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A thorough understanding of complex spatial host-disease inter-

actions in situ is necessary in order to develop effective preven-

tative measures and therapeutic strategies. Here, we developed

Protein And Nucleic acid IN situ Imaging (PANINI) and coupled

it with Multiplexed Ion Beam Imaging (MIBI) to sensitively and

simultaneously quantify DNA, RNA, and protein levels within

the microenvironments of tissue compartments. The PANINI-

MIBI approach was used to measure over 30 parameters simul-

taneously across large sections of archival lymphoid tissues from

non-human primates that were healthy or infected with simian

immunodeficiency virus (SIV), a model that accurately recapit-

ulates human immunodeficiency virus infection (HIV). This en-

abled multiplexed dissection of cellular phenotypes, functional

markers, viral DNA integration events, and viral RNA tran-

scripts as resulting from viral infection. The results demon-

strated immune coordination from an unexpected upregulation

of IL10 in B cells in response to SIV infection that correlated

with macrophage M2 polarization, thus conditioning a potential

immunosuppressive environment that allows for viral produc-

tion. This multiplexed imaging strategy also allowed character-

ization of the coordinated microenvironment around latently or

actively infected cells to provide mechanistic insights into the

process of viral latency. The spatial multi-modal framework

presented here is applicable to deciphering tissue responses in

other infectious diseases and tumor biology.
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Introduction

Since the beginning of the human immunodeficiency

virus infection and acquired immunodeficiency syndrome

(HIV/AIDS) pandemic in the 1980s, the majority of our

knowledge of the biology and persistence of HIV-1 in hu-

mans and of its closely related cousin in non-human primates,

the simian immunodeficiency virus (SIV), has come from

studies of the peripheral blood compartment and the molec-

ular biology of the virus within host cells in vitro. These

experiments led to the development of the modern antiretro-

viral therapy (ART), which prevents the fatal progression to

immunodeficiency in most patients (Hartman and Buckheit,

2012). Unfortunately, ART is not a cure for HIV/AIDS as vi-

ral rebound occurs in all but the rarest cases upon ART with-

drawal. Furthermore, much of the viral replication and per-

sistence during ART occurs within the lymphoid tissues and

gastrointestinal tract (Chun et al., 1997; Estes et al., 2017;

Haase, 1999). To understand the mechanisms and pathol-

ogy of HIV persistence it is necessary to visualize the tissue

microenvironments where the virus resides; however, tech-

nological barriers have limited our ability to phenotypically

characterize and quantify the cellular components of viral tis-

sue reservoirs.

Current approaches to study of the microenvironments of vi-

ral reservoirs include single-cell RNA-seq-based (Kazer et

al., 2020) and flow-based (Baxter et al., 2017) methods that

require cells to be taken out of their native tissue context.

Complementary methods such as immunohistochemistry and

in situ hybridization (ISH) technologies (Deleage et al., 2016;

Estes et al., 2017) enable retention of the information in 2D

space but are constrained by the low number of concurrently

detectable features. Multiplexing markers on a tissue sec-

tion using immunofluorescence microscopy is possible and

routine but is generally limited by factors such as the spec-

tral overlap of fluorophores and incompatible host species for

primary antibodies. Recent advances in multiplexed imaging

modalities, such as Multiplexed Ion Beam Imaging (MIBI)

(Angelo et al., 2014; Keren et al., 2018), CO-Detection by

indEXing (CODEX) (Goltsev et al., 2018; Schürch et al.,

2020), Imaging Mass Cytometry (IMC) (Giesen et al., 2014),

signal amplification by exchange reaction (SABER) (Kishi

et al., 2019; Saka et al., 2019), and cyclic Immunofluores-

cence (cycIF) (Lin et al., 2015, 2018), which utilize iterative

methods (CODEX, SABER and cycIF) or mass spectrome-

try (MIBI and IMC) to overcome these limitations. Highly

multiplexed in situ detection of mRNA and protein epitopes

has also been achieved with a branched-chain amplification

method coupled with antibody-based detection (Schulz et al.,

2018; Wang et al., 2012), but this procedure has been vali-

dated only for highly abundant RNA transcripts and requires

a protease treatment step to increase RNA accessibility for

detection sensitivity that interferes with robust protein epi-

tope detection via antibodies (Schulz et al., 2018).

The ability to simultaneously detect nucleic acids present at
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low abundance, such as a single copy of the DNA resulting

from a viral integration event, and protein molecules in situ,

is paramount for enabling studies of viral infection. The low

frequency of certain replication intermediates and need for

high stringency hybridization requires a level of sensitivity

that is not compatible with currently employed multiplexed

imaging platforms. For example, the stripping buffers used in

CODEX and the ethanol H2O desalting steps used in MIBI

will disrupt most nucleic acid hybridizations. We reasoned

that combining a customized branched-chain amplification

method capable of DNA and RNA single-event detection

with the covalent deposition of haptens would enable multi-

plexed imaging on various antibody-based platforms, includ-

ing MIBI. By turning nucleic acid detection into an antibody

“problem”, we could potentially overcome the limited sensi-

tivity of ISH in tissues. For example, on the IMC and MIBI

platforms, each oligonucleotide-based probe can only carry a

maximum of 20 metal ions (Frei et al., 2016). In comparison,

each antibody has a theoretical capacity for approximately

100 metal ions (Bendall et al., 2011; Han et al., 2018).

Here, we present an approach that we call Protein And

Nucleic acid IN situ Imaging (PANINI) which when cou-

pled to MIBI (PANINI-MIBI) provides 1) a highly sensitive

custom branched-chain amplification method for nucleic acid

targets with tyramide-based amplification, 2) an optimized

antigen retrieval protocol that bypasses a protease treatment

step and yet allows nucleic acid detection down to a single

genomic event, and 3) antibody-based detection with resolu-

tion of down to 260 nm and single antibody sensitivity via

the MIBI platform. Using formalin-fixed paraffin-embedded

(FFPE) cell pellets and lymphoid tissues from SIV-infected

and uninfected rhesus macaques, a system that appears to ac-

curately reflect HIV infection in humans, we demonstrate that

PANINI-MIBI is capable of simultaneous detection of single-

integration events of SIV DNA (vDNA), SIV RNA tran-

scripts (vRNA), and protein epitopes robustly on the same

tissue section.

We utilized PANINI-MIBI to characterize in unprecedented

detail the viral reservoir and immune responses within SIV-

infected and uninfected control lymphoid tissues. The tis-

sue immune responses to lentiviral infection were heteroge-

nous, and phenotypically similar cells from infected animals

and uninfected controls exhibited significantly different func-

tions. For instance, IL10 expression was increased in B

cells upon infection, thus promoting a presumed polariza-

tion of macrophages to an immunosuppressive M2 pheno-

type, which was correlated to a known conducive environ-

ment for SIV transcriptional activation. Characterization of

the higher order structure around infected cells revealed dif-

ferences during viral latency and active infection, enabling us

to establish a model for how chronic SIV infection dampens

the immune response and elucidate the hallmarks of host fea-

tures that coordinate viral latency in tissue reservoirs. This

work provides a framework for future multi-modal studies of

the principles of host-pathogen interactions in situ using in-

activated archival tissue samples.

Results

Development of PANINI. We designed the workflow of

PANINI staining of tissue sections for subsequent analysis

on the MIBI platform to be analogous to routine in situ hy-

bridization and immunohistochemistry methods (Figure 1A).

We first tested this approach using both immunofluorescence

(IF) and MIBI on 3D8 and CEM FFPE cell pellets (Figure

1B). The 3D8 cell line was derived from a clonally expanded

SIVmac316-infected CEM cell, containing a single copy of

integrated SIV vDNA per cell (Nishimura et al., 2009). A

single vDNA-positive punctate is expected within each 3D8

cell, and there is a 21-29% probability of capturing a positive

nuclear event within 4-6-µm sections (Deleage et al., 2016).

Quantification of vDNA-positive puncta in 3D8 cells from

our IF and MIBI data was highly reproducible, and results

from the two techniques aligned with each other and with

previous studies (Figure 1C) (Deleage et al., 2016). This high

concordance is indicative of the applicability of PANINI for

sensitive, targeted detection of nucleic acids, down to a single

SIV integration event, in FFPE archival tissue samples.

