
Virtualized In-Cloud Security Services for Mobile Devices

Jon Oberheide, Kaushik Veeraraghavan, Evan Cooke, Jason Flinn, Farnam Jahanian
Electrical Engineering and Computer Science Department

University of Michigan, Ann Arbor, MI 48109
{jonojono, kaushikv, emcooke, jflinn, farnam}@umich.edu

Abstract
Modern mobile devices continue to approach the capa-

bilities and extensibility of standard desktop PCs. Unfor-
tunately, these devices are also beginning to face many of
the same security threats as desktops. Currently, mobile
security solutions mirror the traditional desktop model
in which they run detection services on the device. This
approach is complex and resource intensive in both com-
putation and power. This paper proposes a new model
whereby mobile antivirus functionality is moved to an
off-device network service employing multiple virtual-
ized malware detection engines. Our argument is that it
is possible to spend bandwidth resources to significantly
reduce on-device CPU, memory, and power resources.
We demonstrate how our in-cloud model enhances mo-
bile security and reduces on-device software complex-
ity, while allowing for new services such as platform-
specific behavioral analysis engines. Our benchmarks
on Nokia’s N800 and N95 mobile devices show that our
mobile agent consumes an order of magnitude less CPU
and memory while also consuming less power in com-
mon scenarios compared to existing on-device antivirus
software.

1 Introduction

Modern mobile devices such as the Apple iPhone and
Nokia N800 run near-complete versions of commod-
ity operating systems like BSD and Linux. Functional-
ity like complete multi-protocol networking stacks, UI
toolkits, and file systems provide developers with a rich
environment to quickly build applications but open up
devices to the same wide range of threats that target
desktops. Over a thousand native third-party applica-
tions were developed for the iPhone platform before the
official SDK was even released [11], several hundred
have been developed for Nokia’s Maemo platform [10],
and thousands of developers are creating applications for
Google’s new Android platform [6].

To date, security vendors have marketed mobile-
specific versions of antivirus software [8, 17, 3]. How-
ever, as the complexity of mobile platforms and threats
increase, we argue that mobile antivirus solutions will
look more like their desktop variants. The functionality
required to detect sophisticated malware can have signif-
icant power and resource overhead – critical resources on
mobile devices.

To conserve scarce mobile resources and improve
detection of modern threats this paper advocates moving
mobile antivirus functionality to an off-device in-cloud
network service. The core of this approach is expending
bandwidth to reduce on-device CPU and memory
resources and thereby save power. We foresee three
important benefits:

Better detection of malicious software: Once de-
tection functionality is offloaded to a network service,
significantly more resources can be dedicated to eval-
uating each suspicious file. Our approach uses fully
virtualized detection engines running in parallel inside
a network service providing mobile devices with the
protection capabilities of multiple detection engines.

Reduced on-device resource consumption: By
transferring files to an in-cloud network service for
analysis, we argue that overall CPU use, memory use,
and power can be reduced compared to performing the
analysis on-device. Even more important, the network
service can scale and be extended with new signatures
and detection engines without using additional resources
on mobile devices.

Reduced on-device software complexity: Modern
threats have become extremely sophisticated, requiring
complex antivirus software to detect and mitigate [12].
By deploying a relatively simple agent on mobile
devices and pushing complex detection software into
the network, the complexity of mobile software can be

1



minimized. This reduces the on-device attack surface
and the effort required to port the agent to new platforms.

To explore the idea of a virtualized malware detec-
tion service for mobile devices, we extend the CloudAV
platform [13] with an on-device mobile agent and an
off-device mobile-specific behavioral detection engine.
Through a series of benchmarks comparing CloudAV
to existing on-device antivirus software, we find that
our mobile agent consumes an order of magnitude less
CPU and memory, consumes less power in common
scenarios, and offers greater protection capabilities that
scale against future threats.

2 Approach

We propose an architecture that consists of two primary
components: a lightweight host agent that runs on mo-
bile devices, acquires files, and sends them into the net-
work for analysis; and a network service that receives
files from the agent and identifies malicious or unwanted
content. The proposed architecture could be deployed by
a mobile service provider or third-party vendor.

