
Virtualized Traffic:
Reconstructing Traffic Flows from Discrete Spatio-Temporal Data

Jur van den Berg Jason Sewall Ming Lin Dinesh Manocha∗

Department of Computer Science
University of North Carolina at Chapel Hill, USA

ABSTRACT
We present a novel concept, Virtualized Traffic, to reconstruct and
visualize continuous traffic flows from discrete spatio-temporal
data provided by traffic sensors or generated artificially to enhance
a sense of immersion in a dynamic virtual world. Given the po-
sitions of each car at two recorded locations on a highway and the
corresponding time instances, our approach can reconstruct the traf-
fic flows (i.e. the dynamic motions of multiple cars over time) in
between the two locations along the highway for immersive visual-
ization of virtual cities or other environments. Our algorithm is ap-
plicable to high-density traffic on highways with an arbitrary num-
ber of lanes and takes into account the geometric, kinematic, and
dynamic constraints on the cars. Our method reconstructs the car
motion that automatically minimizes the number of lane changes,
respects safety distance to other cars, and computes the accelera-
tion necessary to obtain a smooth traffic flow subject to the given
constraints. Furthermore, our framework can process a continuous
stream of input data in real time, enabling the users to view virtual-
ized traffic events in a virtual world as they occur.
Index Terms: I.6.3 [Computing Methodologies]: Simulation and
Modeling—Applications

1 INTRODUCTION
With better sensing and scene reconstruction technology and more
on-line software tools, such as Google Maps and Virtual Earth, for
visualizing urban scenes, there is a growing need to introduce real-
istic street traffic in virtual worlds. One natural approach is to in-
corporate a traffic simulator in a virtual environment. There are nu-
merous techniques to simulate macro- and microscopic traffic [10],
including agent-based methods [9, 18], cellular automata [11, 5],
mathematical modeling for continuous flows [16, 21, 19, 28, 2, 31],
etc. While some simulate low-level behaviors and some aim to cap-
ture high-level flow appearance, the resulting simulations, however,
usually do not correlate to the real traffic on the street level.
On the other hand, the current trend in addressing urgent prob-

lems due to traffic congestions in urban environments encourages
increasingly more traffic monitoring mechanisms, ranging from
various forms of traffic sensors (cameras, road sensors, GPS) to the
use of mobile phones for car tracking. Inspired by Virtualized Real-
ity [12], we propose a novel concept of Virtualized Traffic that gen-
erates a continuous traffic flow from discrete spatio-temporal data to
create a realistic visualization of highway and street-level traffic for
synthetic environments. The resulting visualization automatically
reflects and correlates to the real-world traffic and also enables pos-
sibly new VR applications that can benefit from visual analysis of
actual traffic events (e.g. accidents) based on sensor data.
Main Results: Given two locations along a highway, say A and

B, we assume that the velocity and the lane of each car is known
∗e-mail: {berg, sewall, lin, dm}@cs.unc.edu

Figure 1: Images of highway traffic synthesized by our method. Our
method computes trajectories one by one for a continuous stream of
cars (of possibly high-density). The trajectories fit the boundary con-
ditions at the sensor points, and obey the geometric, kinematic and
dynamic constraints on the cars. The number of lane changes and
the total amount of (de-)acceleration are minimized and the distance
to other cars is maximized to obtain smooth and plausible motions.

at two corresponding time instances. The challenge is to recon-
struct the continuous motion of multiple cars on the stretch of the
highway in between the two given locations. We formulate it as a
multi-robot planning problem, subject to spatial and temporal con-
straints. There are several key differences, however, between the
traditional multi-robot planning problem and our formulation. First
of all, we need to take into account the geometric, kinematic and
the dynamic constraints of each car (though a subset of specialized
algorithms have also considered these issues [6]). Second, in our
formulation, not only the start time, but the arrival time of the cars
is also specified. In contrast, the objective of previous literature has
been for the robots to arrive at the goal location as soon as possible.
Third, the domain that is dealt with here is an open system, i.e. the
number of cars is not fixed. Instead, new cars can continuously en-
ter the stretch of the highway to be visualized. This aspect requires

incremental update to the current solution as new cars arrive at the
given location.
In this paper, we present a prioritized approach that assigns pri-

orities to each car based on the relative positions of the cars on the
road – cars in front have a higher priority. Then, in order of decreas-
ing priority, we compute trajectories for the cars that avoid cars of
higher priority for which a trajectory has already been determined.
To make the search space for each car tractable, we constrain the

motions of the car to a pre-computed roadmap, which is a reason-
able assumption as each car typically has a pre-determined location
to travel to. The roadmap provides links for changing lanes and en-
codes the car’s kinematic constraints. Given such a roadmap, and
a start and final state-time on the roadmap, we compute a trajec-
tory on the roadmap that is compliant with the car’s dynamic con-
straints and avoids collisions with cars of higher priority. At each
time step, the car either accelerates maximally, maintains its cur-
rent velocity, or decelerates maximally. This approach discretizes
the set of possible velocities and the set of possible positions as
well, enabling us to compute in three-dimensional state-time grids
along the links of the roadmap. Our algorithm searches for a trajec-
tory that minimizes the number of lane changes and the amount of
(de-)acceleration, and maximizes the distance to other cars to ob-
tain smooth and realistic motions. We show that this approach can
successfully reconstruct traffic flows for a large number of cars ef-
ficiently. Fig. 1 shows one of the challenging scenarios synthesized
and visualized by our method.
Organization: The rest of this paper is organized as follows.