Application of PANINI with MIBI. The protease diges-

tion step used in various ISH assays, including the popular

RNAscope and its related DNAscope (Deleage et al., 2016;

Wang et al., 2012), is required to increase the accessibility

of target nucleic acids through disruption of the packed ar-

chitecture of tissue matrixes and degradation of nucleic acid-

binding proteins (Yang et al., 1998). We found that a pH 9

antigen retrieval step enabled detection of vDNA and vRNA

in FFPE lymph node sections from an SIV-infected rhesus

macaque without the need for protease digestion (Figure 1D,

top). These results are in line with previous observations that

treatment of tissues with base can facilitate DNA recovery

from FFPE tissue samples (Shi et al., 2004). Similar results

were obtained by IF and MIBI without protease digestion

(Figure 1, middle and bottom).

To better analyze the dynamic immune response to chronic

SIV infection, we validated and applied a 33-marker panel

that included probes to vDNA and vRNA (Figure S1A)

across lymphoid tissues from four SIV-infected and two unin-

fected rhesus macaques, resulting in approximately 470,000

spatially resolved cells. The staining specificity was thor-

oughly assessed (Figure S1B). Analyses of adjacent sec-

tions of a lymph node from an SIV-infected rhesus macaque

were subject to standard single-plex RNAscope ISH (Figure

1E, top) or PANINI-MIBI (Figure 1E, bottom, and Figure

S1C), demonstrating that the latter captures viral events (SIV

vRNA) and tissue morphology while significantly expanding

upon the number of markers that can be simultaneously as-

sessed. This is exemplified by CD3 for T cells, CD20 for B

cells, CD11b for monocytes, and CD21 for B cells and follic-

ular dendritic cells (FDCs) (Figure 1E, bottom). The ability

to visualize multiple lineage-specific markers simultaneously

enables both cross-validation and detailed phenotyping, such

as for regulatory T cells (Tregs; Figure S1D), granzyme B+

CD8+ T cells (Figure S1E), B cells and FDCs (Figure S1F),

and M1/M2 macrophages (Figure S1G).
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Figure 1: PANINI Enables Multiplexed, Strand-Specific Nucleic Acid and Protein Detection in Archival Tissues (A) An overview of the experimental workflow and

analytical framework for PANINI. In short, tissue autopsy sections from rhesus macaques were subject to the PANINI methodology, which couples nucleic acid amplification

with antibody-based detection of both nucleic acid and protein targets. Multiplexed images were then acquired using MIBI and computationally analyzed for a high-resolution

understanding of host-pathogen tissue interactions in situ. (B) Representative IF and MIBI images of positive control 3D8 cells and negative control CEMs. Nuclear stains,

DAPI for IF and Histone H3 for MIBI are in blue and cyan respectively; vDNA is in white. (C) Quantification of 3D8 cells that are positive for vDNA signals in IF and MIBI

images. (D) Representative images of SIV-positive lymph nodes subjected to standard protease digestion step (top) after epitope retrieval or no protease treatment (middle

and bottom) after epitope retrieval. SIV vDNA (red) and vRNA (green) were detected using ISH followed by hapten deposition, and subsequently imaged using either IF or

MIBI. Cells harboring integrated virus are indicated with red arrows. (E) Representative images of adjacent sections from an SIV-positive lymph node. Both slides underwent

PANINI treatment. For the top section, a Fast Red chromogenic substrate was used for vRNA (red) and hematoxylin staining enabled brightfield visualization. The bottom

section was stained with a MIBI-compatible protein cocktail. Markers shown here were selected to best delineate specific cell lineages: CD3 (T cells, yellow), CD20 (B cells,

purple), CD11b (monocytes, blue), CD21 (B cells and FDCs, white), and SIV vRNA (green).
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Scalable Automated Cell Segmentation and Annota-

tion. Accurate cell segmentation methods are required to

confidently extract single-cell feature information from mul-

tiplexed tissue images (Hollandi et al., 2020; Moen et al.,

2019; Valen et al., 2016). We used the top-in-class Mes-

mer, a DeepCell-based segmentation method for feature ex-

traction and FlowSOM for subsequent cell type identifica-

tion utilizing self-organizing maps (Figure 2A) (Gassen et

al., 2015; Greenwald et al., 2021). We identified 14 distinct

immune and structural cell types, with the expected associ-

ated lineage-specific marker expression (Figure 2B). Visual

inspection of the MIBI multiplexed images (Figure 2C) and

their paired spatial phenotype maps confirmed accurate cell-

type annotation (Figure S2A). We orthogonally performed

immunofluorescent immunohistochemistry on three consec-

utive sections juxtaposed to the original PANINI-MIBI ana-

lyzed section, which confirmed specificity and scalability of

the unsupervised cell annotation methodology (Figure S2B).

Prominent tissue features, such as B cell follicles, T cell

zones, and the macrophage-rich medullary sinus, were vis-

ible on both the MIBI images (Figure 2C) and phenotype

maps (Figure 2D and S3), further confirming the robustness

of the cell segmentation and annotation methodology.

We next analyzed the summary statistics of the 14 differ-

ent cell types among the 20 individual FOVs (Figure 3A),

among the six animals (Figure 3B) and based on the infec-

tion status (Figure 3C). There was an evident depletion of

CD4+ T cells in SIV-infected animals (Figure 3D), a hall-

mark of HIV-1 and SIV infection (Estes et al., 2008; Picker,

2006; Zeng et al., 2011). B cell numbers were relatively sta-

ble, but the infiltration of other immune cell types, such as

NK cells, CD8+ T cells, FDCs, and macrophages were in-

creased upon infection (Figure 3D). On an individual FOV

basis, the amounts of CD8+ T cell, NK cell, and macrophage

infiltrations were highly correlated with the infection status

of the animal, indicative of the host immune response (Fig-

ure 3E). This was also observed for CD8+ Granzyme B+

T cells, dendritic cells, endothelial cells, FDCs, monocytes,

neutrophils, and plasma cells (Figure S4). Extensive SIV de-

position was seen on FDCs within B cell follicles in FOVs

from SIV-infected tissues, reflective of an expansion of FDCs

during infection (Figures 1E, S1C, 2C, and S4). These re-

sponses suggest high-order coordination between cell types,

beyond phenotypic measurements of individual cells.

Cellular Neighborhoods Reflect Changes in Tissue Mi-

croenvironments upon Viral Infection. Tissue microenvi-

ronments are dynamic amalgamations of multiple cell types

with ranges of functions within an organ system. Microen-

vironments are governed by local tissue context such as the

immune cell and pathogen composition. Unlike tissue mor-

phologies, which are structural determinants of tissue archi-

tecture and the associated cell types (Xu et al., 2009), the tis-

sue microenvironment can be thought of as an accumulation

of various chemical and biological determinants exerted both

by and onto a cell in its native context. Tissue microenviron-

ments are often qualitatively described by identification of

cell types and features, such as blood vessels or immune cells,

around a cell of interest. Here we adopted a more empirical

Cellular Neighborhood (CN) methodology to quantitatively

define the lymphoid microenvironments of healthy and SIV-

infected tissues (Schürch et al., 2020). To identify CNs, the

cellular phenotypes of the nearest 19 cells around each an-

chor cell (i.e., 20 cells in total) were quantified and unsuper-

vised clustering was performed. We selected the 20-cell ra-

dius as a rough approximation of three cell distances from the

anchor cell in each direction, which we visually determined

to be a good indication of local functional activity. Thus, CNs

take into consideration the impact of the cellular identity of

surrounding neighbors on the function of the anchor cell (Fig-

ure 4A). Importantly, the infection status of cells and pheno-

typic and functional markers (e.g., CD4, Ki-67, CD169, and

FoxO1) were not considered in defining CNs; therefore, the

microenvironment was defined using only the spatial pheno-

typic patterns. Using this approach, we identified 11 distinct

CNs with unique cell compositions (Figure 4B): T cell-, den-

dritic cell-, and NK cell-rich CN1, B cell zone-containing

CN2, macrophage-rich CN3, T cell zone-containing CN4, B

cell-, NK-cell, and monocyte-rich CN5, CD4+ T cell-rich

CN6, FDC-rich CN7, macrophage-rich CN8, stromal and en-

dothelial enriched CN9, CD8+ T cell infiltrate-containing

CN10, and immune infiltrate-containing CN11. CN sum-

mary statistics (Figure 4C) reflect similar trends as the pheno-

type summary statistics (Figure 3A-D), albeit with additional

stratification of cell types such as the CD4+ T cells. The

ranking of CNs for each FOV revealed the enrichment of cer-

tain CNs, including as CNs 5, 7, 10, and 11, in SIV-infected

animals (Figures 4D and S5A) and the depletion of the CD4+

T cell-rich CN6 (Figure 4C and D).

