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Hypervirulent Klebsiella pneumoniae (hvKP) has spread globally since first described
in the Asian Pacific Rim. It is an invasive variant that differs from the classical
K. pneumoniae (cKP), with hypermucoviscosity and hypervirulence, causing community-
acquired infections, including pyogenic liver abscess, pneumonia, meningitis, and
endophthalmitis. It utilizes a battery of virulence factors for survival and pathogenesis,
such as capsule, siderophores, lipopolysaccharide, fimbriae, outer membrane proteins,
and type 6 secretion system, of which the former two are dominant. This review
summarizes these hvKP-associated virulence factors in order to understand its
molecular pathogenesis and shed light on new strategies to improve the prevention,
diagnosis, and treatment of hvKP-causing infection.
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INTRODUCTION

Klebsiella pneumoniae is a common opportunistic pathogen that frequently causes nosocomial
infections, including pneumonia, meningitis, bloodstream and urinary tract infection (Togawa
et al., 2015; Ku et al., 2017). In addition, K. pneumoniae has the potential to cause community
associated infection, such as liver abscess, endophthalmitis, and meningitis, in healthy individuals
(Russo and Marr, 2019). An unique case of K. pneumoniae caused liver abscess along with
endophthalmitis was reported for the first time in Taiwan in the 1980s, and the causative organism
was designated as hypervirulent K. pneumoniae (hvKP) (Liu et al., 1986). Since then, hvKP has been
recognized as another circulating pathotype in addition to classical K. pneumoniae (cKP), associated
with high pathogenicity and mortality due to hypervirulence (Lan et al., 2020). Factors contributing
to the hypervirulence mainly include capsule, siderophores, lipopolysaccharide (LPS) and fimbriae
(Parrott et al., 2020).

The primary differences between cKP and hvKP are summarized in Table 1. The string test
based on hypermucoviscous phenotype (string≥5 mm) was widely used as a marker for hvKp, with
∼90% predicted accuracy for clinical hvKp strains (Russo et al., 2018). This semi-qualitative assay is
easily influenced by colony conditions and the user’s technique (Tan et al., 2014). Also, cKP strains
with mucoviscosity and hvKP strains without hypermucoviscosity have been identified (Catalán-
Nájera et al., 2017). Another mucoviscosity assay was quantified by comparing the absorbance
of supernatants collected by low-speed centrifugation because hypermucoviscous strains cannot
sediment sufficiently, leaving the supernatants turbid (Walker and Miller, 2020).

Except for intrinsic resistance to ampicillin, hvKp strains are commonly susceptible to a
variety of antibiotics, including cephalosporins and carbapenems; however, multidrug-resistant
and hypervirulent (MDR-hv) strains have recently emerged, primarily due to horizontal transfer
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of plasmid-mediated resistance or virulence (Liu C. et al., 2020;
Tang et al., 2020). The spread of hvKP, including MDR-hvKP
strains, poses a serious threat to the public health, and studies
on hvKP virulence are therefore imperative to comprehend the
underlying pathogenesis and provide a theoretical basis for the
treatment and prevention of infection. In this review, we discuss
hvKP relevant virulence elements, with reference to the discovery
and epidemiology.

DISCOVERY AND EPIDEMIOLOGY

In 1986, a striking case of K. pneumoniae liver abscess (KLA)
with extrahepatic complications such as purulent meningitis,
prostate abscess, and pyogenic ophthalmia, was recorded in
Taiwan, wherein patients eventually went blind despite receiving
active treatment for the bacteria (Liu et al., 1986). Historically,
pyogenic liver abscess was regarded as a polymicrobial infection
and its predominant bacterial cause was Escherichia coli (Wang
et al., 1998; Lederman and Crum, 2005). A single microorganism
K. pneumoniae caused liver abscess occurred in this case,
which was alarming as new invasive syndrome. Coincidentally,
several studies by Nassif and Sansonetti (1986) and Nassif
et al. (1989a; 1989b) reported the existence of a ∼180-kbp
plasmid in K. pneumoniae strains, contained the genes encoding
aerobactin and its receptor, as well as rmpA conferring a
mucoid phenotype. A comprehensive hvKp definition refers
to hypermucoviscous phenotype, the corresponding virulence
gene genotype and clinical manifestation of metastatic infection
(Catalán-Nájera et al., 2017). For some variants with ambiguous
pathogenic potential, murine but not Galleria mellonella
models are more appropriate to evaluate the hypervirulence
phenotype accurately (Russo and MacDonald, 2020), although
the G. mellonella lethality assay combined with the string test
has been demonstrated to improve clinical hvKP identification
significantly (Li et al., 2020).

Due to increasing population mobility, hvKP infections have
spread worldwide, throughout Asia (Chung et al., 2007; Shankar
et al., 2018), Europe (Moore et al., 2013; Cubero et al., 2016;
Rossi et al., 2018; Sánchez-López et al., 2019), Oceania (Foo
et al., 2018; Sturm et al., 2018), North-America (Rahimian et al.,
2004; Pastagia and Arumugam, 2008; Fazili et al., 2016), South-
America (Coutinho et al., 2014), and Africa (Yu et al., 2007), with
the highest prevalence in the Asian Pacific Rim. Genetic factors
and geographic conditions are likely to be relative risk factors
for this situation (Sellick and Russo, 2018). The geographical
distribution of MDR-hvKP also showed similar pattern that they
were mostly found in Asian countries, although global spread has
been documented (Li et al., 2014; Tang et al., 2020). The genetic
backgrounds of hvKP varied, among which clonal group (CG)
23 strains are the most predominant (Liao et al., 2014; Shi et al.,
2018). However, novel hvKp sequence types continue to emerge,
indicated the ongoing evolution of hvKP (Shankar et al., 2018).
MDR-hvKP strains mainly belonged to ST11, and carbapenem-
resistant K. pneumoniae (CR-KP) MDR-hvKp ST11 strains have
been described in China (Gu et al., 2018; Tang et al., 2020). Both
ST11 and ST258 belong the CG258 clone and ST11 is a single

locus variant to ST258. Despite the high prevalence of MDR-
hvKp in ST11 strains, ST258 MDR-hvKP strains have not yet been
detected (Ernst et al., 2020).

