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Over the last 30 years, aquaculture has become the fastest growing form of agriculture production in the world, but its devel-
opment has been hampered by a diverse range of pathogenic viruses. During the last decade, a large number of viruses from 
aquatic animals have been identified, and more than 100 viral genomes have been sequenced and genetically characterized. 
These advances are leading to better understanding about antiviral mechanisms and the types of interaction occurring between 
aquatic viruses and their hosts. Here, based on our research experience of more than 20 years, we review the wealth of genetic 
and genomic information from studies on a diverse range of aquatic viruses, including iridoviruses, herpesviruses, reoviruses, 
and rhabdoviruses, and outline some major advances in our understanding of virus–host interactions in animals used in aqua-
culture. 
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Aquaculture has become the fastest and most efficient agri-
cultural production industry in the world over the last three 
decades, and China is believed to be a major contributor to 
it [1–3]. According to official figures, the production of 
aquatic products has reached 61.72 million tons, with the 
45.6 million tons from aquaculture accounting for 73.9% of 
the total produced [4]. Over the last 20 years, China’s aq-
uaculture output has accounted for about 2/3 of the total 
global aquaculture production [5]. However, viral diseases, 
which have been frequently reported in aquaculture animals, 
have hampered aquaculture development [6–8]. Concur-
rently, a natural decline in populations of aquatic verte-
brates, especially the global decline or extinction events 
seen with some frogs and amphibians, have been reported 
by ecologists; hence, the question “why are all the frogs 

‘croaking’?” has been asked [9–11]. To help resolve these 
problems, researchers have looked for and identified a large 
number of diverse pathogenic viruses in aquaculture and 
natural aquatic animals including iridoviruses, herpesviruses, 
reoviruses and rhabdoviruses; these pathogenic iridoviruses 
have been found to be the cause of epizootic diseases in 
aquaculture animals and the global decline of amphibian 
populations [12–15]. In the last 10 years especially, more 
than 100 viral genomes have been genetically characterized 
via the rapid advances in genome sequencing technologies 
[16–19]. These advances have enabled great progress to be 
made in understanding the mechanisms underlying interac-
tions between viruses and their aquatic host animals [19]. 
Here, we review recent progress in the genomic and genetic 
characterization of some important pathogenic viruses, such 
as iridoviruses, herpesviruses, reoviruses, and rhabdoviruses, 
and virus–host interactions in aquaculture animals. 
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1  Iridoviruses and their genomes 

Iridoviruses (family Iridoviridae) comprise the following 
five genera: Ranavirus, Lymphocystivirus, Megalocytivirus, 
Iridovirus and Chloriridovirus. The genomes of this family 
of viruses generally contain a single molecule of dou-
ble-stranded DNA [19,20]. Ranavirus, Lymphocystivirus 
and Megalocytivirus infect more than 140 species of aquatic 
vertebrates including fish, amphibians and reptiles, and 
cause high mortality in aquaculture and problems with 
wildlife conservation [19–21]. For example, lymphocystis 
disease virus (LCDV), has been identified as the causative 
agent of lymphocystis disease in more than 100 different 

seawater and freshwater fish species [22,23]. In particular, 
diverse ranaviruses (genus Ranavirus) have been reported to 
infect about 70 amphibian species from at least 14 families, 
more than 100 fish species and dozens of reptiles; hence, 
some experts believe that ranaviruses infect not only frogs 
but also numerous different aquatic vertebrates, and are, 
therefore, promiscuous pathogens of cold-blooded verte-
brates [24–33]. 

In total, 22 genomes from Ranavirus, Lymphocystivirus 
and Megalocytivirus have been completely sequenced; the 
smallest (105 kb) is that of the tiger frog virus (TFV), while 
the largest (186 kb) belongs to the Chinese strain of LCDV 
(LCDV-C) (Table 1). 

Table 1  Known iridoviruses of aquatic animals and their genomes  

No. Genus and strain Known host 
Isolation 

region/time 
Genome size 

(kb) 
GC% Potential ORFs Accession No. References 

Ranavirus 

1 FV3 (Frog virus 3) Frog America, 1966 105.903 55 98 AY548484 [32–35] 

2 
ESV (European sheat-

fish virus) 
Fish Europe, 1985 127.732 54 136 JQ724856 [36] 

3 
EHNV (Epizootic 

haematopoietic necrosis 
virus) 

Fish Australia, 1986 127.011 54 100 FJ433873 [37] 

4 
RGV (Rana grylio 

virus) 
Frog China, 1995 105.791 55 106 JQ654586 [38–43] 

5 
ATV (Ambystoma 

tigrinum virus) 
Salamander America, 2003 106.332 54 96 AY150217 [44,45] 

6 
SGIV (Singaporegroup-

er iridovirus) 
Fish Singapore,1998 140.131 48 162 AY521625 [46,47] 

7 
STIV (Soft-shelled 

turtle iridovirus) 
Turtle China, 1999 105.890 55 105 EU627010 [48] 

8 
GIV (Grouper 

iridovirus) 
Fish Taiwan, 2000 139.793 49 120 AY666015 [49] 

9 TFV (Tiger frog virus) Frog China, 2002 105.057 55 105 AF389451 [50] 

10 
CMTV (Common mid-

wife toad ranavirus) 
Toad Europe, 2007 106.878 55 104 JQ231222 [51] 

11 
ADRV (Andrias 

davidianusranavirus) 
Giant salamander China, 2013 106.734 55 101 KC865735 [52] 

12 ADRV-2 Giant salamander China, 2014 106.719 55 101 KF033124 [54] 

13 
CGSIV (Chinese giant 
salamander iridovirus) 

Giant salamander China, 2014 105.375 55 112 KF512820 [55] 

