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Abstract  
Writing concurrent programs is difficult because of the 

complexity of ensuring proper synchronization. Conven-
tional lock-based synchronization suffers from well-
known limitations, so researchers have considered non-
blocking transactions as an alternative. Recent hardware 
proposals have demonstrated how transactions can 
achieve high performance while not suffering limitations 
of lock-based mechanisms. 

However, current hardware proposals require pro-
grammers to be aware of platform-specific resource limi-
tations such as buffer sizes, scheduling quanta, as well as 
events such as page faults, and process migrations. If the 
transactional model is to gain wide acceptance, hardware 
support for transactions must be virtualized to hide these 
limitations in much the same way that virtual memory 
shields the programmer from platform-specific limitations 
of physical memory. 

This paper proposes Virtual Transactional Memory 
(VTM), a user-transparent system that shields the pro-
grammer from various platform-specific resource limita-
tions. VTM maintains the performance advantage of 
hardware transactions, incurs low overhead in time, and 
has modest costs in hardware support. While many sys-
tem-level challenges remain, VTM takes a step toward 
making transactional models more widely acceptable. 

1. Introduction 
Multicore architectures present both an opportunity 

and challenge for multithreaded software. The opportunity 
is that threads will be available to an unprecedented de-
gree, and the challenge is that more programmers will be 
exposed to concurrency-related synchronization problems 
that until now were of concern only to a select few.  

The limitations of conventional synchronization tech-
niques, based on locks and condition variables, are well-
known [10]. Coarse-grained locks, which protect rela-
tively large amounts of data, simply do not scale well. 
Threads block one another even when they do not really 

interfere, and the lock itself becomes a source of conten-
tion. Fine-grained locks are more scalable, but they are 
difficult to use effectively and correctly. In particular, they 
introduce substantial software engineering problems, as 
the conventions associating locks with objects become 
more complex and error-prone. Locks also cause vulner-
ability to thread failures and delays: if a thread holding a 
lock is delayed by a page fault, or context switch, other 
running threads may be blocked. A thread failure also 
leaves shared objects with inconsistent updates. Locks 
also inhibit concurrency because they must be used con-
servatively: a thread must acquire a lock whenever there is 
a possibility of synchronization conflict, even if such con-
flict is actually rare. 

Transactional memory [10] addresses these limitations. 
A transaction [5] is a finite sequence of memory reads and 
writes executed by a single thread. Transactions are 
atomic: each transaction either completes and commits 
(instantaneously taking effect) or aborts (discarding its 
updates). Transactions are serializable: they appear to take 
effect in a one-at-a-time order. Each thread announces the 
start of a transaction, executes a sequence of operations on 
shared objects, and then tries to commit the transaction. 
The updates take place if the commit succeeds. 

High performance transactional memory implementa-
tions [2, 7, 10, 13, 20, 26] exploit hardware mechanisms 
such as speculative execution and on-chip caching. Hard-
ware optimistically executes a transaction and locally 
caches memory locations read or written on behalf of the 
transaction, marking them transactional. The hardware 
cache coherence mechanism communicates information 
regarding read and write operations to other processors.  
A data conflict occurs if multiple threads access a given 
memory location via simultaneous transactions and at 
least one thread’s transaction writes the location. A trans-
action commits and atomically updates memory if it fin-
ishes without encountering a data conflict. 

Most prior hardware transactional memory proposals 
require programmers to be aware of platform-specific 
resource limitations such as cache and buffer sizes, sched-
uling quanta, and the effects of context switches and proc-
ess migrations. Transactions that exceed these resources 
or repeatedly encounter such interruptions cannot commit. 
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If transactional synchronization is to gain wide accep-
tance, however, programmers must be shielded from such 
complex, platform-specific details. Instead, transactional 
memory systems must provide full guarantees even for 
transactions that cannot execute directly in hardware.  

To ensure high performance, implementations must 
provide sufficient resources for the vast majority of trans-
actions to execute directly and efficiently in hardware. 
Prior proposals have demonstrated that most transactions 
require only modest hardware resources [2, 7, 17, 20]. 
Nevertheless, repeatedly aborting the few transactions that 
exceed these limits would severely restrict the usability of 
the transactional model because it is unreasonable to ex-
pect programmers to circumvent such complex limitations 
by special-case, handcrafted code. The resource exhaus-
tion problem therefore is not one of performance but one 
of completeness and guarantees.  

This paper proposes Virtual Transactional Memory 
(VTM), a combined hardware/software system architec-
ture that allows the programmer to obtain the benefits of 
transactional memory without having to provide explicit 
mechanisms to deal with those rare instances in which 
transactions encounter resource or scheduling limitations.  
The underlying VTM mechanism transparently hides re-
source exhaustion both in space (cache overflows) and 
time (scheduling and clock interrupts).  When a transac-
tion overflows its buffers, VTM remaps evicted entries to 
new locations in virtual memory. When a transaction ex-
hausts its scheduling quantum (or is interrupted), VTM 
saves its state in virtual memory so that the transaction can 
be resumed later.  

VTM virtualizes transactional memory in much the 
same way that virtual memory (VM) [12] virtualizes 
physical memory. Programmers write applications without 
concern for underlying hardware limitations. Even so, the 
analogy between VTM and VM is just an analogy: we will 
see that the technical problems are quite different. 

VTM achieves virtualization by decoupling transac-
tional state from the underlying hardware on which the 
transaction is executing and allowing that state to move 
seamlessly (and without involving the programmer) into 
the transaction’s virtual address space. This virtual mem-
ory-based overflow space allows transactions to circum-
vent hardware resource limits when necessary. Since the 
virtual address space is independent of the underlying 
hardware, a transaction can be swapped out, or migrate 
without losing transactional properties.  