An epidemic of infectious diseases requires three
indispensable segments: source, route, and susceptible
population. In terms of habitat associations, K. pneumoniae
have been frequently found in human, animal, sewage, polluted
water, and soil samples (Bagley, 1985; Podschun et al., 2001);
however, the origin of hvKP is yet to be ascertained. Liu et al.
(2018) recently found ST23 hvKP in a cucumber sample along
with E. coli carrying blaNDM when analyzing ready-to-eat
vegetables. In addition, three MDR-hvKP strains have been
obtained from public aquatic environments in Brazil, suggesting
the contaminated water source may potentially increase the risk
of hvKP spread (Furlan et al., 2020). These results suggested that
environment may serve as a reservoir for the dissemination of
hvKp and MDR-hvKP strains.

Klebsiella pneumoniae isolates require suitable areas for
colonization before setting off infections, and the gastrointestinal
tracts are regarded as major reservoirs for K. pneumoniae
colonization (Gorrie et al., 2017; Sun et al., 2019). A previous
study investigated K. pneumoniae serotypes of stool specimens
collected from healthy Chinese in Asian countries. The data
presented that intestinal colonization rates of cKP and hvKP
(K1/K2 serotypes) were 18.8–87.7 and 0–16.7%, respectively
(Lin et al., 2012), while in Europe, the carriage rate of cKP
carriers is 5.9–19.3% (Smith et al., 1997; Gorrie et al., 2017).
Nevertheless, whether the difference in bacteria load among
different worldwide regions could be ascribed to the incidence of
highly invasive diseases caused by hvKP is yet to be confirmed.
Additionally, Fung et al. (2012) discovered that serotypes and
genotypes of bacterial isolates from healthy carriers’ fecal samples
are identical to those of K. pneumoniae liver abscess (KLA)
patients, which was in line with a family-clustered case report in
Japan that the stool cultures from two healthy relatives of KLA
patients were hvKP-positive, rendering them as carriers (Harada
et al., 2011). Intestinal tract colonization by carbapenemase-
producing K. pneumoniae has also been documented (Gorrie
et al., 2017). For example, ST11 CR-hvKP strains have been
isolated from stool samples of acute diarrhea inpatients in
Zhejiang Province, China (Zheng et al., 2020). These findings
indicated that guts might be a significant reservoir for hvKP
strains as they can break the intestinal barrier and move to the
liver to cause KLA and metastatic spread. Additionally, person-
to-person transmission via a possible fecal-oral cycle is also
possible (Siu et al., 2012), but the trigger for the occurrence of
infection after colonization is not yet clarified.

Unlike cKP caused nosocomial infections, hvKP results in
community-acquired infections (Ikeda et al., 2018; Harada et al.,
2019). Once nosocomial cKP strains acquire hypervirulence
plasmid and colonize in the intestine, healthcare-associated
hvKP infections rise indiscriminately (Russo and Marr, 2019).
A retrospective study conducted in Beijing by Liu C. et al. (2020)
found that >90% hvKP-causing infections are nosocomial,
suggesting the likelihood of hvKP evolved as a healthcare-
associated pathogen. Retrospective studies showed hvKP
infections mainly occur in susceptible individuals, male and
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TABLE 1 | Main characteristic of cKP, hvKP, and MDR-hvKP.

Characteristics Classical K. pneumoniae
(cKP)

Hypervirulent K. pneumoniae
(hvKP)

Multidrug-resistant hvKP
(MDR-hvKP)

References

Infections Acquisition: nosocomial
Host: immunocompromised
patients
Geographic region: the whole
world
Infectious sites: urinary tract
infections, pneumonia,
bloodstream infections; usually
polymicrobial at sites of infection
Metastasis: uncommon

Acquisition: community
Host: healthy adults
Geographic region: Southeast
Asia
Infectious sites: pyogenic liver
abscess, meningitis,
endophthalmitis, necrotizing
fasciitis; usually monomicrobial at
sites of infection
Metastasis: Common

Acquisition: nosocomial and
community
Host: usually
immunocompromised patients
Geographic region: Asia
(especially China)
Infection sites: pyogenic liver
abscess, bloodstream infections,
urinary tract infections

Harada et al., 2019; Russo and
Marr, 2019; Liu C. et al., 2020;
Tang et al., 2020

Phenotypes Non-hypermucoviscosity and
string <5 mm

Hypermucoviscosity and string
≥5 mm

Hypermucoviscosity or
non-hypermucoviscosity

Russo et al., 2018

Common serotypes K1–K79 K1, K2, K5, K16, K20, K54, K57,
KN1

K1, K2, K16, K20, K54, K62,
K64, K47

Pan et al., 2008, 2015; Yang
et al., 2021

Siderophores Enterobactin, yersiniabactin Enterobactin, yersiniabactin,
salmochelin, and aerobactin

Enterobactin, yersiniabactin,
salmochelin, and aerobactin

Russo et al., 2015; Lam et al.,
2018b; Choby et al., 2020

aged over 50-years-old, and with an underlying condition of
diabetes among (Fazili et al., 2016). Jin et al. (2020) reported
that the bactericidal capacity of diabetic neutrophil extracellular
traps (NETs) to hvKP was impaired, which partly explained why
diabetics were vulnerable to hvKP infections. Another potential
risk factor, co-existing hepatobiliary disease, was identified in
a recent study (Parrott et al., 2020). In-depth studies analyzing
the host factors to hvKP infections remain limited, while this
knowledge could significantly contribute in unraveling the
underlying epidemiology and implement appropriate prevention
and control measures.

