
http://wrap.warwick.ac.uk

Original citation:
Fahmy, Suhaib A., Vipin, Kizheppatt and Shreejith, Shanker (2015) Virtualized FPGA
accelerators for efficient cloud computing. In: IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), Vancouver, Canada, 30 Nov - 3 Dec
2015 pp. 430-435.

Permanent WRAP url:
http://wrap.warwick.ac.uk/74757

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:
“© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.”

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/74757
mailto:publications@warwick.ac.uk

Virtualized FPGA Accelerators

for Efficient Cloud Computing

Suhaib A. Fahmy∗, Kizheppatt Vipin†, Shanker Shreejith‡

∗School of Engineering, University of Warwick, United Kingdom
†School of Engineering Sciences, Mahindra École Centrale, Hyderabad, India

‡School of Computer Engineering, Nanyang Technological University, Singapore

Email: sfahmy@ieee.org

Abstract—Hardware accelerators implement custom architec-
tures to significantly speed up computations in a wide range
of domains. As performance scaling in server-class CPUs slows,
we propose the integration of hardware accelerators in the
cloud as a way to maintain a positive performance trend.
Field programmable gate arrays (FPGAs) represent the ideal
way to integrate accelerators in the cloud, since they can be
reprogrammed as needs change and allow multiple accelerators
to share optimised communication infrastructure. We discuss
a framework that integrates reconfigurable accelerators in a
standard server with virtualised resource management and com-
munication. We then present a case study that quantifies the
efficiency benefits and break-even point for integrating FPGAs
in the cloud.

I. INTRODUCTION

Cloud Computing promises shared elastic access to unlim-

ited compute resources in a similar view to traditional utilities

like the power grid. Virtualisation enables efficient scaling

and sharing as user needs change. Established cloud service

models offer access to virtualised hardware, to tuned applica-

tion design platforms, or simply to self-contained application

software hosted in the cloud. A key driver behind the increase

in demand for cloud computing has been the exponential

increase in use of mobile computing devices that often lack the

computational power to complete complex tasks such as voice

recognition. Computing in the cloud benefits from server-grade

CPUs with advanced computational datapaths, large caches,

and multiple cores.

While the flexibility, scalability, and affordability of cloud

computing are well established, performance and efficiency

remain matters of concern. By virtue of the virtualisation of

resources, the distributed communication among sometimes

disparate nodes, and fluctuations in demand, running complex

applications can be challenging [1]. Furthermore, the perfor-

mance of server CPUs is not scaling at the rates previously

observed [2]. Poor computational performance due to the over-

heads of virtualisation can also severely impact response time

and hence user experience, even for simpler tasks. Efficiency is

also becoming a major concern as datacenters start to consume

a noticeable proportion of the world’s energy budget.

One strategy discussed for overcoming stalled performance

scaling is to incorporate heterogeneous resources better suited

to complex computation [3]. GPUs can offer significant perfor-

mance benefits but cloud integration can be troublesome, since

the architectures are designed to be used monolithically [4].

Hence, they are generally offered as a fixed resource using the

Infrastructure-as-a-Service (IaaS) model, leading to potential

under-utilisation and over-provision. GPUs are also power-

hungry, and hence, do not contribute significantly to improving

energy efficiency.

FPGAs have also been explored more recently. They can

offer significant speed-up in execution of a wide variety of

tasks and are also significantly more power-efficient [5], [6].

Recent developments are easing the integration of FPGAs in

the datacenter. At the server hardware level, IBM’s POWER8

Coherent Accelerator Processor Interface (CAPI) [2] allows

tighter coupling between the processor and a co-processing

peripheral. Intel’s XEON+FPGA integrates an FPGA with a

XEON processor in a single chip package, and their recent

purchase of Altera underlines the importance of hardware

accelerators in the datacenter. Microsoft recently presented a

comprehensive demonstration of the benefits of FPGAs in the

datacenter applied to the Bing search algorithm [7].

These initial proofs of concept make the case for a more

serious investigation of FPGAs as a general cloud computing

resource. So far, however, FPGAs have only been used as static

accelerators, designed once and used for a single function. In

the cloud context, the ability to modify accelerator functions at

runtime in a multi-user environment is essential. This requires

new techniques in hardware design, interfacing, accelerator

management, OS integration, and programming models. In this

paper, we present some background on FPGAs, then detail a

platform for integrating virtualised accelerators on FPGAs, and

finally, present a case study that quantifies potential benefits.