First, we discuss related work in Section 2. In Section 3, we for-
mally define the problem and a car’s geometric, kinematic and dy-
namic constraints. In Section 4, we discuss the details of our ap-
proach and present experimental results in Section 5. Finally, we
conclude and discuss future work in Section 6.

2 RELATED WORK

In this section, we give a brief review of prior work first in traffic
simulation, then in multi-agent planning as we extend some of the
algorithms from robotics and adapt them here for our problem.

2.1 Traffic Simulation
The growing ubiquity of vehicle traffic in everyday life has gener-
ated considerable interest in models of traffic behavior, and a large
body of research in the area has appeared in the last 60 years. The
problem of traffic simulation has been very prominent in several
fields — given a road network, a behavior model, and initial car
states, how does the traffic in the system evolve? Such methods
are typically designed to explore specific phenomena, such as jams
and unstable, stop-and-go patterns of traffic, or to evaluate network
configurations to aid in real-world traffic engineering.
Our approach does not address the classical problems of traffic

simulation but instead traffic reconstruction, in which both the be-
gin and end states of its cars are given. To better contrast our work
against prior art, we give a brief overview of the commonly known
methods for traffic simulation. For a more thorough review of the
state of the art, see Helbing’s extensive survey [10].
One popular category of traffic simulation techniques is broadly

termed microscopic simulation. This classification includes dis-
crete agent-based methods, wherein each car is treated as a dis-
crete autonomous agent with arbitrarily complex rules governing
their behavior. Most agent-based methods use some form of the
“car-following” set of rules as described in [9] and [18]. Some of
the public-domain traffic simulation systems, such as NETSIM [4],
INTEGRATION [1], and MITSIM [30], are implemented using the
agent-based modeling framework.
The Nagel and Schreckenberg [11] applied cellular automata to

the problem traffic simulation. The efficiency and simplicity of
these models has led to a great deal of interest and extensions to

the Nagel-Schreckenberg model (see the survey in Chowdhury et
al. [5] for a detailed review).
Traffic may also be treated as continuum and its evolution in

time described by partial differential equations; this class of sim-
ulation methods is often called macroscopic simulation. Lighthill
and Whitham [16] and Richards [21] were able to accurately cap-
ture a surprising number of traffic-related phenomena with a simple
scalar nonlinear conservation law, and subsequent improvements by
Payne [19] and Whitham [28] were able to describe more compli-
cated states of traffic. Recently, the techniques described by Aw
and Rascle [2] and Zhang [31] address some of the shortcomings
of the Payne-Whitham model and provide concise description of
traffic evolution. Unfortunately, these methods can be numerically
challenging to handle due to the presence of discontinuities in the
solution.
A third class of simulation methods, called mesoscopic methods,

uses a continuum representation of traffic but uses Boltzmann-type
mesoscale equations to traffic dynamics. This approach was pio-
neered by Prigogine and Andrews [20] and improved upon by Nel-
son et al. [17], Shvetsov and Helbing [23] and others.
There is also considerable work on using virtual environments

for driving simulation [14, 3] and methods for modeling the vehicle
behaviors and navigable paths [27, 7, 29].

2.2 Multi-Robot Planning and Coordination
Existing approaches to multi-robot planning can roughly be divided
into two categories: coordinated planning and prioritized planning.
Coordinated approaches compute a path in the composite configu-
ration space of the robots, which is formed by the Cartesian prod-
uct of the configuration spaces of the individual robots [15, 24, 22].
They allow for complete planners, but their running time is expo-
nential in the number of robots. The performance can be increased
by constraining the configuration space of the individual robots to
a pre-planned path or roadmap [13], but the running time remains
exponential in the number of robots.
Prioritized approaches incrementally construct a solution [8, 25].

Each of the robots is assigned a priority, and in order of decreasing
priority the robots are picked. For each picked robot a trajectory
is planned, avoiding collisions with the previously picked robots,
which are considered as moving obstacles. Prioritized approaches
are not complete, but the running time is only linear in the number
of robots.
For the objective of traffic reconstruction, a coordinated ap-

proach will not apply. Not only would it computationally be infea-
sible, but coordinated approaches are difficult to apply in a setting
where new robots (i.e. cars) continuously enter the scene without
affecting motions of cars in the far past. A prioritized approach
on the other hand, is suited well for our application. Priorities can
naturally be assigned based on the relative positions of the cars on
the road, as it is reasonable to assume that cars only react to cars in
front of them.

3 PROBLEM DEFINITION
The problem is formally defined as follows. We are given a stretch
of a highway between two points A and B of length L that has
N lanes of a certain width. This highway is traversed by a con-
tinuous stream of cars. Of each car i we assume we get a tuple
(tAi ,!Ai ,vAi ,tBi ,!Bi ,vBi) as data input from the sensors, where tAi ∈ R

is the time at which car i passes point A, !Ai ∈ 1 . . .N is the lane in
which car i is at point A, and vAi ∈R

+ is the velocity of car i at point
A (and similarly for point B).
The task is to compute trajectories for the cars on the highway

starting and arriving in the given lanes, at the given times, and at
the given velocities. The trajectories should be computed such that
the cars respect geometric constraints (e.g. respecting safety dis-
tance with each other), and such that the kinematic and dynamic

Figure 2: The kinematic model of a car; (x,y) and θ are the position,
respectively the orientation of the car, λ is the distance between the
front and rear axle, φ is the car’s steering angle and κ is the curvature
of the traversed path.

constraints on the cars are enforced (see below). Further, we want
the reconstructed trajectories to look realistic, that is, the cars stay
in their lane wherever possible, maintain sufficient distance to each
other, and do not unnecessarily accelerate or decelerate.