Lymphocystivirus 

14 
LCDV-1 (lymphocystis 

disease virus-1) 
Fish Red Sea, 1962 102.653 29 110 L63545 [22,56] 

15 
LCDV-C (lymphocystis 

disease virus-China) 
Fish China, 2004 186.247 27 240 AY380826 [23,43,57] 

Megalocytivirus 

16 
RSIV (Red seabream 

iridovirus) 
Fish Japan, 1992 112.415 53 116 BD143114 [61] 

17 
ISKNV (Infectious 

spleenand kidney necro-
sis virus) 

Fish China, 1998 111.362 55 124 AF371960 [60] 

18 
RBIV (Rock bream 

iridovirus) 
Fish Korea, 2000 112.080 53 118 AY532606 [62] 

19 
LYCIV (Large yellow 

croaker iridovirus) 
Fish China, 2001 111.767 54 – AY779031 [63] 

20 
TRBIV (Turbot reddish 

body iridovirus) 
Fish China, 2004 110.104 55 115 GQ273492 [64] 

21 
OSGIV (Orange-spotted 

grouper iridovirus) 
Fish China, 2005 112.636 54 121 AY894343 [65] 

22 
RBIC-C1 (Rock bream 
iridovirus isolate from 

China) 
Fish China, 2012 112.333 55 119 KC244182 [66] 
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1.1  Ranaviruses and their genomes 

The following 13 ranavirus genomes have been completely 
sequenced: (i) Frog virus 3 is a species of the genus Ra-
navirus. Frog virus 3 infection results in considerable mor-
bidity and mortality in a wide range of wild and cultivated 
amphibian species [32–35]. (ii) European sheatfish virus is 
a fish ranavirus isolated from moribund sheatfish (Silurus 
glanis) fry [36]. (iii) Epizootic hematopoietic necrosis virus 
is a fish ranavirus that causes serious hematopoietic necrosis 
in redfin perch and rainbow trout, resulting in serious eco-
nomic losses in aquaculture and severe decline in wild pop-
ulations of these fish [37]. (iv) Rana grylio virus (RGV). 
RGV, a ranavirus isolated from China, causes systemic 
hemorrhagic disease with a high mortality rate in frogs. It is 
also a model system for molecular characterization of ra-
naviruses [38–43]. (v) Ambystoma tigrinum virus is a lethal 
ranavirus originally isolated from Sonora tiger salamanders 
in southern Arizona, USA [44,45]. (vi) Singapore grouper 
iridovirus is a fish ranavirus isolated from a diseased 
grouper in Singapore [46,47]. (vii) Soft-shelled turtle iri-
dovirus is a reptile ranavirus that causes viral disease in 
cultured soft-shelled turtles [48]. (viii) Grouper iridovirus is 
a fish ranavirus isolated from the spleen tissues of a dis-
eased yellow grouper [49]. (ix) TFV is a frog ranavirus iso-
lated from diseased tiger frogs [50]. (x) Common midwife 
toad ranavirus is a toad ranavirus responsible for an out-
break of a systemic hemorrhagic disease that caused high 
mortality in toads from northern Spain [51]. (xi) Andrias 
davidianus ranavirus (ADRV), the first sequenced ranavirus, 
is associated with high mortality in Chinese giant salaman-
ders [52]. This ranavirus causes high mortality in wild and 
farmed Chinese giant salamanders [52,53]. (xii) ADRV-2, 
another ranavirus strain isolated from Chinese giant sala-
manders after ADRV, shares a high level genome identity 
with ADRV [54]. (xiii) Finally, the Chinese giant salaman-
der iridovirus, which is another ADRV, is the third se-
quenced ADRV strain [55].  

Based on their genome sizes, gene contents and phylo-
genetic analyses, the sequenced ranaviruses (Table 1) have 
been divided into two subgroups: the amphibian subgroup 
and the fish subgroup. The amphibian subgroup includes 
ADRV, Common midwife toad ranavirus, RGV, Frog virus 
3, TFV, and Ambystoma tigrinum virus, while the fish sub-
group comprises Epizootic hematopoietic necrosis virus, 
European sheatfish virus, Grouper iridovirus, and Singapore 
grouper iridovirus [52]. From extensive analysis of the ge-
nome architectures and major genes of this diverse array of 
ranaviruses (especially ADRV and RGV genomes), we have 
proposed a hypothetical evolutionary model for ADRV [52]. 
In this model, ADRV is proposed to emerge (with its cur-
rent genome) from a common ancestor of the amphibian 
ranavirus subgroup through changes in its genome architec-
ture and variations in some of its major virulence-related 
genes (Figure 1). This hypothesis is based on the architec-

tural changes observed in current ranavirus genomes; these 
include segment inversion, fragment insertion and deletion, 
and several variations in major genes, such as high diversi-
fication in two duplicate genes encoding the US22 fami-
ly-like proteins, truncated domains in the virulence-related 
gene encoding vIF2α, and the appearance of novel genes 
with nuclear localization signal and nuclear export signal 
motifs [52]. Therefore, our current model provides possible 
routes leading to evolutionary genetic change and cross- 
species transmission mechanisms in this diverse range of 
ranaviruses.  

