
modified by a single client in a single VM, but in other re-
spects it resembles a conventional network file system. In
particular, access to files by entities other than the guest
that “owns” the branch is easily possible, enabling cen-
tralized management such as scanning for malware, file
backup, and tracking VM version histories.

If multiple clients mount the same branch of a Ventana
file tree, then those clients see a shared view of the files

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association356



(a)

Ziggy

Yves Xena Walt

(c)

Ziggy

Yves
(b)

Vince

Uma

Uma

Vince

Vince

FIGURE 2: Trees of file versions when (a) Ziggy allows
Yves, Xena, and Walt to fork personalized versions of
his VM; (b) Vince and Uma collaboratively edit a file;
and (c) Ziggy’s VM has been forked by Yves, as in (a),
but not yet by Xena or Walt.

it contains. As in a conventional network file system, a
change made by one client in such a shared branch will be
immediately visible to the others. Of course, propagation
of changes between clients is still subject to the ordinary
issues of cache consistency in a network file system.

The distinction between shared and private branches
is simply the number of clients expected to write to the
branch. If necessary, centralized management tools can
modify files in a so-called “private” branch (e.g. to quar-
antine malware) but this is intended to be uncommon. Ei-
ther type of branch might have any number of read-only
clients.

A single file might have versions in shared and private
branches. For example, a shared branch used for collab-
oration between several users might be forked off into
a private branch by another user for some experimental
changes. Later, the private branch could be discarded or
consolidated into the shared branch.

4.1.2 Other Types of Branches

In addition to shared and private branches, there are sev-
eral other useful qualifiers to attach to file trees.

Files in a non-persistent branch are deleted when a VM
is rebooted. These are useful for directories of temporary
files such as /tmp.

Files in a volatile branch are also deleted on reboot.
They are never stored permanently on the central server,
and are deleted when a VM is migrated from one phys-
ical machine to another. They are useful for caches
(e.g. /var/cache on GNU/Linux) that need not be mi-
grated and for storing security tokens (e.g. Kerberos tick-
ets) that should not reside on a central server.

Maintaining any version history for some files is an in-
herent security risk [9]. For example, the OpenSSL cryp-
tography library stores a “random seed” file in the file sys-
tem. If this is stored in a snapshot, every time a given
snapshot is resumed, the same random seed will be used.
In the worst case, we will see the same sequence of ran-
dom numbers on every execution. Even in the best case,
its behavior may be easier to predict, and if old versions
are kept, then it may be possible to guess past behavior
(e.g. keys generated in past runs).

Ventana offers unversioned files as a solution. Unver-
sioned files are never versioned, whether linearly or in
a tree. Changes always evolve monotonically forward
with time. Applications for unversioned files include stor-
ing cryptographic material, firewall rules, password files,
or any other configuration state where rollback would be
problematic.

4.2 Views

Ventana is organized as a set of file trees, each of which
contains related files. For example, some file trees might
contain root file systems for booting various operating
systems (Linux, Windows XP, . . . ) and their variants (De-
bian, Red Hat, SP1, SP2, . . . ). Another might contain file
systems for running various local or specialized applica-
tions. A third would have a hierarchy for each user’s files.

Creating a new VM mainly requires synthesizing a view
of the file system for the VM. This is accomplished by
mapping one or more trees (or parts of trees) into a new
namespace. For example, the Debian root file system
might be combined with a set of applications and user
home directories. Thus, OSes, applications, and users can
easily “mix and match” in a Ventana environment.

Whether each file tree in a view is mounted in a shared
or a private branch depends on the user’s intentions. The
root file system and applications could be mounted in
private branches to allow the user to update and modify
his own system configuration. Alternately, they could be
mounted in shared branches (probably read-only) to al-
low maintenance to be done by a third party. In the latter
case, some parts of the file system would still need to be
private, e.g. /var under GNU/Linux. Home directories
would likely be shared, to allow the user to see a con-

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 357



sistent view of his and others’ files regardless of the VM
viewing them.

4.3 Access Control

Access control is different in virtual disks and network
file systems. The guest OS controls every byte on a vir-
tual disk. It is responsible for tracking ownership and per-
missions and making access control decisions in the file
system. The virtual disk itself has no access control re-
sponsibility. A VAFS cannot use this scheme, because al-
lowing every guest OS to access any file, even those that
belong to other VMs, is obviously unacceptable. There
must be enough control in the system to prevent abuse.

Access control in a conventional network file system
is the reverse of the situation for a virtual disk. The file
server is ultimately in charge of access control. As a net-
work file system client, a guest OS can deny access to its
own processes, but it cannot override the server’s refusal
to grant access. Commonly, NFS servers deny access as
the superuser (“squash root”) and CIFS and AFS servers
grant access only via principals authenticated to the net-
work.

This style of access control is also, by itself, inappro-
priate in a VAFS. Ventana should not deny a guest OS
control over its own binaries, libraries, and applications.
If these were, for example, stored on an NFS server con-
figured to “squash root,” the guest OS would not be able
to create or access any files as the superuser. If they were
stored on a CIFS or AFS server, the guest OS would only
be able to store files as users authenticated to the network.
In practice this would prevent the guest from dividing up
ownership of files based on their function (system bina-
ries, print server, web server, mail server, . . . ), as many
systems do.