VIRULENCE-ASSOCIATED FACTORS

Capsule
The correlation between hypermucoviscosity and hypervirulence
is widely accepted, albeit with a few exceptions. The capsule
surrounding the surface of K. pneumoniae serves as main
virulence factors associated with the viscous phenotype. The
characterization of an intranasal infection model revealed that
mice infected with acapsular strains of K. pneumoniae had longer
survival significantly and lower bacterial density in lung and
blood than those infected with capsular strains, as the capsule
might provide protection from the immunological responses
(Yoshida et al., 2000; Lawlor et al., 2005). Capsule-mediated
resistance to bactericidal actions is inclined to be defensive rather
than offensive. For example, K. pneumoniae evades phagocytosis,
complement, antimicrobial peptides, and specific antibodies
using capsules to make it difficult for bacteria to be bound, while
active suppression and attack on immune cells through capsule
are rarely observed (Domenico et al., 1994; Alvarez et al., 2000;
Llobet et al., 2011; Paczosa and Mecsas, 2016). Furthermore, the
capsule size of hvKP strains is above the basal level of cKP, and
hvKP isolated from the cerebrospinal fluid is highly prevalent
in a mean capsule size of >2 mm (Ku et al., 2017). Thus,
these isolates have robust coats expressing hypermucoviscous

phenotype that might enhance their viability. On the other side,
the thick hypercapsule could serve as a physical barrier and
impair the DNA uptake, consequently, limiting the horizontal
gene transfer, which may partially explain why hvKp strains are
less likely to harbor antimicrobial resistant genes than those of
cKp strains (Wyres et al., 2019).

Based on the diversity of the polysaccharide components of
the capsule and different structures and antigens, K. pneumoniae
can be divided into at least 79 serotypes (Pan et al., 2015). Eight
types, K1, K2, K5, K16, K20, K54, K57, and KN1 have been
described in hvKP (Pan et al., 2008; Lee et al., 2016); with K1
and K2 the most common. Multilocus sequence typing (MLST)
showed that the diversity of sequence-type (ST) was greater in
capsule type K2 than K1 serotype that K1 was strongly related
to ST23 while K2 was associated with ST25, ST86, ST375, and
ST380, respectively (Struve et al., 2015; Lee et al., 2016). The
prevalent serotypes differ with the geographic regions: K1 is the
most predominant type in Asia, while K2 is more frequent found
in Europe and North America (Catalán-Nájera et al., 2017; Remya
et al., 2018). For MDR-hvKp, serotypes also depend on ST and
region, as an example, serotypes K64 and K47, associated with
the ST11 strains, are most common in China (Yang et al., 2021).

Several studies have suggested that K1 and K2 strains have
higher virulence than the strains of other serotypes (Yeh et al.,
2007; Wang et al., 2017), and hence, serotype is considered
as one of the potential virulence factors, which could be
attributed to the distinct compositions that confer survival
advantages. A previous study showed that K1 and K2 capsule
types lacked mannose and rhamnose, which could be recognized
by macrophage lectin receptors to induce phagocytosis (Athamna
et al., 1991; Fung et al., 2002). In addition, a surface-exposed
protein, fructose-1, 6-bisphosphate aldolase (FBA), was identified
in K1 hvKP, and its enhanced expression could protect bacteria
against neutrophil killing under high glucose condition (Lee
et al., 2020). Moreover, sialic acid, as a constituent of K1 and
K2 capsular polysaccharide, contributes to hypermucoviscous
phenotype, and is thus responsible for the anti-phagocytic
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activity directly or indirectly (Lee et al., 2014; Opal, 2014).
These reports do not indicate equal hypervirulence among these
serotypes, and K1/K2 cKP strains without increased viscosity and
additional virulence factors usually fail to express hypervirulence
phenotype. However, serotyping reports under the diagnosis of
pyogenic liver abscess are valuable and could guide to take
precautions to prevent further episodes (Fung et al., 2002).

Genes involving capsule production are located on the
capsular polysaccharide synthesis (cps) region of chromosome.
The region of cps cluster (from galF to ugd) harbors over 20
genes, largely driving by three promotors located upstream of
genes, galF, wzi, and manC, respectively (Figure 1A). Among
these genes, wbaP encoded protein mediated the first step
of capsule biosynthesis, and the deletion of this gene confers
impaired capsule production. Interestingly, a recent study found
that certain wbaP-mutations enhanced the pathogenicity by

improving biofilm formation and bladder epithelial cells invasion
in urinary tract infections (Ernst et al., 2020). The function of
wzx in capsule-biosynthesis is flipping the polymer from the
cytoplasm to the periplasm of the inner membrane. The Wzy
protein is involved in the polymerization via catch-and-release
mechanism (Islam and Lam, 2014). Whilst proteins encoded by
wza and wzc genes form a translocation complex responsible for
assembling capsular polysaccharides and transporting them from
the periplasm to the surface of the bacteria (Pan et al., 2013).
The Wzb protein, as the cognate phosphatase of Wzc, combines
with the catalytic domain on Wzc, and in turn dephosphorylates
Wzc (Reid and Whitfield, 2005; Niu et al., 2020). A study
concluded that wza knockout strains obstruct the polysaccharide
transport, decrease the expression of wzb, wzc, and wzi genes
to avoid overaccumulation of polysaccharides in the cells, and
ultimately lead to capsule deficiency (Niu et al., 2020). The