The CN maps are reflective of tissue properties with an

additional dimension of information beyond the phenotype

maps (Figure 2D, top row, and S3 for phenotype maps;

Figure 4E and S5B for CN maps). For example, whereas

macrophages predominate in the phenotype maps in SIV-

infected and uninfected FOVs, the CN maps for the same

areas show a more complex picture with the presence of two

different macrophage-rich CNs, CN3 and CN8 (Figure 4F).

CN3 (enriched for macrophages and CD4+ T cells); is more

dominant in SIV-negative FOVs, whereas CN8 (enriched for

macrophages, neutrophils, and CD8+ GZMB+ T cells) is the

predominant CN in the SIV-positive FOVs. This highlights

that cellular functions are influenced by surrounding external

factors.

Quantification of the per cell average levels of SIV vRNA

for each CN showed that FDC-rich CN7 had the highest

quantities of vRNA (Figure S6), consistent with the major

role of FDCs in immune surveillance and antigen presen-

tation. Individual CNs also differed between SIV-infected

and uninfected conditions. For example, in FOVs from SIV-

infected tissue, for the CD8+ T cell infiltrate-heavy CN10,

there were more CD8+ T cells on average than detected in

CN10 regions from healthy control FOVs. We also observed

increased CD8+ T activation markers such as NFkB-p100

Granzyme B, and Ki-67 (Figure 4G, left). In CN11, which

is characterized by the immune infiltrate, both immune cell
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Figure 2: Unsupervised Computation Methods for Feature Extraction and Phenotypic Identification (A) An overview of the deep learning-enabled segmentation of

single cells, spatially resolved feature extraction, and self-organizing map-based cell type clustering and annotation used in this study. (B) A heatmap depicting the z-scores

of marker expression and cell types identified in all FOVs. (C) Representative FOVs of tissues from SIV-infected and control animals pseudo-colored to show regions enriched

in B and T cells and in SIV vRNA. Each FOV is 1.2 mm x 1.2 mm. A total of 20 FOVs were acquired across four SIV-infected and two uninfected rhesus macaques to generate

∼470,000 spatially resolved cells. (D) Individual cells from the representative FOVs in (C) colored by their cellular phenotypes.
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Figure 3: Orchestrated Immune Composition and Responses to SIV Infection (A) Bar plots of proportions of each cell type per FOV across the 20 FOVs acquired in this

study. (B) Bar plots of proportions of each cell type aggregated on a per animal basis. (C) Bar plots representing the proportions of each cell type aggregated by infection

status. (D) Ranked log2 fold enrichment (infected over uninfected controls) for each cell type, ranked from the most enriched (left) to most depleted (right) in SIV-infected

animals relative to uninfected controls. (E) Ranked bar plots showing the percent infiltration of each cell type indicated across the 20 FOVs with bars colored by infection

status.
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(CD8+ T cells and macrophages) and functional marker lev-

els (NFkB-p100, FoxP3, Granzyme B, Ki-67, FoxO1, MPO,

IL10, CD169, and CD36) were elevated in SIV-infected sam-

ples compared to uninfected controls (Figure 4G, middle).

Although there were no significant differences between the

proportions of macrophages between SIV-infected and unin-

fected animals in the two macrophage-associated CNs (CN8

and CN3 CD8+ T cell abundance was slightly higher in SIV-

infected tissue samples (Figure 4G, right). We also observed

the dominant expression of macrophage-functional markers

(DC-SIGN, FoxO1, IL10, and CD169) specifically in SIV-

infected samples in CN8, but only slightly higher expression

of IL10 in CN3 in the infected tissue. This suggests that SIV

infection induces tissue-specific responses in macrophages.

The increase in DC-SIGN, FoxO1, and IL10 (Figure 4G,

top tight), markers associated with M2 macrophage anti-

inflammatory functions, reflects immune dysregulation that

occurs during chronic viral infection. The presence of CD169

is reflective of foreign antigen capture by macrophages for

presentation. Thus, both phenotypic composition and func-

tional marker expression patterns are altered during viral in-

fection due to immune dysregulation.

Tissue Architecture Remodeling During Viral Infec-

tion. We postulated that CNs can recapitulate the underly-

ing tissue biology as represented by both its cell type com-

position and functional marker quantifications. We per-

formed linear discriminant analysis (LDA) on the accumu-

lated marker compositions within each CN from each animal

(6 animals with 11 CNs from each). LDA analysis separated

CNs from infected and uninfected rhesus macaques (Figure

5A, left) and further stratified the animals by chronic versus

acute viral infection status (Figure 5A, right). LD1, which

accounted for 54.5% of the variation, separated infected and

uninfected animals and their associated CNs (Figure 5A and

Figure 5B, top). LD2, which captured 22.3% of the variation,

distinguished between chronic and non-chronic infection sta-

tus (Figure 5A and Figure 5B, bottom). Factors differenti-

ating SIV infected from uninfected animals included CD56,

CD16, FoxP3, CD11b, and CD36. Factors differentiating

SIV chronic from non-chronic status included CD169, CD36,

CD16, FoxP3, CD11b, MPO, CD4, CD8a, and Granzyme B.

We postulated that the co-occurrences of markers in individ-

ual cells would be a proxy to understanding the global tissue

reorganization triggered by viral infection. To test this, we

calculated the Pearson’s correlations between marker pairs

for SIV-negative (Figure 5C, top; teal) and SIV-positive (Fig-

ure 5C, bottom; orange) conditions. We focused on markers

of cell types dysregulated during SIV infection such as those

that characterize B cells, T cells, and macrophages. In agree-

ment with previous data, our strategy highlighted infection-

driven processes 1) macrophage immunosuppression as indi-

cated by a M2 switch via CD163 and FoxO1 (blue boxes),

2) increased CD8 T cell infiltration (black boxes), 3) B and

T cell proliferation via elevated Ki-67 correlation (yellow

boxes) and 4) FDC activation and antigen presentation via

increased CD169 and CD11b presence (green boxes).

Specific microenvironment interactions were also apparent

when Pearson’s correlations between the marker pairs within

each CN were analyzed (Figure S7). Notably, for the

macrophage-rich CN8 within SIV-positive tissues, there was

evidence of 1) increased antigen binding via CD169 but de-

creased presentation via HLA-DR (blue boxes), 2) decreased

granzyme B activity (black boxes), 3) increased CD25 corre-

lation (yellow boxes) and 4) elevated B cell association with

vRNA and antigen binding via CD169 (green boxes) (Fig-

ure 5D). The pairwise marker correlation maps from single

cells in each infection condition and CN provide an informed

view of dysregulation and reorganization induced in response

to viral infection (Figures 5C, 5D, and S7).

To understand how specific cell types are positioned with

purpose and intent within healthy and infected microenvi-

ronments, we compared the direction-specific, cell-cell pair-

wise interactions for each FOV against a randomized back-

ground model (Figure 5E). We first identified tissue interac-

tions that were either significantly enriched (Figure 5E, red

arrow pointing left) or depleted (Figure 5E, blue arrow point-

ing right) over the background in both infected and control

tissues. Interaction enrichments were then ranked by the SIV-

infected status for visualization purposes. For instance, NK-

CD4 T cell and NK-NK cell interactions were more likely

in SIV-infected tissues than uninfected controls (Figure 5E,

green arrows). Both B cell-macrophage and macrophage-B

cell interactions were also slightly increased upon infection

compared to control tissues (Figure 5E, purple arrows).

We next investigated how CNs were modulated upon viral in-

fection using a direction-specific CN-CN pairwise interaction

enrichment analysis over a random background model (Fig-

ure 5F). Interactions involving blood vessel-enriched CN9

with CN2 (B cell zone) and with CN5 (B cell-, NK cell-,

and monocyte-rich) were prominent in infected tissues (Fig-

ure 5F, red arrows), demonstrating increased endothelial in-

teractions and physical proximity of immune cells to spe-

cific microenvironments within infected tissues. We also ob-

served that interactions between macrophage-enriched CN8

with CN4 (T cell zone) were decreased in infected tissues

(Figure 5F, green arrow), whereas interactions between B

cell zone-associated CN2 with macrophage-rich CN8 were

increased in infected tissues (Figure 5F, purple arrow). The

latter observation is in agreement with the observed increase

above in B cell-macrophage and macrophage-B cell interac-

tions (Figure 5E, purple arrows). It is important to note that

although CN2 and CN8 were closer in SIV-infected tissues

than uninfected tissues, these neighborhoods did not physi-

cally interact or overlap (Figure S5B).