Ventana solves the problem of access control through
multiple types of ACLs: file ACLs, version ACLs, and
branch ACLs. For any access to be allowed, it must be
permitted by all three applicable ACLs. Each kind of ACL
serves a different primary purpose. The three types are de-
scribed individually below.

4.3.1 File ACLs

File ACLs provide protection on files and directories that
users conventionally expect and OSes conventionally pro-
vide. Ventana supports two types of file ACLs that pro-
vide orthogonal privileges. Guest file ACLs are primarily
for guest OS use. Guest OSes have the same level of con-
trol over guest file ACLs that they do over permissions in
a virtual disk. In contrast, server file ACLs provide protec-
tion that guest OSes cannot bypass, similar to permissions
enforced by a conventional network file server.

Both types of file ACLs apply to individual files. They
are versioned in the same way as other file metadata.
Thus, revising a file ACL creates a new version of the file
with the new file ACL. The old version of the file contin-
ues to have the old file ACL.

Guest file ACLs are managed and enforced by the guest
OS using its own rules and principals. Ventana merely
provides storage. These ACLs are expressed in the guest
OS’s preferred form. We have so far implemented only the
9-bit rwxrwxrwx access control lists used by the Unix-
like guest OSes. Guest file ACLs allow the guest OS to
divide up file privileges based on roles.

Server file ACLs, the other type of file ACL, are man-
aged and enforced by Ventana and stored in Ventana’s
own format. Server file ACLs allow users to control ac-
cess to files across all file system clients.

4.3.2 Version ACLs

A version ACL applies to a version of a file. They are
stored as part of a version, not as file metadata, so that
changing a version ACL does not create a new file version.
Every version of a file has an independent version ACL.
Conversely, when multiple branches contain the same ver-
sion of a file, that single version ACL applies in each case.
Version ACLs are not versioned themselves. Like server
file ACLs, version ACLs are enforced by Ventana itself.

Version ACLs are Ventana’s solution to a class of secu-
rity problem common to all versioning file systems. Sup-
pose Terry creates a file and writes confidential data to
it. Soon afterward, Terry realizes that the file’s permis-
sions incorrectly allow Sally to read it, so he corrects the
permissions. In a file system without versioning, the file
would then be safe from Sally, as long as she had not al-
ready read it. If the permissions on older file versions are
fixed, however, Sally can still access the older version of
the file.

A partial solution to Terry’s problem is to grant access
to older versions based on the current version’s permis-
sions, as Network Appliance filers do [32]. Now, suppose
Terry edits a file to remove confidential information, then
grants read permission to Sally. Under this rule, Sally can
then view the older, confidential versions of the file, so
this rule is also flawed.

Another idea is to add a permission bit to each file’s
metadata that determines whether a user may read a file
once it has been superseded by a newer version, as in
the S4 self-securing storage system [27]. Unfortunately,
modifying permissions creates a new version (as does
any change to file metadata) and only the new version is
changed. Thus, this permission bit is effective only if the
user sets it before writing confidential data, so it would
not protect Terry.

Only two version rights exist. The “r” (read) version

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association358



right is Ventana’s solution to Terry’s problem. At any
time, Terry can revoke the read right on old versions of
files he has created, preventing access to those file ver-
sions. The “c” (change) right is required to change a ver-
sion ACL. It is implicitly held by the creator of a ver-
sion. (Any given file version is immutable, so there is no
“write” right.)

4.3.3 Branch ACLs

A branch ACL applies to all of the files in a particular
branch and controls access to current and older versions
of files. Like version ACLs, branch ACLs are accessed
with special tools and enforced by Ventana.

The “n” (newest) branch right permits read access to the
latest version of files in a branch. It also controls forking
the latest version of the branch.

In addition to “n”, the “w” (write) right is required to
modify any files within a branch. A user who has “n” but
not “w” may fork the branch. Then, as owner of the new
branch, he may change its ACL and modify the files in
the new branch. This does not introduce a security hole
because the user may only modify the files in the new
branch, not those in the old branch. The user’s access
to files in the new branch are, of course, still subject to
Ventana file ACLs and version ACLs.

The “o” (old) right is required to access old versions of
files within a branch. This right offers an alternate solu-
tion to Terry’s problem of insecure access to old versions.
If Terry controls the branch in which the old versions were
created, then he can use its branch ACL to prevent other
users from accessing old versions of any file in the branch.
This is thus a simpler but less focused approach than ad-
justing the appropriate version ACL.

The “c” (change) right is required to change a branch
ACL. It is implicitly held by the owner of a branch.

4.4 Disconnected Operation
Virtual disks can be used while disconnected from the net-
work, as long as the entire disk has been copied onto the
disconnected machine. Thus, for a virtualization aware
file system to be as widely useful as a virtual disk, it must
also gracefully tolerate network disconnection.

Research in network file systems has identified a num-
ber of features required for successful disconnected oper-
ation [16, 15, 12]. Many of these features apply to Ven-
tana in the same way as conventional network file sys-
tems. Ventana, for example, can cache file system data
and metadata on disk, which allows it to store enough data
and metadata to last the period of disconnection. Our pro-
totype caches entire files, not individual blocks, to avoid
the need to allow reading only part of a file during dis-
connection, which is surprising at best. Ventana can also

buffer changes to files and directories and write them back
upon reconnection. Some details of these features of Ven-
tana are included in the description of our prototype (see
Section 5).