This approach is an extension of the existing CloudAV
platform [13]. In this section, we first provide back-
ground material on the fundamental CloudAV architec-
ture and then discuss the extensions required to facilitate
the approach in a mobile environment.

2.1 CloudAV Background
We now provide a brief overview of CloudAV [12, 13],
which provides an in-cloud service for malware detec-
tion and consists of both host agent and network service
components.

2.1.1 Host Agent

Just like existing antivirus software, the host agent is a
lightweight process that runs on each device and inspects
file activity on the system. Access to each file is trapped
and diverted to a handling routine which begins by gen-
erating a unique identifier (such as a hash) of the file and
comparing that identifier against a cache of previously
analyzed files. If a file identifier is not present in the
cache, then the file is sent to the in-cloud network ser-
vice for analysis.

The threat model for the host agent is similar to that
of existing software protection mechanisms such as an-
tivirus. As with these host-based systems, if an attacker
has already achieved code execution privileges, it may
be possible to evade or disable the host agent. However,
by reducing the complexity of the host agent by moving
detection into the network, it is possible to reduce the

Engine Combination Detected Coverage
CM 229/469 48.82%

CM, SM 290/469 61.83%
CM, SM, MA 358/469 76.33%

CM, SM, MA, BD 417/469 88.91%
CM, SM, MA, BD, FS 430/469 91.68%

Table 1: An example of the increased detection cover-
age against a dataset of recent month’s worth of desktop
malware samples when using multiple engines in paral-
lel: ClamAV (CM), Symantec (SM), McAfee (MA), Bit-
Defender (BD), and F-Secure (FS).

vulnerability footprint of host software that may lead to
elevated privileges or code execution.

2.1.2 Network Service

The second major component of the architecture is a net-
work service responsible for file analysis. The task of
the network service is to determine whether a file is ma-
licious or unwanted. Unlike existing antivirus software
that cannot run multiple detection engines on a single
device due to technical conflicts and resource constraints,
moving detection capabilities to a network service allows
the use of multiple antivirus engines in parallel by host-
ing them in virtualized containers. That is, each can-
didate file is analyzed by multiple detection engines to
determine whether a file is malicious or unwanted. The
use of virtualization allows the network service to scale
to large numbers of engines and users. If demand for a
particular engine increases, more instances of that con-
tainer can be spun up to service analysis requests. This
approach can result in significant gains in detection cov-
erage, as illustrated in Table 1.

2.1.3 Caching

Once a file has been analyzed, the result can be stored in
both a local cache on the host agent and in a shared re-
mote cache in the network service. Subsequent accesses
to that file by the device look up the result in the local
cache without requiring network access. In addition, ac-
cess of the same file by other devices can be mediated us-
ing a shared remote cache located in the network service,
without having to send the file for analysis. Cached re-
ports stored in the network service may also opportunis-
tically be pushed to the agent to speed up future accesses.

2.2 Extending CloudAV to the Mobile En-
vironment

We now describe how we extended the CloudAV plat-
form for the mobile environment.

2



2.2.1 Mobile Agent

Extending the benefits of the CloudAV platform requires
that an agent be deployed on a mobile platform. Given
that the CloudAV platform inherently encourages a sim-
ple on-device agent, few fundamental modifications to
the architecture are necessary to develop and support a
mobile agent. The primary difference between the tradi-
tional host agent and our newly developed mobile agent
is the constraints on resources like power and CPU cy-
cles. Therefore, the file identifier algorithms and com-
munications protocol with the network service are im-
portant, as the agent spends most of its cycles on those
activities.

We developed a mobile agent to interface with the
CloudAV network service for the Linux-based Maemo
platform and deployed it on a Nokia N800 mobile de-
vice. The mobile agent is implemented in Python and
uses the Dazuko [14] framework to interpose on system
events. Specifically, we hook the execve(2) syscall and
file system operations to acquire and process candidate
files before permitting their access. The mobile agent re-
quired only 170 lines of code.

2.2.2 Mobile-Specific Behavioral Engine

A more resource-intensive method of detecting mali-
cious activity is through behavioral analysis. Behavioral
engines attempt to emulate or run real operating systems
and applications to determine whether a file is perform-
ing malicious behavior at runtime. While these engines
usually require a great deal of resources, which would
not be suitable for a mobile device, deploying such an
engine in the network service allows us to gain the pro-
tection benefits without the resource costs.