Nevertheless, using a virtual memory-based virtualiza-
tion scheme presents challenges. Most importantly, VTM 
must not slow down the common case where hardware 
resources are sufficient. By keeping the virtualization ma-
chinery off the critical path, we can continue to ensure that 
the overall performance of the system is determined by the 
hardware-only case. Virtualization provides essential 
functionality, but should have an insignificant effect on 
performance. VTM requires the ability to detect inter-

thread synchronization conflicts, and the ability to commit 
or abort multiple updates to disjoint virtual memory loca-
tions in an atomic, non-blocking way. None of this func-
tionality is provided by existing virtual memory systems. 

To this end, VTM provides two operational modes: a 
hardware-only fast mode provides transactional execution 
for common case transactions that do not exceed hardware 
resources and are not interrupted. This mode is based on 
mechanisms proposed by prior work [2, 7, 10, 20], and 
this mode's performance effectively determines the per-
formance of the overall scheme. A second mode, imple-
mented by a combination of programmer-transparent soft-
ware structures and hardware machinery, supports transac-
tions that encounter buffer overflow, page faults, context 
switches, or thread migration. 

Overview: In VTM, transactional state is split into two 
parts: locally-cached state resides in processor-local buff-
ers, and overflowed state resides in data structures in the 
application’s virtual memory. 

The VTM system architecture uses several data struc-
tures to track overflowed state. The VTM implementation 
manages these data structures and ensures that concurrent 
accesses are properly synchronized. 

Each transaction has a Transaction Status Word 
(XSW) that tracks a transaction’s status at all times.  Since 
a thread executes one transaction at a time, the status word 
is associated with a single thread. The VTM implementa-
tion commits or aborts a transaction by atomically updat-
ing its XSW. 

The Transaction Address Data Table (XADT) keeps 
track of transactional state that has overflowed from proc-
essors to memory. The XADT is common to all transac-
tions sharing the address space. Transactional state can 
overflow into the XADT in two ways: a running transac-
tion may evict individual transactional cache lines, or an 
entire transaction may be swapped out, evicting all its 
transactional cache lines. An XADT entry records the 
overflowed block’s virtual address, its clean and tentative 
value (uncommitted state), and a pointer to the XSW of 
the transaction to which the entry belongs. 

Each time a transaction issues a memory operation that 
causes a cache miss, it must check whether that opera-
tion’s target conflicts with an overflowed address. VTM 
could detect such conflicts by “walking” the XADT, but 
doing so would defeat our goal of making the common 
case fast. Instead, VTM provides two “fast-path” mecha-
nisms for the common case. First, the XADT overflow 
counter records the number of overflowed entries. Nor-
mally, this counter is zero, and is cached locally at each 
processor, avoiding the need for any traffic. Second, an 
XADT filter (XF) provides a quick way to detect the ab-
sence of conflict. A miss in the filter guarantees the ad-
dress does not conflict, and a hit triggers an XADT walk. 

VTM can instantaneously change the status of a trans-
action’s XADT entries by atomically updating its XSW. 
As discussed in more detail below, this instantaneous 



  

logical commit must be followed by a multi-step physical 
commit to move updated values from the XADT to mem-
ory. 

We do not focus on mechanisms to make the common 
hardware-only case faster. Instead, we assume a standard 
high-performance hardware-only transactional memory 
implementation, and are agnostic about specific policies 
and implementations in the hardware-only common case.  

Section 2 discusses the necessity and challenges of 
such virtualization, and the goals of our architecture. Sec-
tion 3 describes our baseline model. Section 4 describes 
the VTM system architecture and its components, and 
Section 5 describes the VTM operations. Section 6 dis-
cusses remaining transactional memory challenges, Sec-
tion 7 presents related work, and Section 8 concludes. 

2. VTM: Necessity, challenges, and goals 
Necessity: Hardware transactional memory implemen-

tations buffer state on a per-processor basis, since success-
ful, uninterrupted transactions use only processor-local 
resources. Virtualization, however, allows transactions to 
be suspended, to migrate, or to overflow state from local 
buffers. Such abilities require decoupling transactional 
state from processor state for the following reasons: 

• Making the hardware buffer sizes part of the architec-
ture and exposing them to the programmer limits im-
plementation flexibility and portability, while not ex-
posing them makes it impossible for the programmer 
to ensure that transactions can run in hardware across 
a variety of platforms and applications.  

• Hardware buffers lack persistence. A processor is a 
shared resource typically managed by an operating 
system. Multiple independent processes run over 
time, reusing local hardware buffers. A transaction 
can survive an interrupt only if its transactional state 
can be moved to persistent space before giving up the 
processor. 

Further, maintaining overflow state on a per-process 
instead of a per-processor basis has additional benefits.  

• Per-process state maintenance allows processes to be 
isolated from one another if necessary. An incorrectly 
or improperly executing application cannot interfere 
with another application since their address spaces 
are different. 

• The overhead of detecting conflicts among multiple 
transactions typically depends on how many transac-
tions there are. If potential conflicts are limited to a 
single process, then we can limit the cost of conflict 
detection. Moreover, we can limit the interference 
caused by malicious or erroneously written program.  

• Overflowing to virtual memory also allows state to be 
visible to support software such as debuggers and 
other profiling libraries, a difficult task if overflow 
were only in physical space.  

VTM tracks overflow state using virtual, not physical 
addresses. Using physical addresses would require pages 
(and any pages pointed to by these addresses) to be pinned 
and marked non-swappable during the transaction’s exe-
cution, which would require significant operating system 
involvement. 

Virtual memory is universally available, and already 
handles many complex resource-related problems. Never-
theless, transactional memory virtualization based on vir-
tual memory introduces certain additional challenges. 

Challenges: Transactional memory requires the ability 
to detect synchronization conflicts between transactions. 
Conflict detection is relatively easy when transactions run 
entirely in hardware (by exploiting native cache-
coherence mechanisms), but additional mechanisms are 
needed to detect conflicts between active transactions and 
transactions whose state has partially or completely over-
flowed to virtual memory. 

Transactional memory also requires the ability to 
commit or abort multiple memory accesses atomically. 
Here too, atomic commits and aborts are relatively easy 
for transactions that run in hardware, but we will need to 
invent new mechanisms to support atomic commit and 
abort for transactions with partially or completely over-
flowed state. 