FIGURE 1 | (A) Genes are known to influence capsule biosynthesis, including genes at cps locus and regulators affecting the cps expression directly or indirectly.
The corresponding promoters that some regulators act on refer to studies of Walker and Miller (2020). Hypercapsule is sufficient but not necessary for
hypermucoviscous phenotype, demonstrating that hypermucoviscous phenotype is not solely due to excessive capsule expression. (B) The siderophore systems
enterobactin (ent), yersiniabactin (ybt), salmochelin (iro) and aerobactin (iuc) are present. Take enterobactin as an example to show the process of iron acquisition,
which FepA is the transporter specific to enterobactin.
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serotype-specific gene wzi encodes an outer membrane protein
that assists in the formation of the bacterial capsule by anchoring
the capsular polysaccharides to the outer membrane, and wzi-
deficiency confers acapsular phenotype (Rahn et al., 2003; Brisse
et al., 2013; Bushell et al., 2013). The wzy gene is regarded as a
serotype-specific target which has been frequently used as a target
to characterize different cps types. Intriguingly, the chromosomal
mucoviscosity-associated gene A (magA) discovered in 2004
was later found to be the wzy gene in K1 locus (i.e., K1_wzy)
(Fang et al., 2004, 2010; Chuang et al., 2006). In addition, magA
(K1_wzy) is essential for the synthesis of capsular polysaccharide
and plays an important role in hypermucoviscous and resistance
to complement-mediated lysis, while 1magA mutants lose these
features (Wu et al., 2009). Therefore, it is postulated that magA
acts as a virulence-associated factor but is restricted to K1 isolates.

High capsule productivity is also attributed to a number
of virulence genes, in addition to those present in the cps
cluster, including the regulation of the capsule synthesis B
genes (rcsB), a regulator of mucoid phenotype A and A2
(rmpA and rmpA2) and Klebsiella virulence regulators (kvrA
and kvrB) (Cheng et al., 2010; Palacios et al., 2018; Su et al.,
2018). These genes are positive transcriptional regulation factors
for the cps locus. The Rcs phosphorelay system is a two-
component signal transduction system, which was originally
identified as a regulator for the synthesis of colonic acid in E. coli
and composed of three core proteins, RcsC, RcsD, and RcsB
(Wall et al., 2018). RcsC protein is a transmembrane sensor
kinase that can undertake autophosphorylation after sensing
extra-cytoplasmic stimulus and then transfer the stimuli to
RcsD. Finally, the signal is transmitted to RcsB, which is the
response regulator forming homodimer or heterodimer with
the auxiliary proteins. Subsequently, the phosphorylated RcsB
interacts with RcsA, and this dimer binds to promoters in
the cps cluster, which activates the biosynthesis of the capsule
(Guo and Sun, 2017). This mechanism of regulation in E. coli
is applicable to other Gram-negative bacteria, but capsular
polysaccharide-related genes controlled by auxiliary regulator
RcsA are limited in comparison to RcsB in K. pneumoniae (Su
et al., 2018). On the other hand, the rmpA gene of K. pneumoniae
expresses rcsA-like activity and complements a rcsA mutant of
E. coli to positively control the mucoid phenotype (Nassif et al.,
1989b; Arakawa et al., 1991; Gottesman and Stout, 1991). Similar
to RcsA, RmpA depends on RcsB for activating the biosynthesis
of capsular polysaccharides. Together, rmpA+rcsB− strains and
rmpA−rcsB+ strains are unable to increase capsule production
(Cheng et al., 2010). Consistent with this theory, RcsB seems
vital for base-level capsule expression, while the regulator RmpA
elevates the capsule production (Walker et al., 2019). Moreover,
partial homology was also detected in rmpA2, rmpA, and rcsA
(Wacharotayankun et al., 1993). While RmpA2 is directly bound
to the cps gene promoter to regulate capsule productivity, rcsB−
K. pneumoniae strain carrying rmpA2 recovers the mucoid
phenotype (Lai et al., 2003). Furthermore, RmpA and RmpA2
are known regulators required for hypermucoviscous phenotype
in hvKP strains. Different from rcsA, rcsB, and rcsC that were
found in chromosome, both rmpA and rmpA2 could be carried
by the plasmid or chromosome, wherein chromosomal rmpA

(c-rmpA) was located in an integrative and conjugative element
(ICEKp1), and plasmidic rmpA (p-rmpA) was most prevalent.
Hsu et al. (2011) found that the K1 strain NTUH-K2044
contained three rmpA/rmpA2 (p-rmpA, p-rmpA2, and c-rmpA),
only p-rmpA could enhance the expression of cps genes, while p-
rmpA2 and c-rmpA had inhibitory and little effects, respectively.
Notably, not all rmpA/rmpA2 genes can upregulate the capsule
expression, and hence, rmpA/rmpA2 genes in K. pneumoniae
strains lacking a hypermucoviscous phenotype are also isolated.
Yu et al. (2015a; 2015b) showed that p-rmpA/rmpA2 could
occur in concurrence to frame-shift mutations in absence of
c-rmpA. In addition, the process of capsule production needs
an important transcription factor, RfaH, which actives the cps
operon by inhibiting transcription termination (Bachman et al.,
2015; Svetlov et al., 2018). The newly described regulators, kvrA
and kvrB, affect virulence of K1/K2 hvKP strains due to the
activation of capsule gene expression, which is not present on cKP
strains. Also, the impact of KvrB on capsule expression may be
dependent on its effect at the rmpA promoter in contrast to that
of KvrA (Palacios et al., 2018; Walker and Miller, 2020).