To demonstrate this point, we extend the CloudAV
network service with a mobile-specific behavioral detec-
tion engine. The behavioral engine runs candidate ap-
plications in a virtualized Maemo operating environment
hosted in the network service and monitors the applica-
tion’s system calls and D-Bus interprocess communica-
tion for malicious behavior. Attempts by the application
to modify or destroy a user’s personal data, initiate out-
going calls to unrecognized numbers via Skype, or initi-
ate socket communications to untrusted destinations are
flagged as malicious.

2.3 Additional Security Services

The security services hosted in the network service are
not limited to antivirus functionality. We envision an in-
cloud platform enabling a range of different security ser-
vices.

• SMS Spam Filtering: SMS spam filtering func-
tionality, which is currently implemented in an ad-
hoc manner by some mobile antivirus products [8],
can be much more accurate in a network-centric
deployment model through the aggregation of data
from a large corpus of users.

• Phishing Detection: Just as a centralized view of
the web has helped Google develop strong anti-
phishing tools [7], a centralized view of mobile ac-
tivity in the service provider can help mobile opera-
tors detect and prevent phishing attacks against their
customers.

• Centralized Blacklists: Blacklists of various com-
munication addresses such as Bluetooth and IP may
be implemented as an off-device security service.
These blacklists can be maintained on a global level
by a service provider for known malicious entities
or on a personal user-specified level. These cen-
tralized policies may be opportunistically pushed to
client devices for enhanced performance.

Most importantly, this architecture significantly low-
ers the bar for extending novel security services to mo-
bile devices. For example, if a security vendor develops
a new algorithm that is effective against detecting mali-
cious mobile applications, that technique can be seam-
lessly integrated into the network service and put into
operation without affecting any of the existing mobile
devices. This transparent extensibility is a very power-
ful tool as mobile platforms and their needs are rapidly
evolving.

2.4 Limitations

• Disconnected operation: Mobile devices may en-
ter a disconnected state where the mobile agent
may not be able to effectively utilize the network-
based security services. However, mobile devices
are rapidly increasing in connectivity capabilities
with multiple radios for high-speed data transmis-
sion. Furthermore, given that connectivity will of-
ten be required to acquire new applications and con-
tent, the need for analysis in a disconnected state
may be minimal.

• Privacy: The proposed architecture presents pri-
vacy implications as the organization hosting the
network service may collect potentially sensitive
data from various users. It is vital that users un-
derstand the privacy implications of such a service
and be able to enforce limitations on what data is
transmitted to the provider.

3



Agent Startup Time Average Memory Peak Memory User Jiffies Total Jiffies
ClamAV 57 sec 25967 KB 39556 KB 13349 15684

MA-CL+CR 0.2 sec 1502 KB 2154 KB 1502 2185
MA-CL+WR 0.2 sec 1486 KB 2124 KB 1486 1854
MA-WL+WR 0.2 sec 1189 KB 1812 KB 1189 1714

Table 2: Comparison of the mobile agent with ClamAV in memory consumption and CPU jiffies on the Nokia N800.

3 Evaluation

For our evaluation, we perform a series of benchmarks on
two Nokia mobile devices. We measure the resource and
power consumption of these devices and compare our
mobile agent with existing commercial antivirus prod-
ucts. For each experiment, we provide results for three
cache states for our mobile agent (MA): CL+CR: cold
local, cold remote; CL+WR: cold local, warm remote;
and WL+WR: warm local, warm remote.

3.1 Computational Resources

In the first experiment, we compare the CPU and mem-
ory consumption of the ClamAV [16] engine with our
mobile agent on the Nokia N800. This benchmark se-
rially runs common applications: the built-in N800 web
browser, the Skype VoIP client, the Pidgin IM client, the
Kagu media player, and a PDF viewer. The application
binaries and associated shared libraries, 346 files in total,
are all processed by the particular engine. CPU usage is
measured in both the number of jiffies the process has
been scheduled for in userspace (utime) and total jiffies
(utime + stime). The memory is based on the resident set
size (RSS) of the process, or the number of non-shared
memory pages currently in use by the process.

