

Virtualizing Transactional Memory

Ravi Rajwar

Microarchitecture Research Lab
Intel Corporation

ravi.rajwar@intel.com

Maurice Herlihy1

Computer Science Department
Brown University

mph@cs.brown.edu

Konrad Lai

Microarchitecture Research Lab
Intel Corporation

konrad.lai@intel.com

Abstract
Writing concurrent programs is difficult because of the

complexity of ensuring proper synchronization. Conven-
tional lock-based synchronization suffers from well-
known limitations, so researchers have considered non-
blocking transactions as an alternative. Recent hardware
proposals have demonstrated how transactions can
achieve high performance while not suffering limitations
of lock-based mechanisms.

However, current hardware proposals require pro-
grammers to be aware of platform-specific resource limi-
tations such as buffer sizes, scheduling quanta, as well as
events such as page faults, and process migrations. If the
transactional model is to gain wide acceptance, hardware
support for transactions must be virtualized to hide these
limitations in much the same way that virtual memory
shields the programmer from platform-specific limitations
of physical memory.

This paper proposes Virtual Transactional Memory
(VTM), a user-transparent system that shields the pro-
grammer from various platform-specific resource limita-
tions. VTM maintains the performance advantage of
hardware transactions, incurs low overhead in time, and
has modest costs in hardware support. While many sys-
tem-level challenges remain, VTM takes a step toward
making transactional models more widely acceptable.

1. Introduction
Multicore architectures present both an opportunity

and challenge for multithreaded software. The opportunity
is that threads will be available to an unprecedented de-
gree, and the challenge is that more programmers will be
exposed to concurrency-related synchronization problems
that until now were of concern only to a select few.

The limitations of conventional synchronization tech-
niques, based on locks and condition variables, are well-
known [10]. Coarse-grained locks, which protect rela-
tively large amounts of data, simply do not scale well.
Threads block one another even when they do not really

interfere, and the lock itself becomes a source of conten-
tion. Fine-grained locks are more scalable, but they are
difficult to use effectively and correctly. In particular, they
introduce substantial software engineering problems, as
the conventions associating locks with objects become
more complex and error-prone. Locks also cause vulner-
ability to thread failures and delays: if a thread holding a
lock is delayed by a page fault, or context switch, other
running threads may be blocked. A thread failure also
leaves shared objects with inconsistent updates. Locks
also inhibit concurrency because they must be used con-
servatively: a thread must acquire a lock whenever there is
a possibility of synchronization conflict, even if such con-
flict is actually rare.

Transactional memory [10] addresses these limitations.
A transaction [5] is a finite sequence of memory reads and
writes executed by a single thread. Transactions are
atomic: each transaction either completes and commits
(instantaneously taking effect) or aborts (discarding its
updates). Transactions are serializable: they appear to take
effect in a one-at-a-time order. Each thread announces the
start of a transaction, executes a sequence of operations on
shared objects, and then tries to commit the transaction.
The updates take place if the commit succeeds.

High performance transactional memory implementa-
tions [2, 7, 10, 13, 20, 26] exploit hardware mechanisms
such as speculative execution and on-chip caching. Hard-
ware optimistically executes a transaction and locally
caches memory locations read or written on behalf of the
transaction, marking them transactional. The hardware
cache coherence mechanism communicates information
regarding read and write operations to other processors.
A data conflict occurs if multiple threads access a given
memory location via simultaneous transactions and at
least one thread’s transaction writes the location. A trans-
action commits and atomically updates memory if it fin-
ishes without encountering a data conflict.

Most prior hardware transactional memory proposals
require programmers to be aware of platform-specific
resource limitations such as cache and buffer sizes, sched-
uling quanta, and the effects of context switches and proc-
ess migrations. Transactions that exceed these resources
or repeatedly encounter such interruptions cannot commit.

1Supported in part by NSF Award Number 0410042 and by gifts from
Sun Microsystems and Intel Corporation.

If transactional synchronization is to gain wide accep-
tance, however, programmers must be shielded from such
complex, platform-specific details. Instead, transactional
memory systems must provide full guarantees even for
transactions that cannot execute directly in hardware.

To ensure high performance, implementations must
provide sufficient resources for the vast majority of trans-
actions to execute directly and efficiently in hardware.
Prior proposals have demonstrated that most transactions
require only modest hardware resources [2, 7, 17, 20].
Nevertheless, repeatedly aborting the few transactions that
exceed these limits would severely restrict the usability of
the transactional model because it is unreasonable to ex-
pect programmers to circumvent such complex limitations
by special-case, handcrafted code. The resource exhaus-
tion problem therefore is not one of performance but one
of completeness and guarantees.

This paper proposes Virtual Transactional Memory
(VTM), a combined hardware/software system architec-
ture that allows the programmer to obtain the benefits of
transactional memory without having to provide explicit
mechanisms to deal with those rare instances in which
transactions encounter resource or scheduling limitations.
The underlying VTM mechanism transparently hides re-
source exhaustion both in space (cache overflows) and
time (scheduling and clock interrupts). When a transac-
tion overflows its buffers, VTM remaps evicted entries to
new locations in virtual memory. When a transaction ex-
hausts its scheduling quantum (or is interrupted), VTM
saves its state in virtual memory so that the transaction can
be resumed later.

VTM virtualizes transactional memory in much the
same way that virtual memory (VM) [12] virtualizes
physical memory. Programmers write applications without
concern for underlying hardware limitations. Even so, the
analogy between VTM and VM is just an analogy: we will
see that the technical problems are quite different.

VTM achieves virtualization by decoupling transac-
tional state from the underlying hardware on which the
transaction is executing and allowing that state to move
seamlessly (and without involving the programmer) into
the transaction’s virtual address space. This virtual mem-
ory-based overflow space allows transactions to circum-
vent hardware resource limits when necessary. Since the
virtual address space is independent of the underlying
hardware, a transaction can be swapped out, or migrate
without losing transactional properties.

Nevertheless, using a virtual memory-based virtualiza-
tion scheme presents challenges. Most importantly, VTM
must not slow down the common case where hardware
resources are sufficient. By keeping the virtualization ma-
chinery off the critical path, we can continue to ensure that
the overall performance of the system is determined by the
hardware-only case. Virtualization provides essential
functionality, but should have an insignificant effect on
performance. VTM requires the ability to detect inter-

thread synchronization conflicts, and the ability to commit
or abort multiple updates to disjoint virtual memory loca-
tions in an atomic, non-blocking way. None of this func-
tionality is provided by existing virtual memory systems.