II. BACKGROUND

A. Field Programmable Gate Arrays

Field programmable gate arrays (FPGAs) are commercial

off-the-shelf silicon devices that can be programmed to im-

plement custom digital circuits. Fundamentally, they consist

of a mesh of basic circuit resources that can be combined

to create complex architectures. The key performance and

power benefits are realised by designing custom computational

datapaths suited to a particular application. An architecture is

described in a hardware description language (HDL), or more

recently using high level algorithmic code, and automated

tools work out how to build it using the components in the

FPGA, how they should be arranged on the grid of the FPGA

and connected, finally generating a bitstream — a binary file

loaded into the FPGA to implement the circuit.

By exploiting paralellism in an algorithm and tailoring

the computational datapath(s), an FPGA accelerator offers

a significant performance improvement over software on a

processor, often consuming significantly less power. Compared

to ASICs, there is no manufacturing process, turnaround time

is significantly reduced, and the design can be changed at any

time simply by loading a new bitstream.

Within the cloud context, FPGAs represent a promising

accelerator platform due to this application flexibility that pre-

serves the generality of the resource. Furthermore, an FPGA

can be shared spatially between distinct, isolated accelerators

that can be reprogrammable at runtime. This allows for a more

fine-grained approach to using hardware resources that fits the

ideas of scalability and sharing that are so fundamental in the

cloud.

B. Coupling FPGAs with Processors

The reconfigurable computing community has explored the

coupling of FPGAs with general purpose processors for a

long time [8]. Traditionally, the FPGA has acted as a stand-

alone accelerator with communication through I/O interfaces,

resulting in high communication overheads. Over time, the

FPGA has been brought closer to the CPU, resulting in

higher communication bandwidth and lower latency [9]. More

recently, integrated systems on chip, combining both general

purpose processors and FPGAs have emerged, such as the

Xilinx Zynq, offering extremely high data bandwidth between

the processor and FPGA, allowing for high performance

applications with interleaved hardware and software execution.

Coupling is of great importance as slow communication can

severely decimate the potential benefits of acceleration [10].

Recent FPGAs support very high bandwidth serial communi-

cation interfaces, including PCI Express (PCIe), allowing them

to be integrated in standard computing infrastructure, with

saturated interface bandwidth. Developments such as CAPI

will enhance this coupling further.

C. Partial Reconfiguration

Apart from the reprogrammability of FPGAs, partial re-

configuration could be key to adoption in the cloud. Just as

the virtual CPUs allocated to users are abstracted from the

physical CPUs of a server, allowing scaling and sharing, hard-

ware accelerators should also be virtualised on the hardware

resources. Partial reconfiguration is where only a part of the

FPGA is reconfigured instead of the whole device. Multiple

accelerator slots can host independently-managed accelerators

that do not interfere with each other, while the communication

infrastructure remains in place throughout operation.

Partially reconfigurable regions (PRRs) are defined, as

shown in Fig. 1, each able to host different accelerators. Partial

bitstreams contain all the configuration information required to

place an accelerator into a PRR. The static region is the part of

the FPGA that is not reconfigured at runtime and contains all

FPGA

PCIe

Interface

Fig. 1. Partial reconfiguration of an FPGA to allow separate accelerators to
be loaded into distinct slots.

the communication interfaces and reconfiguration management

circuitry. Partial reconfiguration also allows for much faster

reconfiguration of accelerators.

III. EXISTING WORK

Incorporation of FPGAs in the datacenter is a relatively

new area of research. One proposed application is to pro-

vide better security and privacy by offloading sensitive data

processing into hardware since possible attack vectors are

limited [11]. Netezza’s data warehousing appliances perform

complex data filtering on FPGAs, with additional compres-

sion/decompression performed by spare resources [12]. Mi-

crosoft’s Catapult architecture represents the first detailed

investigation of applying FPGAs within an enterprise-level

datacenter application [7]. The document ranking part of Bing

search is accelerated using hardware split across 8 FPGAs

within a rack. They report almost doubled throughput in search

ranking at a cost of only 10% increased power consumption

and 30% increased total cost of ownership. Baidu presented

accelerated neural networks on FPGAs in the datacenter of-

fering an order of magnitude better performance at minimal

additional power cost [13]. In [14], the authors present FPGAs

in the cloud as standalone resources, treated separately from

standard (server) resources. In this setup the whole application

must run in the FPGA and traditional FPGA reconfiguration

over JTAG means extra cabling is required and reconfiguration

is slow. FPGAs were also explored for implementation of

core functions in intelligent personal assistants (IPAs), with

their performance per Watt exceeding CPUs and GPUs by a

significant margin [15].