Goals: Virtualized transactional memory must satisfy 
the following requirements: 

• The performance of the common-case hardware-only 
transactional mode must be unaffected. 

• Conflict detection between active transactions and 
transactions with overflowed state should be efficient, 
and should not impede unrelated transactions. 

• Committing or aborting a transaction should not delay 
transactions that do not conflict. 

• Context switches and page faults may impede transac-
tion progress, but must not prevent transactions from 
eventually committing. 

• Non-transactional operations may cause transactions 
to abort but must never compromise any transaction’s 
atomicity. 

• Finally, VTM must be transparent to application pro-
grammers. 

3. Baseline software and hardware model 
An application consists of multiple concurrently exe-

cuting software threads operating in a single shared virtual 
address space. Each thread serially executes transactions 
explicitly delimited by the instructions begin_xaction 
and end_xaction (see Figure 1). A fault occurs if a 
transaction executes an operation that cannot execute op-
timistically (such as input or output to a device). Nested 
transactions are allowed and are handled by flattening all 
inner transactions into the outermost transaction. The 
hardware tracks the nesting depth to determine when to 
commit the flattened transaction.  



  

We assume a high-performance hardware transactional 
memory implementation [2, 7, 10, 20, 26] for the common 
case where local resources are sufficient. Such processor 
hardware support includes an architectural register state 
checkpoint for recovery, ability to execute and specula-
tively retire instructions in the transaction, to buffer mem-
ory updates locally, to track addresses for cached loads 
and stores to detect memory conflicts, and perform atomic 
commits and aborts. 

When two transactions conflict, a conflict resolution 
policy decides which one is aborted. Conflict resolution 
policies might take into account a transaction's age, its 
operating system thread priority, and a variety of other 
properties. A complete discussion of this subject is be-
yond the scope of this paper (see, however, [10, 20]), so 
we will simply assume that a uniform policy exists. 

4. VTM system architecture and design 
VTM supports data overflows, conflict resolution 

among transactions, and atomically committing transac-
tion state.  While the typical programmer is not concerned 
with these components, they are part of the VTM architec-
ture specification. We outline our architectural structures 
in Section 4.1, where we also discuss how these structures 
interact with the software. Sections 4.2, 4.3, and 4.4 pre-
sent details of the new structures, and Section 4.5 de-
scribes the overall VTM system. 

4.1 VTM Architecture 
Hardware transactional memory monitors accesses and 

updates at the hardware level. VTM complements the 
hardware by monitoring memory accesses and updates at 
the application level. In this way, VTM provides applica-
tion-centric atomicity, instead of hardware-centric atomic-
ity. VTM allows events such as context switches or page 
faults to occur within a transaction, as long as they do not 
jeopardize atomicity. A transaction can be temporarily 
paused, unrelated operations can execute, and the transac-
tion subsequently resumes. However, these capabilities 
require transaction virtualization to be architecturally 
visible.  

VTM architecturally defines a Transaction Status 
Word (XSW) for each transaction. The XSW tracks its 
transaction’s state at all times. A transaction is associated 
with a unique thread (although a thread serially executes 
multiple transactions), so each XSW is part of a thread’s 
state. An XSW resides in the application’s virtual address 
space and any thread can operate directly on any XSW. 
The XSW is the ultimate authority on a transaction’s 
status, and a transaction can be committed or aborted by 
modifying its XSW using an atomic compare-and-swap 
operation. 

VTM also architecturally defines two data structures: 
the Transaction Address Data Table (XADT), and a filter 
for this table (XF). The XADT is the central repository for 
buffering overflowed transaction state and for resolving 

conflicts involving such state. The XF is a compact repre-
sentation of the XADT that allows a quick test whether an 
address has overflowed into the XADT. The XADT and 
XF are software data structures that reside in the applica-
tion’s virtual address space. All transactions in an applica-
tion share the XADT and XF. 

While these structures reside in addressable memory, 
access to them is controlled. To the typical programmer, 
the address space where these structures reside is unavail-
able. The VTM system, implemented in either hardware 
or microcode, manages these structures, and performs 
overflow and conflict detection operations on behalf of 
the programmer. For example, the programmer performs a 
series of reads and writes demarcated by the be-
gin_xaction and end_xaction instructions. If any 
address accessed within the transaction during execution 
overflows local buffers, VTM automatically detects the 
overflow, and performs the necessary adjustments to the 
XADT. The programmer typically does not observe VTM 
intervention. Each processor has its own VTM system 
implementation which acts like a coprocessor (but with 
state), and operates at the user’s privilege level on these 
structures using cacheable load and store operations. 
These operations are not part of a transaction. The appli-
cation automatically initializes the XADT and XF struc-
tures and passes their location and bounds to VTM. The 
VTM system might need to perform adjustments and op-
erations to these structures, beyond loads and stores. For 
example, if the XADT needs to grow because of very high 
overflows. In such an event, VTM signals the application, 
which responds by calling user-level libraries. The appli-
cation then communicates any adjustments to the VTM 
system. Because these structures reside in virtual address 
space, the operating system can swap their pages out to 
disk. If the VTM system encounters such an access fault, 
it again signals the application to request page fault ser-
vicing on its behalf. 

These operations are typically transparent to the appli-
cation programmer, because VTM, not the programmer, 
executes synchronized operations on the XADT and XF. 
However, software such as debuggers, runtime garbage 
collectors, and so on might need controlled access to the 
XADT and XF structures, which is why these structures 
are part of the VTM architecture. The VTM system 
mechanisms that operate on the XADT and XF, and per-
form commits and aborts are implementation dependent. 

4.2 XSW 
A transaction’s XSW summarizes the transaction’s cur-

rent execution status, along the following three dimen-
sions. 