Handling conflicts, that is, different changes to the
same files, is a thorny issue in a design for disconnected
operation. Fortunately, earlier studies of disconnection
have shown conflicts to be rare in practice [16]. In Ven-
tana conflicts may be even rarer, because they cannot oc-
cur in private branches. Therefore, Ventana does not try to
intelligently handle conflicts. Instead, changes by discon-
nected clients are committed at the time of reconnection,
regardless of whether those files have been changed in the
meantime by other clients. If manual merging is needed in
shared branches, it is still possible based on old versions
of the files. To make it easy to identify file versions just
before reconnection, Ventana creates a new branch just
before it commits the disconnected changes.

5 Prototype

To show that our ideas can be realized in a practical and
efficient way, we developed a simple prototype of Ven-
tana. This section describes the prototype’s design and
use.

The Ventana prototype is written in C. We developed it
under Debian GNU/Linux “unstable” on x86 PCs running
Linux 2.6.x, using VMware Workstation 5.0 as VMM.
The servers in the prototype run as Linux user processes
and communicate over TCP using the GNU C library im-
plementation of ONC RPC [26].

Figure 3 outlines Ventana’s structure, which is de-
scribed in more detail below.

5.1 Server Architecture

A conventional file system operates on what Unix calls a
block device, that is, an array of numbered blocks. Our
prototype is instead layered on top of an object store [10,
7]. An object store contains objects, sparse arrays of bytes
numbered from zero to infinity, similar to files. In the
Ventana prototype, objects are immutable.

The object store consists of one or more object servers,
each of which stores some of the file system’s objects and
provides a network interface for storing new objects and
retrieving the contents of old ones. Objects are identified
by randomly selected 128-bit integers called object num-
bers. Object numbers are generated randomly to allow
them to be chosen without coordination between hosts.
Collisions are unlikely as long as significantly fewer than
2
64 have been generated, according to the “birthday para-

dox” [25].

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 359



Metadata
Server

Object
Server 1

Object
Server N

...

VM 1 VM N...

Host Manager

Client Host

NFSv3

Custom
Protocols

Central Servers

FIGURE 3: Structure of Ventana. Each machine whose
VMs use Ventana runs a host manager. The host man-
ager talks to the VMs over NFSv3 and to Ventana’s
centralized metadata and object servers over a cus-
tom protocol.

Each version of a file’s data or metadata is stored as
an object. When a file’s data or metadata is changed, the
new version is stored as a new object under a new object
number. The old object is not changed and it may still
be accessed under its original object number. However,
this does not mean that every intermediate change takes
up space in the object store, because client hosts (that
is, machines that run Ventana clients in VMs) consolidate
changes before they commit a new object.

As in an ordinary file system, each file is identified by
an inode number, which is again a 128-bit, randomly se-
lected integer. Each file may have many versions across
many branches. When a client host needs to know what
object stores the latest version of a file in a particular
branch, it consults the version database by contacting
the metadata server. The metadata server maintains the
version database that tracks the versions of each file, the
branch database that tracks the file system’s branch struc-
ture, the database that associates branch names and num-
bers, and the database that stores VM configurations.

5.2 Client Architecture
The host manager is the client-side part of the Ventana
prototype. One copy of the host manager runs on each
platform and services any number of local client VMs.

Our prototype does not encapsulate the host manager it-
self in a VM.

For compatibility with existing clients, the host man-
ager includes a NFSv3 [2] server for clients to use for file
access. NFSv3 is both easy to implement and widely sup-
ported, even on Windows (with Microsoft’s free Services
for Unix).

The host manager maintains in-memory and on-disk
caches of file system data and metadata. Objects may be
cached indefinitely because they are immutable. Objects
are cached in their entirety to simplify implementing the
prototype and to enable disconnected operation (see Sec-
tion 5.2.3). Records in the version and branch databases
are also immutable, except for the ACLs they include,
which change rarely. In a shared branch, records added
to the version database to announce a new file version are
a cache consistency issue, so the host manager checks the
version database for new versions on each access (except
when disconnected). In a private branch, normally only
one client modifies the branch at a time, so that client’s
host manager can cache data in the branch for a long time
(or until the client VM is migrated to another host), al-
though other hosts should check for updates more often.

The host manager also buffers file writes. When a client
writes a file, the host manager writes the modified file to
the local disk. Further changes to the file are also writ-
ten to the same file. If the client requests that writes be
committed to stable storage, e.g. to allow the guest to
flush its buffer cache or to honor an fsync call, then the
host manager commits the modified files to the local disk.
Commitment does not perform a round trip on a physical
network.

5.2.1 Branch Snapshots

After some amount of time, the host manager takes a snap-
shot of outstanding changes within a branch. Users can
also explicitly create (and optionally name) branch snap-
shots. A snapshot of a branch is created simply by forking
of the branch, which has the desired effect because fork-
ing a branch copies its content. In fact, copying occurs
on a copy-on-write basis, so that the first write to any of
the files in the snapshot creates and modifies a new copy
of the file. Creating a branch also inserts a record in the
branch database.

After it takes a snapshot, the host manager uploads the
objects it contains into the object store. Then, it sends
records for the new file versions to a metadata server,
which commits them to the version database in a single
atomic transaction. The changes are now visible to other
clients.

The host manager assumes that private branch data is
relatively uninteresting to clients on other hosts, so it takes
snapshots in private branches relatively rarely (every 5

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association360



minutes). On the other hand, other users may be actively
using files in shared branches, so the host manager takes
snapshots often (every 3 seconds).