1.2  LCDV genomes 

LCDVs (genus Lymphocystivirus) cause lymphocystis dis-
ease in marine and freshwater fish. The genomes of two 
LCDVs, LCDV-1 and LCDV-C have been completely se-
quenced. LCDV-1, which infects plaice and flounder, was 
isolated from the propagated cell lines of bluegill and cen-
trarchid fish in 1966 [32–35] and had its genome complete-
ly sequenced in 1997 [22]. LCDV-C was originally iso- 

 

 

Figure 1  A hypothetical model of ADRV evolutionary emergence from a 
common ancestor of the amphibian subgroup of ranaviruses. During evolu-
tionary processes, several changes leading to the current genome architec-
ture and major virulence-related gene variations are proposed to have hap-
pened. Red hatched arrow: genome segment inversion; black triangles: 
fragment insertion; blank triangles: fragment deletion; 6R, 49L, 84L, 75L 
and 25L: different open reading frames (ORFs) in ADRV genome [52]. 
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lated from a flounder with lymphocystis disease by Chinese 
scientists in 2003, and its complete genome sequence was 
reported in 2004 [23,43,57]. The LCDV-C genome remains 
the largest among all known vertebrate iridoviruses se-
quenced thus far (Table 1).  

It is worth mentioning that LCDV-C is listed as a typical 
Iridoviridae strain in the “Virus Taxonomy Ninth Report” 
by the International Committee on Taxonomy of Viruses 
[20]. LCDV-C genomic data can be used as a reference re-
source for identifying other LCDVs and iridoviruses and for 
performing gene function analyses. This resource will ena-
ble virologists to explore the genetic characteristics of these 
large DNA viruses. In addition, several novel emerging 
LCDVs, such as LCDV-PF from the paradise fish Macrop-
odus opercularis [58], and GLCDV, which was isolated 
from cultured grouper [59], have been identified.  

1.3  Megalocytivirus genomes 

To date, seven megalocytiviruses have been subjected to 
complete genome sequencing: (i) Infectious spleen and 
kidney necrosis virus—a megalocytivirus causing high 
mortality in mandarin fish—is characterized by cell hyper-
trophy in the spleen, kidney, cranial connective tissue and 
endocardium of this fish [60]. (ii) Red sea bream iridovirus 
is a piscine iridovirus that causes an acute and highly conta-
gious disease in Red sea bream from Japan and Korea [61]. 
(iii) Rock bream iridovirus is a megalocytivirus that occurs 
in cultured rock bream from Korea [62]. (iv) Large yellow 
croaker iridovirus is a megalocytivirus causing gill paleness, 
liver congestion, spleen and kidney hypertrophy in cultured 
large croaker [63]. (v) Turbot reddish body iridovirus is a 
megalocytivirus that causes serious systemic diseases with 
high mortality in cultured turbot [64]. (vi) Orange-spotted 
grouper iridovirus is the causative agent of serious systemic 
diseases with high mortality in the cultured orange-spotted 
grouper [65]. (vii) Lastly, rock bream iridovirus isolated 
from China, is a megalocytivirus that caused a severe dis-
ease epidemic in Chinese farmed rock bream [66]. 

Iridoviruses of the Ranavirus and Lymphocystivirus gen-
era have broadly similar genome sizes and potential gene 
contents as iridoviruses of the Megalocytivirus genus; their 
genome sizes range from 110 to 113 kb, while their poten-
tial number of genes range from 115 to 124 (Table 1).  

1.4  Important core genes and their functions in    
iridoviruses 

Gene annotation and comparative genomic analysis have 
confirmed there are 26 core genes in iridoviruses [67]. Ex-
tensive comparisons of these important core genes has pro-
vided evidence for cross-species transmission in these iri-
doviruses, especially for the ranaviruses [68,69]. Moreover, 
some important genes encoding enzymes, structural proteins 
and immune-related proteins, such as the RGV 3β-     

hydroxysteroid dehydrogenase gene (RGV 3β-HSD) [70] 
and the RGV deoxyuridine triphosphatase gene (RGV 
dUTPase) [71], have been characterized and functionally 
analyzed. LCDV-C thymidylate synthase (LCDV-C TS) is 
able to promote cell cycle progression into S and G2/M 
phase. In comparison with control cells, TS-expressed cells 
have faster growth rates, and induce foci formation and an-
chorage-independent growth. These findings indicate that 
LCDV-C TS potentially exhibits the ability to transform 
cells (tumor formation) [72].  

RGV 53R is a core gene in iridoviruses, and encodes a 
viral envelope protein that plays an important role in virus 
assembly and infection [73,74]. Recently, we have chosen 
RGV 53R as a target gene to construct a conditional lethal 
recombinant RGV (i53R-RGV-lacIO) containing the in-
ducible lac repressor/operator system that can be regulated 
by IPTG, and have found that the 53R expression level, 
plaque formation ability and viral titers in i53R-RGV-lacIO 
are significantly reduced in the absence of IPTG. These 
results indicate that RGV 53R is not only essential for virus 
replication and assembly, but also contributes to virus infec-
tion and virion formation [75]. RGV 50L contains a nuclear 
localization signal and helix-extension-helix motif, and is an 
immediate-early gene. Immuno-fluorescence assays indicate 
that 50L expression occurs early during infection and per-
sists in RGV-infected cells. RGV 50L exhibits a cyto-
plasm-nucleus-viromatrix distribution pattern and viroma-
trix distribution pattern, indicating that it encodes a struc-
tural protein, and plays an important role in viral assembly 
and life cycle [76]. RGV 2L is a core gene encoding an en-
velope protein. To investigate the role of 2L in viral infec-
tions, we constructed a conditional lethal mutant virus con-
taining the lac repressor/operator system and dual fluores-
cent labeling. Significantly, when 2L expression is re-
pressed, its plaque formation ability and virus titers were 
strongly reduced. Functional analysis indicates that the 2L 
protein is essential for iridovirus infection and its study has 
provided new insights into iridovirus envelope proteins 
[77].  