Open source interface frameworks have emerged allowing

FPGAs to be integrated in PCs with communication through-

put between the host and FPGA close to the limits of modern

PCIe interfaces [16]. Reconfiguration and communication over

a single PCIe interface has also been demonstrated [17],

enabling accelerator swapping and overcoming the need for

extra cabling and drivers which can be problematic in a tightly

managed datacenter environment.

Key challenges to be addressed for a cloud-centric integra-

tion of FPGAs are:

Bitstream

Library

CommunicationO&

Configuration

ResourceO&ORequest

management

SystemO

management

FPGA FPGAFPGA

Driver

Hypervisor

GuestOOS

ServerOStack

Server

FPGAOBoards

Fig. 2. Proposed FPGA in the cloud architecture.

• Support for dynamically reconfigurable accelerators to

support changing application needs with low latency

• Maximising communication throughput to multiple accel-

erators with fair, segregated sharing

• Maximised usage of FPGA resources at all times through

efficient scheduling and allocation

• Easy integration of accelerated tasks within software

applications

The work we have seen to date focusses primarily on FPGAs

as static accelerators or as monolithic devices brought online

for a particular task. We explore the benefits of virtualised

dynamically reconfigurable accelerators, with a view to using

FPGAs as a general computing resource alongside standard

resources.

IV. CLOUD FPGA FRAMEWORK

Our framework integrates a PCIe based FPGA board into

a standard datacenter server. The FPGA is partitioned into

separate accelerator slots. The PCIe interface manages recon-

figuration of the accelerators and movement of data into and

out of them. Accelerator functions are either stored in a library

on the host machine as partial bitstreams or can be uploaded

by the user.

We have extended a previous open-source partially recon-

figurable FPGA test platform [17] to support multiple inde-

pendent accelerators and added the required software frame-

work to enable accelerator management. The communication

interface is implemented in the FPGA static logic and can

manage multiple accelerators concurrently. A built-in arbiter

guarantees fair communication bandwidth to every accelerator

when multiple accelerators are communicating with the host

server. Accelerators are also configured over PCIe, providing

superior reconfiguration performance and avoiding the need

for external cabling.

We have developed software infrastructure to manage low-

level communication through a driver and high-level virtu-

alisation through a hypervisor. When an accelerator is to be

configured in the FPGA, the hypervisor decides on the optimal

PRR to host it and initiates reconfiguration. The hypervisor

also maintains a list of PRRs and configured accelerators to

avoid unnecessary reconfiguration when a required accelerator

P
C

Ie
bA

d
a

p
te

r

D
R

A
M

bA
d

a
p

te
r

Stream-InbAdapter

Stream-OutbAdapter

Clock
Reset
Interrupt
Address
Data

A
s
y
n

c
bF

IF
O

s

Wr_Clk Rd_Clk

Variable

Resources

Fig. 3. A vFPGA (PRR) showing interface signals and adapters.

is already present in the FPGA and not in use. An outline of

our platform is depicted in Fig. 2.

A. Hardware Infrastructure

To host FPGAs in the cloud, standard datacenter servers are

used with commercially available FPGA development boards.

1) Host Servers: The server CPUs run the software com-

ponents for user request, FPGA resource, and communication

management. The servers also maintain a database of hardware

accelerators in the form of a bitstream library which can be

augmented with custom user designs. Servers can host multiple

FPGA boards of varying logic capacity and performance.

Using off-the shelf FPGA boards offers easy upgradability

and ensures minimal cost. These FPGA boards are interfaced

through a PCIe Gen 3×8 interface and come with on-board

DRAM for FPGA off-chip storage.