To this end, VTM provides two operational modes: a
hardware-only fast mode provides transactional execution
for common case transactions that do not exceed hardware
resources and are not interrupted. This mode is based on
mechanisms proposed by prior work [2, 7, 10, 20], and
this mode's performance effectively determines the per-
formance of the overall scheme. A second mode, imple-
mented by a combination of programmer-transparent soft-
ware structures and hardware machinery, supports transac-
tions that encounter buffer overflow, page faults, context
switches, or thread migration.

Overview: In VTM, transactional state is split into two
parts: locally-cached state resides in processor-local buff-
ers, and overflowed state resides in data structures in the
application’s virtual memory.

The VTM system architecture uses several data struc-
tures to track overflowed state. The VTM implementation
manages these data structures and ensures that concurrent
accesses are properly synchronized.

Each transaction has a Transaction Status Word
(XSW) that tracks a transaction’s status at all times. Since
a thread executes one transaction at a time, the status word
is associated with a single thread. The VTM implementa-
tion commits or aborts a transaction by atomically updat-
ing its XSW.

The Transaction Address Data Table (XADT) keeps
track of transactional state that has overflowed from proc-
essors to memory. The XADT is common to all transac-
tions sharing the address space. Transactional state can
overflow into the XADT in two ways: a running transac-
tion may evict individual transactional cache lines, or an
entire transaction may be swapped out, evicting all its
transactional cache lines. An XADT entry records the
overflowed block’s virtual address, its clean and tentative
value (uncommitted state), and a pointer to the XSW of
the transaction to which the entry belongs.

Each time a transaction issues a memory operation that
causes a cache miss, it must check whether that opera-
tion’s target conflicts with an overflowed address. VTM
could detect such conflicts by “walking” the XADT, but
doing so would defeat our goal of making the common
case fast. Instead, VTM provides two “fast-path” mecha-
nisms for the common case. First, the XADT overflow
counter records the number of overflowed entries. Nor-
mally, this counter is zero, and is cached locally at each
processor, avoiding the need for any traffic. Second, an
XADT filter (XF) provides a quick way to detect the ab-
sence of conflict. A miss in the filter guarantees the ad-
dress does not conflict, and a hit triggers an XADT walk.

VTM can instantaneously change the status of a trans-
action’s XADT entries by atomically updating its XSW.
As discussed in more detail below, this instantaneous

logical commit must be followed by a multi-step physical
commit to move updated values from the XADT to mem-
ory.

We do not focus on mechanisms to make the common
hardware-only case faster. Instead, we assume a standard
high-performance hardware-only transactional memory
implementation, and are agnostic about specific policies
and implementations in the hardware-only common case.

Section 2 discusses the necessity and challenges of
such virtualization, and the goals of our architecture. Sec-
tion 3 describes our baseline model. Section 4 describes
the VTM system architecture and its components, and
Section 5 describes the VTM operations. Section 6 dis-
cusses remaining transactional memory challenges, Sec-
tion 7 presents related work, and Section 8 concludes.

2. VTM: Necessity, challenges, and goals
Necessity: Hardware transactional memory implemen-

tations buffer state on a per-processor basis, since success-
ful, uninterrupted transactions use only processor-local
resources. Virtualization, however, allows transactions to
be suspended, to migrate, or to overflow state from local
buffers. Such abilities require decoupling transactional
state from processor state for the following reasons:

• Making the hardware buffer sizes part of the architec-
ture and exposing them to the programmer limits im-
plementation flexibility and portability, while not ex-
posing them makes it impossible for the programmer
to ensure that transactions can run in hardware across
a variety of platforms and applications.

• Hardware buffers lack persistence. A processor is a
shared resource typically managed by an operating
system. Multiple independent processes run over
time, reusing local hardware buffers. A transaction
can survive an interrupt only if its transactional state
can be moved to persistent space before giving up the
processor.

Further, maintaining overflow state on a per-process
instead of a per-processor basis has additional benefits.

• Per-process state maintenance allows processes to be
isolated from one another if necessary. An incorrectly
or improperly executing application cannot interfere
with another application since their address spaces
are different.

• The overhead of detecting conflicts among multiple
transactions typically depends on how many transac-
tions there are. If potential conflicts are limited to a
single process, then we can limit the cost of conflict
detection. Moreover, we can limit the interference
caused by malicious or erroneously written program.

• Overflowing to virtual memory also allows state to be
visible to support software such as debuggers and
other profiling libraries, a difficult task if overflow
were only in physical space.

VTM tracks overflow state using virtual, not physical
addresses. Using physical addresses would require pages
(and any pages pointed to by these addresses) to be pinned
and marked non-swappable during the transaction’s exe-
cution, which would require significant operating system
involvement.

Virtual memory is universally available, and already
handles many complex resource-related problems. Never-
theless, transactional memory virtualization based on vir-
tual memory introduces certain additional challenges.

Challenges: Transactional memory requires the ability
to detect synchronization conflicts between transactions.
Conflict detection is relatively easy when transactions run
entirely in hardware (by exploiting native cache-
coherence mechanisms), but additional mechanisms are
needed to detect conflicts between active transactions and
transactions whose state has partially or completely over-
flowed to virtual memory.

Transactional memory also requires the ability to
commit or abort multiple memory accesses atomically.
Here too, atomic commits and aborts are relatively easy
for transactions that run in hardware, but we will need to
invent new mechanisms to support atomic commit and
abort for transactions with partially or completely over-
flowed state.

Goals: Virtualized transactional memory must satisfy
the following requirements:

• The performance of the common-case hardware-only
transactional mode must be unaffected.

• Conflict detection between active transactions and
transactions with overflowed state should be efficient,
and should not impede unrelated transactions.

• Committing or aborting a transaction should not delay
transactions that do not conflict.

• Context switches and page faults may impede transac-
tion progress, but must not prevent transactions from
eventually committing.

• Non-transactional operations may cause transactions
to abort but must never compromise any transaction’s
atomicity.

• Finally, VTM must be transparent to application pro-
grammers.

3. Baseline software and hardware model
An application consists of multiple concurrently exe-

cuting software threads operating in a single shared virtual
address space. Each thread serially executes transactions
explicitly delimited by the instructions begin_xaction
and end_xaction (see Figure 1). A fault occurs if a
transaction executes an operation that cannot execute op-
timistically (such as input or output to a device). Nested
transactions are allowed and are handled by flattening all
inner transactions into the outermost transaction. The
hardware tracks the nesting depth to determine when to
commit the flattened transaction.