In the first dimension, a transaction may be running 
(R), it may have committed but not made its updates visi-
ble (C), or it may have aborted (B). Since the XADT re-
sides in virtual memory, physical commits and aborts are a 
multi-step process. For the second dimension, a transac-



  

tion is either actively executing (A) or has been swapped 
out (S). For the third dimension, a transaction’s state is 
either completely cached locally (L), or has partially over-
flowed (O).  

Only a few combinations are valid.  For example, a 
swapped transaction cannot have a completely locally 
cached state.  Aborted and committed transactions cannot 
have locally-cached states since aborts and commits for 
hardware-only transactions are instantaneous. A transac-
tion in the process of updating memory completes updates 
before swapping out. In the end, only the following state 
combinations are valid: RAL: running, actively executing, 
with locally-cached state, RAO: running, actively execut-
ing, overflowed, RSO: running, swapped out, overflowed, 
BAO: aborting, actively executing, overflowed, BSO: 
aborting, swapped, overflowed, and CAO: committing, 
actively executing, and overflowed.  A thread not execut-
ing a transaction is in NonT (non-transactional) state. 

The transaction is globally ordered when its XSW 
status successfully transitions to a committing state. All 
operations in the transaction are globally ordered atomi-
cally at this point. The committing state captures a logical 
commit of the transaction. The physical commit, where 
updates become visible, is implementation dependent, but 
must ensure the logical atomicity of updates.  

4.3 XADT 
The XADT is the central structure responsible for 

managing data overflow. All transactions executing within 
a virtual address space share the same XADT. A hardware 
(or firmware) structure, the XADT walker, manages the 
XADT. XADT load and store operations executed by the 
XADT walker are cache coherent. Key XADT operations 
include adding an entry on overflows, entry lookup using 

an address, commit and abort operations via actions on the 
XSW, and saving state on context switches. The XADT 
also records the nesting depth (maintained by the hard-
ware) of a swapped transaction. 

The XADT also records an overflow count of over-
flowed data blocks at any time. This count provides a fast 
way to determine whether any overflows have occurred, 
which is none in the common case. An XADT entry in-
cludes at least the following fields: a) Status bits marking 
whether the entry is valid and whether a transaction read 
or wrote the address, b) virtual address of the data block 
overflowed to this entry, c) data field for buffering up-
dates to the overflowed location, and d) pointer to the 
overflowing transaction’s status word (XSW). The ad-
dress of the data field serves as the remapped address for 
the overflowed data. Miscellaneous fields for conflict pri-
oritization may use timestamps and information such as 
thread priority from the operating system. XADT entries 
belonging to the same transaction are linked together to 
allow efficient cleanup on aborts and commits. An address 
that is concurrently being read by multiple transactions 
would have multiple XADT entries. 

The transactional state also includes state saved at con-
text switches, such as temporary register state (since the 
transaction is executing speculatively), any temporary 
updates performed in the local caches, and the virtual ad-
dress and data value of any cache blocks read during the 
transactional execution, even if the blocks have not been 
written. As discussed in detail below, recording the clean 
values of the data blocks allows a rescheduled transaction 
to ensure that there were no conflicting non-transactional 
operations while it was swapped out. 

We expect the combination of the overflow count and 
the conflict filter (discussed below) to minimize the actual 
number of accesses to the XADT. 

Figure 1 VTM software data structures. A conceptual snapshot of the address space is shown. Threads execute 
series of transactions. XADT records overflow information, and any swap information. XF summarizes the XADT like a 
bloom filter. For example, XF has “Y” marked, but “Y” is invalid in XADT. 
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4.4 XF 
When a transaction issues a read or write request that 

causes a cache miss, VTM must quickly determine 
whether the request conflicts with a request already issued 
by another transaction. The existing cache coherence pro-
tocol will detect conflicts involving locally-cached state, 
but it cannot detect conflicts involving overflowed state. 
For example, a transaction that has been swapped out does 
not participate in the cache coherence protocol. (Requests 
that hit in the cache do not require conflict resolution.) 

One way to detect conflicts involving overflowed state 
is to call the XADT walker. Because such conflicts are 
uncommon, however, the XF conflict filter provides a fast 
“out-of-band” way to detect the absence of conflict in 
most cases, thus avoiding the need to walk the XADT. A 
miss in the XF means that an address does not conflict 
with any overflowed block, while a hit means that a con-
flict probably exists. On a hit, the requestor’s VTM walks 
the XADT and determines whether the conflict actually 
exists. Since the XF is a conservative representation of the 
XADT, updates to the XF can be performed lazily. 

Bloom filters as conflict detectors:  A Bloom filter 
[3] is an efficient set data structure that provides two op-
erations: add(x) inserts x into the set and member(x) que-
ries whether x is in the set. Member is allowed to produce 
(infrequent) false positives. The filter itself is an n-
element Boolean array B, initially all false, and a set of 
independent hash functions, h1,…hk. To add x to the set, 
set B[hi(x)] to true, for all i. A query testing whether a 
particular y is in the set returns true if B[hi(y)] is true, for 
all i. It is easy to see that if the query returns false, then y 
is not in the set, while if it returns true, then it might be. 
Classical Bloom filters do not permit elements to be re-
moved. A counting Bloom filter [6] replaces the Boolean 
array B with an array of counters C. Adding an element x 
(atomically) increments each C[hi(x)], and removing the 
element (atomically) decrements each such counter. A 
member(x) query returns true if every C[hi(x)] is non-zero. 

The XADT filter (XF) is a counting Bloom filter that 
summarizes the XADT. The probability of a false positive 
can be made arbitrarily small by choosing enough count-
ers. Analysis of the trade-offs among filter size, counter 
size, and the number of hash functions can be found in the 
literature (see, for example, [6]),  Experimental work   
[21] suggests that a family of linear congruences work 
well for hash functions. Others [1, 23] have discussed 
hardware filter implementations. 

