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1Analysis and Testing Center, Shenyang Agricultural University, Shenyang, China, 2College of Plant
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Introduction: Root-knot nematode disease is one of the world's most serious

vegetable crop diseases. In recent years, Trichoderma spp. has been widely used

in root-knot nematode disease control as a biological control agent.

Methods: Virulent and attenuated strains of Trichoderma citrinoviride mediated

resistance and biological control mechanism in tomato were determined.

Results: Preliminary experiments found differences in nematicidal virulence

among Trichoderma citrinoviride. The 24-hour corrected mortality rate of the

virulent strainT1910 was as high as 92.37%, with an LC50 of 0.5585 against the

second juveniles (J2s) of Meloidogyne incognita. And the attenuated strain TC9

was 23.01%, the LC50 was 2.0615, so the virulent strain T1910 had a more

substantial effect on the J2s than the attenuated strain. We found that the strong

virulent strain T1910 have a good control effect on M. incognita by the pot

experiment of tomato than that of the attenuated virulent strain TC9,especially

the J2 and J4 numbers were inhibited inside the root knots of tomato.

Theinhibition rates of virulent strains reached 85.22% and 76.91%, followed by

attenuatedstrain TC9, which were 63.16% and 59.17%, respectively. To reveal the

differences intomato defense pathways induced by different virulent strains, qRT-

PCR was further usedto detect changes in the expression of inducement-related

genes. The results showed thatthe TC9 was significantly upregulated at 5dpi,

LOX1, PR1, and PDF1.2. The PR5 gene ofthe virulent strain T1910 was highly

upregulated, and the JA pathway was activated laterbut weaker than the

attenuated strain. The results of this study revealed that thebiocontrol

mechanism of T. citrinoviride as poison killing through the virulent strain T1910

and induced resistance to M. incognita through attenuated strain, although

virulence degradation also has an induced resistance effect. Moreover, the

attenuated strain TC9 stimulated tomato immune response earlier than the

virulent strain by nematode-associated molecular pattern-triggered (NAMP).
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Discussion: Therefore, the research elucidated the mechanism of multiple

control of Trichoderma spp. against M. incognita.
KEYWORDS

Trichoderma citrinoviride, virulent strain, attenuated strain, mediated resistance,
biocontrol mechanism
1 Introduction

Plant parasitic nematodes are one of the major biotic stress

factors wreaking havoc on agricultural and horticultural crops

around the world, resulting in a dramatic drop in vegetable crop

production. Diseases caused by plant pathogenic nematodes (PPN)

have gradually become the second major category of diseases in

agricultural production, among them,M. incognita is widely studied

species with significant importance in reducing the yield of

vegetable crops (Abd-Elgawad and Askary, 2018). Notably, these

nematodes can benefit from parasitism in various crops such as

grain, oil, vegetables, and fruits. It is estimated that the worldwide

average crop loss due to pathogenic nematodes is 12.6% annually,

equivalent to $215.77 billion (Reynolds et al., 2011). Due to the

severe environmental pollution caused by chemical insecticides, the

research and development of efficient and environmentally friendly

biogenic insecticides have become a significant research focus

(Chen and Song, 2021; Xie et al., 2022). Trichoderma spp. is an

important biocontrol fungus that has been successfully applied to

control many nematode diseases. Its biocontrol mechanisms

include competition, hyperparasitism, induced resistance, and

antibiotics, and almost all of them may be involved in the

biocontrol process of nematodes (Contreras-Cornejo et al., 2015;

Kumar and Khurana, 2021). Substances such as cellular hydrolases,

antibiotics, vitamins, polysaccharides, and organic acids in

Trichoderma fermentation fluid are high toxicity to nematodes.

Importantly, they can destroy nematode cells through different

mechanisms, or other metabolites enter nematodes, such as

alkaloids that can inhibit necessary enzymes or act as DNA

embedding agents (Tanaka et al., 2007). Notably, some flavonoids

condense soluble cellular proteins, including essential enzymes, by

forming complexes or rupturing cell membranes to inhibit nucleic

acid synthesis (Plaper et al., 2003; Tsuchiya, 2015).