Each physical FPGA is divided into multiple partially

reconfigurable regions (PRRs), which act as virtual FPGAs

(vFPGAs) for hosting accelerators. vFPGAs are interfaced

with the host FPGA’s PCIe and DRAM physical interfaces

for communication and data storage. The logic to manage

these physical interfaces is implemented in the FPGA static

logic, meaning it is not reconfigured during FPGA uptime.

An interface switch ensures each vFPGA is served in a fair

manner with round robin arbitration for access to the PCIe

and DRAM data streams. vFPGAs can also be prioritised with

higher bandwidth if application needs are different. The switch

also implements independent DMA controllers to manage

data transfer between each vFPGA and the server. Each

physical FPGA has a reconfiguration controller, which enables

partial reconfiguration of the vFPGAs using a dedicated DMA

controller for high-speed partial bitstream transfer from the

server.

2) Virtual FPGAs (vFPGAs): A vFPGA is the smallest

FPGA instance available to cloud users, and the size can be set

based on anticipated demand, but also changed through a full

reconfiguration of the FPGA. A vFPGA can be configured

with a compatible partial bitstream to implement a virtual

FPGA accelerator (vFA). A vFPGA can host multiple vFAs,

whose size in terms of FPGA resources is smaller than that of

the vFPGA. To enable portability and simplify vFA design,

the vFPGAs all have a standard interface: a single AXI4-

Stream interface to the PCIe core and another AXI4-Stream

interface to external DRAM. Two other stream interfaces

connect adjacent vFPGAs, enabling accelerator chaining. Each

vFPGA also has an address/data interface accessible over

PCIe, an interrupt interface, and clock and reset signals, all

used to manage the functioning of the vFAs it hosts.

Every stream interface to/from a vFPGA is integrated with

the rest of the FPGA fabric through adapters as shown in

Fig. 3. These adapters are essentially AXI4-Stream based

asynchronous FIFOs, which enable the logic within the vF-

PGA (vFAs) to run at a different clock frequency from the

interface. This is important as some vFAs may not be able to

run at the interface line rate.

When multiple vFPGAs are active simultaneously, it is

important to make sure that the communication bandwidth

between the host and the vFPGAs is fairly partitioned. Lack

of bandwidth management leads to hosted vFAs suffering

from data starvation, leading to performance degradation. A

hardware arbitrator in the FPGA ensures bandwidth is equally

partitioned between all the active vFPGAs using modified

round-robin arbitration that considers only active vFPGAs.

This allocation is completely abstracted from the vFPGAs

ensuring a clean partitioning between them. Similarly, in

the host driver, separate DMA buffers are reserved for each

vFPGA to ensure data isolation.

B. Software Infrastructure

Managing hardware resources requires a number of software

components tailored to this task.

1) FPGA Driver: This is responsible for managing low

level PCIe input/output operations, DMA buffer management

and interrupt management. Our driver implementation main-

tains separate buffers and interrupt queues to manage data

transfer to each vFPGA enabling concurrent, partitioned DMA

operations to multiple vFPGAs.

2) Application Programming Interface (API): A supplied

API enables users to easily integrate vFAs in their software.

API functions enable data transfer between the host server

and vFAs, between off-chip DRAM and vFAs, vFA interrupt

management, and vFPGA reconfiguration. To initiate a data

transfer, the source and destination are passed as arguments

to the relevant API function. The framework, with the help of

the driver, configures the appropriate DMA controller in the

FPGA to initiate the operation. Each data transfer is synchro-

nised based on interrupt signals from the corresponding DMA

controller.

The public reconfiguration API only allows access to vFAs

stored in the accelerator library. However, a private reconfigu-

ration API can be exposed to users to support implementation

of their own vFAs subject to security considerations.

3) Hypervisor: The hypervisor is implemented as part

of the cloud virtualisation layer, supporting management of

FPGA resources.

Resource Management: When the cloud supports multiple

vFPGAs and multiple FPGA boards, a resource manager is

required to manage them. The allocation of vFAs to vFPGAs

is hidden from the user in the same way that they would not

know which physical CPU core a vCPU is run on. This enables

the management infrastructure to consolidate resources for

best performance and efficiency. We implement a resource

manager that considers the correlation between vFA size

and vFPGA size. The resource manager maintains a list of

available vFPGAs, which accelerators they each support, and

their allocation status. It also has access to the accelerator

database, where partial bitstreams corresponding to different

vFAs targeting multiple vFPGAs are stored.