3.1 Kinematics and Dynamics of a Car
A car can be conceptualized as a rectangle moving in the plane. Its
configuration is defined by a position (x,y), and an orientation θ
(see Fig. 2). Let λ be the distance between the rear axle and the
front axle of the car. The configuration transition equations of the
car, in terms of path length s, are given by:

x′(s) = cosθ (1)
y′(s) = sinθ (2)

θ ′(s) =
tanφ
λ

= κ, |φ |≤ φmax (3)

where φ is the car’s steering wheel angle, and κ the curvature of the
traversed path. The steering wheel angle is bounded to reflect the
car’s minimum turning radius.
The above equations are the kinematic constraints on a car. They

describe the paths a car can traverse. The dynamic constraints de-
scribe how such paths may be traversed over time t:

s′(t) = v, 0≤ v≤ vmax (4)
v′(t) = a, |a|≤ amax (5)
φ ′(t) = ω, |ω|≤ ωmax (6)

where v is the velocity of the car, a its acceleration and ω the speed
with which the steering wheel is turned. We lower-bound the veloc-
ity of the car such that it can only move forward (which is realistic
on a highway). Further, we bound the acceleration and the speed
with which the steering wheel can be turned. Because of the dis-
cretization that is applied below, we choose symmetric bounds on
the acceleration.

3.2 Discretization
To implement our traffic reconstruction method, we extend the ap-
proach presented by van den Berg and Overmars in [26] that plans
a trajectory for a robot under kinodynamic constraints in environ-
ments with multiple moving obstacles. We adapt the same dis-
cretization of the search space. We review that discretization here,
and describe it in terms of our problem definition. The first dis-
cretization step is to construct a roadmap for the car’s configuration
space that encodes the kinematic constraints on the car. Constrain-
ing the cars to move along the edges of the roadmap ensure that
the car’s kinematic constraints are enforced. To comply with the

car’s dynamic constraints, we have to consider the state space of
the car. To avoid the other cars in the environment, we extend the
state space to the state-time space. In Section 4.1, we discuss how
we construct a roadmap for the case of highway traffic reconstruc-
tion. Here, we describe how the state-space and the state-time space
are discretized.
Let us first assume that the roadmap consists of a single path.

The state space of the car then consists of pairs 〈s,v〉, where s is the
position of the car along the path, and v the car’s velocity. The state
space is discretized into a grid by choosing a small time step Δt.
At each time step, the car is allowed to either accelerate maximally,
maintain its current velocity, or decelerate maximally. This gives
the following state transition equations:

a ∈ {−amax,0,amax} (7)
v(t+Δt) = v(t)+aΔt (8)
s(t+Δt) = s(t)+v(t)Δt+ 1

2aΔt
2 (9)

They result in a regular two-dimensional grid of reachable states
(see Fig. 3), where the spacings in the grid are Δv = amaxΔt along
the v-axis, and Δs= 1

2amaxΔt
2 along the s-axis. From a given state

〈s,v〉, three other states are reachable: 〈s+ (2 v
Δv + 1)Δs,v+Δv〉,

〈s+ 2 v
ΔvΔs,v〉 and 〈s+ (2 v

Δv − 1)Δs,v−Δv〉, each one associated
with a different acceleration. This defines a directed graph in the
discretized state space which is called the state graph.
To define the state graph for the entire roadmap rather than a sin-

gle path, state grids along each of the edges of the roadmap are con-
nected at the vertices of the roadmap, such that the car can choose
among all of the outgoing edges when it encounters a vertex. As
can be seen in Fig. 3, only half of the states in the state grid are
reachable. So, in order to connect the state grids smoothly at the
vertices, each of the edges of the roadmap is subdivided into steps
of the largest possible length smaller than Δs, such that the edge
is subdivided exactly into an even number of steps. As a result,
there is a finite number of reachable positions in the roadmap. For
all of these positions, the velocity is lower and upper bounded by
Equation (4). If the roadmap edge has curvature, the upper bound
of the velocity may be further tightened by the dynamic constraint
of Equation (6). States outside the velocity bounds are defined not
to be part of the state graph. As a result, the total state graph con-
tains an finite number of states, but –in contrast to [26]– we do not
construct the state graph explicitly.
To compute over the state graph while avoiding collisions with

other cars, the time dimension is added to the discretized state
space, forming a three-dimensional state-time space along each of
the edges of the roadmap (see Fig. 3). It consists of pairs 〈q,t〉,
where q= 〈s,v〉 is a state contained in the state graph, and t a time
value. The time axis is discretized by the time step Δt. The other
cars moving on the highway transform to static obstacles in the
state-time space. They are cylindrical along the v-dimension, as
the car’s velocity does not influence its collision status.
Like the state graph is defined on the discretized state space, the

state-time graph is defined on the discretized state-time space. It
is a directed acyclic graph, that contains a transition from state-
time 〈q,t〉 to 〈q′,t+Δt〉 if q′ is a successor of q in the state graph.
The task is to compute a trajectory through the state-time graph
from a given start state-time 〈qstart,tstart〉 to a given goal state-time
〈qgoal,tgoal〉. The state-time graph is explored implicitly during the
search for a trajectory.