The biological control mechanisms of Trichoderma spp. are

slightly different between the plants. Studies have shown that plants

induce nematode-associated molecular pattern-triggered (NAMP)

immunity in response to nematode infection through ROS, MAPK,

jasmonic acid (JA), and salicylic acid (SA) signaling pathways

(Fujimoto et al., 2011; Molinari et al., 2014; Fan et al., 2015;

Sidonskaya et al., 2016; Song et al., 2017). Additionally,

Trichoderma spp. can activate the plant defense system by

releasing an activator that triggers the activation pathways of

plant transcription factors and the expression of genes related to

biotic and abiotic stress resistance (Shoresh et al., 2010; Sikora et al.,

2014). Trichoderma spp. can also trigger SAR-related biochemical
02
pathways and activate the expression of SA-dependent disease-

related proteins, including PR-1, PR-5, and NPR1(Alfano et al.,

2007; Arie et al., 2010; Mathys et al., 2012;Yoshioka et al., 2012).

Furthermore, a unique pathway by which Trichoderma spp.

colonizes plant roots to induce defense responses is based on the

plant hormones jasmonate (JA) and ethylene (ET) as signaling

molecules (Martıńez-Medina et al., 2017). It has also been suggested

that Trichoderma spp. induces reactive oxygen species (RBOH1)

production, and this may be a significant defense strategy during

plant growth after nematode invasion (Medeiros et al., 2017).

However, how Trichoderma spp. regulate these hormones and

other signaling pathways to exhibit inhibitory effects on root-knot

nematodes has not been thoroughly studied.

Our team previously screened T.citrinoviride Snef1910 from 890

fungal strains and found it had a good biocontrol effect in field

experiments. T.citrinoviride Snef1910 showed high virulence against

J2s ofM. incognita. Furthermore, T. citrinoviride Snef1910 significantly

inhibited egg hatching with the hatching inhibition percentages of

90.27, 77.50, and 67.06% at 48, 72, and 96 h after the treatment,

respectively. In the field experiment, the biocontrol application showed

that the control efficacy of T. citrinoviride Snef1910 against root-knot

nematode was more than 50%. Meanwhile, T. citrinoviride Snef1910

increased the tomato plant biomass. Moreover, strain Snef1910 showed

significant antagonistic activity in vitro towards other pathogens that

caused plant diseases in wheat, cotton, melon and other plants (Fan

et al., 2020). So, T. citrinoviride is one of the potential biological control

agent against root-knot nematode, M. incognita. Therefore, this study

elucidated the mechanism of T.citrinoviride against by investigating the

nematocidal activity of virulent and attenuated strains of

T.citrinoviride, pot experiments and the expression levels of marker

genes of each plant defense response pathway detected by fluorescence

quantitative PCR. In doing so, we aim to provide a theoretical basis for

developing biocontrol agents of T.citrinoviride in the future.
2 Materials and methods

2.1 Collection and isolation of Trichoderma
citrinoviride isolates

In the present study, the virulent strains T1910 and attenuated

strains TC9 were isolated from the original strains of T.citrinoviride

Snef1910 (Fan et al., 2020) by UV-chemical mutagenesis, which

differed in virulence from M. incognita. The spore suspension of

T.citrinoviride (1×107) was sucked into the 90 mm petri dish and
frontiersin.org

https://doi.org/10.3389/fpls.2023.1179605
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhao et al. 10.3389/fpls.2023.1179605
placed under the UV lamp that had been preheated for 30 minutes.