Because branch snapshots are actually branches them-
selves, older versions of files can be viewed using regular
file commands by first adding the snapshot branch to the
view in use. Branches created as snapshots are by default
read-only, to reduce the chance of later confusion if a file’s
“older version” actually turns out to have been modified.

5.2.2 Views and VMs

Multiple branches can be composed into a view. Ventana
describes a view with a simple text format that resembles
a Unix fstab, e.g.:

debian:/ / shared,ro
home-dirs:/ /home shared
bob-version:/ /proj private

Each line describes a mapping between a branch, or a sub-
set of a branch, and a directory within the view. We say
that each branch is attached to its directory in the view.1

A VM comprises a view, plus configuration parameters
for networking, system boot, and so on. A VM could be
described by the view above followed by these additional
options:

-pxe-kernel debian:/boot/vmlinuz
-ram 64

Ventana provides a utility to start a VM based on such
a specification. Given the above VM specification, it
would set up a network boot environment (using the PXE
protocol) to boot the kernel in /boot/vmlinuz in the
debian branch, then launch VMware Workstation for
the user to allow the user to interact with the VM.

VM Snapshots Ventana supports snapshots of VMs just
as it does snapshots of branches.2 A snapshot of a VM is a
snapshot of each branch in the VM’s view combined with
a snapshot of the VM’s runtime state (RAM, device state,
. . . ). To create a snapshot, Ventana snapshots the branches
included in the VM, copies the runtime state file written
by Workstation into Ventana as an unnamed file, and saves
a description of the view and a pointer to the suspend file.

Later, another Ventana utility may be used to resume
from the snapshot. When a VM snapshot is resumed, pri-
vate branches have the contents that they did when the
snapshot was taken, and shared branches are up-to-date.

1We use “attach” instead of “mount” because mounts are imple-
mented inside an OS, whereas the guest OS that uses Ventana does not
implement and is not aware of the view’s composition.

2VMware Workstation has its own snapshot capability. Ventana’s
snapshot mechanism demonstrates VM snapshots might be integrated
into a VAFS.

Ventana also allows resuming with a “frozen” copy of
shared branches as of the time of the snapshot. Snapshots
can be resumed any number of times, so resuming forks
each private branch in the VM for repeatability.

5.2.3 Disconnected Operation

The host manager supports disconnected operation, that
is, file access is allowed even without connectivity to the
metadata and object server. Of course, access is degraded
during disconnection: only cached files may be read, and
changes in shared branches by clients on the other hosts
are not visible. Write access is unimpeded. Discon-
nected operation is implemented in the host manager, not
in clients, so all clients support disconnected operation.

We designed the prototype with disconnected opera-
tion in mind. Caching eliminates the need to consult the
metadata and object servers for most operations, and on-
disk caching allows for a large enough cache to be useful
for extended disconnection. Whole-object caching avoids
surprising semantics that would allow only part of a file to
be read. Write buffering allows writing back changes to
be delayed until reconnection.

We have not implemented user-configurable “hoard-
ing” policies in the prototype. Implementing them as de-
scribed by Kistler et al. [16] would be a logical extension.

6 Usage Scenario
This section presents a scenario for use of Ventana and
shows how, in this setting, Ventana offers a better solution
than both virtual disks and network file systems.

6.1 Scenario

We set our scene at Widgamatic, a manufacturer and dis-
tributor of widgets.

6.1.1 Alice the Administrator

Alice is Widgamatic’s system administrator in charge of
virtual machines. Software used at Widgamatic has di-
verse requirements, and Widgamatic’s employees have
widely varying preferences. Alice wants to accommo-
date everyone as much as she can, so she supports var-
ious operating systems: Debian, Ubuntu, Red Hat, and
SUSE distributions of GNU/Linux, plus Windows XP and
Windows Server 2003. For each of these, Alice creates a
shared branch and installs the base OS and some com-
monly used applications. She sets the branch ACLs to
allow any user to read, but not write, these branches.

Alice creates common, a second shared branch, to
hold files that should be uniform company-wide, such as

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 361



ubuntu:/ / shared,ro
home-dirs:/ /home shared

none /tmp non-persistent
12ff2fd27656c7c7e07c5ea1e2da367f:/var /var private

cad-soft:/ /opt/cad-soft shared,ro
common:/etc/resolv.conf /etc/resolv.conf shared,ro
common:/etc/passwd /etc/passwd shared,ro

8368e293a23163f6d2b2c27aad2b6640:/etc/hostname /etc/hostname private
b6236341bd1014777c1a54a8d2d03f7c:/etc/ssh/host_key /etc/ssh/host_key unversioned

FIGURE 4: Partial specification of the view for Bob’s basic VM.

carl-debian:/ / private
home-dirs:/ /home shared

none /tmp non-persistent
common:/etc/resolv.conf /etc/resolv.conf shared,ro
common:/etc/passwd /etc/passwd shared,ro

b6236341bd1014777c1a54a8d2d03f7c:/etc/ssh/host_key /etc/ssh/host_key unversioned

FIGURE 5: Partial specification of the view for Carl’s custom VM.

/etc/hosts and /etc/resolv.conf. Again, she
sets branch ACLs to grant other users read-only access.

Alice also creates a shared branch for user home direc-
tories, called home-dirs, and adds a directory for each
Widgamatic user in the root of this branch. Alice sets the
branch ACL to allow any user to read or write the branch,
and server file ACLs so that, by default, each user can
read or write only his (or her) home directory. Users can
of course modify server file ACLs in their home directo-
ries as needed.