Besides the controllable recombinant virus technique 
mentioned above [77], gene knockout methodology has 
been also used to investigate gene function in iridoviruses 
[78]. Expression inhibition of a structural protein gene and 
RNA polymerase gene by morpholino knockdown or 
gene-specific silencing has been observed to cause a signif-
icant reduction in the yield of virus progeny [79,80]. Addi-
tionally, analysis of gene expression timing and infection 
pathways have been undertaken in iridovirus using tran-
scriptomics [81]. For example, transcriptional analysis of 
TFV infection (along with other approaches) has revealed 
that TFV entry into HepG2 cells occurs via a pH-dependent, 
atypical, caveola-mediated endocytosis pathway [82]. Also, 
miRNAs have been recently found to have a significant 
impact on interactions between iridoviruses and their host 
aquaculture animals [83]; indeed, some miRNAs may me-
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diate viral evasion [84].  

2  Aquareovirus genomes  

All members of the virus Reoviridae family are nonenvel-
oped, and their genomes are composed of multiple (10, 11, 
or 12) segments of linear double-stranded RNAs housed 
within an icosahedral capsid. This family contains two sub-
families (Spinareovirinae and Sedoreovirinae) and 15 dif-
ferent genera (Aquareovirus, Orthoreovirus, Orbivirus, Ro-
tavirus, Coltivirus, Seadornavirus, Cardoreovirus, Cypov- 
irus, Idnoreovirus, Phytoreovirus, Fijivirus, Oryzavirus, 
Mycoreovirus, Mimoreovirus, and Dinovernavirus) [20]. 

Reoviruses that infect aquaculture fish belong to the Aq-
uareovirus genus, and their genomes generally contain 11 
segments of linear double-stranded RNA [85,86]. At least 
15 reovirus genomes have been completely sequenced (Ta-
ble 2). Of these, 11 reoviruses are different isolates from 
cultured grass carp obtained in various years and from dif-
ferent regions [85,87–92]; the other four reoviruses were 
isolated from cultured golden shiner, chum salmon, Atlantic 
salmon (Piscine reovirus), and turbot (Scophthalmus maxi-
mus reovirus), respectively [93–95].  

Recently, our laboratory analyzed and compared the  

complete genome sequences and major core protein se-
quences of various grass carp reoviruses (GCRV), and this 
revealed significant genetic diversity among them [87,90]. 
GCRV can be divided into three groups. Most of them clus-
ter into the first major group; these viruses are not cyto-
pathic and contain a fiber-like protein. GCRV members of 
the second group are cytopathic and possess a fusion-   
associated small transmembrane (FAST) protein. GCRV 
104, a lone member of the third group, is also cytopathic 
and has a fiber-like protein. However, the various genotypes 
are not associated with their regional distributions [90]. 
Therefore, more studies on the evolutionary and geograph-
ical relationships between genomic diversity and reovirus 
transmission should be performed on grass carp reoviruses. 

Scophthalmus maximus reovirus, a novel reovirus isolat-
ed from marine fish, contains a FAST protein translated 
from a non-AUG start site that has been shown to partially 
contribute to the cytopathic effect caused by infection with 
this virus [94]. As a new reovirus equally related to mem-
bers of the Orthoreovirus and Aquareovirus genera, Piscine 
reovirus, which is linked to heart and skeletal muscle in-
flammation in farmed Atlantic salmon (Salmo salar L.), has 
been suggested by whole genome comparisons to be more 
closely related to orthoreoviruses and, therefore, a new spe-
cies of the Orthoreovirus genus [96]. Genome comparisons 
show that Piscine reovirus contains 10 genomic segments  

Table 2  Known aquareoviruses and their genomes 

No. Virus strains Host 
Isolation 

region/time 
Genome size 

(kb) 
Segments/ 

ORFs 
Accession No. References 

1 
GCHV (Grass carp 
hemorrhage virus 

Grass carp China, 1980 21.366 11/11 
AF260511–3 AF251262 F239175 

AF239174 F259053 AF284504 
F236688 F234321 

[85] 
 

2 
GCRV-873 (Grass carp 

reovirus-873) 
Grass carp China, 1983 25.000 11/12 

AF260511–3 
AF403390–7 

[85] 

3 
AGCRV (American grass 

carp reovirus) 
Grass carp America, 2001 23.576 11/12 EF589098–EF589108 [91] 

4 
GCRV-HuNan794 (Grass 
carp reovirus-HuNan794) 

Grass carp China, 2007 24.780 11/11 KC238676–KC238686 [92] 

5 
GCRV HZ08 (Grass carp 

reovirus HZ08) 
Grass carp China, 2008 24.707 11/11 

GQ896334–7 
GU350742–8 

[87] 

6 
GCRV106 (Grass carp 

reovirus 106) 
Grass carp China, 2009 24.778 11/11 KC201166–KC201176 [97] 

7 
GCRV-HeNan988 (Grass 
carp reovirus-Henan988) 

Grass carp China, 2009 24.780 11/11 KC847320–KC847330 [97] 

8 
GCRV918 (Grass carp 

reovirus 918) 
Grass carp China, 2010 24.780 11/11 KC201177–KC201187 [97] 

9 
GCRV-109 (Grass carp 

reovirus-109) 
Grass carp China, 2014 24.625 11/11 KC201177–KC201187 [90] 

10 
GCRV-GD108 (Grass carp 

reovirus-GD108) 
Grass carp China, 2009 24.703 11/12 HQ231198–HQ231208 [88] 

11 
HGDRV (GCRV 104) 

(Hubei grass carp disease 
reovirus) 

Grass carp China, 2009 23.706 11/12 JN967629–JN967639 [89] 

12 PRV(Piscine reovirus) Atlantic salmon Norway, 2012 23.320 10/11 GU994013–GU994022 [95] 

13 
GSRV (Golden shiner 

reovirus) 
Golden shiner America, 1979 23.695 11/12 AF403398–AF403408 [93] 

14 
CSRV (CHSRV) (chum 

salmon reovirus) 
Salmon Japan, 1981 23.015 11/12 AF418294–AF418304 [93] 

15 
SMReV (Turbot Scoph-

thalmus maximus reovirus) 
Turbot China, 2012 24.042 11/12 HM989930–HM989940 [94] 
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(not 11 as in all recognized aquareoviruses) and an out-
er-fiber protein that is present in most members of the Or-
thoreovirus genus [96,97]. Moreover, phylogenetic evi-
dence of long distance dispersal and transmission has been 
revealed by comparing the protein coding sequences S1, S2 
and S4 in Piscine reovirus genomic segments between 
farmed and wild Atlantic salmon [98].  