4 RECONSTRUCTING TRAFFIC
In this section we discuss how we reconstruct the traffic from the
acquired sensor data, given the discretization of the search space as
defined above.

Figure 3: The three-dimensional state-time grid along a single
edge of the roadmap. Obstacles (gray) are cylindrical along the v-
dimension. A part of the state graph (or equivalently, the projection
of the state-time graph) is shown using dashed arrows on the sv-
plane. Only the grid points marked by the dots are reachable. Each
transition takes one time step.

Figure 4: A roadmap constructed for a highway with three lanes. The
highway was subdivided into six segments. The thick dots are the
vertices of the roadmap. Only lane changes to the right of the length
of two segments are shown here.

4.1 Constructing the Roadmap
As explained above, the cars are constrained to move over a prepro-
cessed roadmap to make the configuration space of a car tractable.
We construct this roadmap as follows. First, we subdivide the high-
way into a M segments of equal length. For each lane of the high-
way, we place a roadmap vertex at the end of each segment (see
Fig. 4). This gives a M×N grid of roadmap vertices, where N is
the number of lanes. Each vertex (i, j) is connected by an edge
to the next vertex (i+ 1, j) in the same lane. These edges allow
cars to stay in their lane and move forward. To allow for lane
changes, we also connect vertices of neighboring lanes. Each ver-
tex (i, j) is connected to vertices (i+a, j+1), . . . ,(i+b, j+1) and
(i+ a, j− 1), . . . ,(i+ b, j− 1). Here a and b denote the minimum
and maximum length (in number of segments) of a lane change,
respectively. The short lane changes are useful at lower velocities,
the longer ones at higher velocities.
When adding the edges for lane-changing, we have to make sure

that they are “smooth”. That is, they should obey the kinematic
constraints of a car, and should be traversable without abrupt steer-
ing wheel motions. Let us look more closely at the constraint on the
speed with which the steering wheel is turned given in Equation (6).
It translates into the following bound on the curvature derivative:

|φ ′(t)|≤ωmax⇐ |κ ′(t)|≤
ωmax
λ

⇔ |κ ′(s)|≤
ωmax
vλ

⇔ v≤
ωmax

|κ ′(s)|λ
(10)

In other words: the smaller the curvature derivative (with respect to
path length s), the higher the velocity with which this path can be
traversed. Hence, we look for lane change curves with the small-
est possible (absolute) curvature derivative. Let us look at a lane

Figure 5: A lane change curve (left) between two points consists of
four clothoid curves, i.e. curves with constant curvature derivative
(see right).

change to the left (see Fig. 5). Note that a lane change curve be-
tween two points is symmetric in its midpoint. At its midpoint, the
curvature (and the steering wheel angle) must be zero, as it is the
switching point from steering to the left to steering to the right. The
curvature is also zero at its start and end points. Hence, the curve
in between the start point and the midpoint consists of two curves,
one with maximal positive curvature derivative, the other with max-
imal negative curvature derivative. A curve with constant curvature
derivative is well known to be a clothoid, so the total lane change
edge consists of four clothoid curves.
The roadmap resulting by using the above method is valid for

cars with any value of λ , so we need to construct a roadmap only
once, and can use it for all cars.

4.2 Trajectory for a Single Car
Given a roadmap as constructed above and the state-time graph as
defined in the previous section, we describe how we can compute a
trajectory for a single car, assuming that the other cars are moving
obstacles of which we know their trajectories. How we reconstruct
the traffic flows for multiple cars is discussed in below.
A straightforward approach for searching a trajectory in the

state-time graph is the A*-algorithm. It builds a minimum cost tree
rooted at the start state-time and biases its growth towards the goal.
To this end, A* maintains the leafs of the tree in a priority queue
Q, and sorts them according to their f -value. The function f (〈q,t〉)
gives an estimate of the cost of the minimum cost trajectory from
the start to the goal via 〈q,t〉. It is computed as g(〈q,t〉)+h(〈q,t〉)
where g(〈q,t〉) is the cost it takes to go from the start to 〈q,t〉, and
h(〈q,t〉) a lower-bound estimate of the cost it takes to reach the goal
from 〈q,t〉. A* is initialized with the start state-time in its priority
queue, and in each iteration it takes the state-time with the lowest
f -value from the queue and expands it. That is, each of the state-
time’s successors in the state-time graph is inserted into the queue
if they have not already been reached by a lower-cost trajectory
during the search. This process repeats until the goal state-time is
reached, or the priority queue is empty. In the latter case, no valid
trajectory exists. The algorithm is given in Algorithm 1.