The factors that influence capsule production involve various
environmental stimuli in addition to the elements mentioned
above. K. pneumoniae strains are facultative anaerobes growing
under aerobic or anaerobic conditions, and hence, oxygen
availability is crucial for their survival. Fumarate nitrate
reduction regulator (FNR), an oxygen-responsive transcriptional
regulator, contains a [4Fe-4S] cluster in the N-terminal sensory
domain regulating the C-terminal DNA binding domain. FNR
can be activated via the [4Fe-4S] cluster binding to DNA,
specifically during anaerobic environment, while the [4Fe-4S]
cluster is oxidized, causing the loss of FNR activity under aerobic
conditions. Lin et al. (2019) found that activated FNR inhibits
the transcription of rmpA/rmpA2 and decreases the amount
of capsular polysaccharide during anaerobic growth. Capsular
polysaccharide biosynthesis is also related to environmental iron
availability. Some studies reported that the ferric uptake regulator
Fur participates in the repression of RmpA, RmpA2, and RcsA
that are responsible for capsule production (Lin et al., 2011).
Moreover, Fur directly inhibits the transcription of non-coding
RNA RyhB via binding to its promoter region, which reduces
the amount of capsule independent of RmpA, RmpA2, and RcsA
(Huang et al., 2012). The functional role of Fur entails regulated
production of siderophores and capsules. cAMP receptor protein
(CRP) decreases the expression of cps, which is a consequence
of direct interaction between manC and wzi promoters (Ou
et al., 2017). In response to exogenous glucose, K. pneumoniae
produces capsular polysaccharide via cAMP-dependent carbon
catabolite repression, which might be a probable cause of high
KLA prevalence among diabetic patients (Lin et al., 2013).

The regulation of most genes mentioned is aimed at
the cps cluster to affect capsule synthesis; however, the
correlation between hypermucoviscosity of hvKP and capsule
expression has not yet been clarified. Recently, Walker et al.
(2019, 2020) identified two new genes (rmpC and rmpD)
neighboring rmpA on the virulence plasmid. The 1rmpC
maintained the downregulated expression of capsule genes
but preserved hypermucoviscosity, while rmpD mutants were
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hypermucoviscosity-negative and had no change in capsule
production. As rmpA-deficient stains showed reduced cps
expression and the loss of hypermucoviscosity phenotype, the
author speculated that expressions of rmpD and rmpC are both
driven by RmpA but regulate hypermucoviscosity phenotype
and cps expression separately (Walker et al., 2019, 2020).
Strikingly, hypercapsule is not a sole cause of hypermucoviscosity
phenotype, and early reports have already proposed that the
generation process of hypercapsule and hypermucoviscosity
is different (Nassif et al., 1989a,b). The hypermucoviscosity
phenotype might be attributed to the heterogeneity of capsule
composition in addition to thick capsules, which described
that KLA isolations contain fucose synthesized by genes wcaG
and gmd, while the absence of these genes was verified in the
classical strains of K. pneumoniae causing urinary tract infection
(Wu et al., 2008). Pan et al. (2011) made a further exploration
via disrupting the fucose synthesis gene in this KLA isolate; the
results showed that the mutant displayed less mucoid than the
wild-type, but the capsules were still visible. Briefly, hypercapsule
is an indispensable virulence factor, but insufficient; either
unknown functions of reported genes or additional regulatory
factors could be the possible causes of hypermucoviscosity that
require further exploration.

Siderophore
For hosts and bacteria, the metal iron is a critical element
required for essential metabolic processes, and the limited
availability of iron within extracellular fluid poses a difficulty
for bacterial iron acquisition, rendering it a form of non-
specific immune defense. If bacteria intend to survive and grow,
they need to employ tactics to overcome this difficulty of iron
acquisition. In human hosts, the iron ingestion is generally in
need of a siderophore-dependent iron acquisition system as the
result of the insolubility of free iron Fe3+ during physiological
conditions. Similarly, the majority of the bacteria, including
K. pneumoniae, possess this system with a higher affinity for
iron than the host, which serves as a predominant strategy of
acquiring iron in order to survive the competition with hosts
(Miethke and Marahiel, 2007), while another solution employed
by only a minority of pathogens, such as Borrelia burgdorferi
and Treponema pallidum, is avoiding the need for iron by
eliminating genes encoding iron-dependent proteins (Posey
and Gherardini, 2000). Siderophores are small iron-binding
molecules that are synthesized inside the bacteria and secreted
outside the cells, following which, they bind to environmental
iron and transport it back to the cells. Subsequently, iron-
siderophore complexes are recognized by the specific outer-
membrane receptors transporting the corresponding material to
the periplasm, where siderophores combine with the periplasm
proteins to transport them to the inner membrane. Finally, iron
passes through the passage mediated by an ABC-transporter into
the bacterial cytoplasm, where the ferric iron is reduced into
ferrous iron accessible to bacteria (Brown and Holden, 2002;
Khan et al., 2018). Previous studies by Rogers (1973) described
that iron-binding chelators were considered as the true virulence
factors in E. coli owing to their key roles in rapid bacterial growth.
This hypothesis is commonly accepted and applicable to other

pathogens. Previous studies have shown that hvKP presents a
distinguishing 6- to 10-fold increase in siderophore production
as compared to cKP (Russo et al., 2014). Four siderophores are
expressed in hvKP strains, including enterobactin, yersiniabactin,
salmochelin, and aerobactin; these improve the growth efficiency
of the bacteria.