XF representation and design: A concrete represen-
tation of a counting Bloom filter must address several 
questions: how many hash functions and counters to use, 
how large are the counters, and how are they represented 
in memory? If m entries are placed in an n-element Bloom 
filter using k hash functions, then the likelihood of a false 
positive is bounded by (1-e-kn/m)k. The probability that 
some counter in the table will exceed i is less than m(c 
ln2/i)i. Assume we are willing to tolerate a 1% probability 
of false positives when there are one million (220) over-
flowed blocks. (Fewer blocks means lower probabilities, 
while more means higher.) If the filter uses 2 hash func-
tions, then it requires at least 21.0M counters, while if it 
uses 4, it requires 12.5M counters. If each counter has 4 
bits, then the probability that 1M blocks will cause any 
counter to overflow in either case is less than 1.44×10-09. 
(Overflow is a performance, not a correctness issue, be-
cause impending overflows can be detected and redirected 
to an overflow table.)  In practice, of course, hash func-
tions will not be perfectly random, plus we will keep add-
ing and removing blocks, but 4 bits per counter seems 
more than adequate. 

XF implementation options: The most straightfor-
ward way to implement the XF is as an array of 4-bit 
counters. At 2 counters per byte, 21.0M counters occupy 
10.5Mbytes (6Mbytes with 4 hash functions). On many 
platforms, such an array is small enough to reside in 
memory, so paging is unlikely to be an issue. False shar-
ing is unlikely to be an issue as long as updates (i.e., over-
flows) are rare.  Atomic increments and decrements can 
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Figure 2 VTM overview. Each processor has its own VTM system machinery. The software-resident XADT and XF 
data structures are shown with dashed boxes, and the hardware structures are shown with solid boxes. The VTM 
machinery operates on the XF and XADT using cacheable operations. The XADC caches remapping translation 
information for overflowed blocks.  
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be implemented using compare-and-swap instructions or 
the equivalent. 

A more compact representation is to use a hash table 
mapping counters to non-zero values. (A missing mapping 
is interpreted as zero.) The advantage is that the hash table 
size is largely determined by the actual number of over-
flows, not the total number of counters. If we use 4 bytes 
per entry (3 to index the counter and 1 for its value), then 
1M blocks need roughly 4Mbytes. The disadvantage is 
that lookup, add, and delete operations are more complex. 

Perhaps the most attractive alternative is to use a hy-
brid structure. Split the XF into a bitmap that identifies 
which values are non-zero, with a hash table holding the 
actual values as above. For 20.5M counters, the bitmap 
occupies less than 1Mbyte, and commonly occurring 
lookup operations need never visit the hash table. Add and 
delete operations must still access the hash table, and care 
must be taken that combined updates to the bitmap and 
hash table are properly synchronized  

The amount of traffic to the XF depends on the locality 
of the transaction. A transaction references the XF only 
when it takes a cache miss and each such miss produces k 
independent references to the XF, where k is the number 
of hash functions used (2 in the example given above). 

4.5 VTM system overview 
Figure 2 shows the VTM system architecture. The 

principal architectural data structures, XSW, XF, and 
XADT, are shown as dashed boxes. The solid boxes show 
the VTM implementation-dependent hardware compo-
nents, the XADT walker and the XATC. The hardware 
components act like coprocessors. 

When a processor executing a transaction misses in its 
cache, VTM checks whether that address was overflowed 
by another transaction. It first tests the XADT overflow 
count. Most often, this count is zero, cached, and accessed 
with the latency of a cache hit.  

If the overflow count is non-zero, then VTM consults 
the XF. If the XF hits, then the VTM calls the XADT 
walker to identify the conflict, if it exists. This sequence is 
similar to a hardware page-miss handler determining a 
missing translation. 

In VTM, the requesting processor’s VTM system per-
forms conflict detection for overflowed blocks prior to 
generating the request, and operates on the XADT and 
XF. This localizes conflict detection, allows conflicts with 
swapped transactions to be detected, and avoids unneces-
sary interference with other processors, all of which oth-
erwise would have had to perform XADT and XF opera-
tions to determine conflicts based on an incoming request. 
The non-overflowed blocks are handled conventionally by 
the other processors (e.g., as in TLR [20]). 

5. VTM system operational details 
We now discuss VTM in more detail. Figure 3 shows 

transactional state transitions, which occur when VTM 

updates the transaction’s XSW. First, we describe VTM 
operations for the hardware-only mode to demonstrate 
how VTM virtualization does not slow down the common 
case (Section 5.1).  Next, we describe how VTM in virtu-
alization mode provides four basic functions: managing 
data blocks that overflow from local hardware buffers, 
suspending and swapping interrupted transactions, detect-
ing conflicts for data that has overflowed, and atomically 
committing and aborting overflowed transactions, dis-
cussed in Sections 5.2 through 5.5. Finally, we discuss 
how VTM interacts with page faults in Section 5.6. 

5.1 VTM hardware-only operational mode 
All threads begin in a transaction state NonT, as shown 

in Figure 3. The RAL state is the hardware transactional 
memory mode where the transaction executes and com-
mits using only processor-local resources. The critical 
performance path is the NonT to RAL to NonT transition 
(begin and commit/abort). As discussed, VTM avoids 
slowing down this critical path by testing the XADT over-
flow count, which in the common case (of no overflows) 
takes the same latency as a local cache hit. The VTM 
overflow management and conflict detection machinery is 
invoked only if an overflow has occurred. 

5.2 Managing data overflow 
A transaction that evicts a transactional cache line tran-

sitions from the RAL to the RAO state, shown in Figure 3. 
The cache’s LRU policy determines which data block to 
overflow, thus maintaining locality. The VTM machinery 
allocates a new XADT entry as necessary. The VTM ma-
chinery locally caches this information (e.g., the new ad-
dress for the data field) in the XADC (the XADT cache), 
to speed subsequent accesses to this overflowed block. At 
this point, non-overflowed blocks reside in local buffering 
and overflowed updates in the XADT. The state flow be-
tween local hardware and the XADT is transparent to the 
programmer. 