As an ideal model system for studying the cell entry 
mechanism used by nonenveloped viruses, single-particle 
cryo-electron microscopy has been used to observe the 3.3 Å 
structure of the primed, infectious subvirion GCRV particle, 
thereby providing structural insight into the coupling of 
virion assembly [99,100]. Additionally, new insight into the 
mechanisms of viral factory formation and pathogenesis of 
aquareoviruses has been acquired from functional studies on 
aquareoviral genes where NS80, a nonstructural protein of 
fish reovirus, has been confirmed to be crucial for recruiting 
viral components to form aquareoviral factories [101]. 

3  Rhabdovirus genomes 

Rhabdoviruses are a group of enveloped, single-stranded, 
negative-sense RNA viruses. The Rhabdoviridae family 
includes the following nine genera: Cytorhabdovirus, 
Ephemerovirus, Lyssavirus, Novirhabdovirus, Nucleo-
rhabdovirus, Perhabdovirus, Sigmavirus, Tibrovirus and 
Vesiculovirus [20]. All known fish rhabdoviruses have been 
assigned to the following three genera: Vesiculovirus, No-
virhabdovirus and Perhabdovirus [102,103]. 

Fish rhabdoviruses can cause severe hemorrhagic septi-
cemia in freshwater and marine fish. In the last 10 years, 
virologists isolated and identified the following rhab- 
doviruses from aquaculture fish: Siniperca chuatsi 
rhabdovirus [104], Scophthalmus maximus rhabdovirus 
[105,106], Paralichthys olivaceus rhabdovirus [107], 
Monopterus albus rhabdovirus [108], snakehead rhabdo- 
virus [109,110], Hirame rhabdovirus [111], and pike fry 
rhabdovirus [112]. Spring viremia of carp virus (SVCV), an 
earlier identified rhabdovirus, causes infectious hemorrhag-
ic septicemia in common carp (Cyprinus carpio) [102,113]. 
Perch rhabdovirus causes lethal hemorrhagic disease in dif-
ferent farmed species of perch, bass, grayling and trout 
[114,115]. Viral hemorrhagic septicemia virus (VHSV) and 
infectious haematopoietic necrosis virus (IHNV) are two 
typical rhabdoviruses of the Novirhabdovirus genus. VHSV 
is a viral pathogen affecting both wild and cultured fish 
worldwide; infected species include salmon, trout, cod, her-
ring, sole, catfish, pike, turbot, and flounder, among others 
[115]. IHNV causes severe losses to the salmon fish indus-
try in the USA and Canada, and many other countries in 
Asia and Europe [18].  

IHNV is the first fish rhabdovirus that has had its com-
plete genome sequenced [116]. Currently, more than 100 
fish rhabdovirus genomes have been completely sequenced, 

and over 80 of them are from different VHSV isolates or 
strains (Table 3). Fish rhabdovirus genomes are nega-
tive-sense, single-stranded RNA molecules, and their sizes 
range from 11 to 16 kb. In fish rhabdoviruses of the Vesic-
ulovirus genus, such as SVCV, pike fry rhabdovirus, Sini-
perca chuatsi rhabdovirus, and Scophthalmus maximus 
rhabdovirus, their genomes encode the following five pro-
teins: nucleoprotein (N), phosphoprotein (P), matrix protein 
(M), glycoprotein (G), and RNA-dependent RNA polymer-
ase (L) in the order 3′-N-P-M-G-L-5′, whereas in fish 
rhabdoviruses of the Novirhabdovirus genus, such as VHSV, 
IHNV, Hirame rhabdovirus, snakehead rhabdovirus and 
Paralichthys olivaceus rhabdovirus, their genomes encode 
the following six proteins: N, P, M, G, non-virion protein 
(NV), and L, in the order 3′-N-P-M-G-NV-L-5′. In compar-
ison with Vesiculovirus genus members, novirhabdoviruses 
possess an additional NV gene [107].  

Because of their small genomes, short generation times 
and rapid mutation rates, fish rhabdoviruses, especially 
VHSV and IHNV, have been extensively used to analyze 
their evolutionary patterns, genetic diversity and biogeog-
raphy of the numerous variants. Pierce and Stepien [117] 
evaluated the phylogenetic and biogeographic relationships 
of various VHSV isolates by comparing their corresponding 
genomic sequences, and depicted an evolutionary history of 
relatively rapid population diversifications in star-like pat-
terns, following a quasispecies model. Furthermore, He et al. 
[118] applied the Bayesian coalescent method to the 
time-stamped entire coding sequences of each VHSV gene. 
Through age calculations on six genes, the first bifurcation 
event of the isolates they analyzed was estimated to have 
occurred within the last 300 years. Additionally, compre-
hensive phylogenetic analyses have been performed by 
comparing the corresponding gene sequences of worldwide 
VHSV or IHNV isolates [114,119,120].  

In fish rhabdoviruses of the Vesiculovirus genus, SVCV 
genomes, which can be classified into different clades and 
genogroups, have been described as possessing high levels 
of diversity and plasticity [121,122]. Recently, Xiao et al. 
[123] performed recombination analysis of all known com-
plete SVCV genomic sequences, and found evidence of 
homologous recombination in these genomes. This finding 
sheds light on recombination and the evolutionary process 
in various isolates of fish rhabdoviruses.  