Among four siderophores, the conserved enterobactin
contains three catechol rings that confer the highest binding
affinity for Fe3+, which renders them essential and primary
for both cKP and hvKP in iron uptake (Bachman et al.,
2012; Palmer and Skaar, 2016). The genes required for
enterobactin biosynthesis constitute the ent cluster localized on
the chromosome, while its corresponding receptor is encoded
by fepA (Baghal et al., 2010) (Figure 1B). In response, hosts
produce the siderophore-binding protein lipocalin-2 that
have antimicrobial capabilities by hampering iron acquisition
rather than killing pathogens directly (Holmes et al., 2005).
K. pneumoniae strains producing only enterobactin will cause
them to fail owing to the presence of lipocalin-2 (Bachman
et al., 2011). Smartly, a subset of K. pneumoniae strains evolves
stealth siderophores to evade lipocalin-2 binding, such as the
highly glycosylated enterobactin, salmochelin, and the alternative
non-catecholate siderophore, yersiniabactin. In other words,
the strains with salmochelin and yersiniabactin acquire iron to
survive despite the presence of linpocalin-2 (Bachman et al.,
2012; Holden et al., 2014). The synthesis, excretion, and uptake of
salmochelin are carried out by genes of the iroA locus, iroBCDN,
among which IroN and IroB are similar to the enterobactin
receptor FepA and glycosyltransferases, respectively (Lin et al.,
2005; Müller et al., 2009). In addition, a chromosomal copy
of iro (ICEKp1) is detected in the DNA fragment in the strain
NTUH-K2044 (Lin et al., 2008). Yersiniabactin, a part of Yersinia
high-pathogenicity island (HPI) present in chromosomal
structures ICEs, is synthesized by the ybt locus (Bach et al.,
2000). ICEs are mobile genetic elements (MGEs) transmitting
these virulence determinants within the bacterial populations
via horizontal gene transfer. Lam et al. (2018a) analyzed 2,498
genomes and found that ybt loci were divided into 17 distinct
lineages and associated with 14 distinct ICEKp structures
(ICEKp1 ∼ ICEKp14). In addition to ICEKp1 of NTUH-K2044,
the most common ICEs in CG23 hvKP appear to be ICEKp10,
resembling the genomic island KPHPI208 in liver abscess strain
1084. A unique region located in this element is the synthesis
locus of colibactin and microcin E492, which may play a role
in the pathogenicity of hvKP (Struve et al., 2015). Colibactin
is necessary for the full virulence of strain 1084 to develop
meningitis, and microcin E492 presents its antibacterial capacity
during gastrointestinal colonization by attaching to salmochelin
(Lagos et al., 2001; Lu et al., 2017). Recently, a novel ICE variant
named ICEKpSL1 with high homology to Yersinia HPI was
detected in a hvKP strain SCsl1 isolated from the liver of infected
pigs (Liu D. et al., 2019). Typically, all the four siderophore
determinants can be plasmid-borne and potentially transferable.
As an example, the FIBk plasmid-borne ybt is identified as a
novel mechanism for ybt dispersal (Lam et al., 2018a).

In an hvKP background, the data shows that the proportion
of aerobactin in the total siderophore production is about 90%
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and that it has the predominant contribution to hypervirulence
under experimental conditions (Russo et al., 2014, 2015).
A previous study demonstrated that hvKP mutants with
aerobactin deficience, but not enterobactin, salmochelin, and
yersiniabactin, decreased virulence in mice after pneumonic and
subcutaneous infection (Russo et al., 2014, 2015). Aerobactin
is expressed in >90% hvKP strains but only in 6% cKP
strains, and aerobactin is more specific for hvKP as compared
to enterobactin and yersiniabactin, suggesting it may be a
reliable biomarker for hvKP (Paczosa and Mecsas, 2016; Russo
et al., 2018). Similarly, aerobactin is more sensitive in defining
hvKP than hypermucoviscosity (Zhang et al., 2016; Lin et al.,
2020). The genes responsible for aerobactin biosynthesis and
transport, iucABCD and iutA, are found on the virulence
plasmid (Bailey et al., 2018; Russo and Gulick, 2019). The iuc
locus structure in K. pneumoniae presented genetic diversity,
resolving into six iuc lineages. Most of these lineages were
mobilized by diverse plasmids, with the exception of iuc4 that
was localized on the chromosome of K. pneumoniae subspecies
rhinoscleromatis (Lam et al., 2018b). Interestingly, sequence
analysis revealed that pLVPK, a plasmid initially described in the
K2 strain K. pneumoniae CG43, simultaneously contains genetic
loci iucABCDiutA and iroBCDN, along with rmpA encoding
hypermucoviscous phenotype, which is uncommon in cKP
strains (Chen et al., 2004; Tang et al., 2010; Liu and Guo, 2019). Yu
et al. (2007) found that aerobactin producer was observed in 96%
of rmpA gene-positive isolates after analyzing 455 K. pneumoniae
bacteremia in seven countries. The phenomenon that aerobactin
production is concomitant with the mucoid phenotype might
imply the potential correlation between areobaction and RmpA,
but needs to be substantiated with additional studies.

The analysis of the genomic sequence of hvKP strain NTUH-
K2044 identified an additional iron transport system, kfu,
localized on the chromosome, which is also prevalent in hvKP as
compared to the cKP strains. It is also regarded as a clone-specific
marker because it is not conserved in other clones except CG23
(Wyres et al., 2020). Kfu was shown to be a potential virulence
factor, and murine experiments demonstrated that 1kfuABC
mutants presented lower virulence than wild-type strain (Ma
et al., 2005). Interestingly, this effect only occurs in mice infected
intragastrically with the kfu mutant, but not in intraperitoneal
infection, which indicates that kfu might contribute to intestinal
colonization. Furthermore, the discrepancy among iroA, Yersinia
HPI, iucABCDiutA, and kfu is that the first three systems are
TonB-dependent (Hsieh et al., 2008). Based on of these findings,
the presence of these multiple and redundant iron transport
systems is reasonable and complementary because they can
function in different organs or microenvironmental conditions
during infection.

Although iron is necessary for bacterial growth, based on the
Fenton reaction, superfluous Fe2+ ions catalyze the generation
of hydroxyl radicals, i.e., reactive oxygen species (ROS) oxidizing
lipids and macromolecules, thereby damaging the cells (Lloyd
et al., 1997). The above-mentioned Fur regulates the expression
of rmpA and siderophore synthetic gene expression. Under
iron-rich conditions, Fur binding to Fe2+ represses siderophore
synthesis by affecting the Fur box in the promoters of genes

related to iron uptake, thereby avoiding iron overload (Hahn
et al., 2000). For example, in K. pneumoniae CG43, Fur could
bind to the Fur box sequences in the coding region of iucA,
iroB, and entC to play its regulatory role, as described by Lin
et al. (2011). The promoter sequences of kfu operon also contain
the conserved Fur box (Ma et al., 2005). Emerging evidence
supports that Fur acts as a transcriptional activator, increasing
the expression of active enzymes against toxic ROS. Thus, Fur
contributes to virulence, and fur mutants exhibit a decrease in
virulence and inability to cause disease within the animal host
(Troxell and Hassan, 2013).