We assume a high-performance hardware transactional
memory implementation [2, 7, 10, 20, 26] for the common
case where local resources are sufficient. Such processor
hardware support includes an architectural register state
checkpoint for recovery, ability to execute and specula-
tively retire instructions in the transaction, to buffer mem-
ory updates locally, to track addresses for cached loads
and stores to detect memory conflicts, and perform atomic
commits and aborts.

When two transactions conflict, a conflict resolution
policy decides which one is aborted. Conflict resolution
policies might take into account a transaction's age, its
operating system thread priority, and a variety of other
properties. A complete discussion of this subject is be-
yond the scope of this paper (see, however, [10, 20]), so
we will simply assume that a uniform policy exists.

4. VTM system architecture and design
VTM supports data overflows, conflict resolution

among transactions, and atomically committing transac-
tion state. While the typical programmer is not concerned
with these components, they are part of the VTM architec-
ture specification. We outline our architectural structures
in Section 4.1, where we also discuss how these structures
interact with the software. Sections 4.2, 4.3, and 4.4 pre-
sent details of the new structures, and Section 4.5 de-
scribes the overall VTM system.

4.1 VTM Architecture
Hardware transactional memory monitors accesses and

updates at the hardware level. VTM complements the
hardware by monitoring memory accesses and updates at
the application level. In this way, VTM provides applica-
tion-centric atomicity, instead of hardware-centric atomic-
ity. VTM allows events such as context switches or page
faults to occur within a transaction, as long as they do not
jeopardize atomicity. A transaction can be temporarily
paused, unrelated operations can execute, and the transac-
tion subsequently resumes. However, these capabilities
require transaction virtualization to be architecturally
visible.

VTM architecturally defines a Transaction Status
Word (XSW) for each transaction. The XSW tracks its
transaction’s state at all times. A transaction is associated
with a unique thread (although a thread serially executes
multiple transactions), so each XSW is part of a thread’s
state. An XSW resides in the application’s virtual address
space and any thread can operate directly on any XSW.
The XSW is the ultimate authority on a transaction’s
status, and a transaction can be committed or aborted by
modifying its XSW using an atomic compare-and-swap
operation.

VTM also architecturally defines two data structures:
the Transaction Address Data Table (XADT), and a filter
for this table (XF). The XADT is the central repository for
buffering overflowed transaction state and for resolving

conflicts involving such state. The XF is a compact repre-
sentation of the XADT that allows a quick test whether an
address has overflowed into the XADT. The XADT and
XF are software data structures that reside in the applica-
tion’s virtual address space. All transactions in an applica-
tion share the XADT and XF.

While these structures reside in addressable memory,
access to them is controlled. To the typical programmer,
the address space where these structures reside is unavail-
able. The VTM system, implemented in either hardware
or microcode, manages these structures, and performs
overflow and conflict detection operations on behalf of
the programmer. For example, the programmer performs a
series of reads and writes demarcated by the be-
gin_xaction and end_xaction instructions. If any
address accessed within the transaction during execution
overflows local buffers, VTM automatically detects the
overflow, and performs the necessary adjustments to the
XADT. The programmer typically does not observe VTM
intervention. Each processor has its own VTM system
implementation which acts like a coprocessor (but with
state), and operates at the user’s privilege level on these
structures using cacheable load and store operations.
These operations are not part of a transaction. The appli-
cation automatically initializes the XADT and XF struc-
tures and passes their location and bounds to VTM. The
VTM system might need to perform adjustments and op-
erations to these structures, beyond loads and stores. For
example, if the XADT needs to grow because of very high
overflows. In such an event, VTM signals the application,
which responds by calling user-level libraries. The appli-
cation then communicates any adjustments to the VTM
system. Because these structures reside in virtual address
space, the operating system can swap their pages out to
disk. If the VTM system encounters such an access fault,
it again signals the application to request page fault ser-
vicing on its behalf.

These operations are typically transparent to the appli-
cation programmer, because VTM, not the programmer,
executes synchronized operations on the XADT and XF.
However, software such as debuggers, runtime garbage
collectors, and so on might need controlled access to the
XADT and XF structures, which is why these structures
are part of the VTM architecture. The VTM system
mechanisms that operate on the XADT and XF, and per-
form commits and aborts are implementation dependent.

4.2 XSW
A transaction’s XSW summarizes the transaction’s cur-

rent execution status, along the following three dimen-
sions.

In the first dimension, a transaction may be running
(R), it may have committed but not made its updates visi-
ble (C), or it may have aborted (B). Since the XADT re-
sides in virtual memory, physical commits and aborts are a
multi-step process. For the second dimension, a transac-

tion is either actively executing (A) or has been swapped
out (S). For the third dimension, a transaction’s state is
either completely cached locally (L), or has partially over-
flowed (O).

Only a few combinations are valid. For example, a
swapped transaction cannot have a completely locally
cached state. Aborted and committed transactions cannot
have locally-cached states since aborts and commits for
hardware-only transactions are instantaneous. A transac-
tion in the process of updating memory completes updates
before swapping out. In the end, only the following state
combinations are valid: RAL: running, actively executing,
with locally-cached state, RAO: running, actively execut-
ing, overflowed, RSO: running, swapped out, overflowed,
BAO: aborting, actively executing, overflowed, BSO:
aborting, swapped, overflowed, and CAO: committing,
actively executing, and overflowed. A thread not execut-
ing a transaction is in NonT (non-transactional) state.

The transaction is globally ordered when its XSW
status successfully transitions to a committing state. All
operations in the transaction are globally ordered atomi-
cally at this point. The committing state captures a logical
commit of the transaction. The physical commit, where
updates become visible, is implementation dependent, but
must ensure the logical atomicity of updates.

4.3 XADT
The XADT is the central structure responsible for

managing data overflow. All transactions executing within
a virtual address space share the same XADT. A hardware
(or firmware) structure, the XADT walker, manages the
XADT. XADT load and store operations executed by the
XADT walker are cache coherent. Key XADT operations
include adding an entry on overflows, entry lookup using

an address, commit and abort operations via actions on the
XSW, and saving state on context switches. The XADT
also records the nesting depth (maintained by the hard-
ware) of a swapped transaction.

The XADT also records an overflow count of over-
flowed data blocks at any time. This count provides a fast
way to determine whether any overflows have occurred,
which is none in the common case. An XADT entry in-
cludes at least the following fields: a) Status bits marking
whether the entry is valid and whether a transaction read
or wrote the address, b) virtual address of the data block
overflowed to this entry, c) data field for buffering up-
dates to the overflowed location, and d) pointer to the
overflowing transaction’s status word (XSW). The ad-
dress of the data field serves as the remapped address for
the overflowed data. Miscellaneous fields for conflict pri-
oritization may use timestamps and information such as
thread priority from the operating system. XADT entries
belonging to the same transaction are linked together to
allow efficient cleanup on aborts and commits. An address
that is concurrently being read by multiple transactions
would have multiple XADT entries.