IL10-Induced Immunosuppressive Microenvironments

by B Cells and Macrophages. Our results suggest that vi-

ral infection induces a strong linkage between B cells and

macrophages (Figure 5E, purple arrows), specifically be-

tween CN2 (B Cell Zone) and CN8 (Macrophage Rich 1)

(Figure 5F, purple arrow). The IL10 expression patterns were

distinctive in these neighborhoods: cells positive for IL10

were predominantly B cells in CN2 (Figure 6A, left) and

were predominantly macrophages in CN8 (Figure 6A, right).

IL10 is an immunoregulatory cytokine that can activate or
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Figure 4: Cellular Neighborhood Analysis Enables Functional Stratification of Tissue Microenvironments during Viral Infection (A) Overview of the method used

to define CNs. The 20 nearest neighboring cells (including itself) around each cell were defined, and the cell types identified, quantified, and subjected to unsupervised

clustering to define CNs. (B) A heatmap depicting the 11 CNs identified and cell types enriched in each, as represented by the z-scores. (C) From left to right, bar plots of

proportions of each CN aggregated by FOV, animal, and infection status and plot of ranked log2 fold enrichment (infected over uninfected controls) for each CN. (D) Ranked

bar plots showing the percent composition of each CN across the 20 FOVs with bars colored by infection status. (E) Representative FOVs of infected and control animals

(also shown in Figure 2C and D) with each individual cell colored by CNs. Each FOV is 1.2 mm x 1.2 mm. (F) Representative FOVs from SIV infected (top) and uninfected

(bottom) animals containing medullary sinus regions depicted as phenotype maps (left) and CN maps (right). Red and blue boxes indicate regions magnified for zoomed-in

views of macrophage-enriched regions. Pink cells in the phenotype map are macrophages. Light blue and purple CNs 8 and 3, respectively, are macrophage-rich. (G)

Box plots of mean numbers of indicated cell types within CNs (left) and the mean expression of selected functional markers within the CN (right). Each dot in the box plot

represents data from a single FOV, and the data are divided between infected (orange) and healthy controls (teal). Non-paired Wilcoxon test: ns, not significant; *, p<0.05;

**, p<0.01; ***, p<0.001.

8 | bioRχiv Jiang et al. | PANINI

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.21.444548doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.21.444548
http://creativecommons.org/licenses/by-nc-nd/4.0/


D
R
A
F
T

Figure 5: Global and Local Cellular Responses and Tissue Reorganization (A) Plot of variance accounted for by each of the two linear discriminants, LD1 and LD2,

on the x and y axes, respectively, for LDA was performed on the collective markers for each of the 14 CNs within each of the six animals. Each dot represents a single CN

from a single animal. CNs are colored by the animal infection status (left) or the animal of origin (right). (B) The rank plot of the markers that account for LD1 (top) and

LD2 (bottom) colored based on enrichment (orange) or depletion (green) in individual CNs of infected animals versus uninfected animals. (C) Pairwise Pearson’s correlations

of selected immune markers across each individual cell from healthy (top; teal) and SIV-infected (bottom; orange) animals. (D) Pairwise Pearson’s correlations of selected

immune markers across each individual cell within CN8, separated by healthy (top; teal) and SIV-infected (bottom; orange) animals. (E and F) The pairwise cell distances for

E) each cell type and F) each CN over randomized background plotted as squares for infected (orange) and healthy (teal) animals. Only interactions that passed a statistical

test (p<0.05) for both infection conditions are shown. Squares that are toward the left indicate interactions that are closer than expected, and those toward the right indicate

interactions that are further apart than expected. Pairs of cells are given in text form (left) and colored heat maps (right). In panel E, purple arrows indicate B cell-macrophage

and macrophage-B cell interactions that are closer in infected versus uninfected tissues, and green arrows indicate NK cell-T cell and T cell-NK cell interactions that are closer

in infected than uninfected tissues. In panel F, the green arrow indicates CN8-CN4 interactions that are closer in uninfected than infected tissues, while purple and red arrows

indicate CN2-CD8, CN9-CN2, CN2-CN9, CN9-CN5, and CN5-CN9 interactions that are closer in infected tissues than uninfected tissues.
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suppress the immune system (Ouyang and O’Garra, 2019;

Rojas et al., 2017). IL10 expression is upregulated in HIV

patients within several circulating immune cell types, includ-

ing B cells (Brockman et al., 2009), and in lymphoid tissues

after SIV infection (Estes et al., 2006; Tabb et al., 2013).

Both B cells in CN2 and macrophages in CN8 had increased

IL10 expression after SIV infection (Figure 6B), implicating

elevated IL10 expression by B cells and macrophages as a

host response to viral infection. We observed a positive cor-

relation between vRNA and IL10 levels within CN2 (Figure

6C, top left panel) but no correlation within CN8 (Figure 6C,

bottom left panel). These results suggest that either extensive

deposition of viral particles on FDCs, viral progeny produc-

tion from infected cells, or both are upstream of IL10 pro-

duction in the B cell-rich CN2 and are downstream of IL10

production in the macrophage-rich CN8.

Given the ability of IL10 to suppress immune cells, we

next measured the relationship between levels of IL10 and

immunosuppressive M2 macrophage markers CD163 and

FoxO1 in CN8. There was a positive correlation between

these markers (Figure 6C, right panels), implicating IL10

in triggering of M2 macrophage differentiation. We visu-

ally confirmed our findings pertaining to the upregulation

of IL10 within B cells (Figure 6D, top) and CD163+ M2

macrophages (Figure 6D, bottom) in response to SIV infec-

tion. Together, these results support a model for how SIV in-

fection purposefully induces immunosuppressive TMEs and

cell phenotypes through 1) initial sensing of viral particles by

B cells (perhaps through CD21/CR2 engagement), 2) produc-

tion of IL10 that then attracts nearby macrophages, 3) subse-

quent FoxO1 activation that leads to more IL10 production

and finally 4) M2 macrophage differentiation and creation of

an immunosuppressive TME (Figure 6E).

Environmental Cues influence SIV Viral Latency.

PANINI enables detection of vDNA and vRNA, with host

proteins, and is therefore particularly suitable for the detec-

tion of SIV-infected cells that are latent (i.e., vDNA+ and

vRNA−) and those that are transcriptionally active (vDNA+,

vRNA+). We identified 914 SIV-infected cells within rhe-

sus macaque lymph nodes. These cells were predominantly

CD4+ T cells (69.7%), of which 10.3% were Tregs and the

rest macrophages (30.3%) (Figure 7A). Consistent with the

cohort of viremic SIV acute and chronically infected animals,

the infected cells were predominately transcriptionally active

(64.4%), with a similar composition of latency status within

each cell type and CN of origin (Figure 7A). The only ex-

ception was the higher presence of latent cells within CN9,

which was enriched in stromal and endothelial cells (Figure

7A).

To identify cellular and CN features predictive of viral la-

tency, we trained a random forest classifier on 1) CN in-

formation alone, 2) cell marker features within the infected

cell, and 3) cell marker features within the 20 cell-radius

(i.e., 19 neighbors and the infected cell). Viral RNA and

NFkB-p100 were excluded from the prediction features as

the former are directly related to the definition of latency sta-

tus while the latter is critical for vRNA transcription (Hiscott

et al., 2001). We observed that CNs alone were poor pre-

dictors of viral latency, with the area under the curve (AUC)

of the receiver operating characteristics curve of 0.587, close

to what is expected by chance (Figure 7B). Markers within

the infected cell were better predictors of latency than CNs

(AUC: 0.732), whereas utilizing markers of the infected cell

and its neighbors resulted in the best predictive performance

(AUC: 0.788). These observations indicate that factors both

intrinsic to the infected cell and those from the environment

influence viral latency status.

How cells communicate through cell-to-cell interactions and

soluble mediators are products of their proximity to each

other and the marker expression patterns in their vicinity. We

devised a meta-analytical method to quantify both the cell-

type frequency and marker expression around centered cells

of interest. In short, we quantified cell types and their marker

expressions within a 100-µm radius around aggregated in-

fected cells and then split them into ten bins for normal-

ization, plotting, and visualization (Figure 7C). We focused

on the more abundant non-Treg infected CD4+ T cells and

macrophages, given the low number of infected Tregs (n =

94) (Figure 7A). We observed that infected cells tended to be

within regions with high B cell density regardless of latency

status (Figure 7D). Furthermore, latent cells were generally

much closer to endothelial cells than were transcriptionally

active infected cells (Figure 7D), indicative of how a constant

influx of naïve immune cells into the tissue reinforced a viral

latent state for immune evasion. Infected cells were also in

proximity to macrophages, although this did not depend on

viral latency status or type of infected cell (Figure 7D). In-

terestingly, there were higher densities of FDCs, Tregs, neu-

trophils, and CD8+ T cells in the vicinities of infected CD4+

T cells actively producing vRNA than in the vicinities of la-

tent CD4+ T cells (Figure 7D). This was also observed for

transcriptionally active infected macrophages with the excep-

tion of proximal Tregs and CD8+ T cells (Figure 7D). The

higher densities of FDCs around infected cells actively tran-

scribing viral RNA is reminiscent of experiments in which

isolated FDCs were capable of dramatically augmenting HIV

transcription in vitro (Thacker et al., 2009).