Other Virulence Factors
Lipopolysaccharide consists of lipid A, oligosaccharide core, and
O antigen and is known as the endotoxin of all Gram-negative
bacteria, both cKP and hvKP. Presently, it is unclear whether LPS
produced by hvKP strains has a unique role in hypervirulence. As
the outermost subunit of LPS, O-antigen is the first molecule to
be encountered by the host’s innate immune system and protect
the pathogens against complement-mediated killing. Specifically,
the O antigen binds a complement component C3b involving
pore-formation to prevent drilling of the bacterial membrane
(Shankar-Sinha et al., 2004). The number of O serotypes is
estimated to be eight, and O1 antigen is the most common among
clinical K. pneumoniae strains (Hansen et al., 1999; Follador et al.,
2016). Previous studies have shown that O-antigen in O1:K2 cKP
might contribute to bacterial virulence and lethality by weakening
macrophage activation and promoting bacteremia (Lugo et al.,
2007). Hsieh et al. (2012) demonstrated that the prevalence of
O1 serotype in KLA isolates is higher than that in non-tissue-
invasive isolates, and KLA strains with defect O1 antigen were
less virulent than parental strains. However, its function has not
yet been embodied in K1 hvKP strains, in which O1 antigen is
masked by K1 capsule (Merino et al., 1992; Hsieh et al., 2012).

The types of fimbriae characterized experimentally for
K. pneumoniae are type 1 and type 3 fimbriae. In the genome
of hvKP NTUH-2044, seven novel fimbrial gene clusters, kpa,
kpb, kpc, kpd, kpe, kpf, and kfg, were identified, and the Kpc
fimbriae are highly associated with K1 serotype hvKP (Wu
et al., 2010). Type 3 fimbriae constitute well-known bacterial
virulence factors, mediating enhanced biofilm formation on
abiotic surfaces, however, only little is known about their role
in hvKP strains (Schroll et al., 2010). Using K. pneumoniae
CG43, Wu et al. (2012) proved that type 3 fimbriae activity
and biofilm formation could be influenced by iron availability
and positively controlled by Fur, suggesting that type 3 fimbriae
might be less important for hvKP infection in vivo under the
condition of limited iron (Shon et al., 2013). A recent study
also reported that hypermucoviscous isolates with serotype K1,
despite harboring mrkD and fimH genes encoding type 3 and type
1 fimbriae, respectively, presented low initial adhesion because
the presence of hypercapsule could hide these fimbriae (Cubero
et al., 2019). Another adhesive structure, a non-fimbrial protein
CF29K, is prevalent in hvKP strains, indicating its involvement
in KLA pathogenesis or association with other pathogenicity
factors in the same plasmid (Darfeuille-Michaud et al., 1992;
Brisse et al., 2009).
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Several outer membrane proteins (OMPs), including
OmpA, peptidoglycan-associated lipoprotein (Pal), and murein
lipoprotein (LppA), contribute to K. pneumoniae virulence.
In response to intraperitoneal infection with ompA-, pal-, and
lppA-deficient NTUH-20444, only the pal and lppA mutants
yielded high LD50 values (50% lethal dose) than wild type strains,
meaning lower virulence. The mechanisms behind the decreased
virulence were likely to be that these mutants were easily killed
by serum and neutrophil. Remarkably, pal and lppA mutants
with low virulence retained intact K1 and O1 antigen inducing
antibodies production and mice immunization, which indicated
that these mutant strains could be meaningful for vaccine
development (Hsieh et al., 2013). Similarly, K. pneumoniae
also produces two major porins, OmpK35 and OmpK36. The
downregulation of these molecules could be ascribed to antibiotic
resistance and virulence sacrifice of the bacteria. In a mouse
peritonitis model, the loss of both ompK35 and ompK36 in KLA
isolate NVT2001 significantly reduced the pathogenicity and
growth rate, thereby leading its elimination from the immune
system (Tsai et al., 2011). This phenomenon is consistent with a
previous report that disruption of ompK36 failed to colonize the
liver persistently due to the rapid clearance of bacterial burden
(Chen et al., 2010). Srinivasan et al. (2012) found a novel porin
in K. pneumoniae NTUH-2044, termed as KpnO. With respect
to virulence, 1kpnO produced lesser capsular polysaccharide
and killed Caenorhabditis elegans slowly than wild-type strains.
However, mechanisms underlying the attenuated virulence due
to absence of these OMPs are yet to be elucidated.

In recent years, a new factor associated with virulence, type
6 secretion system (T6SS), has been identified in hvKP strains
by in silico analysis. T6SS functions as a nanosyringe that
injects effector proteins into target cells to destroy eukaryotic
cells or contend against other prokaryotic cells (Sarris et al.,
2011). Although >25% Gram-negative bacteria encode T6SSs,
wild-type NTUH-2044 has been confirmed to outcompete
Salmonella Typhimurium, E. coli, and T6SS-null K. pneumoniae

in a T6SS-dependent manner, and the frequency of T6SSs
in KLA strains is significantly higher compared to that in
the intestinal-colonizing strains, suggesting that T6SSs may
confer an advantage for hvKP survival (Clemens et al., 2018;
Hsieh et al., 2019). Another study reported that in bacterial
competition, K. pneumoniae T6SSs were activated by the PhoPQ
system, followed by the use of effectors to kill E. coli prey
that lack T6SS immunity genes (Storey et al., 2020). Moreover,
the overexpression of a T6SS effector in the carbapenemase-
producing K. pneumoniae strain, the phospholipase Tle1, was
found to inhibit the growth of E. coli (Liu et al., 2017).
Furthermore, in a hypervirulent strain Kp52.145, another
T6SS effector gene pld1, encoding a phospholipase D family
protein (PLD1), located within the T6SS locus, was reported
as a virulence factor, exhibiting that 1pld1 was avirulent in
comparison to wild-type in a mouse model of pneumonia
(Lery et al., 2014). The previously sequenced genome showed
that T6SS genes are clustered in two contiguous loci, while
Barbosa and Lery (2019) later analyzed the neighboring genes
and found that the genes coding for iron uptake systems is
adjacent to T6SS-related genes: tssD in Kp52.145. Thus, it was
hypothesized that T6SS is involved in iron import in hvKP
(Barbosa and Lery, 2019).