After 3 minutes of irradiation, 4 mL of the spore suspension of the

strain screened by UV mutagenesis was prepared for DES (1 ml +

0.5 ml absolute ethanol) mutagenesis and incubated at 180 rpm for

30 min with shaking. The reaction was terminated with 0.5 ml of

25% sodium thiosulfate (Na2S2O3), and the strains of T.citrinoviride

solution was evenly coated on 2% water AGAR plates for

cultivation. After the spores grew out, the subsequent tests were

carried out (Zhao et al., 2016). All the above strains were stored in

Nematology Ins t i tu te o f Northern China , Shenyang

Agricultural University.
2.2 Reparation of liquid medium of
T.citrinoviride isolates

T. citrinoviride spores and mycelia cultured on PDA plates were

inoculated in a triangle flask containing PD liquid medium

aseptically and incubated at 25°C and 120 RPM for 7 days by

shaking. The mycelia and spores were removed by filtration with a

filter device equipped with a 0.22 mm filter membrane to prepare the

fermentation broth of different strains of T.citrinoviride. The liquid

medium of T.citrinoviride spore was obtained as follows. First, 5 ml

sterile water was added to the colonies, and the spores on the surface

were washed off gently. Then, the spore suspension was put in 50 ml

sterilized conical flask that had been placed with the sterile glass ball

in advance, after sufficient oscillation with sterilized cotton wool to

filter and sterile water flushing residue 2-3 times, eventually make

the concentration of spore was 108 cfu/ml (Zhao et al., 2016).
2.3 Nematode culture and infection assays

A pure culture of M. incognita was maintained in tobacco roots

grown under pot culture conditions (28± 2°C) at the Institute of

Northern Nematode, Shenyang Agricultural University. Second-stage

juveniles (J2s) ofM. incognita were inoculated into the one-month-old

tomato seedlings, and regular watering was done to maintain the

optimum moisture level for plant growth. Seedlings were uprooted 30

days post-inoculation of nematodes, and the roots were gently washed

in tap water to remove the adhering soil particles. Egg masses of M.

incognita were collected from the roots with the help of forceps under a

stereo-zoom microscope. Gathered egg masses were placed in a

modified Baermann funnel setup for 3 to 5 days to obtain the

uniformly hatched J2s. Finally, after estimating the population

density of these juveniles under a stereo-zoom microscope, they were

used for further experiments (Zhao et al., 2016).

Morphologically and biochemically characterized T.citrinoviride

isolates were tested for their in vitro efficacy against M. incognita.

About 100 J2s of M. incognita were placed in sterile 24-well plates

containing 200 ml fermentation broth of T.citrinoviride. And the

liquid medium of T.citrinoviride isolates (108 cfu/ml) were taken at

the rate of 0.05 μl and mixed with 1 ml water and applied to the M.

incognita. Each treatment was replicated 3 times in a completely

randomized design (CRD). The 24-well plates were incubated at

room temperature (28 ± 2°C), and observations on dead juveniles
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were recorded at 24 h under a stereo zoommicroscope. The mortality

rate and corrected mortality rate of nematodes were calculated.

Furthermore, the NaOH stimulation method was used to

determine the survival of J2 of M. incognita.

Nematode mortality=%  =
Number of dead nematodes
Number of nematodes tested

� 100

Corrected mortality=%  =
Treated nematode mortality  − Control nematode mortality

1  −  Control nematode mortality
� 100

Approximately 4-week-old tomato seedlings were transplanted

into the mud pots (15 cm dia × 30 cm height) filled with 1 kg of

sterilized soil. After the establishment of seedlings in the pots,

second-stage juveniles of M. incognita were inoculated around the

plant’s root zone by removing the top soil layer. The temperature of

the pot experiment was 25°C ± 3°C. Three days after inoculating

nematodes, a fermentation broth of virulent and attenuated strains

of T.citrinoviride isolates was applied to the rhizosphere region of

the plant. Plants inoculated with nematode alone served as

untreated control. Treatments were arranged in CRD with 3

replicates per treatment. Plants were watered regularly to the field

capacity. Finally, 5, 10, and 15 dpi after nematode inoculation,

plants were uprooted carefully and assessed for their growth

parameters and the population of nematodes. The gall index is

shown in Table 1. Then the root of tomato reactive oxygen species

staining were evaluated. CMH2DCFDA (C6827) molecular probe

was prepared with phosphate buffer (PB), and the root was

incubated with CM-H2DCFDA (10 mM) and treated at 4°C for 90

min. The samples were washed with KCl (0.1 mM) and CaCl (0.1

mM) to remove excess CM-H2DCFDA. Samples were stored at

room temperature for 1 h before being photographed with an

Olympus C-5050 digital camera.