The transactional state also includes state saved at con-
text switches, such as temporary register state (since the
transaction is executing speculatively), any temporary
updates performed in the local caches, and the virtual ad-
dress and data value of any cache blocks read during the
transactional execution, even if the blocks have not been
written. As discussed in detail below, recording the clean
values of the data blocks allows a rescheduled transaction
to ensure that there were no conflicting non-transactional
operations while it was swapped out.

We expect the combination of the overflow count and
the conflict filter (discussed below) to minimize the actual
number of accesses to the XADT.

Figure 1 VTM software data structures. A conceptual snapshot of the address space is shown. Threads execute
series of transactions. XADT records overflow information, and any swap information. XF summarizes the XADT like a
bloom filter. For example, XF has “Y” marked, but “Y” is invalid in XADT.

Thread1 Thread2 Thread3

XSW1 XSW2 XSW3

begin_xaction

end_xaction

begin_xaction

end_xaction A w data &xsw1 misc.
C w data &xsw2 misc.
D w data &xsw2 misc.
F w data &xsw3 misc.

F w data field &xsw3 misc. B r data &xsw1 misc.
B r data &xsw2 misc.

(plus, per thread swap state)

XADT XF

1 1
1
1
1

1
1

0
1
0
1
0
1

2
1

A

F

C

Y

B
D

Y w data misc. 0

Overflow count = 6

Application1 virtual address space

VTM Data Structures

Application2 virtual address space

Application3 virtual address space

4.4 XF
When a transaction issues a read or write request that

causes a cache miss, VTM must quickly determine
whether the request conflicts with a request already issued
by another transaction. The existing cache coherence pro-
tocol will detect conflicts involving locally-cached state,
but it cannot detect conflicts involving overflowed state.
For example, a transaction that has been swapped out does
not participate in the cache coherence protocol. (Requests
that hit in the cache do not require conflict resolution.)

One way to detect conflicts involving overflowed state
is to call the XADT walker. Because such conflicts are
uncommon, however, the XF conflict filter provides a fast
“out-of-band” way to detect the absence of conflict in
most cases, thus avoiding the need to walk the XADT. A
miss in the XF means that an address does not conflict
with any overflowed block, while a hit means that a con-
flict probably exists. On a hit, the requestor’s VTM walks
the XADT and determines whether the conflict actually
exists. Since the XF is a conservative representation of the
XADT, updates to the XF can be performed lazily.

Bloom filters as conflict detectors: A Bloom filter
[3] is an efficient set data structure that provides two op-
erations: add(x) inserts x into the set and member(x) que-
ries whether x is in the set. Member is allowed to produce
(infrequent) false positives. The filter itself is an n-
element Boolean array B, initially all false, and a set of
independent hash functions, h1,…hk. To add x to the set,
set B[hi(x)] to true, for all i. A query testing whether a
particular y is in the set returns true if B[hi(y)] is true, for
all i. It is easy to see that if the query returns false, then y
is not in the set, while if it returns true, then it might be.
Classical Bloom filters do not permit elements to be re-
moved. A counting Bloom filter [6] replaces the Boolean
array B with an array of counters C. Adding an element x
(atomically) increments each C[hi(x)], and removing the
element (atomically) decrements each such counter. A
member(x) query returns true if every C[hi(x)] is non-zero.

The XADT filter (XF) is a counting Bloom filter that
summarizes the XADT. The probability of a false positive
can be made arbitrarily small by choosing enough count-
ers. Analysis of the trade-offs among filter size, counter
size, and the number of hash functions can be found in the
literature (see, for example, [6]), Experimental work
[21] suggests that a family of linear congruences work
well for hash functions. Others [1, 23] have discussed
hardware filter implementations.

XF representation and design: A concrete represen-
tation of a counting Bloom filter must address several
questions: how many hash functions and counters to use,
how large are the counters, and how are they represented
in memory? If m entries are placed in an n-element Bloom
filter using k hash functions, then the likelihood of a false
positive is bounded by (1-e-kn/m)k. The probability that
some counter in the table will exceed i is less than m(c
ln2/i)i. Assume we are willing to tolerate a 1% probability
of false positives when there are one million (220) over-
flowed blocks. (Fewer blocks means lower probabilities,
while more means higher.) If the filter uses 2 hash func-
tions, then it requires at least 21.0M counters, while if it
uses 4, it requires 12.5M counters. If each counter has 4
bits, then the probability that 1M blocks will cause any
counter to overflow in either case is less than 1.44×10-09.
(Overflow is a performance, not a correctness issue, be-
cause impending overflows can be detected and redirected
to an overflow table.) In practice, of course, hash func-
tions will not be perfectly random, plus we will keep add-
ing and removing blocks, but 4 bits per counter seems
more than adequate.

XF implementation options: The most straightfor-
ward way to implement the XF is as an array of 4-bit
counters. At 2 counters per byte, 21.0M counters occupy
10.5Mbytes (6Mbytes with 4 hash functions). On many
platforms, such an array is small enough to reside in
memory, so paging is unlikely to be an issue. False shar-
ing is unlikely to be an issue as long as updates (i.e., over-
flows) are rare. Atomic increments and decrements can

Overflow Count

XADT walker

XADT

Yes

Address overflow

Figure 2 VTM overview. Each processor has its own VTM system machinery. The software-resident XADT and XF
data structures are shown with dashed boxes, and the hardware structures are shown with solid boxes. The VTM
machinery operates on the XF and XADT using cacheable operations. The XADC caches remapping translation
information for overflowed blocks.

Cache hierarchy
Buffered

transaction data

Address mapped?

No

Processor
Hardware transactional

memory support

VTM system
XADC

XSW

XF

be implemented using compare-and-swap instructions or
the equivalent.

A more compact representation is to use a hash table
mapping counters to non-zero values. (A missing mapping
is interpreted as zero.) The advantage is that the hash table
size is largely determined by the actual number of over-
flows, not the total number of counters. If we use 4 bytes
per entry (3 to index the counter and 1 for its value), then
1M blocks need roughly 4Mbytes. The disadvantage is
that lookup, add, and delete operations are more complex.