To allow functional studies to be conducted on fish 
rhabdovirus genes, several IHNV-VHSV chimeric recom-
binant viruses were constructed to allow the researchers to 
identify virulence genes through reverse genetics. Through 
comparative challenge experiments in rainbow trout finger-
lings, recombinant IHNV gained higher virulence following 
substitution of the G gene with that of each individual 
VHSV strain [124]. Additionally, an in vivo superinfection 
assay has recently been developed to examine the role of 
virulence in IHNV of fish rhabdoviruses [125]. 
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Table 3  Known fish rhabdoviruses and their genomes 

No. Virus strains 
Date of 
isolation 

Isolation 
region 

Host 
Genome 
size (knt) 

Genotype (gene order) Accession No. 
Refer-
ences 

Rhabdoviruses of different fish species 

1 

IHNV (Infec-
tious haemato-
poietic necrosis 

virus) 

1979 
North 

America 
Salmonids 11.137 3′N-M1-M2-G-NV-L-5′ X89213 

[116, 
124] 

     11.131 
3′N-M1-M (or 

M2)-G-NV-L-5′ NC_001652.1 

2 

SCRV 
(Siniperca 

chuatsi 
rhabdovirus) 

1999 China 
Mandarin 

fish 
11.545 3′-N-P-M/Ms-G-L-5′ DQ399789 [104] 

3 
SMRV (Scoph-
thalmus maxi-

musrhabdovirus) 
2007 China Turbot 11.492 3′N-Ps-P/C-M-G-L 5′ HQ003891 

[105, 
106] 

4 

PORV 
(Paralichthys 

olivaceus 
rhabdovirus) 

2005 China Flounder 11.182 3′-N-P-M-G-NV-L-5′ KC685626 [107] 

5 
SVCV (Spring 

viraemia of carp 
virus) 

2007 China 
Common 

carp 
11.019 3′-N-P-M-G-L-5′ DQ097384 

[102, 
113,121
–123] 

     11.019 3′-N-P-M-G-L-5′ AJ318079 

     11.100 3′-N-P-M-G-L-5′ DQ097384 

     11.020 3′-N-P-M-G-L-5′ NC_002803.1 

6 
PFRV (Pike fry 

rhabdovirus) 
1973 

Nether-
lands 

Pike fry 11.097 3′ N-P-M-G-L-5′ FJ872827 [112] 

7 
EVEX (Eel virus 

European X) 
2013 Europe eel 11.778 3′ N-P-M-G-L-5′ JX827265 

 8 
TenRV (Tench 
rhabdovirus) 

2013 Europe tench 11.082 3′ N-P-M-G-L-5′ KC113517 

9 
GrCRV (Grass 

carprhabdovirus) 
2013 Europe grass carp 11.096 3′ N-P-M-G-L-5′ KC113518 

10 

SVCV_Fijan 
(Spring viraemia 

of carp virus- 
Fijan) 

1971 Yugoslavia 
Common 

carp 
11.019 3′ N-P-M-G-L-5′ AJ318079 [102] 

11 

HIRRV 
CA-9703 
(Hirame 

rhabdovirus-CA-
9703) 

1986 Korea 
Japanese 
flounder 

11.034 3′ N-P-M-G-NV-L-5′ AF104985 [111] 

12–30 
PRV(Perch 

rhabdovirus) 
1980 
–2010 

France, 
Denmark, 

Italy, 
Finland 

Baltic Sea, 
Sweden, 
Nether-
lands 

Pikeperch, 
Pike, Perch, 
Black bass, 
Grayling, 
Sea trout, 
Eel, Trout 

Brown 

e.g. 
11.487 

e.g. 
3′ N-P-M-G-L-5′ 

 

JX679246.1 
JF502607, JF502603, JF502604 JF502609, JF502605, 

JF502596，JF502608, KC408701, KF146312 KC408697, 
KF146314, KC408700 KF146311, KC408699, KF146310 
KC408698, KF146309, KF146308. KF146313, KF146315, 

AF434991 AF434992, FN557213, 

[114] 

Viral hemorrhagic septicemia virus (VHSV) from different fish species 

31–116 

VHSV (Viral 
haemorrhagic 
septicaemia 

virus) 

1962 
–2007 

Denmark, 
Norway 
France, 
Georgia 
English 

Baltic Sea, 
Kattegat 
Finland 

Archipel-
ago Sea 
Scotland 
Ireland 
USA, 
Japan 
Italy, 

Sweden, 
Nether-
lands 

Rainbow 
trout 

Cod, Sprat 
Herring 
Lamprey 
Turbot 

Pout, Eel 
Coho 

salmon 
Japanese 
flounder 

 

e.g. 
11.184 

e.g. 
3′-N-P-M-G-NV-L-5′ 

 

GQ385941 
AF345857, AY546621, AY546616, Z93412, Z93414, 

AY546619, U28800, AY356632, AF345859, AF345858, 
AF143862, AY546575, AY546612, AY546623, 

AM086355,AM086356, AM086357, AM086358, AM086359, 
M086360, AM086361, AM086362, AM086363, AM086364, 
AM086365, AM086366, AM086367, AM086368,AM086369, 

AM086370, AM086371, AM086372, AM086373, 
AM086374, AM086375, AM086376, AM086377, 

AM086378, AM086379, AM086380, AM086381, AB179621 
AM086382, AM086383, FJ384761, AY546576, AY546577, 
AY546578, GQ504013, HQ112198-HQ112200, HQ112234, 
HQ112201- HQ112203, HQ112235, HQ112204- HQ112206, 