When a processor overflows a transaction block, an-
other processor may already have locally cached the block 
as part of its hardware-only transactional execution. In 
such an event, the XADT (and the XF) would not have an 
entry for such a block. To ensure that any remote proces-
sor detects this conflict, the overflowing transactions’ 
VTM system updates the XF, and sends coherence invali-
dation for the overflowed block address.  This step forces 
any remote processors’ VTM system concerned with the 
block to re-read the XF for that block, and detect a poten-
tial overflow. 

5.3 Detecting conflicts with overflowed data 
If a memory access results in a cache miss, and if the 

XADT overflow count is non-zero, then VTM consults 
the XF. If the XF returns a miss, no conflict exists. Since 
the XF is mostly read-only, and if this specific address did 
not overflow, the test will be quick and typically hit in the 



  

local cache hierarchy. An XADT walk occurs only if the 
XF returns a miss, and it becomes necessary to determine 
if the conflict exists. 

We have described how VTM detects conflicts among 
transactions. We would also like to guarantee that 
synchronization conflicts between transactional and non-
transactional operations do not threaten transactions' 
atomicity. Existing proposals (for example, TLR) provide 
this guarantee for transactions that that run entirely in 
hardware. For transactions that do overflow, it would be 
relatively easy to ensure atomicity by forcing each non-
transactional operation to consult the XF and XADT. 
Nevertheless, we consider such an approach to have 
unnecessarily low performance. Instead, let us consider 
what kind of conflicts might occur. A non-transactional 
operation reads or writes a single memory location, so it is 
enough to ensure that any such operation can be ordered 
either before or after any concurrent transaction. A 
transaction never releases uncommitted data, so a non-
transactional operation cannot read a value that is later 
aborted. The following scenario illustrates how 
serializability can still be violated. Initially, the address 
hold the value v. A transaction reads v, and then a non-
transactional operation writes v’’ to that address. The 
transaction computes v’ from v, writes v’, and commits. 
The problem is that writing v’’ cannot be serialized either 
before or after the transaction. As discussed below, the fix 
is to ensure that when an overflowed transaction commits, 
the values it read are still correct. 

When a processor overflows a transactional block, it 
poisons that block's set in its cache. Only external non-
transactional operations to that set will alert the processor 

of a possible conflict, causing it to check the XF to 
determine whether the conflict is real. If so, it aborts the 
conficting transaction. 

5.4 Suspending and swapping transactions 
On a context switch, VTM overflows all locally buff-

ered transactional state (memory and processor) to the 
XADT. To facilitate forced overflows, the VTM machin-
ery also records the virtual addresses for locally cached 
transactional blocks. The clean value for locally buffered 
but temporarily updated cache blocks is available in 
memory. After the forced overflow, the hardware buffers 
have no transactional state: it is all in the virtual memory-
based XADT. When a transaction is suspended, the trans-
action transitions from the RAL state to the intermediate 
RAO state and finally to the RSO state.  

When the transaction re-schedules, it re-populates its 
cache hierarchy on demand. When a suspended non-
aborted transaction is re-scheduled, it transitions from the 
RSO state to the RAO state; else, it transitions from the 
BSO state to the BAO state (an active transaction might 
have aborted the transaction while it was swapped out). If 
the transaction did not abort, the processor-architected 
state is restored and execution resumes. VTM re-caches 
data blocks as necessary and updates the XADT and XF 
to reflect the transition to hardware mode for those blocks. 

As noted, because non-transactional operations do not 
consult the XF and XATT, a non-transactional write may 
have overwritten a value read by a swapped-out transac-
tion. To detect such conflicts, when VTM re-schedules a 
transaction it must check that the values the transaction 

Figure 3 VTM state transition diagram. NonT: Not executing a transaction, R: running, C: committing, B: abort-
ing, A: actively executing, S: swapped out, L: all local hardware, O: overflowed state.  
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read agree with the current memory values. A similar 
value-based validation was proposed by Martin et al. [16].  

5.5 Committing and aborting transactions 
Commits and aborts require atomic updates to both lo-

cally cached and overflowed state. As noted, VTM logi-
cally commits a transaction by atomically updating its 
XSW status, and then physically commits its state by 
marking local hardware state committed and copying the 
overflowed updates one-at-a-time from the XADT to 
memory. In a similar way, VTM logically aborts by updat-
ing its XSW status, and physically aborts by marking local 
hardware state invalid and discarding overflowed updates 
from the XADT. Logical aborts and commits atomically 
update the XSW, indirectly marking all associated XADT 
entries (which have pointers to the XSW) as either aborted 
or committed. If another transaction detects a conflict with 
a transaction that has physically but not logically commit-
ted, then it stalls until the physical commit completes. 
This approach is similar to commit protocols used by 
software-only transactional memory proposals [9]. Be-
cause aborting or committing a transaction requires access 
to the XADT entries belonging to the transaction, these 
entries may be linked together (by extending the XADT 
entry fields) to speed traversal. Detecting and resolving 
conflicts with non-transactional operations during the 
physical commit requires ensuring these operations do not 
observe stale memory values (locations that have not yet 
been updated from the XADT), and we discuss this below.  

5.5.1 Committing transactions  

Figure 4 describe the commit operation for an over-
flowed transaction. A completed transaction is about to 
execute the end_xaction instruction. The hardware 
implementation ensures appropriate local cache transac-
tional state is writable. First, the transaction atomically 
updates its XSW (�). If the status transitions successfully 
to CAO, the transaction has started the commit sequence, 
and cannot abort. The XADT entries are automatically 

marked committed through the committing transaction’s 
XSW(�). 

Since the transaction will not abort, local hardware 
state is atomically committed (�). Incoming requests can 
observe the updated hardware state (A, B, C, D). As 
shown in the figure, the overflowed state E, F, and G, is in 
the XADT, and access to these locations is controlled by 
VTM during the commit—any access to these blocks may 
wait (or return the latest value from the XADT) but cannot 
return the old value in the original memory location. This 
ensures logical atomicity of the local and overflow up-
dates. Since access to overflowed data is controlled at all 
times in the commit sequence, even if the commit se-
quence is interrupted, atomicity is maintained. 