Quantifying functional markers enables insights into an addi-

tional layer of microenvironmental complexity beyond mere

cell phenotypes. vRNA expression patterns around cells ac-

tively transcribing vRNA followed a clear diffusion pattern

from the source (Figure 7E, right), and we observed a stark

scaling of the amount of FoxO1 expression as a function of

distance from active versus latent cells (Figure 7E). IL10 lev-

els tended to be elevated around all infected cells and were

even higher around active versus latent CD4+ T cells (Figure

7E). Similar trends were observed for HLA-DR, Ki-67, and

CD21 where higher proximal expressions correlated with vi-

ral activation within infected cells (Figure 7E). The reverse

was observed for CD56, where elevated levels around latently

infected cells suggested of a role of pathogen recognition

by CD56 expressed on NK cells in controlling viral latency

(Figure 7E). Surprisingly, we detected similar and distinctive

patterns for various markers in infected CD4+ T cells and
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Figure 6: B Cell-Driven IL10 Production Results in Immunosuppression during SIV Infection (A) Bar plot of numbers of IL10-positive cells of the indicated types

in CN2 and CN8 in all animals. (B) Box plots of mean IL10 expression across B cells within the CN2 and across macrophages in CN8. Each dot represents data from

a single FOV from SIV-infected and uninfected controls. (C) Plots of Pearson’s correlations between IL10 levels and vRNA in CN2 (top left), vRNA in CN8 (bottom left),

M2 immunosuppressive macrophage marker CD163 in CN8 (top right), and FoxO1 in CN8 (bottom right). Each dot represents data from a single SIV-infected FOV. (D)

Representative pseudo-colored MIBI images depicting IL10 and B cell markers CD20 and Pax-5 and IL10 (top) and IL10 and macrophage markers CD68 and CD163

(bottom). Two representative FOVs from infected and uninfected animals are shown. The phenotype maps superimposed with IL10 expression patterns are shown below

each MIBI image. (E) A cartoon depicting the model for B cell-induced immunosuppression of macrophages via IL10. 1) B cells sense SIV virions via an unknown receptor.

2) B cells produce IL10, and possibly other chemokines to attract nearby macrophages. 3) Binding of IL10 to macrophages activates downstream factors, including FoxO1,

which leads to more IL10 production and release. 4) This feed-forward loop results in an immunosuppressive microenvironment around these macrophages.

macrophages (Figure 7D-E and S8), emphasizing the impor-

tance of recognizing both the cellular phenotype and func-

tional markers around infected cells and their microenviron-

ment (Figures 7D, 7E and S8).

Orchestrated Events Condition Tissue Microenviron-

ments During Infection. To better interpret the complexity

of orchestrated tissue events that may determine the viral ac-

tivation status of infected cells, we computed the Pearson’s

correlations between each pair of binned cell type frequen-

cies as a function of distance from the infected cell (Figure

7F; top, yellow: latent cells, bottom, purple: active cells).

Three modules were detected in infected CD4+ T cells (Fig-

ure 7F, left). One module of interaction involving FDCs,

stromal cells, and B cells, factors essential for germinal cen-

ter functions, was disrupted during viral RNA transcription

in infected CD4+ T cells (Figure 7F, left). Another module

populated by dendritic cells, endothelial cells, macrophages,

and Tregs was anti-correlated in active infected CD4+ T cells

(Figure 7F, left). The third module composed of monocytes,
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Figure 7: Host Determinants of Retroviral Latency (A) An alluvial plot depicting the compositions of SIV-infected cell types (CD4+ T cells, macrophages, and Tregs), their

latency status, and their associated CNs. (B) Predictive performances of classifiers 1) CNs (gray, AUC = 0.587), 2) markers inside the infected cell (orange, AUC = 0.732),

and 3) markers from a cell and its nearest neighbors (teal, AUC = 0.788). The dotted red line indicates AUC of 0.5, the expected by chance. (C) A schematic depicting how the

anchor plots were calculated for the anchor plots in panels D and E. In short, 1) mean cell type frequencies or marker expressions around each infected cell were tabulated,

2) these values were binned by their distance from the infected cell in 10-µm increments, and 3) data for all infected cells were aggregated and normalized for visualization.

(D and E) Anchor plots of D) mean cell type quantifications and E) mean marker expression around infected CD4+ T cells (top) or macrophages (bottom). Orange indicates

latent cells, and purple indicates actively transcribing cells. The thick colored lines represent the means, and light regions around these lines depict the 95% confidence

intervals. The infected cells are anchored at 0 µm, and the plot ends at 100 µm. (F) Heatmaps of Pearson’s correlations for cell type pairs for infected CD4+ T cells (left) and

macrophages (right). Latent infection correlation heatmaps are represented to the top left (orange)and active infection correlation heatmaps are in the bottom right (purple).

The sizes of the circles reflect the p-values from the test for association using the correlation coefficient, and colors indicate degree of correlation (legend on the right). (G)

Schematic representing the tissue correlates and determinants of retroviral latency status in retroviral reservoirs.
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neutrophils, plasma, CD4+ T cells, NK, and CD8+ T cells

also differentiated CD4+ T cell latency status (Figure 7F,

left). For infected macrophages, we observed two signa-

ture modules (Figure 7F, right). The first was dominated

by monocytes, FDCs, macrophages, neutrophils, endothelial,

CD8+ Granzyme B+ cells and Tregs. The second involved

predominantly plasma cells, CD8+ T cells, stromal cells, B

cells, NK cells, and dendritic cells. Taken together, these

plots show that the fundamental cellular relationships in the

vicinity of infected, latent cells are disrupted when compared

to infected cells actively producing viral RNA. The interplay

between virus-infected cells and the proximity of microenvi-

ronmental signals reveal roles for both intrinsic and external

factors in shaping the tissue microenvironment as effectors or

consequences of viral infections. Our data support a model in

which the distances of both functional markers (e.g., CD56,

IL10, FoxO1, HLA-DR, and CD21) and cell types (e.g., en-

dothelial vessels, NK, FDCs, neutrophils, Tregs, B cells, and

CD8+ T cells) from SIV-infected cells have a strong influ-

ence on latency status (Figure 7G).

Conclusions

Here we described development and validation of PANINI, a

robust platform that enables detection of nucleic acids with

high sensitivity while preserving confident detection of pro-

tein epitopes. This was achieved through a combination of

heat-induced epitope retrieval in a pH9 buffer, branched-

chain amplification of nucleic acids without the need for

protease treatment, subsequent tyramide signal amplification

coupled with hapten deposition, followed by multiplexed an-

tibody staining for protein and nucleic acid (via anti-hapten

Ab) recognition. In this study, we coupled PANINI with the

MIBI to spatially detect integrated viral DNA, viral RNA

that is present in actively replicating cells and viral particles

(vRNA), along with 31 immune phenotypic and functional

protein markers (Figure S1). We demonstrate the utility of

PANINI in the detection of nucleic acid copies down to sin-

gle events in archival FFPE tissues, which has been notori-

ously difficult to study when coupled with protein detection

methodologies. This uniquely enabled interrogation of the

diverse immune responses within SIV-infected lymphoid tis-

sues, particularly the uncharted phenotypes and spatial fea-

tures around latently infected cells and around cells in which

viral RNA is being transcribed.