Control efficacy=% 

=
Control root knot index  −  Treated root gall index

Control root knot index
� 100
2.4 RNA isolation and quantitative
real-time PCR

In order to analyze the differences in control effects of virulent

and attenuated strains of T.citrinoviride against M. incognita, q-

PCR was used to detect the expression of defense genes in tomato
TABLE 1 The classification of the Gall index.

Gall index Classification standard

Level 0 No root knots on all roots, no infection

Level 1 The number of root knots on the root system was 1%- 20%

Level 2 The number of root knots on the root system was 21% to 40%

Level 3 The number of root knots on the root system was 41% to 60%

Level 4 The number of root knots on the root system was 61% to 80%

Level 5 The number of root knots on the root system was 81-100%
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stimulated by T.citrinoviride. The expression levels of auxin related

genes ARF1, reactive oxygen species related genes RBOH1, jasmonic

acid related genes LOX1, salicylic acid related genes PR1, PR5 and

NPR1 and jasmonic acid pathway related genes PDF1.2 were

detected to reveal the induction and resistance mechanism from

the view of defense genes. To provide some basic data for the

theoretical research on how T. citrinoviride regulate these hormones

and other signaling pathways to exhibit inhibitory effects on root-

knot nematodes in vegetables.

Primers sequence of tomato genes related to induction-

resistance pathway of real-time fluorescence quantitative PCR

were synthesized by Shanghai Shenggong Bioengineering

Technology Co., LTD., and the length of the primers was 80-300

bp. In this study, gene-specific primers were designed according to

the reference sequences of ARF1, RBOH1, LOX1, PR1, PR5, NPR1,

and PDF1.2 in NCBI which be stimulated by T.citrinoviride, as

shown in Table 2.

The J2s ofM. incognita were inoculated around the root zone of

the tomato and treated with sterile water (CK+ RKN), fermentation

broth of virulent strains (T1910 + RKN), and fermentation broth of

attenuated strain (TC9 + RKN). At 5, 10, and 15 dpi, the whole

tomato roots were washed with water, dried with filter paper,

labeled, and stored in a refrigerator at -20°C until used. Three

tomato plants were treated as one treatment, each repeated

three times.

qRT-PCR analysis of nematode resistance gene. Total RNA was

extracted from tomato roots (four biological replicates per

treatment) using HiScript® II Q Select RT SuperMix for qPCR (+

gDNA wiper) (Nanjing Norvezan Biotechnology Co., LTD.). The
Frontiers in Plant Science 04
cDNA was constructed from 1μg RNA of each sample after

treatment with RNase DNase I (Kangwei Century Company)

using the HiScript III 1st Strand cDNA Synthesis Kit (+gDNA

Wiper) (Nanjing Norvezan Biotechnology Co., LTD.) along with

the manufacturer’s instructions(CW0588S). The reaction was

performed in 25 mL containing 1 mL cDNA (10 ng), 0.5 mL of

each specific primer (10 pM) (previously designed by Abbasi et al.