The committing transaction’s VTM then updates the 
original location of the overflowed blocks with corre-
sponding data from the XADT and frees the XADT entry. 
When an XADT entry is committed to the original loca-
tions, the XF entry for that location is updated to reflect 
XADT changes. This update can occur at any time as long 
as it is after the update of the XADT (�). 

Even though non-transactional operations typically do 
not consult the XF and XADT, they need to access these 
structures only during the commit sequence to ensure the 
commit itself is atomic (a committing transaction cannot 
abort).  To ensure non-transactional operations do not 
read inconsistent state during commit (since updating 
memory locations is a multi-step process), the committing 
transaction needs to inform other threads to access the 
XADT and XF during the commit sequence. One way to 
achieve this is for the VTM system to maintain a count 
tracking currently committing transactions. Operations on 
this counter involve atomic increments and decrements, 
and the counter is non-zero only if an overflowed transac-
tion is committing. When this happens, the VTM system 
of a processor can ensure its non-transactional operations 
consult the XF and XADT. Alternative implementations 
can be hardware oriented, employing broadcast messages. 

 

Figure 4 Commit sequence for virtualized transactions in VTM. Here, locations G and F map to the same XF entry. 
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5.5.2 Aborting transactions 

A transaction can abort another transaction by atomi-
cally updating the other transactions’ XSW. Since the 
XSW is cached by the local VTM machinery at all times, 
a running transaction will detect the abort. If the aborted 
transaction was not running, it will detect the abort when 
it re-schedules. An aborting transaction discards its local 
speculative state, and restarts execution. Entries in the 
XADT corresponding to the aborted transaction are in-
validated. This cleanup can occur lazily since those entries 
are marked aborted and their XSW pointer cleaned up. 
However, to allow the aborting transaction to restart right 
away and execute, the XSW should be re-usable. Since 
the XSW is thread-specific, a local pool of XSWs can be 
used to allow an aborting transaction to restart execution 
in parallel with the XADT cleanup. The programming 
model might allow programmers to abort transactions 
explicitly, causing a similar sequence of events.  

5.6 VTM and page faults 
Page faults can occur during the execution of a transac-

tion. If an address accessed by the transaction is un-
mapped, the operating system’s page fault handler exe-
cutes. This would be legal even if the transaction later 
aborted because even though the transaction is executing 
optimistically, it is following a valid execution path 
(unlike say, in an out-of-order processor where the in-
struction must first become non-speculative because the 
data inputs itself to the execution path may be incorrect 
and the path invalid). To handle the page fault, VTM can 
either suspend the transaction (similar to the pause-and-
resume sequence) and request fault handling, or may re-
quest fault handling and then restart the transaction. If the 
page of a previously accessed address in a transaction is 
unmapped, the address would have overflowed and would 
also reside in the XADT. Thus, un-mapping an address 
would not necessarily result in a transaction abort. 

The VTM system itself may generate page faults be-
cause its data structures, XADT and XF, reside in virtual 
memory. A processor’s VTM machinery would signal a 
page fault request to the application if access to an XADT 
or XF results in a page fault, and user-level libraries 
would trigger the handling. The program counter would 
correspond to the instruction that resulted in the access to 
the XADT and XF. Such faults can occur either during a 
forced overflow (of cached state) of a transaction because 
of a context switch, or during the commit sequence when 
data is copied from the XADT to the original memory 
location. All faults can be incrementally handled without 
requiring the transaction itself to abort. In the context 
switch case, the transaction restarts in an explicit overflow 
mode, forcing all state to be overflowed, and then incre-
mentally handling page faults. During the commit se-
quence (which cannot be aborted), the operating system 
must ensure that when the VTM system commits an 

XADT entry, both the original address and the XADT 
entry for that address are mapped at the same time for the 
duration of committing that entry’s update. This allows 
the data to be copied from the XADT to the original loca-
tion. The only implication in the worst case of all accesses 
sequentially experiencing page fault is performance. 
When the page fault occurs during a commit, the transac-
tion does not abort, and requests fault handling 

Note that it is always possible to write a transaction 
that accesses so many pages that overwhelms the paging 
machinery itself. Our goal is to ensure that the paging 
behavior of a transaction is not substantially worse than a 
non-transactional computation with the same footprint. 

6. Open challenges in transactional memory 
We have focused on identifying requirements and pro-

viding mechanisms for key system-level virtualization 
mechanisms for transactional memory and have avoided 
dictating implementation or the user-level API details. 
However, key challenges remain, some with VTM, and 
others with the transactional memory API itself. 

To virtualize transactions, VTM assumes that multiple 
threads, each executing a transaction, share a single vir-
tual address space associated with the process under 
which they are executing. However, some virtual memory 
implementations use virtual address aliasing to allow 
sharing between two processes executing under different 
virtual address spaces. The operating system in such situa-
tions explicitly maps different virtual addresses from dif-
ferent address spaces to the same physical address. VTM 
would require additional mechanisms to support interac-
tions among processes from different virtual address 
spaces. The respective XADT structures would need to 
communicate, and we leave this as future work. 

VTM currently does not define the effects of operating 
system calls performed within a transaction. A straight-
forward approach is to provide the operating system with 
its own XADT structure, and the ability to undo privileged 
changes.  While no fundamental obstacles exist, the oper-
ating system would need to be aware of the support, and 
we leave this as future work. 

The role of I/O within a transaction is unresolved. 
What should it mean for a transaction to write to a mem-
ory-mapped device or to use DMA to move data from part 
of memory to another?  For some I/O operations, a log 
could be introduced as a main memory structure that is 
written by transactions and spooled to disk, as occurs in 
databases. The behavior for other I/O operations needs to 
be driven by the transactional memory usage model. 

The behavior of an exception, such as divide-by-zero, 
thrown inside transactions has to be defined based on the 
usage model. Exception behavior is also influenced by 
how nested transactions are handled. VTM currently flat-
tens nested transactions into the top-level transaction: an 
abort restores state to the beginning of the outermost 
transaction. However, software engineering and pro-



  

gramming methods may require finer nested recovery ca-
pability. VTM can be adapted to allow such behavior. The 
challenge here is not so much implementing the desired 
behavior as deciding what that behavior should be. 