We first confirm hallmarks of retroviral infection, such as the

depletion of the CD4 T cell population (Figures 3C and 3D)

(Hazenberg et al., 2000), a heightened NK cell and CD8 T

cell response (Figure 3E) (Alter et al., 2007; Goonetilleke et

al., 2009), and a lack of immune infiltration into the “sanc-

tuary” B cell follicles (Figures 4B and 4E) (Fukazawa et al.,

2015). Previous studies have also highlighted the upregula-

tion of IL10, a powerful cytokine capable of dampening an

immune response, in multiple immune cells within PBMCs

of HIV-infected individuals, though its role and distribution

in tissues is largely unclear (Brockman et al., 2009; Estes et

al., 2006; Fukazawa et al., 2015; Tabb et al., 2013). Here,

leveraging upon the capability of PANINI to robust nucleic

acid detection, with the highly multiplexed imaging capabili-

ties of the MIBI, we reveal a B cell response to SIV-infection

through the secretion of IL10, in addition to likely other cy-

tokines. This is followed by the attraction and immunosup-

pression of macrophages in its vicinity via infection of a M2-

phenotypic switch, thus organizing an immunosuppressive

microenvironment in SIV-infected tissues (Figure 6). Such a

dampened environment appears to harbor viral-infected cells,

with heightened IL10, FoxO1 and HLA-DR expression ∼20-

30um around the infected cell stratifying in part its latency

status (Figure 7). This is just one example of how our data

highlights the temporal ordering of distinctive tissue features

during SIV infection that warrant further investigation in suit-

able animal models.

Robust multiplexed imaging of nucleic acids, concurrently

with proteins, is particularly suited for disentangling envi-

ronmental effects from intrinsic properties of the cell. We

demonstrated this using SIV-infected rhesus macaques as a

model, with a particular focus on viral reservoirs within lym-

phoid tissues, sites previously described to be a primary lo-

cation of infected cells (Estes et al., 2017). We confirmed

the robustness of our assay by identifying CD4+ T cells and

macrophages as the primary cell types infected and discov-

ered that both extrinsic and intrinsic features are required

to predict viral activation status best. For example, using a

distance-based analysis anchoring around infected cells, we

uncover how infected cells 1) tend to be in regions densely

populated with B cells, previously described as immune-

privileged “sanctuaries”, 2) tend not actively transcribe viral

genes when situated in close proximity to vasculature, and

3) tend to produce viral transcripts when in close proximity

to FDCs. Additional contributing features that distinguish

between viral latency and transcription include the expres-

sion of CD56, and quantities of Tregs, neutrophils and CD8

T cells (Figure 7G).

The establishment of the PANINI experimental platform, a

33-marker panel compatible with FFPE archival tissues, spa-

tial analytical workflow, and conceptual framework for multi-

modal analysis of tissue features have enabled reinterroga-

tion of previous observations and establishment of new mod-

els and hypotheses. However, fundamental questions remain,

including: 1) How do CNs and infected cells change with

antiretroviral therapy (ART) or immunotherapy? 2) Are fea-

tures and relationships different in other tissue sites, such as

the brain or gut-associated lymphoid tissue? 3) Can these

principles be translated to other infectious diseases such as

tumor virus-driven malignancies, SARS-CoV-2, and Tuber-

culosis, or cancer biology questions involving copy-number

amplifications, repetitive elements and extra-chromosomal

DNA? We anticipate PANINI, coupled with widely adopted

multiplexed imaging technologies such as MIBI, CODEX,

cycIF, and IMC, well-validated nucleic acid probes and an-

tibodies, and robust animal models or archival clinical sam-

ples, will be essential for advancing the mechanistic insights

needed to better guide therapeutic intervention strategies.
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Materials & Methods

Animal Experiments and Tissue Acquisition. Archival FFPE tissues were obtained from SIV-infected and control rhesus

macaques (Macaca mulatta) of Indian origin that were housed at the Oregon National Primate Research Center (OR, USA)

and at the National Institutes of Health (Bethesda, MD, USA) with the approval of the respective Institutional Animal Care

and Use Committees. The animal experiments were conducted with strict adherence to the NIH and the Animal Welfare

Act and in accordance with American Association for the Accreditation of Laboratory Animal Care (AAALAC) standards in

AAALAC-accredited facilities.

Our cohort consisted of the following animals: SIV-negative (n=2) and SIV-challenged (13 day or 16-19 weeks post infection;

n=4). Lymph nodes were collected at necropsy and immediately fixed in freshly prepared neutral buffered 4% PFA for 24 hours

at room temperature. Afterwards, the fixative was replaced with 80% ethanol and the tissues were processed through a series

of 30-minute incubations in increasing alcohol concentrations to 100 percent, then in xylene and hot paraffin, in a Tissue Tek

Vacuum Infiltration Processor 6 (Sakura). Processed tissues were then paraffin embedded and stored in a cool, dry place.

Antibody Conjugation. Antibodies were conjugated to metal polymers using the Maxpar X8 Multimetal Labeling Kit (Flu-

idigm, 201300) and Ionpath Conjugation Kits (Ionpath, 600XXX) with slight modifications to manufacturer protocols. The

antibodies used and their respective clones are listed in the Key Resources. Antibody conjugation was performed exactly as

described previous in Han et al (Han et al., 2018). In short, 100ug of carrier free antibodies are subject to gentle reduction in

the presence of 4uM of TCEP for 30 min, before conjugation to lanthanide-loaded polymers. Post elution, all antibodies are

quantified via nanodrop (Thermo Fisher Scientific, ND2000), diluted into >30% w/v Candor PBS antibody stabilizer (Thermo

Fisher Scientific, nc0436689) and stored at 4◦C until use.

Gold Slide Preparation. Gold slides were prepared as previously described (Ji et al., 2020; Keren et al., 2018). Briefly,

Superfrost Plus glass slides (Thermo Fisher Scientific, #12-550-15) were soaked in dish detergent, rinsed with distilled water

followed by acetone. Acetone evaporation was performed under a constant stream of air in a fume hood, and clean slides

subsequently coated with 30nm of Tantalum followed by 100nm of Gold at the Stanford Nano Shared Facility (SNSF; Stanford

CA) and New Wave Thin Films (Newark, CA).

Vectabond Pre-treatment of Gold Slides. Gold slides were pretreated with Vectabond (Vector Labs, #SP-1800) according

to the manufacturer’s protocols. In short, slides were submerged in 100% acetone for 5 min before incubation in a glass beaker

containing a mixture of 2.5 ml Vectabond and 125 ml 100% acetone for 30 min. Slides were then washed in 100% acetone for

30 sec, air dried, and stored at room temperature.

Cell Culture and FFPE Cell Pellet Embedding. The well-characterized SIV-infected cell line 3D8, which contains a single

integrated provirus per cell (Mattapallil et al., 2005), and the uninfected parental 174xCEM cell line were used to validate our

detection of vRNA and vDNA as part of the PANINI workflow (see below). Cell were fixed in 4% paraformaldehyde (PFA)

overnight before embedding into Histogel (Fisher Scientific, NC9150318) and paraffin wax as described previously (Deleage

et al., 2016).

RNAScope & DNAScope Fluorescent Multiplex in situ Hybridization. The RNAScope & DNAScope multiplex staining

methodology originally described in (Deleage et al., 2016) was modified and optimized to increase the feasibility of using a

pH9 antigen retrieval condition without protease digestion to detect both SIV vDNA and vRNA. FFPE sections of SIV-positive

and SIV-negative rhesus macaque lymph nodes on Fisher Superfrost glass microscopic slides were deparaffinized by heating

at 60◦C for 1h and then transferred to a xylene bath for 5 mins. Slides were transferred to a new xylene bath for another 5

min, followed by 2 x 1 min incubations in 100% EtOH baths. Slides were then rinsed with double distilled water (ddH2O) and

boiled in 1X Dako pH9 antigen retrieval solution (Agilent, S236784-2) for 10 min. The slides and the hot retrieval solution

were left to cool down at room temperature for another 20 min before the slides were rinsed twice in ddH2O. A hydrophobic

barrier was drawn around the tissue using the ImmEdge Hydrophobic Barrier pen (Vector Labs, 310018). For slides that were

treated with Protease, the tissue was treated with Protease III (Biotechne, 322337) diluted 1:10 with cold PBS and incubated

at 40◦C in an ACD HybEZ Hybridization System oven (Biotechne, 310013) for 20 min, then rinsed twice with ddH2O. Slides

not treated with protease remained in ddH2O throughout this process. Next, endogenous peroxidase was inactivated using 3%

H2O2 in PBS and rinsed twice in ddH2O.