Algorithm 1 A*(qstart,tstart,qgoal,tgoal)
1: g(〈qstart,tstart〉) ← 0
2: Insert 〈qstart,tstart〉 into Q
3: while Q is not empty do
4: Pop the element 〈q,t〉 with lowest f -value from Q
5: if q= qgoal and t = tgoal then return success!
6: for all successors q′ of q in the state graph do
7: c← cost of edge between 〈q,t〉 and 〈q′,t+Δt〉
8: if g(〈q′,t+Δt〉) > g(〈q,t〉)+c then
9: bp(〈q′,t+Δt〉) ← 〈q,t〉
10: g(〈q′,t+Δt〉) ← g(〈q,t〉)+c
11: Insert or update 〈q′,t+Δt〉 in Q
12: Trajectory does not exist; return failure

In [26] the A*-algorithm was used to find a minimal-time trajec-
tory. That is, only a goal state is specified, and the task is to arrive
there as soon as possible. This makes it easy to focus the search to-
wards the goal; the cost of a trajectory is simply defined as its length

(in terms of time). However, in our case the arrival time is specified
as well, so we know in advance how long our trajectory will be.
Therefore, we cannot use time as a measure in our cost function.
Instead, we let the cost of a trajectory T depend on the following
criteria, in order to obtain smooth and realistic trajectories:

• The number of lane changes X(T) in the trajectory.

• The total amount A(T) of acceleration and deceleration in the
trajectory.

• The accumulated cost D(T) of driving closer than a preferred
minimum dlimit > 0 to other cars.

More precisely, the total cost of the trajectory T is defined as
follows:

cost(T) = cXX(T)+cAA(T)+cDD(T) (11)

where cX ,cA and cD are weights specifying the relative importance
of each of the criteria. A(T) and D(T) are defined as follows:

A(T) =
∫
T
|v′(t)|dt (12)

D(T) =
∫
T
max(dlimit

d(t)
−1,0)dt (13)

where v(t) is the velocity along the trajectory as a function of time,
and d(t) is the distance (measured in terms of time) to the nearest
other car on the highway as a function of time.
The distance d(t) to other cars on the highway given a position

s in the roadmap and a time t is computed as follows. Let t ′ be
the time closest to t at which a car configured at s would be in
collision with another car, given the trajectories of the other cars.
Then, d(t) = |t− t ′|. We obtain this distance efficiently by – prior
to determining a trajectory for the car – computing for all positions
in the roadmap during what time intervals it is in collision with any
of the other cars. Now, d(t) is simply the distance between t and
the nearest collision interval at s. If t falls within an interval, the car
is in collision and the distance is zero. As a result, the above cost
function would evaluate to infinity.
In the A*-algorithm, we evaluate the cost function per edge of

the state-time graph that is encountered during the search. The edge
is considered to contain a lane change if a lane-change edge of the
roadmap is entered. The total cost g(〈q,t〉) of a trajectory from
the start state-time to 〈q,t〉 is maintained by accumulating the costs
of the edges the trajectory consists of. The lower bound estimate
h(〈q,t〉) of the cost from 〈q,t〉 to the goal state-time 〈qgoal,tgoal〉 is
computed as follows:

vavg =
x(q)−x(qgoal)

tgoal− t
(14)

h(〈q,t〉) = cX |lane(q)− lane(qgoal)|+ (15)
cA(|v(q)−vavg|+ |v(qgoal)−vavg|)

where vavg is the average velocity of the trajectory from 〈q,t〉 to
〈qgoal,tgoal〉, and x(q), lane(q) and v(q) are respectively the the po-
sition along the highway, the lane and the velocity at state q. If
vavg > vmax, we define h(〈q,t〉) = ∞.
An advantage of the goal time being specified is that we can

apply a bidirectional A*, in which a tree is grown from both the
start state-time and the goal state-time in the reverse direction until
a state-time has been reached by both searches. This greatly reduces
the number of states explored and hence the running time.
Streaming: Let us assume that we acquire data from each of the

sensors A and B whenever a car passes by. Obviously, for each car,
we first acquire data from A and then from B. We order the cars in a

planning queue sorted by the time at which the cars pass sensor A.
The queue continuously grows when new sensor data arrives from
sensor A. Now, continually, we compute a trajectory for the car at
the front of the queue when its data from sensor B has arrived. To
this end, we use the algorithm of the previous section, such that
the car avoids other cars for which a trajectory has previously been
computed (which is initially none). The start state-time and the
goal state-time are directly derived from the data acquired at sensor
A and B respectively. They are rounded to the nearest point in the
discretized state-time space. This procedure repeats indefinitely.
Streaming Property: The reconstructed trajectories can be

regarded as a “movie” of the past, or as a function R(t) of time.
As new trajectories are continually computed, the function R(t)
changes continuously. However, the above scheme guarantees that
R(t) is final for time t if (∀i : tAi < t : tBi < tcur), where tcur is the
current “real world” time. “Final” means that R(t) will not change
anymore for time t when trajectories are determined for new cars.
In other words, we are able to “play back” the reconstruction up till
time t as soon as all cars that passed sensor A before time t have
passed sensor B. We call this the streaming property; it allows us to
stream the reconstructed traffic at a small delay.
Real Time Requirements: In order for our system to run in real

time, that is, so that the computation does not lag behind new data
arriving (and the planning queue grows bigger and bigger), we need
to make sure that reconstruction takes on average no more time than
the time in between arriving cars. For instance, if a new car arrives
every second, we need to be able to compute trajectories within a
second (on average) in order to have real-time performance.