When a user requests an accelerator, a new software thread

is generated to serve it. It requests a specific vFA reconfig-

uration and later manages data movement between the host

and the vFA. When the resource manager receives a vFA

reconfiguration request, it selects the smallest vFPGA capable

of hosting it from the pool of free vFPGAs. The hypervisor

makes sure that only a single vFPGA is reconfigured at any

time, since partial reconfiguration is not preemptive. Once a

vFPGA is selected, it is marked as busy in the vFPGA list and

the configured accelerator is also noted. If a vFPGA cannot be

allocated, the user request is rejected and the corresponding

software thread is destroyed. A vFPGA is returned to the

free pool once the request has been serviced. Once freed, a

subsequent request for the same accelerator can be serviced

without reconfiguring. Unused vFPGAs can also be configured

with blank partial bitstreams to reduce power consumption.

If the resource manager is unable to find a free vFPGA

to host the accelerator, the user request is rejected, and the

request can be processed in software instead. By selecting

the smallest possible vFPGA for the accelerator, the resource

manager tries to maximise the number of vFPGAs available

for implementing larger accelerators, thus minimising request

rejections. Presently, vFPGA allocations are non-preemptive

and a vFPGA is returned to the free pool only after fully

servicing a user request. It is clear that vFPGA granularity

must be chosen to reflect the types of accelerators and expected

user workloads for benefits to be maximised.

Security Management: Using FPGAs in a shared infras-

tructure environment can create security issues, since users

with the ability to reconfigure FPGAs might launch malicious

attacks through corrupt bitstreams. This can be circumvented

either through abstracting the accelerator library so no direct

accelerator configuration is allowed, or through extra security

steps during the client accelerator design process. Features

such as bitstream encryption and CRC insertion are supported

by FPGA implementation tools and bitstream authentication

and error checking are supported in the FPGA silicon.

We implement additional bitstream authentication to prevent

potential malicious bitstreams using bitstream watermarking.

In the server, every new bitstream is authenticated based

on the watermark before being used for reconfiguration and

implementation scripts are secured to prevent tampering.

4) Middleware: This is the software running on the client

machine which enables it to access the cloud services. We

have developed a prototype lightweight middleware interface

that enables users to send accelerator requests (or custom vFA

bitstreams) and container software using the cloud API, then

Middleware Hypervisor Driver

conn request

ack/nak

req acc no

acc ack/acc nak

req InData

InData ack

InData

req OutData

fpga reconfig()

fpga send data()

fpga recv data()

OutData

OutData ack

OutData

Check FIFO
Create new thread

Allocate vFPGA
and vFA

Save Input Data

Fig. 4. Middleware communication protocol.

vFPGA-1 vFPGA-4

vFPGA-2 vFPGA-3

Static

Fig. 5. Virtex-7 floorplan showing 4 vFPGAs.

send input data to the cloud using the server’s IP address,

before receiving the resulting processed data. The middleware

uses Linux sockets with TCP/IP to access the server.

Fig. 4 shows our middleware protocol for accessing li-

brary accelerators. Users initially request the cloud service

by sending a connection request to the cloud server. If the

request is accepted, the hypervisor pushes the request onto

a FIFO and acknowledges it. When the client receives an

acknowledgement, it can request a specific vFA using a

predefined accelerator tag. The hypervisor resource manager

tries to allocate a vFPGA for the vFA; if one is allocated,

an acknowledgement is returned and the client sends the

input data. The software thread on the server reconfigures the

vFPGA with the requested vFA, sends it the input data, and

receives the processed data, which is then sent back to the

client along with a data request acknowledgement. This is

currently mostly a proof of concept, and we are developing

more advanced features.