Slides were incubated overnight at 40◦C with RNAScope probes that detect SIVmac239 vif-env-nef-tar vRNA (Biotechne,

416131-C2) and SIVmac239 gag-pol vDNA (Biotechne, 416141). The next day, slides were washed twice with 0.5X Wash

buffer (Biotechne, 310091) for 2 min each. Branched-chain amplification was performed using the Multiplex Fluorescent V2

kit (Biotechne, 323110) with the following conditions, with a 2 x 2 min wash between each step:

• Amplifier 1, 30 min at 40◦C
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• Amplifier 2, 15 min at 40◦C

• Amplifier 3, 30 min at 40◦C

• Channel 1 specific:

1. Amplifier 4, 15 min at 40◦C

2. Custom Amplifier 5, 30 min at room temperature

3. Custom Amplifier 5, 15 min at room temperature

4. Biotium Tyramide CF640R deposition, 15 min at room temperature

• Hydrogen peroxidase block (Biotechne, 323107), 15 min at 40◦C

• Channel 2 specific:

1. Amplifier 4, 15 min at 40◦C

2. Custom Amplifier 5, 30 min at room temperature

3. Custom Amplifier 5, 15 min at room temperature

4. Biotium Tyramide CF568 deposition, 15 min at room temperature

All TSA hapten reagents were diluted in an in-house TSA diluent (0.1M Borate, pH 8.5, with 2% w/v Dextran Sulfate Sodium

salt and 0.003% H2O2, with the H2O2 added just before the dilution of the tyramide reagent) for 3 minutes at room temperature.

We observed that in slides without protease treatment, a higher concentration of CF568 was needed to fully amplify vRNA

signals (as determined from FDC-bound SIV vRNA) compared to protease-treated slides. It is important to note that we did not

observe any other differences, such as off-target signals and tissue morphological changes, from this increased concentration

of CF568. Slides were then rinsed once with 1 x TBS-T, counterstained with DAPI and cover-slipped with #1.5 GOLD SEAL

cover glass (EMS, 63791-10) using Prolong Gold Mounting medium (ThermoFisher, P36930). Whole-slide high-resolution

fluorescent scans were performed using a Plan-Apochromat 20X objective (NA 0.80) in the Zeiss AxioScan Z.1 slide scanner.

DAPI, AF568 and Cy5 (For CF640R) channels were used to acquire images. The exposure time for image acquisition was

between 4 and 300 ms.

PANINI Staining. FFPE tissue paraffin blocks were sectioned onto vectabond treated gold slides at 4 um thickness on a mi-

crotome. Slides were baked for 1h at 70◦C and soaked in xylene for 3 x 10min. Standard deparaffinization was performed

thereafter (3 x xylene, 3 x 100% EtOH, 2 x 95% EtOH, 1 x 80% EtOH, 1 X 70% EtOH, 3 x H2O) on a linear stainer (Le-

ica Biosystems, ST4020). Epitope retrieval was performed at 97C for 10 min with the Dako Target Retrieval Solution pH 9

(Agilent, S236784-2) on a Lab Vision PT Module (Thermo Fisher Scientific).

Slides were cooled down to 65◦C in the PT Module, and left to further cool to room temperature. The region containing the

tissue sections were traced out using an ImmEdge PAP pen (Vector Labs, H-4000) before rinsing 2 x 2 min in ddH2O. Tissue

sections were then subject to a hydrogen peroxidase block (Biotechne, 322330) at 40◦C for 15 min, before 2 x 2 min ddH2O

wash. Avidin and Biotin blocks (Biolegend, 927301) were then performed for 15 min each at room temperature, with 2 x 2 min

ddH2O washes after each block.

RNAscope probes (see Key Resources) were then added for overnight hybridization (∼18 hrs), and all washes from hence

forth were performed using RNAscope wash buffer (Biotechne, 310091) for 2 x 2 min at room temperature. Branched-chain

amplification using a customized version of the Multiplex Fluorescent Detection Kit v2 (Biotechne, 323110), in which addi-

tional amplification was enabled (Amplifiers 5 & 6) for each channel. All amplification reactions were performed at 40◦C, with

the exception of the following which occur at room temperature: 1) Amplifiers 5 & 6 and 2) Hapten-deposition via tyramine

signal amplification (TSA). Reagents for TSA hapten deposition were Biotin (Akoya, NEL749A001KT) and DIG (Akoya,

NEL748001KT). All 40◦C steps were performed in an ACD HybEZ Hybridization System oven (Biotechne, 310013).

Branched-chain amplification was performed using the Multiplex Fluorescent V2 kit (Biotechne, 323110) with the following

conditions, with a 2 x 2 min wash between each step:

1. Amplifier 1, 30 min at 40◦C

2. Amplifier 2, 15 min at 40◦C

3. Amplifier 3, 30 min at 40◦C

4. Channel 1 specific:

(a) Amplifier 4, 15 min at 40◦C
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(b) Custom Amplifier 5, 30 min at room temperature

(c) Custom Amplifier 5, 15 min at room temperature

(d) TSA Biotin (Akoya, NEL749A001KT) deposition, 15 min at room temperature

5. Hydrogen peroxidase block, 15 min at 40◦C

6. Channel 2 specific:

(a) Amplifier 4, 15 min at 40◦C

(b) Custom Amplifier 5, 30 min at room temperature

(c) Custom Amplifier 5, 15 min at room temperature

(d) TSA DIG (Akoya, NEL748001KT) deposition, 15 min at room temperature

The slides were washed for 2 x 5 min with MIBI Wash Buffer (1X TBS-T, 0.1% BSA), then subsequently blocked in Antibody

Blocking Buffer (1X TBS-T, 2% Donkey Serum, 0.1% Triton X-100, 0.05% Sodium Azide) for 1 hour before the addition

of the antibody cocktail (antibodies diluted in 1X TBS-T, 3% Donkey Serum, 0.05% Sodium Azide) overnight at 4◦C. The

following day, slides are washed for 3 x 10 min with MIBI Wash Buffer before a 15 min cross-linking with MIBI Crosslinking

Buffer (1X PBS containing 4% PFA and 2% glutaraldehyde). Slides are then quenched briefly in 1X TBS-T, before being

subjected to a series of washes and dehydration steps (3 x 100mM Tris pH 7.5, 3 x ddH2O, 1 x 70% EtOH, 1 x 80% EtOH, 2

X 95% EtOH, 3 x 100% EtOH).

For IF and MIBI cross validation PANINI experiments, sequential glass and gold slides containing both a 3D8 and 174xCEM

pellet were processed exactly as described above, with the exception that the 2nd hapten deposited was TSA PLUS Cy3

(Akoya, NEL744001KT). The glass slides also did not undergo a cross-linking step (which is a MIBI-specific processing step),

but instead was subject to an anti-mouse secondary antibody 647 (Biolegend, Poly4053) for 1 hour before 3 x 10 min wash

MIBI Wash Buffer, DAPI staining, cover-slipped and image processing on a Keyence BZ-X800 microscope with a Nikon CFI

Plan Apo lambda 20x object (NA 0.75). In all PANINI experiments on gold slides containing SIV-positive and SIV-negative

rhesus macaque lymph node tissue sections, glass slide controls containing sequential tissue sections and the 3D8/174xCEM

cell pellets were ran in parallel.

MIBI-TOF Data Acquisition and Processing. Mass images were acquired on a custom alpha-iteration MIBI-TOF mass

spectrometer equipped with a duoplasmatron ion source (Ionpath) running research grade oxygen (Airgas, OX R80). All 196

multiplexed images in this study, an accumulation of 19404 individual channel TIFFs, were acquired using the following

parameters:

Pixel dwell time: 12 ms

Image size: 400 um x 400 um at 512 x 512 pixels

Probe size: ∼400 nm

Primary ion current: 3.5 nA as measured via a Faraday cup on the sample holder

Number of depths: 3

MIBI images were extracted and denoised using MIBIAnalysis tools (https://github.com/lkeren/MIBIAnalysis) as previously

described (Keren et al., 2018). All three depths were aligned and summed for all downstream analysis. A detailed description

of this algorithm can be found here (Baranski et al., 2021).

Image Segmentation. Cell segmentation was performed using a local implementation of Mesmer, which utilizes the Dep-

pCell library (deepcell-tf 0.6.0) as described (Greenwald et al., 2021; Valen et al., 2016). We adapted the included multi-

plex_segmentation.py python script from the deepcell-tf library and imported the neural network weights for prediction from

https://deepcell-data.s3-us-west-1.amazonaws.com/model-weights/Multiplex_Segmentation_20200908_2_head.h5). The input

for the segmentation were denoised MIBI images for dsDNA (for nuclear features) and CD45 (for membrane features). Signals

from these images were capped at the 99.7th percentile. Utilization of model_mpp = 1.8 in the multiplex_segmentation.py script

uniformly generated the most ideal segmentation results for all the FOVs in this study.