4.3 Qualitative Analysis
Prioritization: The above scheme implies a static prioritization on
the cars within a given pair of sensor locations. Cars are assigned
priorities based on the time they passed sensor A, and in order of de-
creasing priority trajectories are calculated that avoid cars of higher
priority (for which trajectories have previously been determined).
This is justified as follows: in real traffic drivers mainly react to
other cars in front of them, hardly to cars behind. This is initially
the case: a newly arrived car i has to give priority to all cars in front
of it. On the other hand, car i may overtake another car j, after
which it still has to give priority to j. However, it is not likely that
once car i has overtaken car j that both cars will ‘interact’ again,
and that car j influences the the remainder of the trajectory of car
i. This can be seen as follows. If we assume that cars travel on a
trajectory with a constant velocity (this is what we try to achieve by
the optimization criteria of Equation (12)), each pair of cars only
interact (i.e. one car overtakes the other) at most once.
In fact, in a real-world application it is to be expected that multi-

ple consecutive stretches of a highway are being reconstructed, each
bounded by a pair of a series of sensors A,B,C, . . . placed along the
highway. If car i overtakes car j in stretch AB, then for reconstruct-
ing the stretch BC, car i has gained priority over car j. So, when
regarded from the perspective of multiple consecutive stretches be-
ing reconstructed, there is an implicit dynamic prioritization at the
resolution of the length of the stretches.
Traffic Phenomena: This viewpoint of multiple connected

stretches is very important when analyzing the traffic behavior seen
in the reconstructions and streaming real-time data. For each stretch
individually, our algorithm attempts to reconstruct as smooth a
motion as possible. So, it is unlikely to see traffic jam phenom-
ena emerge at resolutions lower than the stretch length in the re-
constructions. However, in the more global scale over multiple
stretches, these phenomena are observable, as the algorithm tries to
fit the data. This can be viewed analogous to the Nyquist-Shannon
sampling theorem, stating that frequencies higher than the sampling
resolution cannot be captured.
Noise Sensitivity: Our method is hardly sensitive to noise in the

data. This can be understood by the fact that sensed passing times
and velocities at the sensors are rounded to the nearest point on the
discretized time-axis and velocity-axis respectively to initialize the
reconstruction algorithm.

5 EXPERIMENTAL RESULTS
We have implemented our method and experimented on various
challenging scenarios.

5.1 Quantitative Results
In our first experiments we use a highway with N = 4 lanes of L=
1000 meters length. Lane change curves are 50 meters long. For
the cars, we set amax = 3m/s2, vmax = 35m/s (close to 80 MPH),
dlimit = 1s and ωmax = 1rad/s. We set the time step Δt at 0.5s,
which gives Δv= 1.5m/s and Δs= 0.375m for the discretization of
the state space. As a result, the roadmap consists of 41570 discrete
positions.
To stress test our work on various scenarios, the data was ran-

domly generated. For each car i we pick a random start time tAi
from the interval [tAi−1,t

A
i−1 + 2/(ρN)], where ρ is the traffic den-

sity (i.e. the number of cars per second per lane). The end time tBi
is selected as tAi +L/V , where V is the average velocity randomly
picked between 20 and 30m/s. The start and end lane are randomly
chosen as well, and the start and end velocities are fixed at 22.5m/s.

Dense Traffic: In our first experiment, we set ρ = 1/2, which
gives fairly dense traffic (a new car enters the four-lane highway
every 1/(ρN) = 1/2 seconds on average). Given the fact that the
average velocities are relatively high and far between (between 20
and 30m/s) and the start and end lanes are randomly chosen, this is
a challenging example. Such data is not likely to occur in practice.
We compute trajectories for 500 cars. In the supplementary video,
the reconstructed traffic can be viewed. Because of the relatively
large differences in average velocities of the cars, it is interesting
to see that some fast cars really race through the traffic to reach the
“goal” (i.e. the end of the highway) in time.

Performance: In Fig. 6(a) we plot the average running time of
the first x cars for this experiment. What can be seen from the
chart is that the compute time does not increase much when more
cars have previously been considered. Only the running times for
the very first cars are faster, because they do not have to avoid any
other cars. For the rest of the cars, the traffic density is more or
less equal. In this worst case scenario, the average running time
over all 500 cars was 4.6 seconds. For real-time data streaming, the
reconstruction is faster and can be done at interactive rates. How-
ever, the search space (the state-time space) is big, and focusing
the A*-search to the goal can be hard as we are not searching for a
time-minimal trajectory. In general, a low-cost trajectory is found
quickly, whereas a high-cost trajectory can take more time before it
is found. This is because the A*-search first exhausts all the possi-
ble low-cost trajectories, before it expands leafs of the search tree
with a high cost.

Effect of Road Length: In our subsequent experiments, we varied
the major parameters, while keeping the others equal. In Figs. 6(b),
(c) and (d) we see how the computing time varies with the highway
length, the number of lanes, and the traffic density, respectively.
We see that the reconstruction time clearly increases as the length
of the highway increases. In fact, the curve shown is a perfect cu-
bic function (i.e. a polynomial of degree 3). This can be explained
as follows. As we keep the average velocity constant, the length
(in terms of time) of the trajectories increases with the length of
the highway. As the A* algorithm searches in a three-dimensional
state-time space (see Fig. 3), the volume of the search tree is ex-
pected to grow cubically with the depth of the tree (i.e. the number