(Abbasi et al., 2019). The reaction program including 95° C for 3

min followed by 40 cycles (95° C/30 s, 55° C/45 s, and 72° C/30 s),

with the final extension step (72° C/3 min). The results were

presented as a relative increase or decrease in the expression of

the target gene relative to the internal gene (TUB). Changes were

calculated using REST software(Pfaffl et al., 2002). The results were

determined by using the 2-DDCt method (Schmittgen and Livak,

2008). The correctness of the amplified products was judged by the

melting curve. Furthermore, the samples of each treatment were

repeated three times.
2.5 Data analysis

IBM SPSS Statistics 25.0 software was used for statistical

analysis. Data were analysed on absolute values using ANOVA to

test the efficiency of T.citrinoviride isolates against M. incognita

population tested in vitro, pot culture and field studies. The means

were analysed by Least Square Difference (LSD) and separated using

Tukey’s HSD test at P≤ 0.001.
3 Results and analysis

3.1 In vitro effect of T.citrinoviride strains
against M. incognita juveniles

Our team previously screened T.citrinoviride Snef1910 from

890 fungal strains and found it had a good biocontrol effect in field

experiments (Fan et al., 2020). However, the effect of T.citrinoviride

strains against J2 were found to be unstable in the process of in-

depth research. T.citrinoviride strain T1910 showed high activity

against J2. The corrected mortality rate reached 80.71% at 24 h after

treatment and 100% at 48 h with increased time (LC50 = 0.5585).

However, the activity of the attenuating strain TC9 against J2 was

low, and the corrected mortality rate was only 21.26% at 24 h and

43.61% at 48 h, with LC50 = 2.0615. In this study, two strains of

T.citrinoviride screened by UV-chemical mutagenesis showed

significant differences in toxicity against J2, which were named

virulent strain T1910 and attenuated strain TC9. Additionally, these

strains were used to further study the biological control

mechanisms of T.citrinoviride (Figure 1).

Using light microscopy, we observed that the anatomy of the J2

of M. incognita was disrupted following different strains (Figure 2).

The results of the microscopy indicated that the nematode was in a

good state in sterile water at 48 h. Still, in the fermentation broth of

virulent strain T1910, the target nematode J2 was rigid. The body

was chaotic, organs were decomposed, body walls were leaked, and

serious vacuolation was observed in the body. However, the target
TABLE 2 Primer sequences of genes related to inducing resistance
pathway in tomato.

The name of the primer
(Primer)

Genetic sequence (Gene
sequence)

ARF1-F GCAGCAACACCTACAAC

ARF1-R ACAGGAGACTTCCACATTC

RBOH1-F GTCAGGCTTCTACAGAAAAC

RBOH1-R GTTGATTACAGTAGCCGGTTC

LOX1-F GCCTCTCTTCTTGATGGA

LOX1-R GTAGTGAGCCACTTCTCCAA

PR1-F CCTCAAGATTATCTTAACGCTC

PR1-R TACCATTGCTTCTCATCAACC

PR5-F CAACATCCCTATGTCTTTCGGC

PR5-R AGGACCACATGGACCTTGAGTG

NPR1-F GCGATATTCCAACCTATA

NPR1-R TAGATTCAAATACACCATTC

PDF1.2 -f AAAAAGTGGCAAGTGGAATGG

PDF1.2 -R AATGGCAAGGTGAGTAGCAGTAA

Actin-F CACCACTGCTGAACGGGAA

Actin-R GGAGCTGCTCCTGGCACTTT
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nematodes died in the fermentation broth of the attenuated strain

TC9. Still, there was no apparent decomposition in the worm body,

and the nematodes’ surface structure, cuticle, and coelom

were intact.

After 24 h at 25°C, the J2 of M. incognita was observed to be

entangled and heavily parasitized by mycelium treated with the

spore suspension of virulent strain T1910. The worm’s body

became rigid and lost vitality. The body wall was destroyed with

many bubbles in the body, and the contents leaked. A few of the

target nematode J2 worms treated with the conidial suspension of

the attenuated strain TC9 were trapped by mycelia, unable to

move, but still survived, and no bubbles were formed in the

body (Figure 3).
Frontiers in Plant Science 05
3.2 Effect of virulent and attenuated strain
of T.citrinoviride on M. incognita
population and growth of tomato plants
under pot culture conditions