Perhaps the most attractive alternative is to use a hy-
brid structure. Split the XF into a bitmap that identifies
which values are non-zero, with a hash table holding the
actual values as above. For 20.5M counters, the bitmap
occupies less than 1Mbyte, and commonly occurring
lookup operations need never visit the hash table. Add and
delete operations must still access the hash table, and care
must be taken that combined updates to the bitmap and
hash table are properly synchronized

The amount of traffic to the XF depends on the locality
of the transaction. A transaction references the XF only
when it takes a cache miss and each such miss produces k
independent references to the XF, where k is the number
of hash functions used (2 in the example given above).

4.5 VTM system overview
Figure 2 shows the VTM system architecture. The

principal architectural data structures, XSW, XF, and
XADT, are shown as dashed boxes. The solid boxes show
the VTM implementation-dependent hardware compo-
nents, the XADT walker and the XATC. The hardware
components act like coprocessors.

When a processor executing a transaction misses in its
cache, VTM checks whether that address was overflowed
by another transaction. It first tests the XADT overflow
count. Most often, this count is zero, cached, and accessed
with the latency of a cache hit.

If the overflow count is non-zero, then VTM consults
the XF. If the XF hits, then the VTM calls the XADT
walker to identify the conflict, if it exists. This sequence is
similar to a hardware page-miss handler determining a
missing translation.

In VTM, the requesting processor’s VTM system per-
forms conflict detection for overflowed blocks prior to
generating the request, and operates on the XADT and
XF. This localizes conflict detection, allows conflicts with
swapped transactions to be detected, and avoids unneces-
sary interference with other processors, all of which oth-
erwise would have had to perform XADT and XF opera-
tions to determine conflicts based on an incoming request.
The non-overflowed blocks are handled conventionally by
the other processors (e.g., as in TLR [20]).

5. VTM system operational details
We now discuss VTM in more detail. Figure 3 shows

transactional state transitions, which occur when VTM

updates the transaction’s XSW. First, we describe VTM
operations for the hardware-only mode to demonstrate
how VTM virtualization does not slow down the common
case (Section 5.1). Next, we describe how VTM in virtu-
alization mode provides four basic functions: managing
data blocks that overflow from local hardware buffers,
suspending and swapping interrupted transactions, detect-
ing conflicts for data that has overflowed, and atomically
committing and aborting overflowed transactions, dis-
cussed in Sections 5.2 through 5.5. Finally, we discuss
how VTM interacts with page faults in Section 5.6.

5.1 VTM hardware-only operational mode
All threads begin in a transaction state NonT, as shown

in Figure 3. The RAL state is the hardware transactional
memory mode where the transaction executes and com-
mits using only processor-local resources. The critical
performance path is the NonT to RAL to NonT transition
(begin and commit/abort). As discussed, VTM avoids
slowing down this critical path by testing the XADT over-
flow count, which in the common case (of no overflows)
takes the same latency as a local cache hit. The VTM
overflow management and conflict detection machinery is
invoked only if an overflow has occurred.

5.2 Managing data overflow
A transaction that evicts a transactional cache line tran-

sitions from the RAL to the RAO state, shown in Figure 3.
The cache’s LRU policy determines which data block to
overflow, thus maintaining locality. The VTM machinery
allocates a new XADT entry as necessary. The VTM ma-
chinery locally caches this information (e.g., the new ad-
dress for the data field) in the XADC (the XADT cache),
to speed subsequent accesses to this overflowed block. At
this point, non-overflowed blocks reside in local buffering
and overflowed updates in the XADT. The state flow be-
tween local hardware and the XADT is transparent to the
programmer.

When a processor overflows a transaction block, an-
other processor may already have locally cached the block
as part of its hardware-only transactional execution. In
such an event, the XADT (and the XF) would not have an
entry for such a block. To ensure that any remote proces-
sor detects this conflict, the overflowing transactions’
VTM system updates the XF, and sends coherence invali-
dation for the overflowed block address. This step forces
any remote processors’ VTM system concerned with the
block to re-read the XF for that block, and detect a poten-
tial overflow.

5.3 Detecting conflicts with overflowed data
If a memory access results in a cache miss, and if the

XADT overflow count is non-zero, then VTM consults
the XF. If the XF returns a miss, no conflict exists. Since
the XF is mostly read-only, and if this specific address did
not overflow, the test will be quick and typically hit in the

local cache hierarchy. An XADT walk occurs only if the
XF returns a miss, and it becomes necessary to determine
if the conflict exists.

We have described how VTM detects conflicts among
transactions. We would also like to guarantee that
synchronization conflicts between transactional and non-
transactional operations do not threaten transactions'
atomicity. Existing proposals (for example, TLR) provide
this guarantee for transactions that that run entirely in
hardware. For transactions that do overflow, it would be
relatively easy to ensure atomicity by forcing each non-
transactional operation to consult the XF and XADT.
Nevertheless, we consider such an approach to have
unnecessarily low performance. Instead, let us consider
what kind of conflicts might occur. A non-transactional
operation reads or writes a single memory location, so it is
enough to ensure that any such operation can be ordered
either before or after any concurrent transaction. A
transaction never releases uncommitted data, so a non-
transactional operation cannot read a value that is later
aborted. The following scenario illustrates how
serializability can still be violated. Initially, the address
hold the value v. A transaction reads v, and then a non-
transactional operation writes v’’ to that address. The
transaction computes v’ from v, writes v’, and commits.
The problem is that writing v’’ cannot be serialized either
before or after the transaction. As discussed below, the fix
is to ensure that when an overflowed transaction commits,
the values it read are still correct.

When a processor overflows a transactional block, it
poisons that block's set in its cache. Only external non-
transactional operations to that set will alert the processor

of a possible conflict, causing it to check the XF to
determine whether the conflict is real. If so, it aborts the
conficting transaction.

5.4 Suspending and swapping transactions
On a context switch, VTM overflows all locally buff-

ered transactional state (memory and processor) to the
XADT. To facilitate forced overflows, the VTM machin-
ery also records the virtual addresses for locally cached
transactional blocks. The clean value for locally buffered
but temporarily updated cache blocks is available in
memory. After the forced overflow, the hardware buffers
have no transactional state: it is all in the virtual memory-
based XADT. When a transaction is suspended, the trans-
action transitions from the RAL state to the intermediate
RAO state and finally to the RSO state.

When the transaction re-schedules, it re-populates its
cache hierarchy on demand. When a suspended non-
aborted transaction is re-scheduled, it transitions from the
RSO state to the RAO state; else, it transitions from the
BSO state to the BAO state (an active transaction might
have aborted the transaction while it was swapped out). If
the transaction did not abort, the processor-architected
state is restored and execution resumes. VTM re-caches
data blocks as necessary and updates the XADT and XF
to reflect the transition to hardware mode for those blocks.