MIBI Image Analysis and Cell Type Annotation. Features from single cells in segmented MIBI images were extracted based

on the segmentation generated above and written out as FCS files. FCS fields are then uploaded onto CellEngine (Primity

Bio) to visually assess data quality and concatenate FCS files that pass the visual check for the presence of dsDNA and

Histone H3 nuclear markers. All subsequent analysis is done using R. While all samples were processed experimentally

and computationally in parallel, we further ensured normalization of per FOV signal variation by normalization the markers for

each cell on a per-FOV basis using the FOV-specific median Histone H3 levels. The data was then arcsinh transformed with a

cofactor of 1, followed by a capping of the signal 99.9th percentile. Finally, single-cell data was rescaled to a 0 - 1 range for

each marker.
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Unsupervised classification of cell types was then performed on this scaled data with FlowSOM (Gassen et al., 2015) and cell

types were identified from each cluster with marker enrichment modeling (Diggins et al., 2017). The following markers were

used for cell type identification: CD16, DC-SIGN, CD4, CD56, CD21, Pax-5, CD163, CD68, CD3, CD20, CD169, CD8a,

CD11b, CD36, CD45, MPO, SMA, HLA-DR and CD138. Identified clusters were plotted in 2D space and carefully visually

compared with the MIBI multiplexed images to confirm accuracy and specificity of the annotations. Clusters that did not meet

the accuracy and specificity visual threshold were subject to further iterative clustering.

Cellular Neighborhood Analysis. Cellular Neighborhoods were computationally defined using the 20 nearest neighbors

(including self), followed by a k-means clustering of k = 11 as previously described (Schürch et al., 2020). The scripts for

performing CN identification can be found at: https://github.com/nolanlab/NeighborhoodCoordination.

Linear Discriminant Analysis. Each marker features, with the exception of vDNA and vRNA, were summed for the 20

nearest neighbors (including self) of each cell. These means of these summed marker features were calculated for each animal

and CN within these animals. This resulted in 11 CNs from each of the 6 animals, for a total of 66 rows of data. This data was

then subject to standardization to a mean of 0 and a variance of 1. Linear Discriminant Analysis was subsequently performed

using the lda function in the MASS R package, with the grouping set to the identifier of each individual animal.

Marker Correlation Analysis. The Pearson correlations of marker expressions on cell types were calculated using the rcorr

function of the Hmisc R package. The Euclidean distance between correlation coefficient values between markers were com-

puted and hierarchically clustered using the hclust function of the stats R package.

Cell Interaction Analysis. The Delaunay triangulation of cells were identified by their cartesian XY position within each field

of view using default setting from the deldir R package. Interacting cells and their coordinates were extracted from the delsgs

output of deldir, and the distances between cells joined together by the edge of a Delaunay triangle were calculated within the

two-dimensional space according to the following formula:

Distance =

√

(x2 −x1)2 +(y2 −y1)2

Cell to cell interactions within 100um from one another were identified, resulting in 1390517 interactions of the total 1392033

interactions observed between cells.

To establish a baseline distribution of distances, the same triangulation calculation was performed 1000 times, where for each

iteration, the cell and neighborhood identified in each field of view were randomly assigned to existing XY positions. The

average distance of a cell-cell interaction in each field of view for each permutation was calculated and this set of expected

baseline distances was compared to the observed distances with a Wilcoxon Test.

The fold enrichment of distances between the observed data over the mean distances from the permutation test were calculated

as follows:

Log2 fold enrichment = log2(
Observed mean

Expected mean
)

The log fold of the distances for each cell type and neighborhood interaction where p-values less than 0.05 were plotted for

each group using ggplot2 in R.

SIV-Infected Cells. All cells with a positive vDNA signal were marked as SIV-infected, before visually inspected to ascertain

viral signal positivity and cell type annotation accuracy. Predominantly, SIV-infected cells were CD4 T cells, macrophages or

Tregs. Rare cases of other cell types (such as B cells or endothelial cells) were deemed to be off-target effects and discarded

from further investigation. These infected cells were then further divided into latent (vRNA = 0) or active (vRNA > 0) for the

purpose of this study. Tregs were removed from all further analysis due to their small representation (n = 94) compared to the

other 2 groups (CD4 T cells, n = 543; macrophages, n = 277).

Random Forest Classification. A random forest classifier was used to examine if features of the tissue microenvironment

could be used to identify latent and active SIV cells. Optimal parameters for the random forest model were identified using

trainControl from the caret R package. Bootstrapping was implemented by randomly pulling 64% of the data as the training

group and applying the classifier to the remaining 36% of the testing data to predict a cell’s reactivation status. The performance

is reported as the median value from 100 repetitions and was evaluated by calculating the true positive rates, false positive rates,

and the AUC of the resulting ROC as previously described (Robin et al., 2011). The predicted probabilities were then compared

to the true reactivation status using a Wilcoxon test. Note that both vRNA and NFkB-p100 markers were removed from features

used for the random forest classifier as they were molecular determinants of viral transcription.
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Binned Anchor Plot Analysis. A schematic of the anchor plot analysis is depicted in Figure 7C. All cells within a 100um

range were extracted (1 pixel = 0.78125um), and the frequency of cell type and marker expression summed in 10um increments.

These values were then divided by the number of cells, to normalize for differences in cell numbers in a radial spread from

the center “anchor” cell. The 95% confidence interval for each binned value was then calculated and plotted along with the

mean. Anchor plots were segregated by 1. Cell type (infected CD4 T cell or infected macrophage) and 2. Latent status (latent

or active).

Data Visualization. All pseudo-colored MIBI images were visualized using a Nolan lab specific instance of the MIBITracker

(Ionpath). Figures 1A, 4A, 6E, 7C and 7G were generated in part using Biorender. All other plots in this manuscript were

generated with the ggplots2 R package (Wickham, 2016).
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Figure S1: Related to Figure 1 (A) The validated rhesus macaque compatible marker panel used in this study. (B) Images for each of the 33 markers depicted in pairwise

fashion with dsDNA (blue). The FOV represented here is a germinal center within an SIV-positive lymph node. (C) A large FOV representing a 1.2 mm x 1.2 mm region of

a SIV-positive lymph node with a number of lineage-specific markers. White boxes indicated regions magnified in the following panels. (D) A magnified region of panel C

containing CD4- and FoxP3-positive T cells. (E) A magnified region of panel C containing CD8- and Granzyme B-positive T cells. (F) A magnified region of panel C containing

CD20-, CD21- and Ki-67-positive B cells and FDCs. (G) A magnified region of panel C containing CD68-, CD163-, and FoxO1-positive macrophages.
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Figure S2: Related to Figure 2 (A) Phenotype maps of two FOVs with two magnified regions of both the phenotype map and the paired pseudo-colored MIBI image with

lineage-specific markers to validate the computationally determined cell phenotypes. (B) Representative FOVs from an SIV-positive and a control lymph node with three

subjacent tissue sections that were stained for CD20 (blue), CD4 (green), and CD8 (red) and imaged using an IF microscope for orthogonal validation of PANINI-MIBI

staining. The antibody clones and staining conditions used for the IF validation were identical to PANINI-MIBI.
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Figure S3: Related to Figure 2 Phenotype maps of all 20 FOVs and their associated tissue sources. All FOVs are 1.2 mm x 1.2 mm with the exception of that from Animal

4 (2 mm x 2 mm).

24 | bioRχiv Jiang et al. | PANINI

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.21.444548doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.21.444548
http://creativecommons.org/licenses/by-nc-nd/4.0/


D
R
A
F
T

Figure S4: Related to Figure 3 Ranked bar plots showing the percent infiltration of each cell type for the 20 FOVs with bars colored by infection status.
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Figure S5: Related to Figure 4 (A) Ranked bar plots showing the percent infiltration of each CN across the 20 FOVs with bars colored by infection status.
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Figure S5: Related to Figure 4 (B) CN maps of all 20 FOVs and their associated tissue sources. All FOVs are 1.2 mm x 1.2 mm with the exception of that from Animal 4 (2

mm x 2 mm).
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Figure S6: Related to Figure 4 The mean SIV vRNA levels per CN. Each dot represents an individual FOV from an infected (orange) or uninfected (teal) animal.
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Figure S7: Related to Figure 5 Heatmaps of pairwise Pearson’s correlations of markers across each individual cell within each CN for infected (top left) and healthy (bottom

right) animals.
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Figure S8: Related to Figure 7 (A and B) Anchor plots of A) mean cell type quantifications and B) mean marker expression around infected CD4+ T cells (top) or

macrophages (bottom). Orange indicates latent cells, and purple indicates transcriptionally active cells. The thick colored lines represent the mean values, and the light

regions around these lines depict the 95% confidence intervals. The infected cells were anchored at 0 µm, and the plot ends at 100 µm.
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