The results of the benchmark are listed in Table 2. Cla-
mAV requires approximately 18 times as much memory
and over 8 times as much CPU time than the worst-case
cache configuration for the mobile agent. In addition, the
ClamAV engine has an extremely lengthy initialization
process due to its loading of its signature database.

3.2 Power Consumption

In the second experiment, we perform a micro bench-
mark with a Nokia N95 smartphone. We measure the
power consumption required to analyze files locally with
Kaspersky’s Mobile Security [8] software and compare
it to using the mobile agent and network service. For in-
stances where the mobile agent needs to access the net-
work service for cache queries or file transfers, we com-
pare both the WiFi and GRPS/EDGE radios on the N95.
The files analyzed are a collection of third-party applica-
tions and games totaling approximately 25 megabytes.

Agent Avg / Peak / Total Energy
None (Baseline) 0.36 / 0.63 / 43.2 W

Kaspersky 0.86 / 1.27 / 89.4 W
MA-CL+CR (EDGE) 1.51 / 2.31 / 250.6 W
MA-CL+CR (WiFi) 1.31 / 2.44 / 165.1 W

MA-CL+WR (EDGE) 1.22 / 2.13 / 126.9 W
MA-CL+WR (WiFi) 0.92 / 1.83 / 74.5 W

MA-WL+WR 0.82 / 1.20 / 59.9 W

Table 3: Comparison of the mobile agent with Kaspersky
Mobile Security on the Nokia N95.

Detection Engine Signature Database Size
Symantec Mobile 27 signatures
Kaspersky Mobile 284 signatures

ClamAV 262289 signatures
Mobile Agent > 5 million sigs + behavioral

Table 4: The number of threats addressed in the signature
database of various detection engines.

The results of the experiment are listed in Table 3.
This experiment exemplifies the importance of the local
and remote caching mechanisms. While the cold-remote
cache states result in increased power consumption due
to the energy of the radio transmission, a cold cache con-
figuration is the worst case scenario which rarely occurs
in practice. Both the warm-local/warm-remote and cold-
local/warm-remote cache states, which are arguably the
most common scenario, outperform the local Kaspersky
engine in terms of consumed power. In a desktop en-
vironment, we have observed cache hits rates of over
99.8%, meaning many of the applications used are com-
mon across hosts and the transmission of full file con-
tents across a network link is rarely necessary [13]. That
being said, it is unclear whether the commonality of ap-
plications and associated cache hit rate would be similar
in a mobile environment.

3.3 Scale of Detection Algorithms

Table 4 shows the number of threats in each detection en-
gine’s signature database. Our mobile agent vastly out-
performed ClamAV on the N800 device while protecting
against an order of magnitude more threats. While the
power overhead of the mobile agent in the worst case

4



was greater than Kaspersky’s antivirus software, Kasper-
sky only scanned for 284 threats, roughly four orders of
magnitude less than the CloudAV network service.

Our results demonstrate that the current model of on-
device antivirus software is not scalable. As the number
and complexity of mobile threats increase, on-device en-
gines and their signature databases will require more pro-
cessing, storage, and power. On the other hand, our mo-
bile agent remains constant in its resource requirements
and can easily accommodate new signatures and entirely
new engines in the virtualized network service.

3.4 On-Device Software Complexity
Our anecdotal experience with on-device antivirus soft-
ware exemplifies their complexity and inability to deal
with mobile platform diversity. First, the ClamAV soft-
ware running on the N800 caused the device to randomly
reboot when performing a normal system scan, making
reliable evaluation tedious. Second, the N95 evaluation
was originally planned to be with Symantec’s Norton
Smartphone Security software which advertises compat-
ibility with N95’s OS (Symbian Series 60 version 3).
However, when we initiated a basic file scan on the N95,
Norton would simply return error -15 and stop execu-
tion, with no further information. In comparison, our
model of using a lightweight mobile agent greatly re-
duces on-device software complexity and failures.

4 Related Work

Several mobile services [4, 5, 9, 15, 18, 19] have advo-
cated leveraging remote execution by moving services
off-device to minimize resource consumption while
achieving performance targets. Our work is novel in
the proposition of migrating complex security services
to a network-based detection service to provide enhanced
protection capabilities to mobile devices while achieving
reduced complexity and resource consumption.