As noted, because non-transactional operations do not
consult the XF and XATT, a non-transactional write may
have overwritten a value read by a swapped-out transac-
tion. To detect such conflicts, when VTM re-schedules a
transaction it must check that the values the transaction

Figure 3 VTM state transition diagram. NonT: Not executing a transaction, R: running, C: committing, B: abort-
ing, A: actively executing, S: swapped out, L: all local hardware, O: overflowed state.

NonT

RAL

RAO

RSO

BSO

BAO CAO

Abort-Multiphase Commit-Multiphase

Common-case hardware-only mode

(high performance)

Virtualized VTM mode

(completeness and correctness)

read agree with the current memory values. A similar
value-based validation was proposed by Martin et al. [16].

5.5 Committing and aborting transactions
Commits and aborts require atomic updates to both lo-

cally cached and overflowed state. As noted, VTM logi-
cally commits a transaction by atomically updating its
XSW status, and then physically commits its state by
marking local hardware state committed and copying the
overflowed updates one-at-a-time from the XADT to
memory. In a similar way, VTM logically aborts by updat-
ing its XSW status, and physically aborts by marking local
hardware state invalid and discarding overflowed updates
from the XADT. Logical aborts and commits atomically
update the XSW, indirectly marking all associated XADT
entries (which have pointers to the XSW) as either aborted
or committed. If another transaction detects a conflict with
a transaction that has physically but not logically commit-
ted, then it stalls until the physical commit completes.
This approach is similar to commit protocols used by
software-only transactional memory proposals [9]. Be-
cause aborting or committing a transaction requires access
to the XADT entries belonging to the transaction, these
entries may be linked together (by extending the XADT
entry fields) to speed traversal. Detecting and resolving
conflicts with non-transactional operations during the
physical commit requires ensuring these operations do not
observe stale memory values (locations that have not yet
been updated from the XADT), and we discuss this below.

5.5.1 Committing transactions

Figure 4 describe the commit operation for an over-
flowed transaction. A completed transaction is about to
execute the end_xaction instruction. The hardware
implementation ensures appropriate local cache transac-
tional state is writable. First, the transaction atomically
updates its XSW (�). If the status transitions successfully
to CAO, the transaction has started the commit sequence,
and cannot abort. The XADT entries are automatically

marked committed through the committing transaction’s
XSW(�).

Since the transaction will not abort, local hardware
state is atomically committed (�). Incoming requests can
observe the updated hardware state (A, B, C, D). As
shown in the figure, the overflowed state E, F, and G, is in
the XADT, and access to these locations is controlled by
VTM during the commit—any access to these blocks may
wait (or return the latest value from the XADT) but cannot
return the old value in the original memory location. This
ensures logical atomicity of the local and overflow up-
dates. Since access to overflowed data is controlled at all
times in the commit sequence, even if the commit se-
quence is interrupted, atomicity is maintained.

The committing transaction’s VTM then updates the
original location of the overflowed blocks with corre-
sponding data from the XADT and frees the XADT entry.
When an XADT entry is committed to the original loca-
tions, the XF entry for that location is updated to reflect
XADT changes. This update can occur at any time as long
as it is after the update of the XADT (�).

Even though non-transactional operations typically do
not consult the XF and XADT, they need to access these
structures only during the commit sequence to ensure the
commit itself is atomic (a committing transaction cannot
abort). To ensure non-transactional operations do not
read inconsistent state during commit (since updating
memory locations is a multi-step process), the committing
transaction needs to inform other threads to access the
XADT and XF during the commit sequence. One way to
achieve this is for the VTM system to maintain a count
tracking currently committing transactions. Operations on
this counter involve atomic increments and decrements,
and the counter is non-zero only if an overflowed transac-
tion is committing. When this happens, the VTM system
of a processor can ensure its non-transactional operations
consult the XF and XADT. Alternative implementations
can be hardware oriented, employing broadcast messages.

Figure 4 Commit sequence for virtualized transactions in VTM. Here, locations G and F map to the same XF entry.

V XSW

1

1

1
XSW1

1

1
1

1

E

F

G

A

B

C

D

Data VA

�

� � �

&XSW1

&XSW1

&XSW1

1

2

E

G F

XF XADT Local hardware buffering

5.5.2 Aborting transactions

A transaction can abort another transaction by atomi-
cally updating the other transactions’ XSW. Since the
XSW is cached by the local VTM machinery at all times,
a running transaction will detect the abort. If the aborted
transaction was not running, it will detect the abort when
it re-schedules. An aborting transaction discards its local
speculative state, and restarts execution. Entries in the
XADT corresponding to the aborted transaction are in-
validated. This cleanup can occur lazily since those entries
are marked aborted and their XSW pointer cleaned up.
However, to allow the aborting transaction to restart right
away and execute, the XSW should be re-usable. Since
the XSW is thread-specific, a local pool of XSWs can be
used to allow an aborting transaction to restart execution
in parallel with the XADT cleanup. The programming
model might allow programmers to abort transactions
explicitly, causing a similar sequence of events.

5.6 VTM and page faults
Page faults can occur during the execution of a transac-

tion. If an address accessed by the transaction is un-
mapped, the operating system’s page fault handler exe-
cutes. This would be legal even if the transaction later
aborted because even though the transaction is executing
optimistically, it is following a valid execution path
(unlike say, in an out-of-order processor where the in-
struction must first become non-speculative because the
data inputs itself to the execution path may be incorrect
and the path invalid). To handle the page fault, VTM can
either suspend the transaction (similar to the pause-and-
resume sequence) and request fault handling, or may re-
quest fault handling and then restart the transaction. If the
page of a previously accessed address in a transaction is
unmapped, the address would have overflowed and would
also reside in the XADT. Thus, un-mapping an address
would not necessarily result in a transaction abort.

The VTM system itself may generate page faults be-
cause its data structures, XADT and XF, reside in virtual
memory. A processor’s VTM machinery would signal a
page fault request to the application if access to an XADT
or XF results in a page fault, and user-level libraries
would trigger the handling. The program counter would
correspond to the instruction that resulted in the access to
the XADT and XF. Such faults can occur either during a
forced overflow (of cached state) of a transaction because
of a context switch, or during the commit sequence when
data is copied from the XADT to the original memory
location. All faults can be incrementally handled without
requiring the transaction itself to abort. In the context
switch case, the transaction restarts in an explicit overflow
mode, forcing all state to be overflowed, and then incre-
mentally handling page faults. During the commit se-
quence (which cannot be aborted), the operating system
must ensure that when the VTM system commits an

XADT entry, both the original address and the XADT
entry for that address are mapped at the same time for the
duration of committing that entry’s update. This allows
the data to be copied from the XADT to the original loca-
tion. The only implication in the worst case of all accesses
sequentially experiencing page fault is performance.
When the page fault occurs during a commit, the transac-
tion does not abort, and requests fault handling

Note that it is always possible to write a transaction
that accesses so many pages that overwhelms the paging
machinery itself. Our goal is to ensure that the paging
behavior of a transaction is not substantially worse than a
non-transactional computation with the same footprint.