V. CASE STUDY

We have implemented the proposed cloud hardware in-

frastructure on a Xilinx VC709 FPGA board containing a

XC7VX690T FPGA, supporting PCIe Gen 3×8, and hosting

8GB of on-board memory. It is hosted in an HP Z420 with an

Intel Xeon E5-1650 v2 CPU running at 3.5 GHz with 16GB

of RAM. The large FPGA offers ample resources for complex

Mapper-1 Mapper-2 Mapper-3 Mapper-4

Mapper scheduler

Reducer

256

32 32 32 32

PCIe Data Stream

Count

Count 1 Count 2 Count 3 Count 4

Fig. 6. vFA architecture for word count.

accelerators. Our custom hardware logic for PCIe and DRAM

communication and reconfiguration management consumes

about 7% of the FPGA area and is implemented statically.

The remainder of the FPGA is divided into 4 vFPGAs as

shown in Fig. 5, allowing this implementation to host up to

4 independent accelerators concurrently. A new vFA can be

configured in under 16 ms.

As an application case study, we built a map-reduce accel-

erator for word counting, which finds the number of occur-

rences of a specified word in a large data set, useful in data

mining applications. The vFA receives a 256-bit data stream

at 250 MHz over PCIe. A mapper scheduler passes the data

to one of a number of mappers, that each count the number

of occurrence of the specified word. Data is stored in a 256-

bit to 8-bit asymmetric FIFO which buffers data locally and

splits it into distinct characters that are sequentially moved

into a shift register. When a non alpha-numeric character

is encountered, it is compared with the query word and if

they match, an internal counter is incremented and the shift

register is flushed. The accelerator design is highly scalable

supporting a large number of parallel mappers in a single

vFA. We built multiple vFAs targeting the same vFPGA with

1–64 mappers. The outputs of all the mappers are connected

to a single reducer, which periodically adds the output from

all the mappers and finds the total count. This value can be

read-back through the PCIe interface. A software version of

the application was implemented in C based on the efficient

Boyer-Moore algorithm [18].

Software performance saturates at 8 mappers as the server

processor cannot efficiently support more threads, resulting in

a peak throughput of 40.8 MB/s. A single hardware mapper

provides up to 240 MB/s throughput and as the number of

mappers increases, the performance improves up to over

6.8 GB/s for 32 mappers, beyond which there is no significant

improvement as the PCIe bandwidth is saturated (86%). All

experiments start with a file of given size buffered in memory

and the results being stored to memory, so the hardware results

include all required movement of data to and from the FPGA.

This performance gap of 166× varies by application, but over

a full order of magnitude is possible for many classes of

applications.

0 4 8 16 32 64

10−1

100

101

102

103

Number of Mappers/Threads

T
h
ro
u
g
h
p
u
t/
W

a
tt

(M
B
y
te
s/
se
c/

W
)

SW

Raw FPGA

Virtualised FPGA

SW Projected

FPGA Projected

Fig. 7. Performance per Watt with varying number of mappers.

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0

0.2

0.4

0.6

Cross over

FPGA efficient region

FPGA Occupancy (% of 24 hrs.)

T
h
ro
u
g
h
p
u
t/
W

a
tt

(M
B
/
s/
W

)

FPGA

SW

Fig. 8. Break even point for the FPGA to be efficient.

We also investigated performance per Watt and quantified

the cost of virtualising the FPGA with distinct slots for

separate mappers and separate management of the vFAs. The

standalone idle power consumption of the target server is

about 75 W. The VC709 board consumes 24 W, with negligible

change when running accelerators. The software application

consumes an extra 70 W (145 W total) when at peak through-

put. The vFPGA resource management threads result in a total

CPU power consumption of 128 W at peak throughput. Fig. 7

shows the significant gap between hardware and software, and

shows that even factoring in the software management of the

vFAs and the reconfiguration time to load them, the efficiency

of the virtualised hardware (blue line) remains 2 orders of

magnitude higher.

Adding an FPGA board adds a fixed power consumption

overhead to the server, so we consider how much usage

the FPGA requires before this overhead is amortised. Fig. 8

shows that the virtualised FPGA implementation surpasses the

software only computational efficiency once the FPGA is used

over 12% of the time.

VI. CONCLUSION

Integration of heterogeneous hardware resources in the

cloud offers an opportunity to significantly improve perfor-

mance and computational efficiency, while overcoming stalled

CPU performance scaling. FPGAs offer the advantages of high

communication bandwidth shared among multiple accelerators

and dynamic loading of accelerators at run time through partial

reconfiguration.