The pot experiment results showed that compared with the

control, the number of nematodes in the tomato root system was

significantly reduced at 10 dpi and 15 dpi by virulent and attenuated

strains of T.citrinoviride. The inhibition rates of virulent strains

reached 85.22% and 76.91%, respectively, followed by attenuated

strain TC9, which were 63.16% and 59.17%, respectively. As root-

knot nematodes developed from J2 to J3, J4, and adult, both virulent

and attenuated strains could significantly inhibit the infection and
FIGURE 1

The corrected mortality rate and the LC50 of virulent strains T1910 and attenuating strain TC9 to M. incognita J2 at different times.
FIGURE 2

The M. incognita J2 died under the treatment of T.citrinoviride. (A, B) The throat and middle and back of the body of M. incognita treated with
T1910. (C, D) The throat and the middle and back of the body of M. incognita treated with TC9. (E) The M. incognita J2 died under H2O treatment.
(F) Contact test of each treatment.
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development of nematodes on tomato roots. Compared with the

attenuated strain TC9, the virulent strain T1910 significantly

inhibited the invasion of J2 and the development of J4 (Figures 4, 5).

Meanwhile, the reactive oxygen species staining assay showed

that virulent strain T1910 could activate the burst of reactive oxygen

species in plant roots more than attenuated strain TC9 (Figure 6).

To further verify the control effect of virulent and attenuated

strains on southern root-knot nematodes, the changes in the number of

root knots of nematodes were measured in a tomato pot experiment.

Compared with the control group, the number of root knots of tomato

roots was significantly reduced by 10 dpi and 15 dpi treatment with

virulent strain T1910, and the control effect was 76.59% and 77.39%,

respectively. However, treatment with attenuated strain TC9 also

reduced root-knot formation. However, this effect was insignificant

(Table 3). The experiment result shows that even though the virulence

of T.citrinoviride was degraded, the immune stimulation and growth

promotion effects still significant by the research of induce resistance

through fermentation broth to stimulate the immune pathway of

tomato to resist M. incognita infection.
Frontiers in Plant Science 06
3.3 Expression analysis of genes related to
the resistance of tomato to M. incognita
induced by virulent and attenuated strains
of T.citrinoviride

Results of the study revealed that the cell free culture filtrate of

virulent and attenuated strains enhanced the mortality ofM. incognita

juveniles. Among the different isolates tested, the attenuated strains of

T.citrinoviride TC9 at its 100 per cent concentration recorded about

43.61% of juvenile mortality after an exposure period of 48 h. It has

been evident from the present study that there are other bio-control

mechanisms. Therefore, the gene expression analysis of nematode

resistance induced by virulent and attenuated strains of

T.citrinoviride in tomato have been further studied. Notably, the

expression of auxin-related gene ARF1, reactive oxygen species-

related gene RBOH1, ester oxygenase related gene LOX1, salicylic

acid-related genes PR1, PR5, NPR1, and jasmonic acid-related gene

PDF1.2 was further measured to explore the biological control

mechanism of T.citrinoviride induced tomato against M. incognita.
FIGURE 3

The effect of J2 of M. incognita being hyperparasitismed by virulent strain T1910 and attenuated strain TC9, after 24 h at 25°C. (A) The J2 of M.
incognita was observed to be entangled and heavily parasitized by mycelium treated with the spore suspension of virulent strain T1910. (B) A few of
the J2 of M. incognita treated with the conidial suspension of the attenuated strain TC9 were trapped by mycelia, unable to move, but still survived,
and no bubbles were formed in the body.
FIGURE 4

The number of root-knot nematodes in different stages in tomato roots treated with different virulent strains at different times. Different letters
indicate significant differences (T-test with P<0.05): a or b indicates the significant differences in the J2 stage; A or B indicates the significant
difference in the J3 stage; a or b indicates the significant difference in the J4 stage; ϵ or q indicates the significant difference in adult females. Same
as below females.
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At 5 dpi, only the PR5 gene was significantly upregulated in