of time steps).
The Number of Lanes: We see that the reconstruction time in-
creases only little when the number of lanes increases. In principle,
twice the number of lanes gives twice as large a search space. How-
ever, the length of the trajectories in terms of time remains constant
regardless of the number of lanes. Also, more lanes gives more
space to find a low-cost trajectory, which are found quicker than
high-cost trajectories.
Traffic Density: The density of the traffic seems to have a more
or less linear relationship with the computing time: the lower the
density, the lower the computing time. When there is hardly any
traffic, each car can find a low-cost trajectory quickly. However,
for very high density the computing time seems to decrease. This is
due to the fact that the large amount of traffic constrains the number
of possible trajectories so much, that the search-tree does not grow
very wide.
Impact of Time Steps: We note that over all experiments, we
have kept the time step Δt constant at a low 0.5s, but we note that
the running time decreases quartically (i.e. ∼ 1/Δt4) when the
time step increases. This is because that the search space is three-
dimensional, and the spacings in the discretized grid are Δt for the
time axis, ∼ Δt for the v-axis, and ∼ Δt2 for the s-axis (see Fig. 3).
So, for instance, for a time step of Δt = 1s, which is fine for most
practical situations, the computing times are ±16 times less than
the ones reported for these experiments.
Real-time Data Streaming: Given a density of ρ , the real time
requirement (see Section 4.2) states we need to calculate within
1/(ρN) time on average per car. The time step Δt can be tuned to
achieve this requirement. We note that for Δt = 1s, the experiments
with L = 1000m,ρ = 1/2 and N = 4 can be run in real-time. We
note that the time step should obey Δt < 1/ρ to capture high density
traffic. Otherwise the time value of multiple cars entering the same
lane of the highway will be rounded to the same point on the time-
axis.

5.2 Scenarios
We further applied our method to two specific scenarios. One is
a cloverleaf highway interchange (see Fig. 7). In this case, we
have a sensor at each of the four arms of the intersection. Cars
can enter and leave the intersection at any sensor point and our al-
gorithm compute their trajectories accordingly. In our example we
used highways of 1000m length with four lanes, and a density of
ρ = 1/2. As can be seen in Fig. 7 and the supplementary video, the
reconstruction gives plausible and smooth traffic even in the case of
a cloverleaf intersection.
The next scenario actually consists of multiple consecutive

stretches, as we discussed in Section 4.3. In our example, we place
four sensors A, B, C and D along a linear highway with four lanes
such that the stretch AB is 400m, BC is 200m andCD is 400m long.
We generated the data such that the average velocity of the cars in
the first and the last section was 20m/s and in the middle 5m/s to
simulate a traffic jam scenario. The traffic was reconstructed inde-
pendently for each section of the road, and afterwards concatenated
together in a single visualization. As can be seen in Fig. 8 and the
supplementary video, the traffic jam can be clearly reconstructed by
our method.

6 DISCUSSION AND FUTURE WORK

In this paper, we have presented a novel concept of Virtualized Traf-
fic, in which traffic needs to be reconstructed from discrete data ob-
tained by sensors placed alongside a highway or street. We have
presented an algorithm to determine the trajectories for multiple
cars that also allows streaming real-world traffic data in real time
to visualize traffic as the data comes in. We have adapted a prior-
itized method. In general, this approach does not guarantee that a

(a) (b)

(c) (d)

Figure 6: (a) The average compute time of the first x cars in our experiment (L = 1000m,N = 4,ρ = 1/2). (b) The average compute time as a
function of the highway length (N = 4,ρ = 1/2). (c) The average compute time as a function of the number of lanes (L= 1000m,ρ = 1/2). (d) The
average compute time as a function of the density (L= 1000m,N = 4).

solution to the constraints will be found if one exists. However, the
approach fails only in theoretically pathological examples, or when
inconsistent data is provided. Based on our experiments, we do not
expect this to be an issue for real-world data.
A number of improvements may be made to our current imple-

mentation. First, our implementation currently only supports accel-
erating either maximally, minimally or not at all at each time step.
The maximal acceleration is the same regardless of the current ve-
locity of the car. In reality though, the maximal acceleration de-
grades more or less linearly with the velocity. So, to enforce more
realistic constraints and generate smoother trajectories, an improve-
ment is to include a more diverse set of possible accelerations, and
bound the acceleration based on the current velocity.
In our current discretization of the state-time space, we choose

a fixed time step, which gives a discrete set of reachable positions
and velocities as well. However, traffic usually involves high-speed
motion, so to obtain more resolution in the discretization at large
velocities, we may instead consider choosing a fixed amount of tra-
versed distance, and derive the velocities and times accordingly.
We have shown in this paper that our framework is applicable to

complex highway scenarios, including cloverleaf intersections and
traffic jams. An interesting extension is to the application to inter-
sections with traffic lights or stop signs, and the entire roadmaps of
streets in urban/suburban environments.

REFERENCES
[1] S. Algers, E. Bernauer, M. Boero, L. Breheret, C. D. Taranto,

M. Dougherty, K. Fox, and J. F. Gabard. Smartest project: Review
of micro-simulation models. EU project No: RO-97-SC, 1059, 1997.

[2] A. Aw andM. Rascle. Resurrection of “second order” models of traffic
flow. SIAM Journal of Applied Math, 60(3):916–938, 2000.

[3] S. Bayarri, M. Fernandez, and M. Perez. Virtual reality for driving
simulation. Commun. ACM, 39(5):72–76, 1996.

[4] A. Byrne, A. de Laski, K. Courage, and C. Wallace. Handbook of
computer models for traffic operations analysis. Technical Report
FHWA-TS-82-213, Washington, D.C., 1982.