6. Open challenges in transactional memory
We have focused on identifying requirements and pro-

viding mechanisms for key system-level virtualization
mechanisms for transactional memory and have avoided
dictating implementation or the user-level API details.
However, key challenges remain, some with VTM, and
others with the transactional memory API itself.

To virtualize transactions, VTM assumes that multiple
threads, each executing a transaction, share a single vir-
tual address space associated with the process under
which they are executing. However, some virtual memory
implementations use virtual address aliasing to allow
sharing between two processes executing under different
virtual address spaces. The operating system in such situa-
tions explicitly maps different virtual addresses from dif-
ferent address spaces to the same physical address. VTM
would require additional mechanisms to support interac-
tions among processes from different virtual address
spaces. The respective XADT structures would need to
communicate, and we leave this as future work.

VTM currently does not define the effects of operating
system calls performed within a transaction. A straight-
forward approach is to provide the operating system with
its own XADT structure, and the ability to undo privileged
changes. While no fundamental obstacles exist, the oper-
ating system would need to be aware of the support, and
we leave this as future work.

The role of I/O within a transaction is unresolved.
What should it mean for a transaction to write to a mem-
ory-mapped device or to use DMA to move data from part
of memory to another? For some I/O operations, a log
could be introduced as a main memory structure that is
written by transactions and spooled to disk, as occurs in
databases. The behavior for other I/O operations needs to
be driven by the transactional memory usage model.

The behavior of an exception, such as divide-by-zero,
thrown inside transactions has to be defined based on the
usage model. Exception behavior is also influenced by
how nested transactions are handled. VTM currently flat-
tens nested transactions into the top-level transaction: an
abort restores state to the beginning of the outermost
transaction. However, software engineering and pro-

gramming methods may require finer nested recovery ca-
pability. VTM can be adapted to allow such behavior. The
challenge here is not so much implementing the desired
behavior as deciding what that behavior should be.

These are unresolved questions about the user-level
API and the underlying transactional memory model, and
researchers must address them to make transactional exe-
cution a reality. The VTM design will have to evolve to
accommodate behaviors deemed necessary.

7. Related work
Lamport introduced lock-free synchronization to allow

multiple threads to work on a data structure concurrently
without a lock [14]. Knight investigated architectural sup-
port for multi-word synchronization and proposed the use
of cache coherence protocols and hardware to add paral-
lelism to mostly-functional LISP programs [13]. The load-
linked/store conditional instructions allow for an optimis-
tic atomic read-modify-write on a single word [11].

The IBM 801 storage architecture [4] provided implicit
hardware transaction functions, using transaction mecha-
nisms for locking and logging, on virtual storage access to
files. The architecture focused on database systems and
provided durability.

Transactional Memory [10] and the Oklahoma Update
[26] were hybrid hardware/software schemes and pro-
vided optimistic read-modify-write on multiple locations.
They allowed the programmer to write explicitly transac-
tional code using extensions to the instruction set and
cache coherence protocols. These proposals did not pro-
vide a solution to handling overflows other than requiring
the programmer to handle them.

Software transactional memory [8, 9, 24] uses soft-
ware primitives to implement transactions. They require
careful programming methodologies and do not provide
atomicity of a transaction with respect to other operations
that do not occur within transactions. Further, they suffer
from poor common-case performance.

Speculative Lock Elision [19] and Transactional Lock
Removal [20] are hardware proposals that take existing
lock-based programs, and execute them in a lock-free
manner to attain transactional behavior. These schemes
explicitly acquire the lock if the lock-free transactions
experience resource overflow. In such an event, the execu-
tion can no longer abort. In Transactional Coherence and
Consistency [7] all computations occur within a transac-
tion. All transactions execute speculatively in the cache,
and on commit, broadcast their updates to all other proc-
esses, who then detect conflicts. If transactions experience
resource overflows, the execution becomes non-
speculative and the execution cannot abort. Since the
above schemes cannot abort execution in the presence of
insufficient local buffering, they do not provide transac-
tional memory behavior in the presence of overflow and
rely on the programmer to ensure this does not happen.

Thread-Level Transactional Memory [17] proposes the
use of a thread-level log to allow the software to perform
recovery in the event of aborts for overflowed transac-
tions. They show that overflowed transactions are rare.

Unbounded Transactional Memory (UTM) [2] is an al-
ternative scheme for freeing transactions from dependence
on hardware resources. One important difference between
VTM and UTM is that conflict detection in UTM is con-
siderably less efficient in the normal case. In UTM, each
transaction maintains an xstate data structure roughly
comparable to our XADT. Each memory block has an
associated log pointer to information about that block in
the xstate. When a transaction encounters a cache miss on
a load or store, it must check that the location accessed
does not conflict with an overflowed entry by reading that
location's associated log pointer. (If non-transactional
operations are not to jeopardize transactional atomicity,
each non-transactional loads and stores must do the same.)
In the normal case, where there are no actual conflicts,
reading a log pointer on each memory access is slower
than reading the locally cached XADT counter. Moreover,
keeping one log pointer per memory block takes up sub-
stantially more space than our XF filter, possibly affecting
the cache hit rate. LTM [2] is a version of UTM that only
handles buffer overflow. A special overflow area in proc-
essor-local physical memory is used as an extension of the
cache, and overflowed blocks are chained together to fa-
cilitate lookups. The duration of transactions must be less
than a time-slice and transactions cannot migrate. A simi-
lar overflow scheme was used by Prvulovic et al. for use
in speculative thread-level parallelization [18].

Thread-level speculation (TLS) techniques use hard-
ware support to speculatively parallelize sequential pro-
grams [13, 25]. While such speculative multithreading
techniques use some of the hardware mechanisms required
for transactional memory, critical differences exist. These
techniques do not automatically provide transactional
memory semantics because in such techniques, one thread
is always non-speculative and cannot abort.

Transactional memory is concerned with providing
multiprocessor synchronization but not with ensuring that
updates survive crashes. By contrast, “lightweight” trans-
action systems such as RVM [22] and Rio [15] are con-
cerned with the complementary problem of providing du-
rability but not synchronization.