6.1.2 Bob’s Basic VM

Bob is a Widgamatic user with basic needs. Bob uses a
utility written by Alice to create a Linux-based VM pri-
marily from shared branches. Figure 4 shows part of the
specification written by this utility.

The root of Bob’s VM is attached to the Ubuntu shared
branch created by Alice. This branch’s ACL prevents Bob
modifying files in the branch (it is attached read-only be-
sides). The Linux file system is well suited for this situa-
tion, because its top-level hierarchies segregate files based
on whether they can be attached read-only during normal
system operation. The /usr tree is an example of a hier-
archy that normally need not be modifiable.

The /home and /tmp trees are the most prominent
examples of hierarchies that must be writable, so Bob’s
VM attaches a writable shared branch and a non-persistent
branch, respectively, at these points. Keyword none in
place of a branch name in /tmp’s entry causes an initially
empty branch to be attached.

The filename/var hierarchy must be writable and persis-
tent, and it cannot be shared between machines. Thus, Al-

ice’s utility handles /var by creating a fork of the Ubuntu
branch, then attaching the forked branch’s /var privately
in the VM. The utility does not give the forked branch a
name, so the VM specification gives the 128-bit branch
identifier as 32 hexadecimal digits.

Bob needs to use the company’s CAD software to de-
sign widgets, so the CAD software distribution is attached
into his VM.

Most of the VM’s configuration files in /etc receive
their contents from the Ubuntu branch attached at the
VM’s root. Some, such as /etc/resolv.conf and
/etc/passwd shown here, are attached from Alice’s
“common files” branch. This allows Alice to update a
file in just that branch and have the changes automatically
reflected in every VM. A few, such as /etc/hostname
shown here, are attached from private branches to allow
their contents to be customized for the particular VM. Fi-
nally, data that should not be versioned at all, such as the
private host key used to identify an SSH server, is attached
from an unversioned branch. The latter two branches are,
like the /var branch, unnamed.

Bob’s VM, and VMs created in similar ways, would
automatically receive the benefits of changes and updates
made by Alice as soon as she made them. They would also
see changes made by other users to their home directories
as soon as they occur.

6.1.3 Carl’s Custom VM

Carl wants more control over his VM. He prefers Debian,
which is available as a branch maintained by Alice, so he
can base his VM upon Alice’s. Carl forks a private branch
from Alice’s Debian branch and names the new branch

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association362



carl-debian.
Carl integrates his branch into a VM of his own, us-

ing a specification that in part looks like Figure 5. Carl
could write this specification by hand, or he might choose
to start from one, like Bob’s, generated by Alice’s util-
ity. Using a private branch as root directory means that
Carl need not attach private branches on top of /var or
/etc/hostname, making Carl’s specification shorter
than Bob’s.

Even though Carl’s base operating system is private,
Carl’s VM still attaches many of the same shared branches
that Bob’s VM does. Shared home directories and com-
mon configuration files ease Carl’s administrative burden
just as they do Bob’s. He could choose to keep private
copies of these files, but to little obvious benefit.

Carl bears more of the burden of his own system ad-
ministration, because Alice’s changes to shared branches
do not automatically propagate to his private branch. Carl
could use Ventana to observe how the parent debian
branch has changed since the fork, or Alice could mon-
itor forked branches to ensure that important patches are
applied in a timely fashion.

6.1.4 Alice in Action

One morning Alice reads a bulletin announcing a critical
security vulnerability in Mozilla Firefox. Alice must do
her best to make sure that the vulnerable version is prop-
erly patched in every VM. In a VM environment based
on virtual disks, this would be a daunting task. Ventana,
however, reduces the magnitude of the problem consider-
ably.

First, Alice patches the branches that she maintains.
This immediately fixes VMs that use her shared branches,
such as Bob’s VM.

Second, Alice can take steps to fix others’ VMs as well.
Ventana puts a spectrum of options at her disposal. Alice
could do nothing and assume that Bob and Carl will act
responsibly. She could scan VMs for the insecure binary
and email their owners (she can even check up on them
later). She could patch the insecure binaries herself. Fi-
nally, she has many options for denying access to copies
of the insecure binary: use a server file ACL to deny read-
ing or executing it, use a Ventana version ACL to prevent
reading it even as the older version of a file, use a branch
ACL to deny any access to the branch that contains it (per-
haps appropriate for long-unused branches), and so on.
Alice can take these steps for any file stored in Ventana,
whether contained in a VM that is powered on or off or
suspended, or even if it is not in any VM or view at all.

Third, once the immediate problem is solved, Alice can
work to prevent its future recurrence. She can configure
a malware scanner to examine each new version of a file
added to Ventana as to whether it is the vulnerable pro-

gram and, if so, alert Alice or its owner (or take some
other action). Thus, Alice has reasonable assurance that if
this particular problem recurs, it can be quickly detected
and fixed.

6.2 Benefits for Widgamatic

We now consider how Alice, Bob, Carl, and everyone else
at Widgamatic benefit from using Ventana instead of vir-
tual disks. We use virtual disks as our main basis of com-
parison because Ventana’s advantages over conventional
distributed file systems are more straightforward: they are
the versioning, isolation, and encapsulation features that
we intentionally added to it and have already described in
detail.