CONVERGENCE OF HYPERVIRULENCE
AND MULTIDRUG RESISTANCE IN
K. pneumoniae

Increasing reports have described the emergence of multidrug-
resistant hypervirulent K. pneumoniae strains (Hao et al., 2020;
Shankar et al., 2020). MDR-hvKP can arise by two different
mechanisms. In one case, hvKP strains can acquire antimicrobial
resistance genes or plasmids through horizontal transfer,
therefore becoming MDR-hvKP, which was tentatively designated

TABLE 2 | Summary of virulence factors of hypervirulent K. pneumoniae.

Category Substance Function References

Capsule Wzi, Wza, Wzb, Wzc, Wzy, WbaP Synthesize capsular polysaccharides Islam and Lam, 2014; Ernst et al., 2020; Niu
et al., 2020

RcsB, RmpA, RmpA2, RmpC,RmpD, KvrA,
KvrB, RfaH

Activate the biosynthesis of capsule Palacios et al., 2018; Su et al., 2018; Svetlov
et al., 2018; Walker and Miller, 2020

FNR, Fur, CRP Inhibit capsule production Huang et al., 2012; Ou et al., 2017; Lin et al.,
2019

Iron acquisition Siderophores: Enterobactin, yersiniabactin,
salmochelin, Aerobactin

Bind to environmental Fe3+ iron Russo et al., 2015; Lam et al., 2018b; Choby
et al., 2020

ABC-transporter: Kfu Transport Fe3+ into cytoplasm Wyres et al., 2020

Fur Represses siderophores synthesis Hahn et al., 2000

LPS O-antigen Avoid complement-mediated killing Shankar-Sinha et al., 2004

Adhesion Type 3 fimbriae Important for biofilm formation on abiotic
surface

Schroll et al., 2010

OMPs PalA, LppA, OmpK35, OmpK36, KpnO Protect against neutrophil phagocytosis Tsai et al., 2011; Srinivasan et al., 2012;
Hsieh et al., 2013

T6SS PLD1, Tle1 Inject effector proteins into target cells,
causing destruction

Lery et al., 2014; Liu et al., 2017; Storey
et al., 2020
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as type I MDR-hvKP. For example, two carbapenemase plasmids,
blaNDM−1-bearing IncN plasmid and blaKPC-2-carrying IncFIIK
plasmid, were recovered together from a K2 ST86 MDR-hvKP
strain (Liu Y. et al., 2019). Additionally, MDR-hvKP strains can
also arise from the transfer of a pLVPK-like virulence plasmid
into a classic MDR K. pneumoniae strain, named as type II MDR-
hvKP. As an example, a recent study in China described a fatal
outbreak caused by a KPC-producing ST11 strain acquiring a
pLVPK-like virulence plasmid (Gu et al., 2018). Type I MDR-
hvKP strains share the same virulence determinants as the hvKP
strains described above, while the hypervirulence in type II MDR-
hvKP is mainly attributed to the over production of capsule
and siderophore, as a result of the acquisition of plasmid-
mediated virulence determinants, including rmpA/rmpA2, iut
and iro. A recent study validated that five biomarkers (peg344,
iroB, iucA, prmpA, and prmpA2), and ≥30 µg/mL siderophore
production could accurately identify hvKP (Russo et al., 2018).
The gene peg-344 present on the virulence plasmid in hvKP
including both type I and type II MDR-hvKP strains, had
potential application in rapid diagnosis of hvKP, and a peg-344
loop-mediated isothermal amplification technology had recently
been established (Liao et al., 2020). PEG344 acted as a transporter
in the inner membrane, but its specific role in virulence is unclear.
Interestingly, Bulger et al. (2017) found that PEG344 was required
for maximal virulence in pulmonary challenge model, but not in
subcutaneous challenge.

SUMMARY

Following the early reports of hvKP in Asia, hvKP strains
have spread globally, causing both community associated and
hospital associated infections. The convergence of hypervirulence
and antimicrobial resistance in hvKp further exacerbates this
public crisis, and challenges the clinical treatment options
for hvKp infections. Epidemiologically, the source and route
of hvKp infection remain poorly understood, but intestinal
colonization appears to be a critical step prior to infection,

while susceptible factors include diabetes mellitus, male
gender, and Asian ethnicity. Capsule and siderophores are
predominant virulence factors that play a major role in the
hypermucoviscosity phenotype of hvKP. However, molecular
mechanisms under hypermucoviscosity remain to be explored as
hypervirulent strains without hypermucoviscosity phenotype are
frequently identified. The current definition of hvKP considers
clinical characteristics, phenotypes, and genotypes, however,
microbiologically determination of hvKp strains in clinical
lavatories remains to be a challenge. Additional virulence
factors include LPS, fimbriae, outer membrane proteins, and
T6SS, whose functions in hvKP need to be further explored
(Table 2). These factors are coordinated and regulated when
bacteria orchestrate a series of events causing infection.
Moreover, with the emergency of MDR-hvKP, the development
of non-antimicrobial therapy targeting virulence factors is
indispensable. Taken together, further studies on hvKp are
needed to improve the prevention, diagnosis, and treatment of
hvKP caused infections.
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