8. Concluding remarks
Transactional memory avoids software engineering and

reliability problems associated with lock-based synchroni-
zation when developing multithreaded programs. Hard-
ware implementations of transactional memory allow
transactional memory models to achieve high performance
with respect to other lock-based schemes, but expose pro-
grammers to low level hardware implementation, since
hardware-resident transactions will always be limited in
size and scope. This paper’s premise is that transactional

memory can realize its promise only if programmers are
shielded from low-level hardware constraints of high per-
formance transactional memory implementations.

Virtual memory simplified memory management where
programmers no longer had to worry about overlays when
dealing with physical memory. Supporting virtual memory
was not simple, but the benefits far outweighed virtual
memory’s initial cost and complexity. VTM adopts this
approach and virtualizes hardware transactional memory
implementations. VTM operations, and accesses to its
own data structures, though subtle, are hidden from the
programmer. This paper demonstrates that transactional
memory virtualization is possible in a way that does not
slow down the hardware-only transactional memory op-
erations.

Significant work remains in the software model devel-
opment for transactional memory in large-scale applica-
tions. By demonstrating transactional memory virtualiza-
tion in this paper, we hope that software developers can
reason with transactional memory without worrying about
the underlying implementation or constraints, thus making
transactional memory more attractive and compelling.

Acknowledgements
We especially thank Jim Smith for discussions and

comments on the paper. We thank Haitham Akkary, Iris
Bahar, Jim Goodman, and Eric Rotenberg for comments
on earlier drafts, and Galen Hunt, Jim Larus, and David
Tarditi for discussions regarding the ideas in the paper.

References
[1] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint
Processing and Recovery: Towards Scalable Large Instruction
Window Processors. In Proceedings of the 36th International
Symposium on Microarchitecture, December 2003.
[2] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiser-
son, and S. Lie. Unbounded Transactional Memory. In Proceed-
ings of the Eleventh International Symposium on High-
Performance Computer Architecture, February 2005.
[3] B. H. Bloom. Space/Time Trade-Offs in Hash Coding with
Allowable Errors. Communications of the ACM, 13(7), 1970.
[4] A. Chang and M. Mergen. 801 Storage: Architecture and
Programming. ACM Transactions on Computer Systems, 6(1),
February 1988.
[5] K. P. Eswaran, J. Gray, R. A. Lorie, and I. L. Traiger. The
Notions of Consistency and Predicate Locks in a Database Sys-
tem. Communications of the ACM, 19(11), November 1976.
[6] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary
Cache: A Scalable Wide-Area Web Cache Sharing Protocol.
IEEE/ACM Transactions on Networks, 8(3), 2000.
[7] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun. Transactional Memory Coherence and Consis-
tency. In Proceedings of the 31st Annual International Sympo-
sium on Computer Architecture, June 2004.
[8] T. Harris and K. Fraser. Language Support for Lightweight
Transactions. In Object-Oriented Programming, Systems, Lan-
guages, and Applications, October 2003.

[9] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer.
Software Transactional Memory for Dynamic-Sized Data Struc-
tures. In Proceedings of the Twenty-Second Annual Symposium
on Principles of Distributed Computing, July 2003.
[10] M. Herlihy and J. E. B. Moss. Transactional Memory: Ar-
chitectural Support for Lock-Free Data Structures. In Proceed-
ings of the 20th Annual International Symposium on Computer
Architecture, May 1993.
[11] E. H. Jensen, G. W. Hagensen, and J. M. Broughton, A
New Approach to Exclusive Data Access in Shared Memory
Multiprocessors. Lawrence Livermore National Laboratory,
Technical Report UCRL-97663, November 1987.
[12] T. Kilburn, D. B. J. Edwards, M. J. Lanigan, and F. H.
Sumner. One-Level Storage System. IRE Trans. Electronic
Computers, 11(2), April 1962.
[13] T. F. Knight. An Architecture for Mostly Functional Lan-
guages. In Proceedings of ACM Lisp and Functional Program-
ming Conference, August 1986.
[14] L. Lamport. Concurrent Reading and Writing. Communica-
tions of the ACM, 20(11), November 1977.
[15] D. E. Lowell and P. M. Chen. Free Transactions with Rio
Vista. In Proceedings of the Sixteenth ACM Symposium on Op-
erating Systems Principles, October 1997.
[16] M. M. K. Martin, D. J. Sorin, H. W. Cain, M. D. Hill, and
M. H. Lipasti. Correctly Implementing Value Prediction in Mi-
croprocessors That Support Multithreading or Multiprocessing.
In Proceedings of the 34th International Symposium on Mi-
croarchitecture, December 2001.
[17] K. E. Moore, Thread-Level Transactional Memory. pre-
sented at Wisconsin Industrial Affiliates Meeting, October 2004
http://www.cs.wisc.edu/multifacet/papers/affiliates04_tltm.pdf
[18] M. Prvulovic, M. J. Garzarán, L. Rauchwerger, and J. Tor-
rellas. Removing Architectural Bottlenecks to the Scalability of
Speculative Parallelization. In Proceedings of the 28th Annual
International Symposium on Computer Architecture, June 2001.
[19] R. Rajwar and J. R. Goodman. Speculative Lock Elision:
Enabling Highly Concurrent Multithreaded Execution. In Pro-
ceedings of the 34th International Symposium on Microarchi-
tecture, December 2001.
[20] R. Rajwar and J. R. Goodman. Transactional Lock-Free
Execution of Lock-Based Programs. In Proceedings of the Tenth
Symposium on Architectural Support for Programming Lan-
guages and Operating Systems, October 2002.
[21] M. V. Ramakrishna. Practical Performance of Bloom Fil-
ters and Parallel Free-Text Searching. Communications of the
ACM, 32(10), 1989.
[22] M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C.
Steere, and J. J. Kistler. Lightweight Recoverable Virtual Mem-
ory. ACM Transactions on Computer Systems, 12(1), 1994.
[23] S. Sethumadhavan, R. Desikan, D. Burger, C. R. Moore,
and S. W. Keckler. Scalable Hardware Memory Disambiguation
for High ILP Processors. In Proceedings of the 36th Interna-
tional Symposium on Microarchitecture, December 2003.
[24] N. Shavit and D. Touitou. Software Transactional Memory.
In Proceedings of the 14th ACM Symposium on Principles of
Distributed Computing, August 1995.
[25] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
Processors. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, June 1995.
[26] J. M. Stone, H. S. Stone, P. Heidelberger, and J. Turek.
Multiple Reservations and the Oklahoma Update. IEEE Parallel
& Distributed Technology, 1(4), November 1993.