These are unresolved questions about the user-level 
API and the underlying transactional memory model, and 
researchers must address them to make transactional exe-
cution a reality. The VTM design will have to evolve to 
accommodate behaviors deemed necessary. 

7. Related work 
Lamport introduced lock-free synchronization to allow 

multiple threads to work on a data structure concurrently 
without a lock [14]. Knight investigated architectural sup-
port for multi-word synchronization and proposed the use 
of cache coherence protocols and hardware to add paral-
lelism to mostly-functional LISP programs [13]. The load-
linked/store conditional instructions allow for an optimis-
tic atomic read-modify-write on a single word [11]. 

The IBM 801 storage architecture [4] provided implicit 
hardware transaction functions, using transaction mecha-
nisms for locking and logging, on virtual storage access to 
files. The architecture focused on database systems and 
provided durability.  

Transactional Memory [10] and the Oklahoma Update 
[26] were hybrid hardware/software schemes and pro-
vided optimistic read-modify-write on multiple locations. 
They allowed the programmer to write explicitly transac-
tional code using extensions to the instruction set and 
cache coherence protocols. These proposals did not pro-
vide a solution to handling overflows other than requiring 
the programmer to handle them. 

Software transactional memory  [8, 9, 24] uses soft-
ware primitives to implement transactions. They require 
careful programming methodologies and do not provide 
atomicity of a transaction with respect to other operations 
that do not occur within transactions. Further, they suffer 
from poor common-case performance. 

Speculative Lock Elision [19] and Transactional Lock 
Removal [20] are hardware proposals that take existing 
lock-based programs, and execute them in a lock-free 
manner to attain transactional behavior. These schemes 
explicitly acquire the lock if the lock-free transactions 
experience resource overflow. In such an event, the execu-
tion can no longer abort. In Transactional Coherence and 
Consistency [7] all computations occur within a transac-
tion. All transactions execute speculatively in the cache, 
and on commit, broadcast their updates to all other proc-
esses, who then detect conflicts. If transactions experience 
resource overflows, the execution becomes non-
speculative and the execution cannot abort. Since the 
above schemes cannot abort execution in the presence of 
insufficient local buffering, they do not provide transac-
tional memory behavior in the presence of overflow and 
rely on the programmer to ensure this does not happen.  

Thread-Level Transactional Memory [17] proposes the 
use of a thread-level log to allow the software to perform 
recovery in the event of aborts for overflowed transac-
tions. They show that overflowed transactions are rare. 

Unbounded Transactional Memory (UTM) [2] is an al-
ternative scheme for freeing transactions from dependence 
on hardware resources. One important difference between 
VTM and UTM is that conflict detection in UTM is con-
siderably less efficient in the normal case. In UTM, each 
transaction maintains an xstate data structure roughly 
comparable to our XADT. Each memory block has an 
associated log pointer to information about that block in 
the xstate. When a transaction encounters a cache miss on 
a load or store, it must check that the location accessed 
does not conflict with an overflowed entry by reading that 
location's associated log pointer. (If non-transactional 
operations are not to jeopardize transactional atomicity, 
each non-transactional loads and stores must do the same.) 
In the normal case, where there are no actual conflicts, 
reading a log pointer on each memory access is slower 
than reading the locally cached XADT counter. Moreover, 
keeping one log pointer per memory block takes up sub-
stantially more space than our XF filter, possibly affecting 
the cache hit rate. LTM [2] is a version of UTM that only 
handles buffer overflow. A special overflow area in proc-
essor-local physical memory is used as an extension of the 
cache, and overflowed blocks are chained together to fa-
cilitate lookups. The duration of transactions must be less 
than a time-slice and transactions cannot migrate. A simi-
lar overflow scheme was used by Prvulovic et al. for use 
in speculative thread-level parallelization [18]. 

Thread-level speculation (TLS) techniques use hard-
ware support to speculatively parallelize sequential pro-
grams [13, 25]. While such speculative multithreading 
techniques use some of the hardware mechanisms required 
for transactional memory, critical differences exist. These 
techniques do not automatically provide transactional 
memory semantics because in such techniques, one thread 
is always non-speculative and cannot abort. 

Transactional memory is concerned with providing 
multiprocessor synchronization but not with ensuring that 
updates survive crashes. By contrast, “lightweight” trans-
action systems such as RVM [22] and Rio [15] are con-
cerned with the complementary problem of providing du-
rability but not  synchronization. 

8. Concluding remarks 
Transactional memory avoids software engineering and 

reliability problems associated with lock-based synchroni-
zation when developing multithreaded programs. Hard-
ware implementations of transactional memory allow 
transactional memory models to achieve high performance 
with respect to other lock-based schemes, but expose pro-
grammers to low level hardware implementation, since 
hardware-resident transactions will always be limited in 
size and scope. This paper’s premise is that transactional 



  

memory can realize its promise only if programmers are 
shielded from low-level hardware constraints of high per-
formance transactional memory implementations.  

Virtual memory simplified memory management where 
programmers no longer had to worry about overlays when 
dealing with physical memory. Supporting virtual memory 
was not simple, but the benefits far outweighed virtual 
memory’s initial cost and complexity. VTM adopts this 
approach and virtualizes hardware transactional memory 
implementations. VTM operations, and accesses to its 
own data structures, though subtle, are hidden from the 
programmer. This paper demonstrates that transactional 
memory virtualization is possible in a way that does not 
slow down the hardware-only transactional memory op-
erations. 

Significant work remains in the software model devel-
opment for transactional memory in large-scale applica-
tions. By demonstrating transactional memory virtualiza-
tion in this paper, we hope that software developers can 
reason with transactional memory without worrying about 
the underlying implementation or constraints, thus making 
transactional memory more attractive and compelling. 
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