[5] D. Chowdhury, L. Santen, and A. Schadschneider. Statistical Physics
of Vehicular Traffic and Some Related Systems. Physics Reports,
329:199, 2000.

[6] C. M. Clark, T. Bretl, and S. Rock. Applying kinodynamic random-
ized motion planning with a dynamic priority system to multi-robot
space systems. IEEE Aerospace Conference Proceedings, 7:3621–
3631, 2002.

[7] J. Cremer, J. Kearney, and P. Willemsen. Directable behavior mod-
els for virtual driving scenarios. Trans. Soc. Comput. Simul. Int.,
14(2):87–96, 1997.

[8] M. Erdmann and T. Lozano-Pérez. On multiple moving objects. Al-
gorithmica, 2:477–521, 1987.

[9] D. L. Gerlough. Simulation of freeway traffic on a general-purpose
discrete variable computer. PhD thesis, UCLA, 1955.

[10] D. Helbing. Traffic and related self-driven many-particle systems. Re-
views of Modern Physics, 73(4):1067–1141, 2001.

[11] Kai Nagel and Michael Schreckenberg. A cellular automaton model
for freeway traffic. Journal de Physique I, 2(12):2221–2229, dec
1992.

[12] T. Kanade, P. Rander, and P. Narayanan. Virtualized reality: Con-
structing virtual worlds from real scenes. IEEE MultiMedia, 4(1):34–
47, 1997.

[13] K. Kant and S. Zucker. Toward efficient planning: the path-velocity
decomposition. International Journal of Robotics Research, 5(3):72–
89, 1986.

[14] J. Kuhl, D. Evans, Y. Papelis, R. Romano, and G. Watson. The iowa
driving simulator: An immersive research environment. Computer,
28(7):35–41, 1995.

Figure 7: Images from our cloverleaf scenario (L = 4× 1000m,N =
4,ρ = 1/2). There are sensors at each of the arms of the cloverleaf
intersection. Cars can enter and leave the intersection at any sensor
and our algorithm computes their trajectories accordingly.

[15] S. LaValle and S. Hutchinson. Optimal motion planning for multiple
robots having independent goals. IEEE Transactions on Robotics and
Automation, 14(6):912–925, 1998.

[16] M. J. Lighthill and G. B.Whitham. On kinematic waves. ii. a theory of
traffic flow on long crowded roads. Proceedings of the Royal Society of
London. Series A, Mathematical and Physical Sciences (1934-1990),
229(1178):317–345.

[17] P. Nelson, D. Bui, and A. Sopasakis. A novel traffic stream model
deriving from a bimodal kinetic equilibrium. In Proceedings of the
1997 IFAC meeting, Chania, Greece, pages 799–804, 1997.

[18] G. Newell. Nonlinear effects in the dynamics of car following. Oper-
ations Research, 9(2):209–229, 1961.

[19] H. J. Payne. Models of freeway traffic and control. 1971. ID:
29690330.

[20] I. Prigogine and F. C. Andrews. A Boltzmann like approach for traffic
flow. Operations Research, 8(789), 1960.

[21] P. I. Richards. Shock waves on the highway. Operations research,
4(1):42, 1956. doi: pmid:.

[22] G. Sánchez and J. Latombe. Using a PRM planner to compare central-
ized and decoupled planning for multi-robot systems. In Proc. IEEE
Int. Conf. on Robotics and Automation, pages 2112–2119, 2002.

[23] V. Shvetsov and D. Helbing. Macroscopic dynamics of multilane traf-

Figure 8: Images from our traffic jam scenario (L = {400m,200m,
400m},N = 4,ρ = 1/2). The traffic of three consecutive stretches of
a highway are reconstructed independently, and afterwards concate-
nated in a single visualization. In order to simulate a traffic jam, we
generated the data such that the average velocity in the middle sec-
tion was much less than in the other two.

fic. Physical Review E, 59(6):6328–6339, 1999.
[24] P. Švestka and M. Overmars. Coordinated path planning for multiple

robots. Robotics and Autonomous Systems, 23(3):125–152, 1998.
[25] J. van den Berg and M. Overmars. Prioritized motion planning for

multiple robots. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, pages 2217–2222, 2005.

[26] J. van den Berg and M. Overmars. Kinodynamic motion planning on
roadmaps in dynamic environments. In Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, pages 4253–4258, 2007.

[27] H. Wang, J. Kearney, J. Cremer, and P. Willemsen. Steering behav-
iors for autonomous vehicles in virtual environments. In Proc. IEEE
Virtual Reality Conf., pages 155–162, 2005.

[28] G. B. Whitham. Linear and nonlinear waves. Wiley, New York, 1974.
ID: 815118.

[29] P. Willemsen, J. Kearney, and H. Wang. Ribbon networks for
modeling navigable paths of autonomous agents in virtual environ-
ments. IEEE Transactions on Visualization and Computer Graphics,
12(3):331–342, 2006.

[30] Q. Yang and H. Koutsopoulos. A Microscopic Traffic Simulator for
evaluation of dynamic traffic management systems. Transportation
Research Part C, 4(3):113–129, 1996.

[31] H. M. Zhang. A non-equilibrium traffic model devoid of gas-like be-
havior. Transportation Research Part B: Methodological, 36(3):275–
290, March 2002.