6.2.1 Central Storage

It’s easy for Bob or Carl to create virtual machines. When
virtual disks are used, it’s also easy for Bob or Carl to copy
them to a physical machine or a removable medium, then
lose or forget about the machine or the medium. If the
virtual machine is rediscovered later, it may be missing
fixes for important security problems that have arisen in
the meantime.

Ventana’s central storage makes it more difficult to lose
or entirely forget about VMs, heading off the problem be-
fore it occurs. Other dedicated VM storage systems also
yield this benefit [30, 31].

6.2.2 Looking Inside Storage

Alice’s administration tasks can benefit from “looking in-
side” storage. Consider backup. Bob and Carl want the
ability to restore old versions of files, but Alice can easily
back up virtual disks only as a collection of disk blocks.
Disk blocks are opaque, making it hard for Bob or Carl
even to determine which version of a virtual disk contains
the file to restore. Doing partial backups of virtual disks,
e.g. to exclude blocks from deleted temporary files or pag-
ing files, is also difficult.

File-based backup, partial backup, and related features
can be implemented for virtual disks, but only by mount-
ing the virtual disk or writing code to do the equiva-
lent. In any case, software must have an intimate knowl-
edge of file system structures and must be maintained
as those structures change among operating systems and
over time. Mounting an untrusted disk can itself be a se-
curity hole [24].

On the other hand, Ventana’s organization into files and
directories gives it a higher level of structure that makes it
easy to look inside a Ventana file system. Thus, file-based
backup and restore requires no special effort in Ventana.

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 363



(Of course, in Ventana it is natural to use versioning to ac-
cess file “backups” and ensure access by backing up Ven-
tana servers’ storage.)

6.2.3 Sharing

Sharing is an important feature of storage systems. Bob
and Carl might wish to collaborate on a project, or Carl
might ask Alice to install some software in his VM for
him. Virtual disks make sharing difficult. Consider how
Alice could access Carl’s files if they were stored on a
virtual disk. If Carl’s VM were powered on or suspended,
modifying his file system would risk the guest OS’s in-
tegrity, because the interaction with the guest’s data and
metadata caches would be unpredictable. Even read-
ing Carl’s file system would be unreliable while it was
changing, e.g. consider the race condition if a block from
a deleted directory was reused to store an ordinary file
block.

On the other hand, Ventana gives Alice full read and
write access to virtual machines, even those that are on-
line or suspended. Alice can examine or modify Carl’s
files, whether the VM or VMs that use them are running,
suspended, or powered off, and Bob and Carl can work
together on their project without introducing any special
new risks.

6.2.4 Security

If Widgamatic’s VMs were stored in virtual disks, Alice
would have a hard time scanning them for malware. She
could request that users run a malware scanner inside each
of their VMs, but it would be difficult for her to enforce
this rule or ensure that the scanner was kept up-to-date.
Even if Bob and Carl carefully followed her instructions,
VMs powered on after being off for a long time would be
susceptible to vulnerabilities discovered in the meantime
until they were updated.

Ventana allows Alice to deploy a scanner that can ex-
amine each new version of a file in selected branches, or
in all branches. Conversely, when new vulnerabilities are
found, it can scan old versions of files as well as current
versions (as time is available). If malware is detected
in Bob’s branch, the scanner could alert Bob (or Alice),
delete the file, change the file’s permission, or remove the
virus from the file. (Even in a private branch, files may be
externally modified, although it takes longer for changes
to propagate in each direction.)

Ventana provides another important benefit for scan-
ners: the scanner operates in a protection domain separate
from any guest operating system. When virtual disks store
VMs, scanners normally run as part of the guest operating
system because, as we’ve seen, even read-only access to
active virtual disks has pitfalls. But this allows a “root

kit” to subvert the guest operating system and the mal-
ware scanner in a single step. If Alice runs her scanner in
a different VM, it must be compromised separately. Alice
could even configure the scanner to run in non-persistent
mode, so rebooting it would temporarily relieve any com-
promise, although of course not the underlying vulnera-
bility.

A host-based intrusion detection system could use a “lie
detector” test that compares the file system seen by pro-
grams running inside the VM against the file system in
Ventana to detect root kits, as in LiveWire [8].

6.2.5 Access to Multiple Versions

Suppose Bob wants to look at the history of a document
he’s been working on for some time. He wants to retrieve
and compare all its earlier versions. One option for Bob
is to read the old versions directly from older versions of
the virtual disk, but this requires accurate interpretation
of the file system, which is difficult to maintain over time.
A more likely alternative for Bob is to resume or power
on each older version of the VM, then use the guest OS
to copy the file in that old VM somewhere convenient.
Unfortunately, this can take a lot of time, especially if the
VM has to boot, and every older version takes extra effort.

With Ventana, Bob can attach all the older versions
of his branch directly to his view. After that, the differ-
ent versions can be accessed with normal file commands:
diff to view differences between versions, grep to
search the history, and so on. Bob can also recover older
versions simply by copying them into the his working
branch.

7 Future Work
Ventana demonstrates the principles behind a VAFS, but
many important issues remain to be explored, such as
scalability and performance. We have measured Ventana’s
performance to be competitive with other user-level NFS
servers in most cases with simple branching. However,
deep chains of branches seem to introduce the need for
compromise between storage efficiency and file lookup
performance.

Storage reuse is another area for further work. The Ven-
tana prototype does not have any mechanism for deleting
data. We have not yet found a way to efficiently support
both creation of branches and the determination that an
object is no longer in use in any branch.