HQ112236, HQ112207-HQ112209, HQ112237, 
HQ112210-HQ112212, HQ112238, HQ112213-HQ112215, 
HQ112239,HQ112216, HQ112217, HQ112240, HQ112218, 
HQ112241, HQ112248, HQ112219-HQ112221, HQ112243, 
HQ112222-HQ112224 HQ112244, HQ112225-HQ112227, 
HQ112245, HQ112228-HQ112229, HQ112246 HQ112242, 
HQ112233, HQ112232, HQ112230, HQ112231, HQ112247, 
AY546628, AY546582, AY546620, AY546632, EU547740, 

Y546618, U28747 

[117– 
119, 
122] 
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4  Herpesvirus genomes 

Herpesviruses are enveloped viruses containing large, dou-
ble-stranded, linear DNA genomes. They are host-specific 
pathogens, and are wide spread among vertebrates such as 
mammals, birds, amphibians and fish [126]. After two new 
virus families, namely, Alloherpesviridae (incorporating 
fish and frog herpesviruses) and Malacoherpesviridae (con-
taining mollusks) were recognized in 2009, the Herpesvi-
rales order includes the following three families: Herpes-
viridae (containing mammals and birds), Alloherpesviridae, 
and Malacoherpesviridae. The Alloherpesviridae family is 
divided into the following four genera: Batrachovirus, Cy-
prinivirus, Ictalurivirus, and Salmonivirus [20]. The Cy-
prinivirus genus contains four species: three of them, cypri-
nid herpesvirus 1 (CyHV-1), cyprinid herpesvirus 2 
(CyHV-2), and cyprinid herpesvirus 3 (CyHV-3), are asso-
ciated with common carp or goldfish, while one of them, 
anguillid herpesvirus 1 (AngHV1), is associated with 
freshwater eels [127,128].  

Cyprinid herpesviruses have been reported to cause seri-
ous mortality in common carp and crucian carp [129]. 
CyHV-1 is the cause of carp pox, CyHV-3 is fatal in carp 
and koi fish, and CyHV-2 is the etiological agent of herpes-
viral hematopoietic necrosis disease in common carp, gold-
fish, crucian carp, and gibel carp [130]. Through use of bi-
oluminescence imaging, the skin covering a fish’s fins and 
body has been shown to be the major port of entry for cy- 
prinid herpesviruses [131]. Tissue culture and RT-PCR  

testing results indicate that herpesviruses may become latent 
in leukocytes and other tissues following a primary infec-
tion, and that they can be reactivated from latency by tem-
perature stress [132]. Recently, B cells have been identified 
as a major site where CyHV-3 can become latent [133].  

CyHV-3 has been observed to cause significant morbidi-
ty and mortality in koi and common carp. The pathological 
signs include epidermal abrasions, excess mucus production, 
necrosis of gills and internal organs, and lethargy. CyHV-3 
propagates well in the intestines and kidneys, and high 
numbers of infectious viruses can be observed in the drop-
pings of infected fish [134]. Several primary culture cell 
lines can be used to propagate cyprinid herpesviruses and 
for isolating these etiologic agents of disease [135].  

So far, the complete genomes of 11 herpesviruses have 
been sequenced from aquatic animals, nine of which are 
members of the Alloherpesviridae family, while two are 
members of the Malacoherpesviridae family. The genomes 
of these herpesviruses range in size from about 134.2 kb for 
the smallest (Ictalurid herpesvirus 1) to about 295.2 kb for 
the largest (Koi herpesvirus-J); their potential numbers of 
genes range from 77 to 163 (Table 4).  

The complete genome sequences of five cyprinid herpes-
viruses, the diseases of which are fatal in common carp, koi 
carp, goldfish, crucian carp, and gibel carp [130] have been 
reported. These genomes are characterized by a unique re-
gion flanked at each terminus by a sizeable direct repeat. 
About 120 orthologous genes are shared by these cyprinid 
herpesviruses, and 55 of them also share sequence conser- 

Table 4  Known herpesviruses of aquatic animals and their genomes 

No. Genus/strain Host/symptom 
Isolation 

region/time 
Genome size 

(kb) 
Potential 

ORFs 
Accession 

No. 
References 

lloherpesviridae 

1 
Ictalurivirus/Ictalurid 

herpesvirus 1 (IcHV-1) 
Channel catfish 

 
USA, 1971 134,226 77 M75136 [138,139] 

2 
Ictalurivirus/Anguillid 

herpesvirus 1 (AngHV-1) 
Eels (Anguilla) 

Netherlands, 
1996 

248.526 134 FJ940765 [140–142] 

3 
Cyprinivirus/Cyprinid 

herpesvirus1 (CyHV-1) 

Common carp (Cyprinus carpio) and koi carp 
(a variety of Cyprinus carpio)/carp pox, 

papilloma 
Japan, 1985 291,144 143 JQ815363  

[91,128] 
 

4 
Cyprinivirus/Cyprinid 

herpesvirus 2 (CyHV-2) 
Goldfish (Carassius auratus)/goldfish hema-

topoietic necrosis 
Japan, 1992 290,304 154 JQ815364 

5 
Cyprinivirus/Cyprinid 

herpesvirus 3 (CyHV-3) 
KHV-U Koi and Cyprinus carpio/Bleeding gills, sunken 

eyes, pale patches or skin blistering 

USA, 2003 295.146 163 DQ657948 

[136] 
6 KHV-J Japan, 2004 295,271 156 AP008984 

7 KHV-I Israel, 1998 295,138  DQ177346 

8 
Batrachoviru/Ranid her-

pesvirus 1 (RaHV-1) 
Leopard frog, Rana pipiens/Renal carcinoma or 

Lucke tumor 

North 
American, 

1964 
220,859 132 DQ665917 

[138,139] 

9 
Batrachoviru/Ranid her-

pesvirus 2 (RaHV-2) Frog 
virus 4 

Leopard frog, Rana pipiens/Renal carcinoma or 
Lucke tumor 

North 
American, 

1964 
231,801 147 DQ665652 

Malacoherpesviridae 

10 
Ostreavirus/Oyster 
herpesvirus OsHV1 

Oyster 
New Zea-
land, 1995 

207,439 124 AY509253 [128] 

11 
Ostreavirus/Acute viral 
necrosis virus (AVNV) 

Chinese scallop Chlamys farreri China, 1998 210,993 123 GQ153938 [144] 
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vation with AngHV1 of the Cyprinivirus genus. Signifi-
cantly, only 12 genes were found to be conserved convinc-
ingly in all the sequenced alloherpesviruses [136–138].  