We have presented a prototype framework for integrating

virtualised FPGA accelerators in the cloud using partial recon-

figuration and virtualised communication interfaces. We also

detailed a case-study that demonstrates that even with the vir-

tualisation overhead, FPGAs offers a significant improvement

in computational efficiency over software.

REFERENCES

[1] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia,
J. Shalf, H. J. Wasserman, and N. J. Wright, “Performance analysis of
high performance computing applications on the Amazon Web Services
cloud,” in Proceedings of the IEEE International Conference on Cloud

Computing Technology and Science (CloudCom), 2010, pp. 159–168.
[2] J. M. Tendler, “An introduction to the POWER8 processor,” Presented

at the IBM POWER User Group, Jan. 2014.
[3] G. Lee, B.-G. Chun, and R. H. Katz, “Heterogeneity-aware resource

allocation and scheduling in the cloud,” Proceedings of HotCloud, 2011.
[4] V. T. Ravi, M. Becchi, G. Agrawal, and S. Chakradhar, “Supporting GPU

sharing in cloud environments with a transparent runtime consolidation
framework,” in Proceedings of the International Symposium on High

Performance Distributed Computing, 2011, pp. 217–228.
[5] S. Kestur, J. D. Davis, and O. Williams, “BLAS comparison on FPGA,

CPU and GPU,” in Proc. Int. Symp. VLSI (ISVLSI), 2010, pp. 288–293.
[6] S. Asano, T. Maruyama, and Y. Yamaguchi, “Performance comparison

of FPGA, GPU and CPU in image processing,” in Proceedings of the In-

ternational Conference on Field Programmable Logic and Applications

(FPL), 2009, pp. 126–131.
[7] A. Putnam et al., “A reconfigurable fabric for accelerating large-scale

datacenter services,” in Proceedings of the International Symposium on

Computer Architecture (ISCA), 2014, pp. 13–24.
[8] T. J. Todman, G. A. Constantinides, S. J. Wilton, O. Mencer, W. Luk,

and P. Y. Cheung, “Reconfigurable computing: Architectures and design
methods,” IEE Proceedings–Computers and Digital Techniques, vol.
152, no. 2, pp. 193–207, 2005.

[9] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and
R. R. Taylor, “PipeRench: A reconfigurable architecture and compiler,”
Computer, vol. 33, no. 4, pp. 70–77, 2000.

[10] K. Vipin and S. A. Fahmy, “ZyCAP: Efficient partial reconfiguration
management on the Xilinx Zynq,” IEEE Embedded System Letters (ESL),
vol. 6, no. 3, pp. 41–44, 2014.

[11] K. Eguro and R. Venkatesan, “FPGAs for trusted cloud computing,”
in Proceedings of the International Conference on Field Programmable

Logic and Applications (FPL), 2012, pp. 63–70.
[12] P. Francisco et al., The Netezza Data Appliance Architecture: A Plat-

form for High Performance Data Warehousing and Analytics. IBM
Redbooks, 2011.

[13] J. Ouyang, S. Lin, W. Qi, Y. Wang, and B. Yu, “SDA: Software-
defined accelerator for large-scale DNN systems,” in Proceedings of

HOT CHIPS, 2014.
[14] S. Byma, J. G. Steffan, H. Bannazadeh, A. Leon-Garcia, and P. Chow,

“FPGAs in the cloud: Booting virtualized hardware accelerators with
OpenStack,” in Proceedings of the IEEE International Symposium on

Field-Programmable Custom Computing Machines (FCCM), 2014, pp.
109–116.

[15] J. Hauswald et al., “Sirius: An open end-to-end voice and vision personal
assistant and its implications for future warehouse scale computers,” in
Proceedings of the International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), 2015.
[16] M. Jacobsen and R. Kastner, “RIFFA 2.0: A reusable integration

framework for FPGA accelerators,” in Proceeding of the International

Conference on Field Programmable Logic and Applications (FPL)

International Conference on Field-Programmable Logic, 2013.
[17] K. Vipin and S. A. Fahmy, “DyRACT: A partial reconfiguration enabled

accelerator and test platform,” in Proceedings of the International

Conference on Field Programmable Logic and Applications (FPL),
2014.

[18] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”
Communications of the ACM, vol. 20, no. 10, pp. 762–772, 1977.