virulent strain T1910, which was 51.6 times higher than that of the

control, while LOX1, PR1, and PDF1.2 genes were significantly

upregulated in attenuated strain TC9. At 15 dpi, ARF1, RBOH1,

LOX1, PR1, PR5, NPR1, and PDF1.2 genes of virulent strain T1910

were significantly upregulated, and PR5 was still the highest, which

was 123.9 times of the control. LOX1 and PDF1.2 genes of virulent

strain TC9 were still significantly upregulated, but PR1 was not

significantly upregulated. However, PR5 was significantly

upregulated up to 62.8 times (Figure 7). Our research suggests

that the attenuated strain TC9 stimulated both the SA and JA

signaling pathways at the early stage of inoculation, thus inhibiting

the infection and development of nematodes. In contrast, the

virulent strain only stimulated the SA signaling pathway at the

early stage and the JA pathway at the later stage.
Frontiers in Plant Science 07
4 Discussion

The current study demonstrated the in vitromortality rate ofM.

incognita juveniles using two strains of T.citrinoviride. It was found

that the fermentation broth of the virulent strain T1910 was the

most active against J2 ofM.incognita., while the fermentation broth

of the attenuated strain TC9 was less virulent. In this process, it was

found that the body wall of the poisoned nematodes was thinner,

and bubbles were formed in the body. These phenomena may result

from the degradation of the body wall by protease or chitinase in the

fermentation broth or the contact of metabolites in the

fermentation broth. In addition, when nematodes were wounded

by mycelium, the body wall leaked, which was the function of heavy

parasitism and secondary metabolites. Hadavi (2008) found that

hydrolases produced by Trichoderma could inhibit nematodes and
FIGURE 5

Nematode infection in tomato root system under each treatment at 5dpi. (A) virulent strains T1910 (B) attenuating strain TC9 (C) H2O.
FIGURE 6

Reactive oxygen fluorescence staining of tomato roots after be treated by T.citrinoviride. (A) and (B) virulent strains T1910. (C) and (D) attenuating
strain TC9. (E) and (F) H2O.
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eggs to varying degrees. Jiao et al. (2015) found that two strains of T.

harzianum were beter than T. viride in their activity toM.incognita.

Also, the cuticle of juveniles and shell of eggs were digested eggs

hatching delayed, and the intestinal cavity of larvae showed

vacuolation. Likewise, the pot experiment investigated the

biocontrol effect of T.citrinoviride on M. incognita. Both virulent

strain T1910 and attenuated strain TC9, showed significant growth-

promoting effects on tomatoes and inhibited the number of root

knots. The attenuated strain TC9 had the most significant growth-

promoting effect, and T1910 had an optimal ability to reduce the

number of root knots. The results of reactive oxygen species

fluorescence labeling staining showed that both wild-type and

attenuated strains could stimulate the burst of reactive oxygen

species, and virulent strain T1910 exhibited more robust

activation activity and brighter fluorescence than attenuated

strain TC9. Therefore, these results indicate that different

virulence strains of T.citrinoviride play a particular role in the

biological control of nematode diseases. However, the modes of

action may differ, and it has the potential for biological control.

The biocontrol mechanisms of T.citrinoviride include

competition, hyperparasitism, induced resistance, and antibiotics,

and almost all of them may be involved in the biocontrol of

nematodes (Contreras-Cornejo et al., 2015). Substances such as

cell hydrolases, antibiotics, vitamins, polysaccharides, and organic

acids in Trichoderma fermentation fluid are highly virous to

nematodes. They can destroy nematode cells through different

mechanisms or use their metabolites to enter nematodes, such as

alkaloids that can inhibit necessary enzymes or act as DNA

embedding agents(Tanaka et al., 2007). Some flavonoids condense

soluble cellular proteins, including essential enzymes, by forming

complexes or rupturing cell membranes to inhibit nucleic acid

synthesis (Tariqjaveed et al., 2021). Based on different virulence
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strains of T.citrinoviride, the nematocidal activity, hyperparasitism

activity, growth promotion, and inducement and resistance of the

two strains were detected, and the biocontrol mechanism was

studied from multiple perspectives.