Further, work such as [1] shows how security prac-
titioners increasingly leverage virtualization to improve
host security. Researchers have also explored the use
of on-device virtualization for mobile security appli-
cations [2]. In our prior work, we demonstrate that
while the effectiveness of desktop antivirus is inadequate
against modern threats [12], a virtualized in-cloud net-
work service [13] fares much better.

5 Conclusion

To address the growing concern of mobile device threats,
we have investigated a new approach to mobile device
malware detection. By moving the detection capabilities

to a network service, we gain numerous benefits includ-
ing increased detection coverage, less complex mobile
software, and reduced resource consumption. Our imple-
mentation and evaluation show that this approach is not
only feasible and effective for the current generation of
mobile devices, but will become even more consequen-
tial and valuable in the future as the scale and sophistica-
tion of mobile threats increase.

References
[1] P.M. Chen and B.D. Noble. When virtual is better than real. Pro-

ceedings of the 2001 Workshop on Hot Topics in Operating Sys-
tems (HotOS), pages 133–138, 2001.

[2] L.P. Cox and P.M. Chen. Pocket Hypervisors: Opportunities and
Challenges. Proceedings of HotMobile, 2007.

[3] F-Secure Corporation. F-secure mobile anti-virus. http://
mobile.f-secure.com/, 2008.

[4] Jason Flinn, Dushyanth Narayanan, and M. Satyanarayanan.
Self-tuned remote execution for pervasive computing. In Pro-
ceedings of the 8th Workshop on Hot Topics in Operating Sys-
tems (HotOS-VIII), pages 61–66, Schloss Elmau, Germany, May
2001.

[5] A. Fox, S.D. Gribble, E.A. Brewer, and E. Amir. Adapting to net-
work and client variability via on-demand dynamic distillation.
ACM SIGPLAN Notices, 31(9):160–170, 1996.

[6] Google. Android - an open handset alliance project. http://
code.google.com/android/, 2008.

[7] Google. Google safe browsing. http://code.google.com/
apis/safebrowsing/, 2008.

[8] Kaspersky Lab. Kaspersky mobile security. http://usa.
kaspersky.com/products_services/mobile-security.
php, 2008.

[9] Thomas Kunz and Sali Omar. A mobile code toolkit for adaptive
mobile applications. In Proceedings of the 3rd IEEE Workshop
on Mobile Computing Systems and Applications, pages 51–59,
Monterey, CA, December 2000.

[10] Nokia Corporation. Maemo sdk. http://maemo.org/, 2008.

[11] Nullriver, Inc. iphone installer.app. http://iphone.
nullriver.com/, 2008.

[12] Jon Oberheide, Evan Cooke, and Farnam Jahanian. Rethink-
ing antivirus: Executable analysis in the network cloud. In 2nd
USENIX Workshop on Hot Topics in Security (HotSec 2007), Au-
gust 2007.

[13] Jon Oberheide, Evan Cooke, and Farnam Jahanian. Cloudav: N-
version antivirus in the network cloud. July 2008. To Appear in
the Proceedings of the 17th USENIX Security Symposium.

[14] John Ogness. Dazuko: An open solution to facilitate on-access
scanning. Virus Bulletin, 2003.

[15] Alexey Rudenko, Peter Reiher, Gerald J. Popek, and Geoffrey H.
Kuenning. The Remote Processing Framework for portable com-
puter power saving. In Proceedings of the ACM Symposium on
Applied Computing, San Antonio, TX, February 1999.

[16] Sourcefire, Inc. Clamav antivirus. http://www.clamav.
net/, 2008.

[17] Symantec Corporation. Symantec mobile antivirus for win-
dows mobile. http://www.symantec.com/norton/
products/overview.jsp?pcid=pf&pvid=smavwm,
2008.

[18] Kaushik Veeraraghavan, Ed Nightingale, Jason Flinn, and Brian
Noble. qufiles: a unifying abstraction for mobile data manage-
ment. In The Ninth Workshop on Mobile Computing Systems
and Applications (HotMobile 2008), February 2008.

[19] B. Zenel. A general purpose proxy filtering mechanism applied
to the mobile environment. Wireless Networks, 5(5):391–409,
1999.

5