8 Related Work
Parallax [31] demonstrates that virtual disks can be stored
centrally with very high scalability. Parallax allows vir-

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association364



tual disks to be efficiently used and modified in a copy-
on-write fashion by many users. Unlike Ventana, it does
not allow cooperative sharing among users, nor does it en-
hance the transparency or improve the granularity of vir-
tual disks.

VMware ESX Server includes the VMFS file system,
which is designed for storing large files such as virtual
disks [30]. VMFS allows for snapshots and copy-on-write
sharing, but not the other features of a virtualization aware
file system.

Live migration of virtual machines [4] requires the
VM’s storage to be available on the network. Ventana, as
a distributed file system particularly suited to VM storage,
provides a reasonable approach.

Whitaker et al. [33, 34] used whole-system versioning
to mechanically discover the origin of a problem by doing
binary search through the history of a system. They note
the “semantic gap” in trying to relate changes to a virtual
disk with higher-level actions. We believe that a VAFS,
in which changes to files and directories may be observed
directly, could help to reduce this semantic gap.

The Ventana prototype of course has much in common
with other file systems. Object stores are an increasingly
common way to structure file systems [10, 7, 28]. Ob-
jects in Ventana are immutable, which is unusual among
object stores, although in this respect Ventana resembles
the Cedar file system and, more recently, EMC’s Centera
system [11, 6]. PVFS2, a network file system for high-
bandwidth parallel file I/O, is another file system that uses
Berkeley DB databases to store file system metadata [21].

Many versioning file systems exist, in research systems
such as Cedar, Elephant, and S4, and in production sys-
tems such as WAFL (used by Network Appliance filers)
and VMS [11, 23, 27, 14, 18]. A versioning file system
on top of a virtual disk allows old versions to be easily
accessed inside the VM, but does not address the other
downsides of virtual disks. None of these systems sup-
ports the tree-structured versions necessary to properly
handle the natural evolution of virtual machines. The ver-
sion retention policies introduced in Elephant might be
usefully applied to Ventana.

Online file archives, such as Venti, also support access-
ing old versions of files, but again only linear versioning
is supported [22].

Ventana’s tree-structured version model is related to the
model used in revision control systems, such as CVS [3].
A version created by merging versions from different
branches has more than one parent, so versions in revision
control systems are actually structured as directed acyclic
graphs. Revision control systems would generally not be
good “back end” storage for Ventana or another VAFS be-
cause they typically store only a single “latest” version of
a file for efficient retrieval. Retrieving other versions, in-
cluding the latest version of files in branches other than

the “main branch,” requires application of patches [29].
Files marked “binary,” however, often include each revi-
sion in full, without using patches, so use of “binary” files
might be an acceptable choice.

Vesta [13] is a software configuration management sys-
tem whose primary file access interface is over NFS, like
Ventana. Dependency tracking in Vesta allows for precise,
high-performance, repeatable builds. Similar tracking by
a VAFS might enable better understanding of which files
and versions should be retained over the long term.

We proposed extending a distributed file system, which
already supports fine-grained sharing, by adding version-
ing that supports virtual machines. An alternative is to
allow virtual disks, which already support VM-style ver-
sioning, to support sharing by adding a locking layer, as
can be done for physical disks [19, 1]. This approach re-
quires committing to a particular on-disk format, which
makes changes and extensions more difficult. It also either
requires each client to understand the disk format, which
is a compatibility issue, or use of a network proxy that
does understand the format. In the latter case the proxy is
equivalent to Ventana’s host manager, and storage under-
lying it is really an implementation detail.

A “union” or “overlay” file system [20, 17] can stack a
writable file system above layers of read-only file systems.
If the top layer is the current branch and lower layers are
the branches that it was forked from, something like tree
versioning can be obtained. The effect is imperfect be-
cause changes to lower layers can “show through” to the
top. Symbolic link farms can also stack layers of directo-
ries, often for multi-architecture software builds [5], but
link farms are not transparent to the user or software.

9 Conclusion
Ventana is a virtualization aware distributed file system
that provides the powerful versioning, security, and mo-
bility properties of virtual disks, while overcoming their
coarse-grained versioning and their opacity that frustrates
cooperative sharing. This allows Ventana to support the
rich usage models facilitated by virtual machines, while
avoiding the security pitfalls, management difficulties,
and usability problems that virtual disks suffer from.

We believe that virtualization aware file systems have
an important role to play in the evolution of virtual ma-
chines from their physical machine inspired roots, toward
being a more lightweight, flexible, and general-purpose
mechanism for organizing systems.

Acknowledgements
This work was supported in part by the National Science
Foundation under award 0121481 and by TRUST (Team

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 365



for Research in Ubiquitous Secure Technology), which
also receives support from the National Science Founda-
tion under award CCF-0424422. We would like to thank
Carl Waldspurger, Tim Mann, Jim Chow, Paul Twohey,
Junfeng Yang, Joe Little, our shepherd Steve Hand, and
the anonymous reviewers for their comments.

References
[1] R. C. Burns. Data Management in a Distributed File System for

Storage Area Networks. PhD thesis, University of California Santa
Cruz, March 2000.

[2] B. Callaghan, B. Pawlowski, and P. Staubach. NFS version 3 pro-
tocol specification. RFC 1813, June 1995.

[3] P. Cederqvist et al. Version Management with CVS, 2005.