Ictalurid herpesvirus 1 is the type species of the Ictaluri-
virus genus, and is the first fish herpesvirus for which the 
complete genome is known [139]. AngHV1 also frequently 
causes fatal disease in freshwater eels. After complete ge-
nome sequencing [140] and deep-sequencing of the 
AngHV1 transcriptome [141] were finalized, a genome- 
wide transcription analysis was performed using reverse 
transcription quantitative PCR, and a temporal regulation 
fashion similar to mammalian herpesviruses was observed 
in this fish herpesvirus [142]. 

Chelonid herpesvirus 5 is closely related to fibropapillo-
matosis, a neoplastic disease of marine turtles. Its genomic 
sequence has been shown to be largely collinear with the 
genomes of typical alphaherpesviruses [143]. In addition, 
the complete genome sequence of the acute viral necrosis 
virus, which belongs to the Malacoherpesviridae family, 
has also been reported recently [144]. 

In recent years, after cyprinid herpesvirus disease be-
came widely reported in the world, (especially in China) 
[145–147], numerous studies on cyprinid herpesviruses and 
identification of immune-related genes have been conducted 
[148–150]. It is envisaged, therefore, that new insight and 
better understanding of these cyprinid herpesviruses will 
emerge and lead to efficient antiviral approaches being de-
veloped in the near future. 

5  Virus-host interactions in aquatic animals 

The diverse viruses discussed above are serious pathogens 
of aquatic animals, especially those used in aquaculture. To 
understand their pathogenetic mechanisms and thereby pro-
vide protective strategies again them, some significant ex-
perimental methods and high-throughput technologies such 
as transcriptomics and proteomics have been recently used 
to gain better knowledge of these viruses and their hosts. 
Such studies have greatly expanded our knowledge about 
the innate and acquired immune systems of aquatic animals 
[151–155]. In China especially, comparative immunological 
studies of aquaculture animals have flourished over the last 
10 years, financial support for research in this area has in-
creased, and progress in this field has been reported in sev-
eral reviews [156–162]. Figure 2 is a schematic diagram 
outlining the interactions occurring between the diverse 
range of viruses discussed herein and their aquatic hosts. 
The diagram also shows how innate and acquired immunity, 
as well as related factors such as physical barriers, operate 
in aquaculture animals under attack by pathogenic viruses.  

As shown in Figure 2, when viruses, such as iridoviruses, 
herpesviruses, reoviruses, or rhabdoviruses attempt to enter 
a host cell, they first meet physical barriers on the skin and 
interact with a continuous layer of mucus and the complex 
regulatory networks that control skin immunity [163–166]. 
After such viruses pass the first line of defense and enter the 
host cell, the infected cell immediately initiates a series of 
innate immune responses; these include an inflammatory  

 
 

 

Figure 2  Schematic diagram illustrating the types of interactions that can occur between viruses and a host cell from an aquatic animal. 
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response, complement system activation, interferon produc-
tion, induction of antiviral reactions, cell apoptosis, and 
innate immune cell responses from macrophages, neutro-
phils, dendritic cells, natural killer and other immune cells 
that prevent viral replication and inhibit virus propagation 
[153,156,167]. Subsequently or concurrently, acquired 
(adaptive) immune responses, such as thymus-derived T 
lymphocyte activation, specific immunoglobulins (IgT or 
IgZ), polymeric Ig receptor production, and differential cy-
tokine network activation, amongst others, enables collabo-
ration between the cellular and humoral immune systems 
leading to destruction of the invading viruses [168–171]. 
Additionally, some aquatic viruses have developed immune 
evasion mechanisms and strategies to combat host immune 
systems through IFN suppression and apoptosis inhibition; 
such viruses have increased pathogenicity and have ac-
quired the ability to cross species barriers in their transmis-
sion [153,167,172].  

6  Conclusion and outlook 

Over the last decade, a large number of diverse pathogenic 
viruses, such as iridoviruses, herpesviruses, reoviruses, and 
rhabdoviruses, have been identified from aquaculture and 
natural aquatic animals, and many of their genomes have 
been completely sequenced. Comparative genomic and 
phylogenetic analyses have provided new insight into the 
origins of these viruses, as well as the different routes that 
have led to genetic change and evolutionary processes, and 
cross-species transmission mechanisms. Additionally, func-
tional studies on genes have yielded crucial information 
about viral factory formation and pathogenesis in these vi-
ruses. Along with their genome architectures and genetic 
characterization, the interactions between these viruses and 
their aquatic animal hosts have become an important focus 
in aquaculture. Finally, significant progress has been made 
in understanding the following: (i) the molecular mecha-
nisms underlying virus-host interactions [173–176], (ii) 
innate antiviral immune responses in fish, and (iii) gene 
identification in the fish interferon system [177–179]. 
Armed with this knowledge, it is hoped that new drugs and 
strategies to protect aquaculture animals against pathogenic 
viruses will be developed in the near future. 
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