In the gene expression tests, it was found that the virulent strain

T1910 induced PR1 at the early stage of nematode infection (5dpi),

and the root tissues of tomato provided a rapid SA-regulated

defense response to protect the roots from RKN invasion

(Martıńez-Medina et al., 2017). In the late stage (15dpi), auxin

was significantly activated, including reactive oxygen species, LOX1,

PR1, PR5, and NPR1 markers of the SA pathway, and the PDF1.2

gene related to the JA pathway. The accumulation of auxin was

associated with controlling plant growth and related to the change

in cell REDOX status, including the activation of NADPH oxidase

and cell wall peroxidase to generate oxidative bursts.

Simultaneously, the high expression of ester oxygenase caused the

peroxidation of membrane lipids and induced the burst of reactive

oxygen species to provide the appropriate defense response

(Considine and Foyer, 2014). These results indicated that the JA-

regulated defense pathway of virulent strains was not induced at the

early stage of nematode development. Additionally, the virulent

strains caused SA, JA pathways, and reactive oxygen species to resist

nematode reproduction and secondary invasion during the

breeding period.

The attenuated strain TC9 activated ester oxygenase LOX1, SA

gene PR1, and JA pathway-related gene PDF1.2 at the infection-

development stage (5dpi) and strongly induced LOX1, PR5 and

PDF1.2 at the breeding stage (15dpi). The high expression of PR1

and PR5 indicated that the attenuated strain also induced SA

defense in plants and regulated the JA defense pathway through a

lipid oxidation reaction. This phenomenon showed that the

attenuated strain induced and successfully stimulated a strong ISR
TABLE 3 Gall index and control efficiency of T.citrinoviride strains.

Treatments
Gall index (0~5)/Times Control efficiency(%)/Times

5 dpi 10 dpi 15 dpi 5 dpi 10 dpi 15 dpi

T1910 0.1 ± 0.06B 0.2 ± 0.07B 0.9 ± 0.22B 84.91 ± 10.39a 76.59 ± 6.68a 77.39 ± 6.15a

TC9 0.2 ± 0.03B 0.6 ± 0.15B 1.9 ± 0.12AB 64.15 ± 7.55b 36.79 ± 15.05b 47.68 ± 12.49b

CK 0.5 ± 0.21B 1.0 ± 0.58AB 3.7 ± 0.80A —— —— ——
FIGURE 7

Relative gene expression in response to induced by T1910 and TC9. The asterisk (*), (**), (****) indicate P < 0.05, P < 0.01, and P < 0.0001 (t-test) for
each treatment versus control (five replicates). And the expanded form of "ns" is “not statistically”.
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response. Furthermore, its protective effect depended on enhancing

the JA defense mechanism against nematode invasion. Therefore,

the JA pathway was the primary defense strategy of attenuated

strain against RKN (Selim et al., 2014).

The attenuated strain TC9 of Trichoderma spp. had a weakened

killing effect on J2 of M. incognita, but it still had a field control

effect onM. incognita in tomato. However, the results show that the

mechanism is still unclear by promoting tomato growth and

enhancing immunity against nematode infection. Importantly,

this study explored from the viewpoint of defense gene expression

and found that the attenuated strain significantly stimulated the JA

pathway. Therefore, the JA pathway may regulate systemic

resistance in tomatoes, but the specific regulatory mechanism

needs further study.

Root-knot nematode is one of the most significant diseases of

crops in the world, especially tomato and other vegetables are its

main hosts. At present, the biological control is very promising to

root-knot nematode. There are many kinds of Trichoderma spp. in

the world, which may also antagonize nematodes by complex and

diverse mechanisms except competition. The application of

Trichoderma spp. has been found effective in reducing root-knot

nematode populations infesting vegetable crops (Khan et al., 2018).

In this study, the potential mechanism of T.citrinoviride in the

prevention and control of root-knot nematode was studied by

evaluation of J2s efficacy in vitro, pot culture and expression

analysis of genes. T. citrinoviride could be used as a potential

biological control agent against root-knot nematode, M. incognita.
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