[4] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines. In
2nd Symposium on Network Systems Design and Implementation.
USENIX, 2005.

[5] P. Eggert. Multi-architecture builds using GNU make. http://
make.paulandlesley.org/multi-arch.html, August 2000.

[6] EMC Corporation. EMC Centera content addressed storage sys-
tem. http://www.emc.com/products/systems/centera.jsp, Oc-
tober 2005.

[7] M. Factor, K. Meth, D. Naor, O. Rodeh, and J. Satran. Object
storage: The future building block for storage systems. In 2nd In-
ternational IEEE Symposium on Mass Storage Systems and Tech-
nologies, Sardinia, Italy, July 2005.

[8] T. Garfinkel and M. Rosenblum. A virtual machine introspection
based architecture for intrusion detection. In Proc. Network and
Distributed Systems Security Symposium, February 2003.

[9] T. Garfinkel and M. Rosenblum. When virtual is harder than real:
Security challenges in virtual machine based computing environ-
ments. In 10th Workshop on Hot Topics in Operating Systems, May
2005.

[10] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang, E. M. Feinberg,
H. Gobioff, C. Lee, B. Ozceri, E. Riedel, D. Rochberg, and J. Ze-
lenka. File server scaling with network-attached secure disks. In
International Conference on Measurement & Modeling of Com-
puter Systems (SIGMETRICS), pages 272–284, New York, NY,
USA, 1997. ACM Press.

[11] D. K. Gifford, R. M. Needham, and M. D. Schroeder. The Cedar
file system. Commununications of the ACM, 31(3):288–298, 1988.

[12] J. S. Heidemann, T. W. Page, Jr., R. G. Guy, and G. J. Popek. Pri-
marily disconnected operation: Experiences with Ficus. In Work-
shop on the Management of Replicated Data, pages 2–5, 1992.

[13] A. Heydon, R. Levin, T. Mann, and Y. Yu. The Vesta approach to
software configuration management. Research Report 168, Com-
paq Systems Research Center, March 2001.

[14] D. Hitz, J. Lau, and M. Malcolm. File system design for an NFS
file server appliance. Technical report, Network Appliance, 1995.

[15] L. Huston and P. Honeyman. Disconnected operation for AFS.
In First Usenix Symposium on Mobile and Location-Independent
Computing, pages 1–10, August 1994.

[16] J. J. Kistler and M. Satyanarayanan. Disconnected operation in
the Coda file system. ACM Transactions on Computer Systems,
10(1):3–25, February 1992.

[17] M. Klotzbuecher. mini fo: The mini fanout overlay file system.
http://www.denx.de/twiki/bin/view/Know/MiniFOHome, Octo-
ber 2005.

[18] K. McCoy. VMS file system internals. Digital Press, Newton, MA,
USA, 1990.

[19] T. McGregor and J. Cleary. A block-based network file system.
In 21st Australasian Computer Science Conference, volume 20
of Australian Computer Science Communications, pages 133–144,
Perth, February 1998. Springer.

[20] R. Pike, D. Presotto, K. Thompson, and H. Trickey. Plan 9 from
Bell Labs. In Summer UKUUG Conference, pages 1–9, London,
July 1990.

[21] PVFS2: Parallel virtual file system 2. http://www.pvfs.org/pvfs2,
October 2005.

[22] S. Quinlan and S. Dorward. Venti: A new approach to archival
storage. In FAST ’02: Proceedings of the Conference on File and
Storage Technologies, pages 89–101, Berkeley, CA, USA, 2002.
USENIX Association.

[23] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch, R. W.
Carton, and J. Ofir. Deciding when to forget in the Elephant file
system. In 17th ACM Symposium on Operating Systems Princi-
ples, pages 110–123, New York, NY, USA, 1999. ACM Press.

[24] C. Sar, P. Twohey, J. Yang, C. Cadar, and D. Engler. Discovering
malicious disks with symbolic execution. In IEEE Symposium on
Security and Privacy, May 2006.

[25] B. Schneier. Applied Cryptography. Wiley, 2nd edition, 1996.

[26] R. Srinivasan. RPC: Remote procedure call protocol specification
version 2. RFC 1831, Aug. 1995.

[27] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N. Soules,
and G. R. Ganger. Self-securing storage: Protecting data in com-
promised systems. In 4th USENIX Symposium on Operating Sys-
tem Design and Implementation, pages 165–180, 2000.

[28] C. F. Systems. Lustre. http://lustre.org/.

[29] W. F. Tichy. RCS—a system for version control. Software Practice
and Experience, 15(7):637–654, 1985.

[30] VMware ESX Server. http://www.vmware.com/products/esx,
October 2005.

[31] A. Warfield, R. Ross, K. Fraser, C. Limpach, and S. Hand. Paral-
lax: Managing storage for a million machines. In 10th Hot Topics
in Operating Systems. USENIX, May 2005.

[32] A. Watson, P. Benn, A. G. Yoder, and H. T. Sun. Multiprotocol
data access: NFS, CIFS, and HTTP. Technical report, Network
Appliance, 2005.

[33] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration debug-
ging as search: Finding the needle in the haystack. In 6th Sympo-
sium on Operating Systems Design and Implementation, Decem-
ber 2004.

[34] A. Whitaker, R. S. Cox, and S. D. Gribble. Using time travel to
diagnose computer problems. In 11th ACM SIGOPS European
Workshop, Leuven, Belgium, September 2004.

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association366


